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1. Introduction

In economic theory, an agent is usually identified by his preferences and his consumption possibility
set, both of which are typically assumed to admit of a numerical representation. These, combined with
some environmental variables (like endowments and prices), deliver optimal programmes as functions
of the environment. Equilibrium is then defined as a state of the environment such that these
programmes are consistent with each other. This paper is concerned with the way we describe rational

agents as arriving at optimal programmes.

The economist’s standard description of rational choice involves the maximization of some
objective function subject to constraints — this being allegedly the way rationality is embodied in the
economic model. Thus if ¢; is the demand set of consumer i, it is the outcome of a rational choice
insofar as it arises from some maximization problem: the usual topological description of agent i is
meant to describe his rationality. More precisely, the latter is embodied in the properties of Euclidean
spaces and the implied definition of a distance function: rational behaviour is assessed as a set of
properties mapped into a metric space. An alternative way to describe rationality is to adopt a more
pointedly logical approach, and saying that an agent picking up an optimal programme within some
prespecified choice set is effectively being endowed with the ability of drawing inferences from given
premises: the outcome is rational insofar as it allows no contradiction. In this sense, ¢; is the outcome
of an inference which has prices, preferences, endowments, etc., as its premises. The main problem we

address in this paper is establishing a formal connection between these two approaches.

To be sure, that connection is somehow implied by the logical foundations of set theory, which
in turn is used by economists as a matter of course (Stigum, 1990). Moreover, mathematical logic is
increasingly being used to tackle foundational problems in game theory — where indeed agents are
sometimes identified as formal systems, i.e., statement-generating formal mechanisms (e.g., Binmore,
1992). However, how a geometric representation of rationality relates to a logical definition of it, is
something worth spelling out at length in its own right. Given the definition of an agent as a complete
preordering on some subset of RL, we shall prove that it is possible to throw a bridge between that
definition, and one which sees agents as formal systems which are extensions of Primitive Recursive

Arithmetics with some desirable properties (like consistency).

To the economist’s ordinary description, we can associate a formal logical system, and
viceversa. The construction of such a mapping should be seen as a first methodological step towards a
more general framework. First, looking at an economic agent as a formal system yields a clear
distinction between provabilily, consislency and {ruth of propositions concerning him. If a given

statement can be proved by a formal system 7, it is something agent 7' can draw from his axioms, and
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may then be seen (metatheoretically) as known to him. A more powerful formal system S will be able
to prove all that T can prove, as well as some other statement § having T' as its object: S may then
prove that T" and 6 are consistent: metatheoretically, an external observer {S) knows that 6 and T are
compatible with no implication that T' knows §. Finally, a formal notion of truth is avaliable, to the
effect that a statement (proved) by T will be true, depending on the (formalized} interpretation one
bestows upon it. Secondly, one major implication is that an (exchange) economy can be described as a
collection of formal systems, each of which will be inconsistent with any other. This may tell us
something on economic equilibria. Indeed, using this modeling strategy we were able to show elsewhere
(Benassi and Gentilini, 1997) that a competitive equilibrium implies some specific degree of consistency

among the formalized expression of the equilibrium statements of the various agents.

As a final remark, we stress that we rely mainly on the power of the syntactical instruments of
classical mathematical logic, which appears to us to fit well with Walrasian competitive modelling.
Notice in particular that we treat preferences as given (i.e., as described by a set of ordering axioms),
and accordingly refrain from going into the questions raised by the so-called preference logics
(Moutafakis, 1987). Thus we do not take up the semantic (i.e., substantive) problem of what rational
preferences (should) be, but try to work out the syntactical consequences of classical rationality vis @
vis economic choice. Also, we are mainly concerned with a single agent, and do not model strategic
interaction — although this should be in principle amenable to our approach. Indeed, it is game theory
that at present raises questions, the answer to which are framed in the language of mathematical logic:
computability is just the first item coming to mind, as in Binmore (1987) or Anderlini (1989). In a
sense, all controversial points which are likely to emerge under both headings are assumed away within

the axiomatic structure of the model.

The plan of the paper is as follows. An informal presentation of our set up and main results is
given in Section 2. Section 3 presents the core of the paper, by establishing a formal connection
between the typical topological description of a rational economic agent and his representation as a
formal system. Section 4 takes up some possible extensions, addressing in particular the problem of
consistency among agents seen as formal systems, as well as the constructive definition of an economy
which may be derived therefrom. Concluding remarks are gathered in section 5. Finally, an appendix is
also presented, where some intermediate results and definitions are collected which are used throughout

the text.

2. An informal presentation
In this section we introduce the main ideas, and develop informally the argument presented in later

sections. An economy is usually described as a collection of sets of numbers, obeying some desirable
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properties. In a L-commodity world, a standard description (e.g., Hildebrand and Kirman, 1988) would
include a finite set of agents | C M, such that each 7 € [ is identified by a consumption set X; C RE ,a
binary (preference) relation > .C X,;x X, having some properties such that > .,€® (a class of
preordering relations on X;), and some initial resources w; € Ra’_ ~ all of which make up the
characteristics of agent i. An (exchange) economy is then a mapping &: I—»“J’xR[jr which takes
characteristics into agents, such that Y ,w;>0. If we take as a reference a competitive exchange
economy, agent i faces a budget set B,(p,w;)C Ra which summarizes his perception of the
environment. The latter includes variables beyond his control: his given resources w; and a price vector

pE Ri + which embodies the equilibrium signaling mechanism typical of the competitive model.

Consider now the choice of trader i. We usually say that this is given by the best element

(according to ;) in B;: hence, it will be some set of nonnegative real numbers ¢, such that

$( =y pyw) = {x € Bi(pyw)N X, (2,2) € = ; for every z € By(p,wy)[1X;} (1)

Let now @; and P be particular descriptions of the environment. Then we could say that agent i, given
his characteristics C* = (X;,>; ®@;) and a price p, infers his optimal programme $ If we let

A= Ci, $) and the symbol + mean "agent ¢ infers”, this idea may be conveyed by writing
p 1

Akg¢ (2)
1
In fact, we are endowing our agent with an inference rule implicit in ”utility maximization”: this rule
ensures that the (structure of his) inference is correct. Indeed, should one state that at (p,w,) agent :

chooses some z ¢ $, we would say that this is not a 'correct’ inference (he is not being ’'rational’).

2.1. On formal systems'
From a formal point of view, we describe an agent’s choices as the result of operations he performs over
numbers: in our example, A and $ are in fact (sets of) numbers, and our agent is able to derive the

latter from the former. Indeed, the way this derivation is performed embodies our idea of rationality.

In order to make this idea more precise, we first need a language: for example, the formula in
(2) may well have the same meaning as equation (1), but this is clearly conveyed by a different
language. In general, we define a formal language £ as a set of symbols which enables us to make
precise such notions as “alphabet” or “proposition”. Formally, a language £ is a triplet (AL,W F): AL
is the alphabet of L, i.e. a given set of symbols; W is the set of terms which can be legitimately formed
by symbols of £ in A€; F is the set of formulae which can be legitimately formed by combining terms.

This is the canonical usage we adopt for the purpose of this paper. Given some language £, we need
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some inference rules to use it. Thus we may use our language to state the propositions "agent i
observes p and @” and "agent i chooses a vector in 3”; we may also state that the former implies the
latter —so long as £ includes such possibility, this is indeed meaningful. But we need an inference rules
to be sure that this is a valid implication: more precisely, we need an inferential apparaius. An
inferential apparatus 9 is a pair (A, ®): A is the set of azioms —in fact a suitably chosen subset of
the set F of formulae; % is the set of inference rules, i.e. of legitimate ways of connecting any two

formulae — drawing the latter (conclusion) from the former (premise).

A pair (£,D) = S is called a formal system — that is, a statement-generating formal mechanism.
Let I" be a set of formulae in S (i.e., I' C F), and 7 a formula in § (i.e., 7 € F): we say that v can be
derived from I' if and only if there is a finite sequence {y,}} - of formulae of S such that any v, in
the sequence is either an axiom of S, or a element of I', or else can be derived by applying any of the
rules in B to any formulae 75 preceding 7 in the sequence; and, of course, v, = 7. If this is indeed the
case, we write formally I' }§ ~. The formulae in I' are the premises, and the sequence {v,}% _, the
derivation, of . Note that it may well be that I" = @: that is, ¥ can be derived in S with no reference
to a specific subset of F. This we write as }57: in some sense, v is in this case stronger, which we

signal by calling it a theorem of S, and the sequence {y,}% _ | its demonstration or proof within S.

In principle, one may think of different formal systems. For reasons which will be apparent, we
shall work within the so-called standard formal logic of the first order, although the setting we shall
develop can be extended to various non-standard logical systems in a natural way. This choice should
be understood as dictated by the use we shall make of formal systems as describing economic agents.
To see the rationale behind this, let us go back to the language £ of S. Its alphabet A will typically
include the standard logical boolean connectives (V and A for "or” and "and”, ~ for "not”, and «—
for ”is equivalent to”), as well as the standard quantifiers 3 and V, which together make up the
operators of the so-called predicate calculus (Shoenfield, 1967, p.14). The other main symbols within

Al are typically: (a) constants a; (i =1,2,...), to be seen as specific individual objects — e.g., the

number 3; (b) variables z; (i =1,2,...), to be seen as generic individual objects — e.g., an even
number; (c) function letters f™ (i =1,..; m =1,...), the use of which will be clear presently; (d)
predicative letters P (i = 1,..; m = 1,..), which describe properties of specific or generic individual

objects, where n is the number of "slots” the property requires: e.g., P? might be the property ”being
greater than” (which calls for two slots, as it applies to pairs of numbers) — in which case P?ala5
means that the number identified by a, is greater than the one identified by az. This being so, a term
w € W is defined to be either a constant, or a variable, or else a functional letter — the latter is used to
define a new term starting from other terms. A formula is generated by combining either terms or

formulae; thus the simplest formulae (so-called atomic) are those describing properties of individual
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objects (like P‘;wlw2wg), while a new formula may result from applying logical connectives to other
formulae (if o and 7 are formulae, so is @V #). A formula may also contain quantifiers which are
applied to individual variables — in which case it is sometimes called a sentence: e.g., HxiP}(xi) is a
sentence (“there is at least one object z; with the property Pﬁ-”). A formal systems where the
quantifiers 3 and V are applied only to individual variables (which are terms), and not to formulae, 1s
said to be of the first order (Shoenfield, ch.2): this is the kind of logical systems we shall be concerned
with. We do so, as this allows us to rely on canonical ”completeness” theorems, the meaning of which

can be introduced as follows.

Any formal system S is to be clear about some relevant features. The most significant of these
can be listed as follows: (a) being consistent; (b) being complete; (c¢) being endowed with a formal
model; (d) being recursively axiomatized; (e) being decidable. These are the metatheoretical properties

of S, which are presently taken up informally (Shoenfield, 1967, ch.s 3-6; Barwise,1977,ch.A1).

