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Abstract

This paper identifies in a feed-forward neural network the mathematical algorithm which
can catch the learning process highlighted by econometric works that makes people assess the
satisfaction arising in each single contingency so that they are better depicted in their decision
making by an Expected Utility rather than by a Regret Model. Evidence from experimental
economics are also accounted for, since the network does not manage to extrapolate the former

from the latter model when probabilities are extreme.
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1. Introduction

The standard Subjective Expected Utility Theory has been challenged on several grounds and
alternative theories have been suggested: Ratio Form Theory (Chew and MacCrimmon, 1979),
Three Moments of Utility Theory (Hagen, 1979), Prospect Theory (Kahneman and Tversky,
1979), Regret Theory (Loomes and Sudgen, 1982: 1987), Skew-Symmetric Bilinear Utility The-
ory (Fischburn, 1982; 1984), Generalized Expected Utility Theory (Machina, 1982).

Camerer (1989) claims that “there are substantial violations of the Subjective Expected Utility
Theory, but no single theory can explain the pattern of violations”. Regret Theory, however,
seems to be the most flexible one (Starner and Sugden, 1989): if you can assume the statistic
independence, it accounts for the common ratio, common consequence and juxtaposition effects;
if you can not, the preference reversal phenomenon can also be predicted. Moreover, it is well
supported by evidence (Hey, 1991).

Hammond (1986) claims that “consequential reasoning taking into account all the relevant
considerations will push us in the direction of the expected utility maximisation".

Through an econometric analysis based on panel data from rural India, Zagonari (1995) shows
that the Subjective Expected Utility Model has the same explanatory power as other models
when people repeatedly deal with the same kind of uncertainty in the same kind of framework.

The purpose of this paper is to depict the learning process that can make people assess the
satisfaction arising in each single contingency so that they are better depicted in their decision
making by an Expected Utility rather than by a Regret Model.

Hey and Di Cagno (1990) carried out an experiment on 68 people by asking them 60 questions
about pairs of gambles; through a limited dependent variable econometric analysis based on the
recorded preferences, they then estimated utility levels of each single or pair of outcomes.

Neural networks have often been used to solve gathering and processing information issues,
such as learning and optimization.

We address our question by conducting a numerical experiment based on a feed-forward
neural network where those levels of utilities are used as inputs.

We find that a neural network with 8 neurons in the input, 2 in the hidden and 1 in the output
layer is suitable to represent the learning process suggested by the econometric analysis as well
as it is in a position to depict the phenomenon according to which violations of the Expected
Utility Model are more common for extreme probability distributions over events.

The structure of the paper is as follows.



In section 1 we depict the Regret Model, the Expected Utility Model and the main character-
istics which they share; data for simulations are provided. Section 2 contains a short introduction
to neural networks in general and a brief description of the feed-forward network in particular.

Section 3 provides the simulation procedures and results. The conclusion appears in section 4.

2. The theoretical framework

We define a prospect as a list of consequences with an associated list of probabilities, one for
each consequence, such that these probabilities sum to 1 and we assume consequences to be
mutually exclusive and in finite number possibilities.

We consider an individual who reveals preferences over the set of all conceivable prospects
which obey the ordering (completeness and reflexivity) and the continuity axioms. Thus, a
prospect p is preferred to a prospect g according to the Regret Model (RM) if and only if:

Z ZPinM(fEi, zj) > Z ZPinM(-Tj, z;)
i i

where M(.) is the modified utility, i.e. the intrinsic utility of what is modified by regret or

rejoicing. If we define 1(.) by:

Pz, z5) = M(zy,2;) — M(zy,z:)

since 9)(.) is skew-symmetric ( i.e. Y(z0,2;) = —9(z;,7:) ), a prospect p is preferred to a

prospect ¢ according to the RM if and only if:

Z Z Y(zi,z;) >0

The decision maker in the RM is therefore assumed to take into account not simply the ex-
pected utility of the outcomes per se, but the expected utility modified by anticipated feeling
of regret or rejoicing. Formally, ¥(z;,z;) identifies not only the extra utility obtained from get-
ting z; per se rather than z; per se, but also the utility or disutility obtained from rejoicing or
regretting the fact of not getting .