Let a formula of the form "+ and not 7" be defined as a contradiction {y A ~ %, where "and”
(A) and "not” ( ~ ) are in the alphabet of S). A formal system S is consistent if no contradiction can
be derived as a theorem of S. If S is inconsistent, all formulae of S (the whole set F') are theorems of
S. A formal system S is syntactically complete (sy-complete) if for each v, either v or ~ v can be
derived in S. Consistency and sy-completeness are syntactical properties of a formal system: the latter
may or may not be consistent or sy-complete, depending only on the way it is built — i.e., on what its
inferential apparatus regards as legitimate axioms and inference rules, and on the legitimate ways to
form terms and formulae starting from its alphabet. However, languages are used to describe realities

— they should have a meaning, i.e. a semantics.

Formally, an interpretation of the language £ of S is a pair M = (D, g) (Barwise, 1977, ch.Al}).
Loosely speaking, D is a nonempty set which defines the domain of the interpretation — the universe
about which £ is assumed to speak; ¢ a function which assigns a meaning in D to terms and formulae
in S. For example, a formula 7 of S might have the form Pa, where P is some property and a is a
constant; let (Dy,g;) a particular interpretation of £ in S, according to which g,(P) is the set of
primes and g,(a) = 3. Thus the proposition ”3 is a prime” may be rendered as g,(a) € g4(P): since 3 in
indeed a prime, we say that Pa is true under the interpretation (Dy,g;) — of course, Pa may be false
under a different interpretation, e.g. one (D;,g,) such that gy(a)=4. This procedure can be
generalized to more complex situations, and gives us a formalized notion of truth. In general, if v is
true under the interpretation M, we say that M is a model of v; by extension, if I" is a set of formulae
in S, an interpretation M is a model of I only iff it is a model for any v € I'. One key point we shall
exploit in what follows is the relationship between the syntactical and the semantical levels:

inconsistent systems cannot have a model. Moreover, the following is a canonical result (Shoenfield,



1967, p.43):

THEOREM I (existence of a model): If S is consistent, it has at least one model M.

This establishes a connection between a syntactical property (consistency) and a semantic one (the

existence of a model). Moreover, consistent formal systems exhibit in general the following

PROPERTY (correctness): All theorems of S are true in all models of S.

This paves the way to an outstanding feature of first order systems. If we confine ourselves to correct
systems of the first order (which we shall do in the sequel), we can avail ourselves of a stronger
property known as semantic completeness (sem-completeness). Indeed, the following can be proved

(Shoenfield, 1967, p.43):

THEOREM II (sem-completeness): If S is a first order consistent system and proposition

v is true tn all models of S, then v is a theorem of S.

This explains why we shall work with logical systems of the first order: if correct, these systems exhibit
a strong connection between their formal properties and the interpretation that can be bestowed upon
them. Differently, higher order systems do not admit sem-completeness with respect to the class of
standard models (Takeuti, 1987, p.162). Also, the difference between sycompleteness and sem-
completeness should be emphasized: the former depends only on the way a system S is built, while the

latter connects such formal structure with external worlds which these formal structure can describe.

The last properties of formal systems we are interested in, are whether it is recursively
ariomatizable and decidable (Shoenfield, 1967, pp.123 ff). The latter refers to the procedure used to
establish whether a formula is a theorem: S is (recursively) decidable if there exist recursive methods
(which we need not specify here) which, in a finite number of steps, allows us to decide whether any
is or not a theorem of S. Now, S is recursively axiomatizable if there exists another formal system S’
with the same theorems as S, such that its set of axioms 4’ is itself decidable — i.e., given any 7’ we
can decide in a finite number of steps whether 4’ is, or is not, in A’. These two notions are connected

by the following (Shoenfield, 1967, p.132)

THEOREM 11T (decidable systems): If S is sy-complete and recursively aziomatizable, then
1l is iself decidable.



However, it should be noticed that most relevant logical systems are undecidable, which may be seen as
a consequence of the celebrated Gédel’s incompleteness theorems. To introduce the latter, we remark
that in economics we use numerical representations to describe the agents’ behaviour: it is then sensible
to concentrate on a particular class of formal systems which are canonical in mathematical logic, and
are used to study numerical representations of reality. This is the Primitive Recursive Arithmetics
(PRA) (Shoenfield, 1967, ch.6; Smorynski, 1985, p.16; Barwise, 1977, p.840). Informally, PRA is a
formal system with canonical language and inferential apparatus, which includes the predicate calculus
together with an extended language and a set of own axioms: these allow PRA to express natural
numbers and to prove their properties. Its inferential apparatus includes the induction rule on
quantifier-free formulae (Shoenfield, 1967, p.204; Takeuti, 1987, p.76), which adds greatly to PRA’s
proof power. It is worth stressing that PRA includes the definition of all recursive functions
(Smorinski, 1985, ch.0; Shoenfield, 1967, ch.6): as is well known, the latter are the mathematical tools
describing each effective operation on numbers, or objects which may be codified by numbers.
Accordingly, PRA can describe (and prove) actions performed by rational agents, which we can think
of as computable —indeed, the celebrated Church’s thesis states that each computable process is
recursive (Shoenfield, 1967, p.119). Moreover, as Godel’s theorems show, PRA also defines many
predicates and functions which are nof recursive: we shall use them to describe non-computable choices

of rational agents.

Saying that S belongs to the class PRA means that S will have the same language, inference
rules and axioms as PRA, logether with a sel of own predicative and funclion letlers and a sel of
proper azioms, which are meant to make S fit for economic analysis. Like PRA, S will be recursively
axiomatizable. Suppose now we have a procedure which associates to any symbol or finite sequence of
symbols of the language £ of S, say e, a positive natural number, #(¢), called the Gédel number (G-
number) of e (Smorynski, 1977, p.837). Thus one such number may be associated to formula v of S,
and another number to the proof of v in § — which, as we saw above, is a finite sequence of formulae.
In these circumstances, it can be proved that a recursive binary predicate may be defined in PRA,
denoted Provg(m,n), whose meaning is as follows: "m is the G-number of a proof in S of the formula
v of S, whose G-number is n”. Accordingly, the formula Provg(#(6),#£(7)) says: "6 is a proof of v in
S”. To this we may append a quantifier, to get the proposition JzProv¢(z,#(7)): "there exists a proof
of v in S”, which is rendered for short as Prg(y). That is, we can define a provability predicate Prg(- ),
stating the provability in the given system S of a formula (Smorynski, 1977, p.837; 1985, p.40). In
general, this will not be recursive: if it is, then S is decidable in the sense defined above. However, no S

of the PRA class is decidable. One important consequence of all this is that statements about
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provability (and hence consistency) of S can be formed within S. Indeed, the latter shares the same
language and inference rules of PRA, within which, as we have seen, Prg(-) can be defined. Thus
saying that S is consistent amounts simply to writing ~ Prg(yA ~ ) (v and ~ - cannot be proved
in $”); let Coer(S) be any such statement — clearly, Prg(y A ~ 7) will mean that S is inconsistent,
that is ~ Coer(S).2 The celebrated Gddel’s incompleteness theorems establish that for all of formal
systems which belong to PR A, being consistent implies being sy-incomplete, which can be summarized

(quite informally) as (Smorinsky, 1977, p.825):

THEOREM IV (Godel): If S is consistent and belongs to the class PRA, than it can prove
netther Coer(S), nor ~ Coer(S).

One major consequence of the theorem is, it is possible to prove that any such system admits of a
(countably infinite) set of non-isomorphic models. Indeed, if S is consistent, by theorem I it has at least
one model within which Coer(S) is true, but there have to be models where Coer(S) is false: as a
matter of fact, if Coer(S) was true in all models of .S, it would be a theorem of S by theorem II (sem-
completeness), which in turn would contradict theorem IV. The property of having many different

models is a result we shall exploit heavily in what follows.

2.2. Formal systems and economic theory

We are going to identify an agent ¢ € I with a formal system, T,

; — including of course the language of

T, his axioms and his inference rules. Note that we are basically saying two different things here.
First, once we have a language and an inferential apparatus for T';, we can say that T'; is able to prove
some propositions within that language: going beck to our example, A !: a means that a can be proved
within T'; starting from A. Second, when we interpret it as “agent ¢, identified by C* and observing p,
chooses an optimal action in a”, we (as outside observers) are describing ¢’s behaviour by assigning to
him both the language L% and the inferential apparatus P in doing so we are using some higher-level

formal system which allows us to prove statements about T';, as well as about any other Tj, jel

One advantage of looking at the inner logical structure of rational economic agents is having a
clear distinction between provability, consistency and truth of propositions concerning him. Suppose we
identify an agent by a formal system T, = (Li,‘.Di). We may assume that all agents share the same
language (L' = £), though not necessarily the same inference rules — the former is somehow a minimal
part of the idea of “rational”. However, an agent’s axioms will describe the premises from which he is
assumed to draw his conclusions: only some of these will be equal across agents —e.g., in a competitive

market the price is the same to all; but there will have to be agent-specific axioms, regarding his
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preferences and wealth: indeed, this is what makes agents different from one another.

Now consider some statement 7y, of T';. If this can be proved in T'; or is a theorem of T, it is
something the agent can draw from his axioms: e.g., from a price p and his characteristics C' agent i
can draw the conclusion that his optimal choice lies in 6. Thus we suggest that a statement provable by
T; 1s (melatheoretically) known to ageni 1. The idea of some v being provable within T'; is different
from 7y being consistent with T',. Consider some more powerful formal system S having the same
language and inference rules as T, but a wider set of axioms: it will then be able to prove all the
theorems of T';, as well as other theorems having T'; as their object. In particular, given some formula é
of S, S may be able to prove that T, and é are consistent: metatheoretically, an external observer
(system S) knows that & and T; are compatible with no implication that i knows 6. Now notice that we
shall work within a framework where all T,’s will belong to the PRA class: they will be extensions of
the standard PRA system, built in such a way that their inference rules and axioms ensure consistency.
Thus all T;’s will be unable to prove contradictions, which implies (by theorem I) that each of them
will admit of at least one interpretation (model) M, where any theorem 7; will be true. However, as
belonging to the PRA class, each of them will be sy-incomplete: hence, it will allow for a whole set of

non-isomorphic models. All this will also be true of the more poweful system S.

Using the modeling strategy outlined above, we shall prove that it is possible to describe agents
as formal systems which are extensions of PRA and (a) exhibit some desirable properties, notably
consistency, and (b} can be naturally mapped into a standard topological framework to deliver the
economist’s ordinary description — accordingly, agent i’s typical characteristics within our exchange
economy, C' = (X;, = ; W;), can be read as the topological description of the formal system T,. The
construction of such a mapping should be seen as a first methodological step towards a more general
framework. Indeed, one major implication is that an economy E can be described as a collection of
formal systems {Ti}le, each of which is sy-incomplete, admits of a set of infinite non-isomorphic
models, and — crucially —is inconsistent with any other. One important implication, pursued elsewhere
(Benassi and Gentilini, 1997), concerns competitive equilibria. Using the tools of mathematical logic,
we can define a model equilibrium as a set of models {Mf}{: 1 (one for each formal system T), such
that each M is a model of the specific T'; plus the equilibrium choice statements of all the Tj’s (F#1):

that is, M; ensures the that T'; be consistent with the equilibrium choices of all agents. We are then

able to show that all competitive equilibria for the economy {Ci}f: 1 are model equilibria for E.

3. A raiional agent as a formal system
The typical framework to model rational economic choice involves (a) defining a set X of alternatives

from which the agent is assumed to choose, and (b) defining a ranking among such alternatives — a
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preordering which allows pairwise comparisons between elements z of X. In this section we provide a
logical formulation of both (a) and (b), within a definition of an agent as a formal system T'; = (L,D%).

The index i € } = {1,..., I} identifies the specific agent one is concerned with.?

To start with, it is useful to be clear about the geometric representation we have in mind:

DEFINITION D.1 (economic agent): An economic agents is a pair (> ;,X;), where

L . . .
X,CR" and = ;C X;x X, is a binary preference relation.

We let = ; and X satisfy Debreu’s (1959) standard assumptions. D.1 is meant to describe an agent
s choosing a bundle of I commodities indexed by £ €L ={1,..,L} and identified by real numbers:
building a mapping which allows one to pass from D.1 to the following definition D.2 and wiceversa, is

one major object of this paper.

DEFINITION D.2 (economic agent): An economic agent is a first order formal system T
which includes the Primitive Recursive Arithmetic extended to integers PRA(Z),
characterized by:

(a) a language L;

(b) a set of azioms A(T;);

(c) a set of inference rules R(T ;).

The system PRA(Z) is simply an extension of PRA which allows considering negative integers
(Forcheri, Gentilini, Molfino, 1996, sec.2). The language £ of T, is an extension of the language of
PRA(Z) and, as already remarked, it is common to all agents, and accordingly unindexed. Together
with the basic language of PRA(Z), £ includes all predicative and function letters defined in the
sequel, which are specific to the problem at hand. We shall denote as PRA(FE) the conservative
extension of PRA(Z) with the symbols of the language £, and call it the basic logical system for the

economy F = {Tg},l: 1

Starting from A, agent T'; makes use of ® to prove his set of theorems Th(T’;), which are
meant to describe the whole knowledge of T';. Surely this set includes all theorems of PRA(FE), as well
as all tautologies in L. Of course, this definition is far too generic to be useful: we have to specify

axioms in A which make T fit to represent economic agents in the spirit of D.1.

3.1. Some auziliary definitions

We first need to expand the standard PRA(Z) language with two function letters (defining new terms
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starting from other terms) which play a key role in what follows:

AUXILIARY DEFINITION AD.1: Within PRA(E) a binary functional letier quot(-, ) s
defined, such that quot(a,b) is a recursive lerm codifying the fraction s/1 of Q (the sel of
rationals), where s/l is the reduced form of a/b, as the G-number of a finite sequence of
symbols in the following manner: #(quot,s,l), while assuming thal quot is a funclion

letter different from each letler of PRA(Z).

Thus, given a pair of natural numbers like (2,3), #quot(2,3) corresponds to the fraction 2/3. We refer
, to the Appendix for technicalities (Def B.1): our definition allows terms of the quot form to simulate

some useful properties of rationals in Q.

AUXILIARY DEFINITION AD.2: Within PRA(E) a unary functional letter L-vect(-) is
defined, such thal if w is a sequence of PRA(E) terms of the form {quot(ae,be)}gz D
then L-vect(w)=#(w), i.e., the G-number of a sequence of L terms of the quot form.

Again, we refer to the Appendix (Def B.5) for a complete definition of L-vect(- ).

These auxiliary definitions will be used later on to derive our results. We can already notice,
however, that mappings can be built which take quot-terms into rational numbers, and C-vect( - )-terms
into QL-vectors of the form (aé/bé)ﬂzl,...,L' Such mappings will be ezternal to each T; and to
PRA(E), and they will be used below (propositions P.1 and P.2) to argue that an external observer
can establish a meaningful connection between the topological and the logical descriptions of rational
economic agents. Finally, note that, given any operation (like sum +, or product-) and relation (like
greater than > ) between ratios in Q, we shall use the corresponding starred symbols for operations
(+%*, -*) and relations ( > *) between terms of the type quot (App.: Defs B.2, B3, B.4). Similarly, we
define operations and relations between term of the form L-vect, the symbols of which will be double-
starred to mimic operations (like sum, scalar product, etc.) or relations (like greater than, or equal to)

among vectors in Q@ (App.: Defs B.6, B.7, B.8, B.9, B.10).

3.2. Choice sets

We begin by endowing each agent with a suitable mechanism to store information. This is done by

DEFINITION D.3 (commodity choice function): Within T, a suilable sel of azioms
Q, C AT,) defines a function f:IxNxL—N. The function f does notl belong to the
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language of PRA(Z), and we call it the commodity choice function.

The intended meaning of D.3 is as follows: given f(#;n,¢), ¢ € I identifies the agent at hand, while £ € L.
is a commodity index. The second argument of f is a natural number n € N which identifies a memory
cell of agent i: our agent is supposed to be able to consider several statements together, and store them
using natural numbers as indices. The value ¢ of f is a natural number, that is, a PRA(E)-term of the
quot form as defined in AD.1. Thus f(#;n,£) = ¢ means: agent 7 considers a quantity of commodity ¢
equal to the rational number identified by the term g¢. The latter is just a way to assign a label to i’s
choices: though immaterial to our logical framework, it is the key to our connection between D.1 and
D.2. In general, f is defined by a set of suitable axioms common to all #’s, plus a set of specific axioms
defining the properties of f for each i € k. Thus f(i;n, ) will differ from f(j;n,€) — this is what makes
the former the choice function of T';, as opposed to that of T';. Note also that f need not be recursive
—should it be so, as we shall see, it could not express the features of agent T'; as opposed to those of
other agents. Euristically, f does not describe actual (or computable) choices: it is a storing mechanism

we use to define the logical equivalent to the standard choice set. This is done in the following

DEFINITION D.4 (choice-set theorems): For any given memory cell n€N, a choice-
sentence of T; (cs;) is a sentence of the form

fin,)=ry A Afln LY =71
where Ty is a term of the form quot(ag,bg). A choice-set theorem of T; 15 a theorem of

T, which is a cs;.

The set of choice-set theorems which can be proved by T, €, say, is clearly a subset of Th(T;). It
includes a denumerable infinity of such theorems. Indeed, by running from n =1 to n = co, we map
the whole set of possible choices known to T; thanks to his storing mechanism. The following

observations are worth stressing:

REMARK R.1: If T, is consistent, for any given memory cell n there is at most one choice-
set theorem: indeed, from f(i;n,£)=7r and f(i;n,€) =s (with r and s demonstrably
different from one another), we can easily derive a contradiction. Notice also that:

(a) By suitable existential quantifiers, T'; can prove choice-set theorems of the form
Jry3rp(gg €72y < oA Agqp <Tzp <FrpAflim )y =2y A A f(Gn, L) =27),
where we recall that starred relations are for quot terms (App., Def B.4). The above are

statements identifying intervals within which the quantity Ty of commodity € can vary.

{(b) We can define a recursive predicate
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ch(k) < "k is the G-number of a cs”,
which expresses choice sentences. Whenever no confusion is arising, we shall use
indifferently a sentence A and its code #(A): thus ch;(A) is read as "A is a cs,”. Clearly,
we can represent the L-uple (ry,...,r) of quot terms within a cs; with a recursive term of

the form L-vect, as defined in AD.2 (App.: Def B.12).

Before establishing an explicit connection between the set of choice-set theorems C; and the standard

choice set X; C RL, we still need a further technical step. This is provided by the following

AUXILIARY DEFINITION AD.3: Let the following be defined:

(i) a function E9:Im quot — @, which assigns to each quot term of PRA(E) the
correspondiong reduced fraction in the sel of rationals;

(ii) a function EL: Im t-vect — QL, which assigns to each L-vect term of PRA(E) the
corresponding veclor QL;

(iit) the geomelric part of any given cs;, A say, geo(#A), as the recursive term (-
vect(#(ry,...,71));

(iv) the geometric part of the set C; of choice-set theorems of T;, Geo(C;), as the set of
QL-vectors that an external operator who includes PRA(E) can associate o the geo(#A4)
of all cs;’s A in C;: this the operator can do, by using the E9 and EL mappings defined
above (App.: Prop B.2 and Def B.11).

(v)  Then we say that {A }r ¢ Ny A €C;, is @ Cauchy sequence of choice-set theorems
of T, iff {EL(geo(#Ak))}k ¢ v 15 a Cauchy sequence of points in Qr.

The prefix Im recalls that the concerned mapping is the image of the logical term in the space of
rationals. We are now in the position to make precise how one can pass from the logical framework C,
to the topological description X, and viceversa. This is done in the following two propositions. First

we show that given a formal system T';, we can associate to it a standard consumption set:

PROPOSITION P.1 (Choice set): Let T, be consistent. Then we can associate to T; a
subset X; of RL, such that:
(1) X, is closed on RL;
(#%) given any point r € X, either x is the image through EL of the geometric part of
a choice-set theorem t € C;, or there erists a Cauchy sequence of choice-set theorems of

T, such that {EL(geo(#Ak))}k c v lends to x in the Euclidean metric of RL.
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;) is a subset of QL; we can then apply (outside PRA) the

3

PROOF: By definition Geo(C
canonical procedure of completing a metric space, by adding the limits of Cauchy-
sequences of points in Geo(C;). As is well known from standard topology, we obtain a

closed set X, in RL, so the thesis is proved by construction.O

We shall dwell on the possibility of linking to T, some specific features of X; (like convexity) in
Sections 3.4 and 4, after studying the logical features of T,. The following proposition connects the

standard topological decription of an economic agent to his formalization as a logical system.

PROPOSITION P.2 (Choice set): Let the geometric description of an economic agent be
identified by a parr (=, X;), with X‘»CRL, closed and including a dense subset with
coordinates in Q, and = ; C X;x X, a binary preference relation, as from D.1. Then we
can define (outsidle PRA) a T, salisfying definitions D.2, D.3 and D.4, which is
consistent and such that:

(1) X, is the Fuclidean metric completion of Geo(C,), and for every x € X, there is a
Cauchy sequence {A}; c n of choice-set theorems of T; such that {EL(geo(#Ak))}k eN
tends to x in the Euclidean melric of RL;

(it)  Geo(C;) is ordered by a preordering which is isomorphic to = ;.