The RM is quite comprehensive ': if prospects are statistically independent, it accounts for
the common ratio, common consequence and juxtaposition effects; if they are not, the preference
reversal phenomenon can be predicted, but the common consequence effect is not caught. In

order to grasp this point and to highlight similarities between the RM and the Expected Utility

! Tthkew—Symmetric Bilinear Jtility Theory by Fishburn (1982, 1984) is very similar to the Regret Theory,
even if he arrived at his theory in a pure axiomatic way, by weakening the axioms of the Ratio Form Theory by
Chew and MacCrimmon (1979).
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Model (EUM), we will assume statistic independence.

Hey and Di Cagno (1990) carried out an experiment on 68 people by answering them 60
preference questions involving a pairwise choice between two gambles: outcomes involved the
amounts 0, 10, 20, 30. This procedure led them to identify two groups of people: the P group
consisted of those 36 subjects who always expressed a strict preference; the I group of those
32 subjects who somewhere expressed indifference. By applying a limited dependent variable
econometric analysis to the data so recorded (probit models), they provided estimation of the
1(.) values for both these groups.

To make use of the results of this work, we will focus on four consequences prospects (30, 20,
10, 0). Hence the various values which 1(.) can take are given by: ¥(30,0), 4(30,10), 1(30,20),
¥(30,30), 1(20,0), 1(20,10), (20,20), ¥(10,0), 1(10,10), ¥(0,0).

Since consequences are assumed to be independent and a single prospect is under considera-
tion, the related probabilities are: psg(1 ~po0), P30(1—P10), P30(1~pao), P3o(1 ~P30), P2o(1—po),
P20(1 = P10), P20(1 — p20), Pro(1 — o), Pro(1 = Po), Po(1 — po), where =, p; = 1.

The utility levels we will use for simulations are reported in Table 1 and 1’ for [ and P groups,

respectively.

(30, 10) = .717 [ $(30,20) = 237 | %(30,30) = 0
1(20,0) = 717 | (20,10) = 227 | (20,20} = 0
%(10,0) = 533 | (10,10) =0

Table 1. RM Utility Levels: Indifference Case

$(30,0) =1 [+(30,10) = -901 [ %(30, 20) = -394 | 4(30,30) = 0
1(20,0) = 492 | (20,10) = 182 | (20,20) =0

$(10,0) = 213 | (10,10) =0
#(0,0) = 0

Table 1°. RM Utility Levels: Preference Case

As shown by econometric analysis, a learning process may allow individuals to identify the
utility they get from cach single final outcome (Zagonari 1995). If this is the case, the difference
between the modified utilities in the RM may be equal to the difference between the unmodified

utilities in the EUM ?. Formally:

Ylzi, 25) = u(z:) — u(z;) Vi Vj

Thus, a prospect p is preferred to a prospect g according to the EUM if and only if:

2

When there are less than 4 pure consequences and statistic independence is assumed, the RM becomes the Ratio
Form Model (Chew and MacCrimmon, 1979) if one introduces a transitive ordering of pure preferences and the
assumptions of increasingness and convexity.
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> ulwdp > 3 (e,

1

It is easy to show that now transitivity and independent axioms hold.
To make use of the results obtained by Hey and Di Cagno (1990), we focus again on four
consequences prospects (30, 20, 10, 0) so that the possible cases are given by: u(0), u(10),

u(20), u(30). Since consequences are independent, the related probabilities are: D30: D20s P10,

Po, wWhere > . p; = 1.

3. Neural networks and individual thinking

Neural networks have often been used to solve gathering and processing information issues, such
as learning and optimization: they are, therefore, good candidates for explaining the process we

are interested in.

neurons

input layer

synapsis

Figure 1: The Neural Network

In mathematical terms, a neural network is a direct graph with the following properties (See
Figure 1):

- each state variable n, is associated with a node;

- the strength of each link between two nodes i and k is quantified by a real value w;; called
weight;

- each node ¢ is associated with a bias 6,

- the state of each node n; is defined by a transfer function filng,wir,0;), k 5 4, which
depends on the state of nodes linked to it, the weights associated with these nodes and the value

of its bias.