PROOF: Let H, be a subset of X with coordinates in @, such that its metric completion
is X;. For any z € H, consider the -vect term (AD.2), corresponding to z in PRA(E):
let this be L-vect(#(quot(cy,dp)p _ ...,L))' As H, is denumerable, we can index these
terms in a sequence {{;}pc N of te’rms in PRA(FE). We now add to the axioms of
PRA(Z) the denumerable set of axioms Q; = {/\ r=1,.. 0(f@G k)= Wf**(tk)):k € N},
which define the commodity choice function f for an agent T f is a function letter
external to the language of PRA(Z), and 7r£** is a recursive operation which projects the
r-th component of L-vect terms (App.:, Def B.9). Clearly, f is a function, and PRA(Z)
cannot prove the negation of the axioms in . Hence, the system T; = PRA(Z)+Q,; is
consistent by the Reduction Theorem (Shoenfield, 1967, p.42).4 By construction, it

satisfies conditions (i) and (i7): indeed, there results Geo(C;) = H,, and > ; orders also

the subset H, of X .0

Propositions P.1 and P.2 throw a bridge between the standard description of economic agents and our
logical treatment of individual rationality. However, it should be noticed that the features of T'; pinned

down by proposition P.2 become relevant from a logical point of view only when endowed with other
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properties (discussed later), with respect to which the axiomatization given by P.2 is too coarse: e.g.,
T; as it results from P.2 is not in general recursively axiomatizable, which however turns out to be an
essential property for an effective logical treatment of economic agents. Notice finally that endowing T,

with these additional properties will not jeopardize the results established in propositions P.1 and P.2.

We devote the rest of this section to endow the commodity choice function f (defined in D.3)
with some logical properties which make it fit for our analysis: these will be embodied in the axioms set
A(T;). In particular, we shall assume that agent ¢’s choice-set theorems cannot be theorems of the

basic logical system PRA(FE), which is tantamount to make the following basic

ASSUMPTION A.l (Properties of f): The ¢s function f is in general not recursive, and
hence agent T; cannot be represented as a Turing machine (Barwise, 1977, ch.C1, p.530).
The graph {f(i;k,r) =05} of f(i;-,-), resulting from T,’s choice-set theorems, is not
PRA(E)-decidable, nor is the set C; of choice-set theorems of T;. This implies that the
system PRA(E) is not able to establish whether any given cs; of T, is a theorem of T';.

We recall that a set I' of sentences is PRA(FE)-decidable iffPRA(E) proves the graph of its
chracteristic function x(-), where x is so defined: x(m) =1 iff m is the G-number of a sentence

which is in I', x p(m) = 0 otherwise.

Now notice that the very simple structure of a cs; does not imply the information it can
convey is as simple. Indeed, the opposite is true, since we are working with logical systems embodying
the arithmetization of their own metatheories. Thus the atomic formula f = k may include information

which is very complex: as an example, consider the function defined very simply as
f(n)=1 if nis the G-number of a theorem of the Set Theory ZF;

f(n)=0 if n is not one such G-number;
This is a function of the language of Arithmetic which would encompass all the information on ZF
(Devlin, 1979; Barwise, 1977, ch.B1), albeit our choice-set theorems will not reach this limit); also,
notice that a number n can be the Godel code of a formula complex ad libitum, which can be
unambiguously retrieved starting from n. Thus the structure of choice-set theorems is apparently
simple, but the syntax we use is so designed as to include the metatheory of formal systems which are
recursively axiomatizable. A formula like f = a will typically imply within T'; some complex statement
about goods or agents: indeed, it will be natural to stipulate that (the description of} all peculiarities of
the rational agent T'; be concentrated in his choice-set theorems — which will accordingly include what

the basic logical system PRA(E)} does not say. In essence, as we shall see, f will be the main channel
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through which we formalize the logical inconsistency of different agents, which we see as the basis of
economic competitition (Section 4). As a final remark, notice that assumption A.1 rules out that
individual choice be predictable, in the sense that there is no method of Turing-computing them
(Barwise, 1977, ch.C1): rational choice does not mean computable choice.

3.3. Preferences’

We now turn to the preferences of our agent, starting from the following

DEFINITION D.5 (preferences): Within T;, a suilable set of azioms &, C A(T;), called
preference azioms of T,, defines a binary predicative letter P,(-,-). For each 1, @,
includes the following azioms:

(3)  Vz(L-vect-f(z) » P,(z,z));

(11) VeVyVz(L-vect-f(z) A L-vect-f(y) A L-vect-f(z) A P(z,y) A P;(y,z) +P;(z,z))

(#ii) VzVy( ~ L-vect-f(z) V ~ L-vect-f(y) = (P;(z,y)— 1))

Moreover, ®; can include azioms which specify the particular properties of P; in T,.

REMARK R.2: The predicate L-vect-f(-), defined in the Appendix (Def B.13), means: {-
vect-f(t) «» 7t is a term of form L-vect”. The intended meaning of P;(-, -) is a property
of pairs of terms corresponding to vectors in QL which we use to denote quantity of
goods. Thus the meaning of (i) is the standard axiom of transitive preferences. The
properties of P; mentioned in D.5 select the area in QL over which T'; ’s preferences are

established. Notice that we did not rule out recursiveness of P;, on which later.

We can now connect definitions D.4 (choice-set theorems) and D.5 (preferences) to define a theorem
which assigns a predicate letter P; to pairs of T; choice-sentences: thus we formalize the idea that

preference relations are applied to alternatives in the set of choice-set theorems. Accordingly, we have

DEFINITION D.6 (preference theorems): Let A and B be choice-sentences for T;. Then
(1) @ preference theorem is a T ;-theorem of the form:

Prp (A) APrp (B) = P;(geo(A), geo(B));
(1) an actual preference theo;'em 3 a T:--theorem the form:

P (geo(A), geo(B)).

REMARK R.3: We recall that geo(A) is the recursive term {-vect(#(ry,...,77)), which

represents the geometric part of the sentence A: f(i;n,1)=7r; A A f(i;n, L) =r;, with
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rp = quot(ay,b,) (App.: Def B.12). We also recall that PrTi('y) means HzProvTi(x,#(*y)):
there exists a proof of vin T';.

Through its actual preference theorems, T, imposes a preference preordering over vectors in QL,

i
representing quantity of goods: in general, all this is independent of the axioms in €2; which in D.3
define commodity choice functions, and hence of the set of choice-set theorems, C;. Also, we do not
require of P; any of the peculiar properties which were typical of the commodity choice function f:
indeed, the predicate P; may be recursive. Finally, we notice that T"; may impose the preordering over
sectors in QL external to Geo(C;); conversely, nothing so far implies that Geo(C;) be ordered by P;. We

shall introduce in section 3.4 a completeness axiom for P, over Geo(C;) (Axiom 7), and we shall show

(Section 4) that it is consistent with what we impose on T',.

3.4. Choice sets and preferences: summary

We now want to take stock of the formalization of economic agents built so far. To do so, we first give
a summary of the axioms and rules of inference which are to be seen as standard in our framework
(Definition D.7). We then gather some examples of statements that an economic agent can make and,
finally, we add to the list of standard axioms a further set of axioms (Definition D.8), which may be
used to describe specific geometric properties — whose compatibility with the system T'; we shall prove

in general. Our standard rules and axioms are defined in

DEFINITION D.7 (Standard axioms and rules): For every agent T, we define the
Jollowing T ;-azioms and rules as standard:

AX.1: All azioms and inference rules required to prove all theorems of PRA(FE), all
theorems of the standard Provability Logic (Smorynsk, 1985, p.9; Barwise, 1977, p,827)
for the predicate PrTi( -), and, a fortiori, all theorems of the first order predicate calculus
in the language £ (Shoenfield, 1967, ch.2). There follows that every T; can avail dtself of
an aziom or rule of induction over atomic formulae (Smorynski, 1985, p.21; Takeuti,
1987, p.76).

AX.2: The commodity choice azioms in Q2 (definition D.4), where the term f(i;z,y) is
defined; as already established (A.1), the graph of f is not PRA-provable. The individual
features of T, are embodied in f, so that on these arioms will rest the inconsistency
among agents.

AX.3: The preference axioms in ®,. These include the preordering azioms (definition
D.5), which establish the properties of the preference predicate P/ -, -). Such azioms

may be PRA(E)-provable whenever preferences are recursive.
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AX.4: The finite set of arioms Com;, which describe commodities and can be common
to all T,’s. For every commodity, they define a predicate {-com(t), to be read as "l is a
recursive term representing a quantily of commodity £€”. There is no particular constraint

on this set of arioms.
Finally, we can sum up the significance of our sets of axioms in the following

ASSUMPTION A.2: The axioms from AX.1 to AX.4 must be such as to make Tz-:6
(1)  recursively aziomatizable;

(i1) undecidable and sy-incomplete;

(ii1) PRA(FE)-undectdable

From the set of standard axioms and rules, T, can derive his theorems. However, these will not be
confined to choice-set theorems; indeed the standard axioms, the language of PRA(E) and T/s
inferential apparatus make it possible that T; say something about his choices. In particular, recall
from Section 2.1 that T; includes PRA(FE): hence, it can represent a metatheory, and in T; a
provability predicate can be defined like Per(b)H”b is the G-number of a theorem B of”, for every
agent T) of E (Smorynski, 1985 and 1977; Gentilini, 1992 and 1997). Moreover, if T proves the
theorems of the standard provability logic for the predicate PrTi(~), then Per(~) becomes a
mathematically sound epistemic operator: the formula Per(B) may be interpreted as "T believes B”.
Hence, T, may "think” about his own choices and utter statements where someone else’s choice occur.
However, T, being syntactically able to state something about the knowledge of other agents T does
not imply (as will be clear in section 4) that he posesses a semantically correct knowledge of the other

agents, neither does 1t imply strategic interaction.”

We collect here some simple examples of statements an agent can make:

EXAMPLE E.1: Va3y(f(z;y,1) = b, A ... A f(z;9,L) =bp), which reads as: For every
agents there is a memory cell where the choices of the L goods take the values (b, ...,5;).
EXAMPLE E.2: VeIy(f(3;u,2) =y = f(T;u,z = —2y)), which reads as: Given the
memory cell u, the quantity chosen by agent i = 3 will be twice that of agent i =7, with
opposite sign.

ExaMmPLE E.3: PrT8(5—c0m(i) At =6 Vz(f(32,7)=10) =»(Fy(f(%y,1) =66 Vv PrT7(5—
com(t) At = 44), which may be put as: Suppose agent ¢ = 8 thinks that the quantity of

commodity 5 being 6 implies that agent 3’s choice on commuodity 7 will always be 10:
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then either there is a memory cell such that agent 3’s choice on commodity 1 is 66, or

agent 7 thinks that commodity 5 is 44”

We now show that we can add to the standard axioms, by making axioms assigning geometric
properties to choice-set theorems and preferences of T;. One of our key points is consistency of these
axioms with each other and with the standard axioms.? Also, it is important to show how non-trivial
geometric conditions can be translated within PRA(FE), to allow a canonical projection of the logical

structure of our agent into a geometric structure (including assumptions like convexity, etc.).

DEFINITION D.8 (Geometrical T';-axioms): The arioms of T; which define the geometrical
properiies of the sel of choice-set theorems and of preferences:

AX.5 (convexity of choice-set theorems): V;L'VwaVz{[PrTi(z)/\PrTi(y)/\chi(y)/\
ch;(x) Ageo(x) # *"geo(y) A quot-f(w) A L-vect-f(z) A quot(0,1) < *w < *quot(1,1) A z
= *(uf geo(x) + **(aquot(1, 1)  “w)§**geo(y))] ~Iuleh,(v) A Pry. (v) A (geo(r) = **2)]},
which reads as: ”for any pair of distinct choice-set theorems of T, z and y, and for any
vector z € QL lying on the segment between geo(z) and geo (y), there is a choice-set
theorem of T, v, such that its geometric part geo(v) equals 2”. This axiom yields a set
Geo(C;) which is convex, and hence a convex choice-set X .

AX.6 (convexity of preferences): YaeVyVwVz{{ L-vect-f(z) A L-vect-f(y) A
P,(z,y) A quot-f(w) A L-vect-f(z) A quot(0,1) < *w < *quot(1,1) A z = *w§*z + **
(quot(1,1) — *w)§"*y)] = P;(z,y)}, which reads as: "If T'; prefers the vector y to z in Qr,
then any QL-vector on the segment connecting z to y is preferred to z”.

AX.T (completeness of preferences on Geo(C,)): VxVy[PrTz,(:c) /\PrTz_(y) Achi(z) A
ch(y) = (P;(geo(x),geo(y))V P,(geo(y),geo(x)))], which reads as: ”If z and y are choice-
set theorems of T, they are ordered by P.”. This axioms establishes that the preordering
P, be complete on the region of QL selected by the choice-set theorems of T',.

AX.8 (non-satiation on Geo(C;)): V:L‘{PrTi(;r) A ch(z)-3ylch,(y) A PrTi(y) A geo(z)
# **geo(y) A P(geo(z),geo(y))]}, which read as: "For any choice-set theorem z of T
there exists another choice-set theorem y which is preferred to z”.

AX.9 (boundedness of choice set, Ax-lim;): 3Jy{quot-f(y)A V:c[PrTi(;r) Ach(z)
—(geo(z)- "*geo(x) < *(y-*y))]}, which reads as: "There exists an element y of @ which
bounds the norm of any choice-theorem z of T,”. This axiom establishes that the choices
of T'; be within a disk in QL, which yields a bounded Geo(C;) and hence a compact X,

given that the latter is closed by construction (proposition P.1}.



AX.10 (non-boundedness of choice set): ~ Ax-lim;, which corresponds to the negation
of the former axiom and yields an unbounded X in QL.

AX.11 (existence of a P -maximum under constraint): VeVyVu[Pry (u) Ach(u) A L-
vect-f(z) A quot-f(y) A A(z,y) Ageo(u)- "z < *y A(FaPrp (a) A chy(a) A éeo(a) S =Ty)
-3z (PITi(Z) Achi(z) Ageo(z) "z <y P‘-(geo(u),geo‘(z)))], which reads as: ”Given

*

the QY-vector = and the Q-scalar number y, if the hyperplane v-**z = *y (v is a vector
of variables in Q%) intersects the set Geo(C,) of choice-set theorems of T'; at least in the
choice-set. theorem a, then there exists a choice-set theorem z of T'; which lying under the
given hyperplane, where A(z,y) is a formula imposing some constraints on the area of QL
within which the constraint hyperplane is allowed to vary”. Notice that for any
axiomatization of T, A(z,y) is meant to be fixed. This axiom establishes that, given a
constraint on T'’s choices, the choice-set theorems satisfying that constraint have a P-
maximum. This axiom plays a key role when one discusses optimal consumption plans
under wealth constraints (Benassi and Gentilini, 1997).

AX.12 (existence of a viable choice-set theorem): VaVy[€-vect-f(z) A quot-f(y) A A(z,y)
—»Hz(PrTi(z)Achi(z)/\geo(z)-**:rg *y)], which reads as: "Given any Ql-vector z and
any Q-scalar number y, there exists a choice-set theorem z of T; which lies under the
hyperplane v-**z = *y (where v is a vector of variables in QL), where A(z,y) is a
formula imposing some constraints on the area of QL within which the constraint
hyperplane is allowed to vary”. Again, for any axiomatization of T; A(z,y) is meant to
be fixed. This axiom guarantees that, given a constraint on the set of choice-set theorems,

there is at least one of the latter which satisfies it.

REMARK R.4: The predicate quot-f( - ), similarly to L-vect-f(-) mentioned in remark R.2,
is formally defined in the Appendix (Def B.13): it is a recursive predicate such that quot-

f(t) means "¢ is the code of a term of the quot form”.

REMARK R.5: Axioms AX.11 and AX.12 are meaningful only insofar as the restriction

A(z,y) is given on the constraint.

4. On consistency and further extensions: the set of different agents and the logical ezistence of an
exchange economy

In this section we want to define some basic logical features of the set of formal systems
E ={Ty,...,T;}, thought of as representation of an economy. The first requirement is that any system

(agent) T, be consistent: this will be proved in the following theorem TH.1, and it is the foremost
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requiremenent for £ to exist. From the theorem of existence of a model (Theorem I, Section 2.1), there
follows that each system (agent) T, admils of at least one model in the canonical semantics for first

order theories; that is, for any T, there is at least one world within which all theorems of T'; are true.

As to the mutual consistency among agents, we require that systems (agenis) be in general
inconsistent with each other: for aver pair i,k, T, UT, is inconsistent. This accords to intuition: there
are at least two agents with at least a pair of inconsistent ideas. Indeed, the Craig-Robinson theorem

(Shoenfield, 1967, p.79) ensures that there are incompatible opinions between inconsistent agents:

THEOREM V (Craig-Robinson): If T; and T, are first-order theories and T ;UT; 1s
inconsislent, then there exists a sentence A such that jijA and 1}: ~ A.
1 k
Actually, in general we would think of a competitive economy as a social system populated by agents

with different and inconsistent beliefs. Our formal language does include this possibility. For example,

EXAMPLE E.4 (inconsistent beliefs about commodities): (2-com()At=6)-(3-
com(y)Ay=8), that is, "if commodity 2 is 6, then commodity 3 is 87; (2-
com(t)At=6)A ~ (3-com(y) Ay =8), that is “commodity 2 is 6 and commodity 3 1s
not 8”.

EXAMPLE E.5  (inconsistent  beliefs  about  behaviour):  (2-com(t)At=35)
—Yz(f(70,2,3) = 20), that is, "if commodity 2 is 5, the choice of agent 70 on commodity
3 is 207; (2-com(t) At =>5)AYz(f(70,2,3) = 56), that is, "commodity 2 is 5 and the
choice about it of agent 70 is 56”.

The agents’ mutual inconsistency will be expressed formally by the commodity choice function f, as
will be clear from the proofs of theorems TH.1 and TH.2, below. As a consequence, the agents’
inconsistency with each other (and its holding with respect to the whole Th(T), i.e., with respect to
the whole of each agent) translates into our logical framework the idea that society admits competition
among them. Of course, competition does not rule out for significant portions of Th(T;) to be
consistent across i’s: indeed, an equilibrium for our economy may be definied as a conjunction of all
agents' optimal choices that are consistent (Benassi and Gentilini, 1997). One consequence of the
agents’ inconsistency is that the system formed by the union of the T;’s has no model, that is, there
exists no world where all theorems Th(T,), i =1,...,1, hold true simultaneously. And actually, therein

lies the significance of any equilibrium existence proof, following the above definition.”

Consistency of each agent and inconsistency across agents do not exhaust the preliminary



23
requirement we ask of a definition of the economy E. We still have to be precise about each agent’s
proving capabilities with respect to other agents. We already know wia Godel’s theorems (Smorynski,
1977) that no T'; can prove his own consistency Coer{T';); but clearly no equilibrium is meaningful in
any sense if any agent has so strong a proving ability, as to be able to prove the others’ consistency.

Thus we make

ASSUMPTION A.3 (metatheoretical parity hypothesis): No agent T, can prove
metatheoretical properties of Ty, which T ts unable to prove himself — even though can
state them in his language. In particular:

() no agent can prove another agent’s consislency or inconsistency;

#) no agent can prove 3zCoer(T ), i.e. the existence of at least a consistent agent.
g p z 9

Without the metatheoretical parity hypothesis (MPH), the formal systems (agents) we are concerned
with would lose their logical homogeneity.10 Finally, we repeat the conditions already mentioned in
Section 3: the language of the T’s is common to all — all can avail themselves of the language £.

Indeed, it is having the same syntax that makes it meaningful to speak of different beliefs.!!

We can now sum up all this in the following

DEFINITION D.9 (economy): An economy E is a I-uple of formal systems {T,...,T},
such that:

(1) each T, includes rules and azioms of the form from AX.1 to Ax.12 established in
D.7 and D.8, with assumption A.2 and 1s consistent;

(¢1)  for any pair i, k, T;U T, 1s inconsistent;

(117) all Ty,..., T} satisfy MPH (Assumpion A.3);

(iv) the language of every T; (i = 1,...,I) is L (Definition D.2).

We say that these are necessary condition for the existence of the economy FE. Accordingly, the

following are logical existence theorems for F.

THEOREM TH.1 (existence of agents): Consider a FEuclidean space of commodities of
dimension L C N, with L > 1, finile and arbitrarily fized. Then there exists a denumerable
infinity of systems T';, different and with the same language L, such that any T; contains
azioms and rules of the form from AX.1 to AX.12 with the exclusion of AX.9, or else of
the form from AX.1 to AX.12 with the exclusion of AX.10 (definitions D.7 and D.8), and



T, is consisient.

PROOF: The proof is by construction: we construct a T'; satisfying our requirements and

prove its consistency; then we show that one can build a denumerable infinity of such T

A. We first build a T; by considering the alternative excluding AX.9.
Let Vy,..,V be L consistent and PRA(E)-undecidable theories: suppose that V, be
Arithmetics with the induction rule restricted to at most L+ 1 quantifiers (see Takeuti,
1987, p.116); then each V, is consistent. Indeed, given the guasi-constructive proof by
transfinite induction on numerable ordinals provided by Gentzen for the consistency of
PA Arithmetic (Takeuti, 1987, p.101), and given that PA is an oversystem for all Ve’s,
we can consider the consistency of VE syntactically proved. Moreover, since PRA(E) is a
conservative extension (Shoenfield, 1967, p.41) of PRA(Z) via only the language £, and
PRA(Z) is a subsystem of all the Vs, by definition PRA(Z) can prove neither the

graph of the characteristic function of Ve’s theorems, nor VE’S consistency.