In what follows, nodes will be called neurons and links Synapsis.

The transfer function takes usually the following form:
filng, wi, 6;) = fe(z wik ng — 0;)
k

where f;(.) is a step, linear or a sigmoid function. The dynamics of the evolution of a neural

network is defined as follows:
’I’Li(t + 1) = f,(z wiknk(t) - 9,)
k

A neural network is said to have learned an input when the presentation of the latter drives the
former to show the same set of states of neurons. The required change of the values of synapses
and biases to achieve this result identifies two main classes of neural networks: unsupervised
and supervised.

In the former, the learning process is not driven by elements outside the network: synapses
autonomously conform to the presented inputs. In the latter, the neural network is provided with
values of inputs and correspondent output and its synapses change until this output is reached:
the learning process is driven by examples.

The perceptron we will use below belongs to the second class and it is characterized by the
synaptic updating algorithm it relies on: this is based on the minimization of the difference
between the desired and the network output and it is called error back propagation (Rumelhart,
Hinton and Williams, 1986). The perceptron, therefore, turns cut tc be particularly suitable to

identify a function or a relation between two sets of variables, i.¢. a map from R™ to R™.

4. Simulation procedures and results

’

The neural network used for simulation studies is a feed-forward network with 8 neurons in the
input, 2 in the hidden and 1 in the output layer.

The neural network is first subject to a training procedure. Through the presentation of each
pair of outcomes as inputs and the correspondent utility as the output, it 1s asked to learn to
match the level of utility with the related pair of outcomes. The neural network is then required
to generalize the information set acquired through the previous training procedure in order to
identify the level of utility correspondent to each single outcome.

The input pattern for the training phase is defined in such a way that the presence of the
outcome z; is caught by the activation of the i-th neuron of input, whereas the absence of the

outcome z;by that of the (i + 4)-th one. The desired output during the training procedure is

6



given by the level of utility as defined by Y(z:,z;). The two input patterns for people in I and P
groups are provided in Table 2 and 2, respectively.

P(Zi,z;) | Input Pattern | Output Pattern P(z:,x;) | Input Pattern | Output Pattern
(0, 0) 10001000 0.000 (20, 0) 00101000 0.717
(0, 10) 10000100 -0.533 $(20,10) | 00100100 0.227
(0, 20) 10000010 -0.717 1(20,20) | 00100010 0.000
(0, 30) 10000001 -1.000 1(20,30) | 00100001 -0.237
(10, 0) 01001000 0.533 (30, 0) 00011000 1.000
¥(10,10) | 01000100 0.000 1(30,10) | 00010100 0.717
1(10,20) | 01000010 -0.277 1(30,20) | 00010010 0.237
1¥(10,30) | 01000001 -0.717 1(30,30) | 00010001 0.000

Table 2. Training Phase Pattern: Indifference Case

Y(z;,z;) | Input Pattern | Output Pattern Y(z;,z;) | Input Pattern | Output Pattern
1(0,0) 10001000 0.000 (20, 0) 00101000 0.717
(0, 10) 10000100 -0.533 $(20,10) | 00100100 0.227
(0, 20) 10000010 -0.717 1(20,20) | 00100010 0.000
(0, 30) 10000001 -1.000 $(20,30) | 00100001 -0.237
(10, 0) 01001000 0.533 (30, 0) 00011000 1.000
¥(10,10) | 01000100 0.000 ¥(30,10) | 00010100 0.717
$(10,20) | 01000010 -0.277 1(30,20) | 00010010 0.237
$(10,30) | 01000001 -0.717 $(30,30) | 00010001 0.000

Table 2°. Training Phase Pattern: Preference Case
All synapses and biases are fixed to 0 for initialization. The synapses updating process is
based on the error back propagation method. This implies that for each input pattern the state

variable n; for input neurons is worked out according to the following rule:

g Wi N —

where the chosen transfer functions are the 1dent1ty for the first and the sigmoid functions

f (nk) wzk)

for the second layer, respectively. The output neuron activation due to the presented pattern is

compared with the desired value according to:

L, = %(ap - bp)2

where £, is the error on the p-th pattern presented, ay is the activation of the neuron and b, the
desired correspondent output. The minimization of E, is based one the gradient method (Muller
and Reinhart 1991), i.e. the synapsis values are corrected according to a fixed proportion of the
error. The training process due to a successive presentation of patterns and the related updating

mechanism of synapses drive the network to reach a minimum error condition here identified

by a level below 0.002.



The generalization phase is performed by presenting a set of input patterns depicting the
presence and the absence of each single outcome (z; and z; respectively) and asking the network

to identify the correspondent level of utility as output. Results for I and P group are presented

in Table 3 and 3", respectively.

z; | Input Pattern | Output | z; [ Input Pattern Output
z; | 10000000 0 z, | 00001000 0
Zy | 01000000 | .43424 | z, | 00000100 | -.43893
zg | 00100000 | .63443 | z3 | 00000010 | -.65580
z4 | 00010000 1 z4 | 00000001 -1

Table 3. Generalisation Phase Pattern and Network Output: Indifference Case

z; | Input Pattern | Output | z; | Input Pattern Output
x 10000000 0 z; | 00001000 0
zg | 01000000 | 27791 | zo | 00000100 -.26309
zg | 00100000 | .48786 | z3 | 00000010 | -.500111
zg | 00010000 | z4 | 00000001 -1

Table 3°. Generalisation Phase Pattern and Network Output: Preference Case

Therefore, the suggested neural network seems to be in a position to represent the learning
process that make people identify the utility level arising from each single event.

It should be noticed that the numerical experiments indicate subjects who are risk averse for
small amounts but risk loving for larger amounts. A similar result is obtained by Hey and Di
Cagno (1990) for the I group.

Since the learning process is applied to a quite comprehensive model such as the RM, one
could conclude that the EUM is a limit case where that process has fully developed.

MacCrimmon and Larsson (1979) have shown, however, that the frequency of the inconsis-
tencies with the EUM depends crucially on the probabilities: for extreme values the "violation
level reached about 65 per cent. However, for smaller values, those more likely to actually en-
countered by subjects, the choices were quite consistent”. To be a good representation of the
learning process, the previously developed neural network must catch this phenomenon: it has
to find difficulties in extrapolating an EUM from a RM when probabilities are extreme.

Carrying out the same numerical experiments depicted above with the probability to en-

counter the state 30 being 20 times all the others gives the results depicted in Table 4 and 4°.
8



Input Pattern | Output
00001000 0

Z; | Input Pattern | Output
z; | 10000000 0
zz | 01000000 | .36662 00000100 | -.55284
z3z | 00100000 | .68065 00000010 | -.90445
z4 | 00010000 1 Z4 | 00000001 -1
Table 4. Generalisation Phase Pattern and Network Output: Indifference Case with larger ps,

e

z; | Input Pattern | Output | z; | Input Pattern Output
z; | 10000000 0 z; | 00001000 0

zz | 01000000 |.017652 | z, | 00000100 | -.473883
zz | 00100000 |.059078 | z3 | 00000010 | -.915820
z4 | 00010000 1 z4 | 00000001 -1
Table 4. Generalisation Phase Pattern and Network Output: Preference Case with larger p3o

We can conclude, therefore, that the EUM can be characterized as a limit case where the
learning process has fully developed under a particular condition only: when probabilities of

outcomes are relatively similar,

5. Conclusions

A learning process may make people assess the satisfaction arising in each single contingency
so that they are better depicted in their decision making by an Expected Utility rather than by a
Regret Model.

This result is obtained by applying a feed-forward neural network.

Indeed, not only does this account for results obtained by econometric works: it makes utili-
ties for the presence of each outcome opposite to those for their absence; but also for evidence
by experimental economics: it does not manage to extrapolate an Expected Utility Model from

a Regret Model when probabilities are extreme.
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