Given i€ {1,...,I} = (where the index ¢ identifies the ith agent), we can define L
new functional letters ¢y: N— L-VECT—N, where L-VECT = {k € N: L-vect-f(k) holds} is

the set of terms which codify vectors and £¢ {1,...,L} =L, given by

d)e(z) =1 iff 2 is a code of a formula and Prve(z);
Pol2) =1+1 iff z is a code of a formula and ~ Prve(z);
Pe(z) =0 otherwise;

‘l!)e is a version of the characteristic function of the theorems of VE’ and we include the

definition of LZ)E in AX.2 of T',.

We now define a new functional letter g:IxNx LN, having fixed 7 in the first

factor of the domain:

9(i, k,8) = quot(22k5813i, 1) iff lbg(k) =1 and ~ L-vect-f(k);
9(i, k, €) = quot(32*78117 1) it y(k)=1+1 and ~ L-vect-f(k);
g9(¢, k,8) =0 iff L-vect-f(k).

We include the definition of g in AX.2 of T';. Notice that, by the properties of Z as a
factorial ring, the numbers 92k58131 and 32k7ly belong to disjoint sets, which are not
empty for any k,f,i. Hence, also g(i,k,€) can be seen as a version of the characteristic
function of the theorems of V. It is apparent that both definitions of Yy and g can be

immediately translated into a finite number of PRA(E }formulae.
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We now give the axioms defining the commodity choice function f, which
identify T, as an individual. Given 7 in the first factor of the domain, the functional
letter f:1xNx L—N is given by the following procedure. We shall divide the second factor
in the domain of f in a finite number of disjoint parts {M}, and define f on Ix M xL,
supposing we have defined f on Ix M, _, xL; moreover, each set M can be described as

a formula of PRA(E):

STEP 1: let M, be the part of N given by "(ue My) iff ~ L-vect-f(uw)”; we then
define:

FEw, ) =g(i,u,l) iff ueM,
which we can translate as a PRA(E)-formula:

f(i,u, ) = g(i,u, &) ~ L-vect-f(u)
(we shall denote the formula ~ L-vect-f(u) with Al(u)). Notice that the values of f on
Ix M, xL are terms of the form quot, corresponding (via the function Ext defined in the
Appendix) to fractions of the form n/1, i.e. to integers. There follows that, if the memory

cell u e M, then agent T'/s choice-set theorems

F@Gu, ) =g A A f(iu, L) =qp
(notice that in such a choice-sentence the cell u must be the same for all joined terins)
select terms gy, ...,qy, of the quot form which, via the function Ext (App.) yield points of
QL with integer co-ordinates, corresponding to values of the function g. Clearly, these are
points in the positive orthant of QL, not lying within a bounded region. Hence, they are a

part of Geo(C,) with integer co-ordinates, yielding a discrete subset of QL.

STEP 2: Let M, be the part of N given by ”(ue M,) iff A2(u)”, where A2(u) is
the following formula of PRA(FE):

L-vect-f(u) A {3z3yFu| ~ L-vect-f(2) A ~ L-vect-f(y) Az # **y A quot-f(w) A
quot(0,1) < *w < *quot(1,1) Au = **(w§** L-vect(#((9(s, 2, 1), -, (4,2, L)) + **

(quot(1,1) — *w)§** L-vect(#((9(1,y, 1), - 9(i,3, L)N] V B2(w)},
and B2(u) is the formula

JyIu| ~ quot-f(y) A quot-f(w) A quot(0,1) < *w < *quot(1,1) A

u = ((quot(1,1) = *w)§** L-vect(#((9(i, y, 1), -, 9(i, 3, L))))]-

We can now define

flu, @) =¥ (w) i ue My,



which we can translate as a PRA(F)-formula

Fli,u,0) = 7§ (1) — A2(u).
(we recall that wé‘** is the operation of projection; see App.). Thus, A2(u) selects the
terms u of f-vect form, which identify a point of QL lying on the line joining two points
of QL, which in turn are the geometric part of the choice-set theorems given by the
values of f defined in STEP 1; B2(u) adds, for technical reasons, the points on the lines
joining the values of f defined in STEP 1 with the origin (0, ...,0). There follows that, if

the memory cell u € M, then T';’s choice-set theorems

f(ivuvl) - ql /\/\f(z,u,L) - QL
select the terms gy, ..., ¢, of the form quot which, via the function Ext (Appendix), yield a
point of QL lying on the line joining two points of Geo(C;) defined in STEP 1.

STEP 3: Let M, be the part of N given by ”(u e M) iff A3(u)”, where A3(u) is
the following formula of PRA(E):

L-vect-f(u) ~ AL(u) A ~ A2(u) A {F23y3w[A2(2) A A2(y) Az & **y A quot-f(w)
A quot(0,1) < *w < *quot(1,1) A u = **(w§** L-vect(#((f (3, 2,1), .., f(§,2, L)) + ¥
(quot(L, 1) — *uw)§** L-vect(#((£(i v, 1y wr i v, D),
(notice that in STEPs 1 and 2, f has been defined over §x (M, UM,)xL, with formulae
of PRA(E) and hence we can use it to define f over Ix M3xL in this part of the
domain: the situation is the same as that of the definition of a function F' with the
classical recursion clause, where the definition of F over further parts of the domain is

based on the definition of F' over the former parts). We can now define

flu, @) =p**(w)  iff we M,
which we can translate as a PRA(F)-formula

Fi,u,0) = mp* ¥ (u)— A3(u).
That is, A3(u) selects the terms u of form L-vect, which identify a point of QL lying on
the line joining two points of QL, which in turn are the geometric part of the choice-set
theorems given by the values of f defined in STEP 2.There follows that, if the memory

cell ue My, then T’s choice-set theorems

Fll,u, 1y =gy A A fli,u, L) =qp
select the terms gy, ...,qy, of the form quot which, via the function Ext (Appendix), yield a
point of Q@ lying on the line joining two points of Geo(C;) defined in STEP 2.

STEP 4: Finally, let M, be the part of N given by "(ue M) iff A4(u)y”, where
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A4(u) is the following formula of PRA(E):

~ (Al(1) V A2(u) V A3(u)).

We can now define

f(i,u, ) = quot(0,1) iff ue M,

which we can translate as a PRA(E)-formula

f(i,u,€) = quot(0,1)—A4(u).

There follows that, if the memory cell u e M, then T';’s choice-set theorems

fi,u, 1) =gy Ao Af(iu, L) =g

select g, = quot(0,1) for all ¢, and hence its geometric part corresponds to the origin
(0,...,0) of QF.

This concludes the definition of f, that is the construction of AX.2. By construction, f 1s
defined by a recursive set of formulae in L; moreover, Geo(C,) is by consiruction a
convexr and unbounded subset of QL. Finally, the graph of f is PRA(E)-unprovable and
hence, a fortiori, f is not recursive: indeed, if PRA(FE) was able to prove the graph of f,
it should also prove it for its restriction g; however, this is impossible: as we have seen,
for any given €, g is a version of the characteristic function of the theorems of a theory V,

which is PR A(F)-undecidable.

We now define the preference axioms AX.3: they define a predicative letter P,
(different from all those already in PRA(Z)), include the pre-ordering axioms given in

D.5, and also include the following, which specifies preferences for T';:

ch,(z) Achy(y) A P(geo(z),geo(y))—(geo(z) - **geo(x)) < *(geo(y) - **geo(y))
This states that any two vectors of QL are preferred by T, according to the increasing
order of their euclidean norm. The corresponding indifference surfaces in QL are ball-
shaped and centered in the origin. P; is recursive, but this is allowed by the definition of
AX.3. Moreover, we notice that P; induces a convez preordering on Geo(C;), as such is
the preordering of euclidean norms of vectors in QL. Also, P, induces a complete
preordering on Geo(C;), as such is the preordering of euclidean norms of vectors in QL.

Finally, given unboundedness of Geo(C;), such preordering is unsatiable.

We now give the commodity axioms of AX.4. They are actually arbitrary, and it

is enough to give an example which is consistent:

Vw[Ty(f(k,y,w+ 1) = quot(2,1) - *b)—(w-com(t) A t = b)],

where b is a fixed closed term of the form quot, which states the following property for all



commodities: "for any w, the w-indexed commodity equals b iff there is a memory cell y

such that in y for the commodit index w+ 1 agent k chooses the quantity 2b”.

We can now take stock of our results so far, and state that T; with s arioms
from AX.1 to AX.4 is consistent and satisfies assumption A.l, that is, il is recursively
aziomatizable, undecidable, sy-incomplete, PRA(E)-undecidable; moreover, its
consislency is based uwpon a syniactical proof by induclion on denumerable ordinals.
Indeed, we can assume PRA(E) is proved to be consistent via Gentzen’s syntactic proof
by induction on denumerable ordinals up to ¢, (Takeuti, 1987, p.10). Moreover, the
defining axioms of f are consistent with each other, since f is really a function and a
point in the domain is not given different values. PRA(E) cannot prove the negation of a
T theorem of the form f =1 which is not a PRA(E)-theorem, since it has no specific
information on the functional letter f; a fortiori, if f =1 was a PRA(E)-theorem, 1t
would not prove its negation due to its consistency. Hence, by the reduction theorem
(Shoenfield, 1967, p.42), PRA(E) + AX.2 is consistent. Likewise, PRA(E)+ AX.2+ AX.3
and PRA(E)+ AX.2 + AX.3+ AX.4 are both consistent: in both cases the extended
system lacks the necessary information to prove the negation of the axioms extending it.
Hence, T’s consistency depends crucially on the consistency of PRA(E), which is proved.
Also, T, is recursively axiomatizable, since PRA(E) is recursively axiomatized and the
function f is defined from PRA(E) starting from a finite set of axioms. Finally, T, is
undecidable and sy-incomplete as an extension of PRA(E); by construction of AX.2, 1s

also PRA(E )-undecidable.

We now take up consistency when including the geometric axioms AX.5 to AX.9.
Notice that by construction Geo(C,) obeys all such axioms; such construction can
certainly be formalized within the ZF set theory(Devlin, 1979), so that ZF is able to
yield a model of

8
T, = PRA(E)+ Y  AX.k+ AX.10,
k=1

which accordingly is consistent.

We now take up consistency when also including AX.11 and AX.12. This 1s
meaningful only if we impose restrictions on the constraint, fixing the formula A(z,y)
within each axiom. To fix ideas, we suppose the constraint hyperplanes in QL cut the
positive orthant in such a way thal the origin lies below. Then, since Geo(C,) is within the

positive orthant and it includes the origin, for given constraint hyperplanes AX.11 is
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satisfied. As to AX.12, we shall further suppose thal constraint hyperplanes in QL cut all
the edges of the positive orthani, having positive coordinate for each point of edge-
intersection. Then the convexity of Geo(C;), together with its unboundedness, imply at
Jeast one maximum-norm point among all those which lie below the constraint. Further,
given an arbitrary constraint hyperplane via a suitable form for A(z,y) in AX.11 and
AX.12, it would be possible to assign values of f, with no substantial change in the
structure of the definition of f given here, in such a way that AX.11 and AX.12 be
satisfied. From these constructive observations we can conclude that

8
PRA(E)+ 3 _ AX.k+AX.10+ AX.11 + AX.12

. . k=1
1s consistent.

B. There remains to look at 7', in the case where the unboundedness axiom
AX.10 is replaced by the boundedness axiom AX.9. It is enough to notice that f can be so
defined as to have Geo(C;) within a unit disk. This can be accomplished with the

following change in the definition of g:

g(i, k,€) = quot(1,22k5¢13%) if (k) =i and ~ L-vect-f(k)
o(i k,£) = quot(1,32*7¢11%) f (k) =T +i and ~ L-vect-f(k)
g(i,k, &) =0 iff ~ L-vect-f(k),

while leaving everything else unchanged. Thus Geo(C;) will be convex and bounded in
QL. From this one can proceed as before, although the satiation axiom can conflict with
the given P, This can be overcome with a variant of P, given by the inverted order of
norms, i.e., preferences increase with the smallness of the norm, as one gets nearer to the
origin; we can then change (with no substantial effect) the definition of f, so as to erase
the terms quot(0,n) from its values. As the origin would be the only satiation point in in

this inverted order, we would get consistency with the satiation axiom.

C. We now take up the existence proof for a denumerable infinity of 7';’s. This
can be obtained by requiring one more prime number in the product appearing in the

definition of g, so as to get a denumerable infinity of distinct variants of g = g;. That is,
g,(i,k,8) = quot(22k54137 17, 1) HF (k) =i and ~ L-vect-f(k)
9,05, k,8) = quot(32F7¢117 19, 1) iff (k) = I +iand ~ L-vect-f(k)

g(irk,8) =0 iff ~ L-vect-f(k),
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9,04,k 8) = quot(22k5gl3i 17..p,, 1) iff wg(k) =i and ~ L-vect-f(k)
0.3k, ©) = quot(32F78117 19.0.q,,, 1) if py(k) = I +iand ~ L-vect-f(k)
g,(i,k,0) =0 iff ~ L-vect-f(k),

where (p,,,q,,) are pairs of successive prime numbers starting from (p,,q,) = (17,19). To
each different ¢, there corresponds a different definition of f, and hence a T, with a

different commodity choice function.O

\ The above theorem establishes the one can actually build agents obeying our standard axioms. One

corollary of the theorem is that agents of such a kind admit of a topological representation:

COROLLARY C.1 Let Geo(C;) be built as in theorem TH.1. Then its metric completion
X; in the Euclidean topology of RL satisfies:

(i) X, is conver and closed i RL;

(i1)  if Geo(C,) is bounded, so is X;, which would accordinly be compact;

(iii) the completion of the preordering P; yields on X, the same preordering as the

Euclidean norms, which is convez and continuous.

PROOF This follows from the canonical properties of of the metric completion in RE with

the Euclidean topology of a convex subspace with co-ordinates in QL.D

We are now in the position to establish the existence of an economy as defined in D.9, which is done in

the following

THEOREM TH.2 (existence of an economy) For any arbitrarily fized natural number
I > 1 there ezists a denumerable infinity of I-uples of formal systems I'; = {T{,...,T}},
where T;j is consistent and satisfies TH.1, such that I'; satisfies definition D.9, that 1s
(i)  for any pair i,k € l={1,.., I}, i #k, Tf and Ti are inconsistent;

(i) I'; satisfies MPH (assumption A3);

(iti) given j, the language of all Tf ’s is the same and it coincides wih L.

Accordingly, there exist one economy E ;.

PROOF Consider a formal system T{ as it results from theorem TH.1, where the index j

identifies the infinite forms of T, which can be obtained by varying g; Notice that, as ¢



goes from 1 to I, the defining axioms of the function letter ¥, assign different values to

Y corresponding to the same points in the domain, that is,

for i =1, Pplz) =1 iff z is a code of a formula and Prvg(z)
Polz) =1+1 iff = is a code of a formula and ~ Prve(z)
Pe(2) =0 otherwise

for 1 =2, Yo(z) =2 iff z is a code of a formula and Prve(z)
Yolz)=1T+2 iff z is a code of a formula and ~ Prvz(z)
wg(z) =0 otherwise

fori=1 Po(2) =1 iff z is a code of a formula and Prvg(z)
Yplz)=1+1 iff z is a code of a formula and ~ Prvz(z)
wg(z) =9 otherwise.

For fixed j, this yields I inconsistent and different Tf’s, since (e.g.) Pp(z) = 1A Polz) =2
is obviously a contradiction. Moreover, as j varies (i.e., for different gj’s as in the proof of
TH.1), we shall have a denumerable infinity of /-uples F]- = {T{, ey T}} of agents who

will be different and inconsistent with each other. This proves (z).

As to (ii), notice that a consistency proof for T';, as the latter emerges from TH.1,
is independent of the index i: indeed, our consistency proof is an extension (independent
of i) of the Gentzen consistency proof for PA (Takeuti, 1987, p.101), the form of which is
known. Hence, from a formalized consistency proof for T, one obtains a formalized
consistency proof for Ty, simply by uniformly replacing s with k. But then T'; does not
prove Coer(T,) for any k: should it do so, it could derive Coer{T;) therefrom — that is,
its own consistency, against Godel’s theorems (Theorem IV) (Smorynski, 1977).
Moreover, the structure isomorphism among the consistency proofs of the T's can be
described within Provability Logic demonstrable in PRA (Smoynski, 1985, p.9; 1977,
p.837): hence, for every k €1it is the case that

P;A(Bz Coer(T )y Coer(T}).

However, T

Coer{T,;), against Godel’s theorems. So the I-uple {T{, ,T}} satisfies MPH.

includes PRA and so it cannot prove 3zCoer(T,): if so, it could derive

As to (iii), notice that the language £ is indeed common: the functional letters
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d)g,g,f occur in the language of all T,’s.00

To conclude, we stress that our necessary conditions for the existence of an economy — concerning both
T.'s standard axioms and his choice-set theorems — rely on a consistency proof which is syntactical and
quasi-constructive, by induction of the denumerable ordinals. This somehow strengthens our existence
statements, giving them a degree of effectiveness which is the maximum compatible with agents being

non-recursive.

5. Concluding remarks

One of the basic methodological principles of economics is that choice should be looked at as the
outcome of rational pondering by purposeful individuals. Historically, this idea has been made precise
by the Samuelsonian approach: a rational agent is formalized as maximizing some objective function,
subject to (environment-driven) constraints — that is, rationality amounts to a formal criterion which
sets rules for choosing among numbers. In this paper we suggest that rationality is best seen as a set of
properties of (first-order) formal system in a mathematical-logical sense: accordingly, a rational agent
is someone able to draw valid inferences, where the standard of validity is set by basic logical methods.
One immediate, yet interesting, consequence of this is having a formal distinction between statements

known to economic agents, and statements concerning them.

This approach encompasses the standard geometric description of economic agents as
maximizers. Indeed, the connection with the Samuelsonian approach has been emphasized: in
particular, we have showed that it is always possible for an external observer to translate the axiomatic
description of economic agents into a precise topological framework, and viceversa. Also, we are able to
show that for any given finite Euclidean commodity space, there exists a denumerable infinity of
different consistent formal systems, which can be so translated. An existence proof is also provided for
the corresponding formal definition of an economy as a set of first-order formal systems which are

inconsistent with each other.

Our formalization of economic agents as consistent formal systems is proposed as a first
methodological steps, which should hopefully help our understanding of the nature of economic
competition and the relationship among agents. Indeed, our research agenda plays on the formalized
notion of truth typical of logical formal systems, in order to study the degree of consistency among

agents implied by competitive equilibria.
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APPENDIX
In this appendix we develop some definitions and propositions which are used in text. The basic system
PRA(E) including PRA(Z) (Forcheri, Gentilini, Molfino, 1996, sec.2) — that is, Arithmetic extended
to integers — makes it possible to avail ourselves of terms which may represent all negative integers.
We now introduce in PRA(E) recursive terms, which codify in an injective manner the fractions a/b of
the set Q of rational numbers, as well as the vectors of fractions in the QL L-dimensional space. We
shall also suitably define some recursive operations, reproducing the standard arithmetic operations
between fractions in Q and vectors in QL. All of which allows us to represent in the language of
PRA(E) the geometric part of any agent T';’s choice theorems. We want the latter to be generally
vectors in QL, and not necessarily of integers, as we believe it important that agent be allowed to
choose among fractions — not least, this allows a simpler connection between our logical approach and
the standard topological approach. The main instrument we use to this end is godelization. In
particular, we recall that one can attribute a G-number #(e,,...,e,,) to any finite sequence of
expressions {ej}?: , in the language of PRA(E) (smorynski, 1977, p.829).
DEFINITION B.1: Let gquot be a function letter different from all those in PRA(Z); we extend to it the
canonical code #, chosen for the expressions in the language of PRA(Z), and define over the set of
integers, as quot(-, -), a recursive binary function letter in the following way.

Let a,b,p,q,.. be ground (i.e., terms without variables) PRA(E)-terms representing

integers, which w.l.o.g. can be read as numerals of PRA(Z). (For ease of exposition, we

shall identify the numerals a,b, p, ¢, ... with the numbers they represent; also, we stipulate

that whenever a fraction p/q is considered, the fraction is reduced and the denumerator is

always positive). Then:

() quot(0,0) = #(quot,1,1);

{i1) if @ is a numeral not corresponding to 0, quot(a,O):#(quot,?loooo,l);

(i11) if b is a numeral not corresponding to 0, quot(0,b)=#(quot, 0, 1);

(iv) let (a,b) be pairs of numerals representing integers, prime between them,

different from zero and with b positive. Then

quot(a,b) = #(quot, a,b), if neither a nor b are numerals which codify sequences

of the form (quot,m,n), with m and n numerals prime between them and n positive.

quot(a,b) = #(quot,u,v), where u/v is the reduced form of m/nb, if a is

#(quot,m, n), with m and n numerals prime between them, n positive, and b is not.

quot(a,b) = #(quot,u,v) where u/v is the reduced form of an/m, if b is

#(quot,m,n), with m and n numerals prime between them, n positive, and a is not.
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quot(a,b) = #(quot,u,v), where u/v is the reduced form of mi/ns, if a is
#(quot,m,n), with m and n numerals prime between them, n positive, and b 1is
#(quot,s, ), s and ¢ prime between them and t positive;
{(v) given a pair of numerals (s,t) representing non-nul numbers which are non-
prime between them, or else with ¢ negative, quot(s,t) equals quot(a,b), where a/b is the
reduced form of the fraction p/g;
(vi) If 7,5 are ground terms which are not numerals of PRA(Z), then quot(r,s)
equals quot(p,q), where p is a numeral which is PRA(Z)equal r, and q is PRA(Z)-equal
to 1;

. The values of the function quot( -, -) are also called terms of the quot form: they can only have the
form #(quot,m,n), with m and n representing integers prime between them, with positive n (except for
cases B.1(ii) and B.1(iii) above). The definition of quot(-, - ) is such that the function behaves itself as
intended; eg, quot(quot(c,d),quot(e, f)) codifies the fraction corresponding to the division between the
two fractions represented by quot(c,d) and quot(e, f). The definition quot(a,b)=#(quot,a,b) would be
consistent, but less precise. Given the value in N of the function quot(a,b), an external operator Ext
(defined below) who knows @ is able to associate to it a reduced fraction p/q by means of an effective
procedure.

PROPOSITION B.2: The function Ert: Im quot—Q, which associales lo every value of the funclion quot
the reduced fraction p/q corresponding to it, is surjective. The proof is obvious; notice that an integer
m is given by the corresponding term #(quot,m, 1).

DEFINITION B.3: We define as operations O* in PRA(E) the binary functions + o0,
Ky )y =F (), (-, ), as follows:

(i) if s is #(quot,m,n) and ¢ is #(quot,r,h) — both of which are values of the function quot —, then
+ *(s,t) is ##(quot,u,v), with u/v is the reduced fraction (mh +rn)/hn; similarly one can define the
product - *(-, -), difference — *(-, +), and division :*(-, +), corresponding to the term quot(s, t).

(i7) if either s or ¢ is not of the quot form, then O*(s,t) = 0 for any operation o*.

(ii1) if ¢ and d are ground terms which are not numerals of PRA(Z), then for any operation o*,
0*(c,d) = O*(s, ), where s and { are numerals PRA(Z )-equal to ¢ and d.

DEFINITION B.4: We define as relations R* in PRA(E) the binary relations =*(-, ), # )
S ¥ ), <, 0), =¥, -, as follows:

(i) Let s and ¢ be numerals representing integers: then

if s is #(quot,m,n) and { is #(quot,r,h), both of which are values of the function quot, then

=*(s,t)»(m=rAn="h); = *(s,1)— L, if either of them is not of the quot form;

# *(5’t)"’> ~ = *(S’t);
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if s is #(quot,m,n) and t is #(quot,r, h), both of which are values of the quot function, then
> *(s,1)«+(mh > nr)(recall that n and h are positive by definition); if either of them is not of the quot

form, then > *(s,t)e— L ;
< (s, t) > (1, 5);

> (s, ) > s,V = *(s,0);
(i1) If ¢ and d are ground terms which are not numerals of PRA(Z), then R*(¢c,d)—R*(s,t) for any
binary relation R*, where s and ¢ are numerals which are PRA(Z)-equal to ¢ and d.
DEFINITION B.5 Given the L-dimensional commodity space, we now want to define terms representing
vectors in QL. We do so by considering the set of L ground terms of PRA(E) {w = (uy,..,up)}. We
define the following unary recursive function L-vect(- ), from N to N:
(i) if m is not the G-number of a sequence w of L ground terms which are PRA(Z)-equal
to numerals of the quot form, then L-vect(m) = 0;
(ii) L-vect(m) = quot(a;,b;) if m = #(w) with L =1 and w = (quot(ay,b;)), or w=(v)
with u ground term PRA(Z )-equal to quot(ay,b,);
(i) L-vect(m) = #(w) if m = #(w), with w= (uy,..,uy), where u, €=1,...,L, are
ground terms PRA(Z)-equal to (quot(ay,by)f_ ), L> 1.
(Notice that in general wu, its code, and the code of the sequence (u) are different numbers). We call
terms of the L-vect form the non-nul values of the function L-vect. We shall identify these terms,
w.l.o.g., with the terms L—vect(#(quot(ae,be)é’= 1).
DEFINITIONS B.6, B.7, B.8, B.9 We now define operations O** among L-vect terms, which represent
scalar summation and scalar product between vectors, the scalar-vector product, the projection of the ¢-
component of an L-vector. We do so as follows:
DEFINITION B.6 We define in PRA(E) the binary function + **(-, -), corresponding to
vector summation between QL—vectorsz Let s,t be both terms of the L-vect form, where
s= L—vect(#(quot(ag,be)é’z ;) and t= L—vect(#(quot(ce,de)g= D)+ **(s,t) is then L-
vect(#(quot(ae,bg)+*quot(cg,de))é’:1), where +* is defined in B.3; otherwise, +** is
zero. (Notice that + ** reduces to +* for L = 1).
DEFINITION B.7 We define in PRA(E) the binary function-**(-, -), corresponding to
scalar product between QL—vectors: Let s,¢ be both terms of the I-vect form, where
sL: L-vect(#(quot(ay, be)é’z ) and t= L—vect(#(quot(ce,de)é’= D ** (s,t) is then
> *[(quot(ae,be) . *quot(ce,de)], where Y * is summation with respect to operation + *
ea;& . * is defined in B.3; otherwise - **(s,t) is zero.
DEFINITION B.8 We define in PRA(E) the binary function §**(-, -), corresponding to

scalar-vector multiplication in QL Let s be of the L-vect form, where s=L-
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vect(#(quot(ae,be)é’zl)), and ¢ be of the form quot(c,d); §**(s,t) is then L-

vect(#(quot(a,,b,) - *quot(c,d L__ , where - * is defined in B.3; otherwise, - ** is zero.
0%t £=1

L*

- * of projection of the rth

DEFINITION B.9 We define in PRA(E) the operation =
component over terms of the L-vect form, corresponding to the projection of the rth
component of a vector in Ql: If ¢t is L—vect(#(quot(ae,be)é’:1)), then wf’**(t) is
quot(a,,b.); W,If**(t) is zero otherwise.
DEFINITION B.10 We define relations R** reproducing = and > between L-vectors. To do so, we define
in PRA(E) the binary relations = **(-,-), #**(-,-), >** (-, ), <*(-,-), 2¥(-, "), as follows:
(7) Let s and t be terms of the L-vect form, s = L—vect(#(quot(ae,bﬁ)gz1)) and t = L-

vect(#(quot(cy, dg)f _ |)); then
= *¥(5,t)e A ‘- 1,...,L(qUOt(a€’ bg) = *quot(ce, dﬁ))’ with = * defined in B.4;
£ ¥ (5, e~ = (s, 1)
> **(5,t)e A ‘- 1,...,L(qUOt(a€’ be) > *quot(ce, dp)), with > * defined in B.4;
< (s, 1) > (1, 5);

> (s, > FH(s, )V = (s, 0);

(i1) R**(s,¢)« L otherwise.
PROPOSITION B.11 The function Ert: Im L—vectr—»QL, associating to every value of the function L-vect
the corresponding vector w, is surjective. An external operator Ezf, which includes PRA(FE) and knows
QL, can associate w € QL to the value in N of the function L-vect(#w), using an effective procedure.
DEFINITIONS B.12 and B.13 We now use the former definitions to select formally within PRA(E) the
geometric parts of the commodity choice sentences of our traders:

DEFINITION B.12 Let A: f(i,n,1) =r{ A.. A f(i,n,L) =rp, with r, = quot(ay, bﬁ)’ be a

commodity choice sentence of trader T,. Then the recursive term geo(#A) = L-

vect(#(ry,...,r)) is naturally defined, and indicated as the geometric part of the sentence

A. (For ease of notation we often write geo(A) instead of geo(#A4)).

DEFINITION B.13 We define the recursive predicates: (i) quot-f(t)— 7t is the code of a

term of the quot form”; (ii) L-vect-f(t)— 7t is the code of a term of form L-vect”. (For

ease of notation, we often identify quot-f(¢) and L-vect-f(¢) with ¢ and its code; thus, eg,

a formula "quot-f(¢) A A(t)” will be read as "t is a term of the quot form, and for it the

property A holds”).
DEFINITION B.14 We would like to have terms of the quot form containing variables, so as to have
quantify values of the choice function of agent T';, and make use of open commodity choice formulae.

To do so, we briefly recall some standard instruments in Provability Logic (Smorynski, 1985, 1977;
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Gentilini, 1997). which are used to define a provability predicate for open formulae: indeed, we know
that if A is an open formula, Pr(A4) can be canonically defined, so that there results an open formula
with the same free variables. (Smorinski, 1985, 41-3). The following recurisve functions may be defined
in PRA(Z):

subst(z,y, z) = "code of what results from substituting the variable codified by y with the

term codified by z, within the expression codified by z7;

num(v) = "code of the numeral of PRA(Z) representing number v”.
These being given, if A(z) is a formula with the free variable 2, the open term with respect to the
variable z, subst(# A(z), #z,num(z)) (which we indicate as #A(Z) for short), represents the code of the
formula obtained from A(z) by replacing the variable z with the numeral of z. Hence, through the
instantiation of z by k, we obtain #A(k); #A(Z) is accordingly an open term, which for any of its
ground instances yields the corresponding ground instance of A. This can be extended also to open
terms t(y), and we call open codes the terms #A(Z) and #(y). As a result, the definition of the open
term quot(s(x), t(y)), with x and y vectors of free variables, can be given as follows:

Take definition B.1 and interpret the codes therein as open codes: instead of, say, ”s and

¢ are numeral with the property A C ZxZ”, one has “for all £ and y such that s(z) and

#(y) have the property A CZxZ”; in the various cases, quot(s(z),(y)) will be an open

code of the form #(quot,u(Z),u(y)). Now notice that points (i) to (v) of B.1 give a

partition of ZxZ which may be represented with the values from 1 to 5 of a suitable

recursive characteristic function, X:Z xZ—{1,2,3,4,5}. Hence B.1 can be so defined

within PRA(E):

(i) X(s(2), 1(v)) = Loquot(s(z), {(y)) = #(quot,L,1);

(iv) X(s(2),(y)) = daquot(s(x), ty)) = #(quot,u(Z), (7)), where u(z) and v(y)
are terms which are canonically built for every value of z and y, starting from
X(s(2), ty)) = 4
and so on
By virtue of this definition, terms like, say, quot(2 + 3y,z + z + 5), acquire a precise meaning. The
open terms L-vect are obtained from open-codifying sequences of open terms of the quot form. Thus,

given a seguence w(z,y):(quot(az(:c),bz(y))‘g‘zl), with z and y vectors of free variables, I-
vect(#w(Z,7)) will be #(quot,(ay(z),by(v))f_ ,)-
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FOOTNOTES
L See Devlin (1979, ch.2), Barwise (1977, ch.A1), Takeuti (1987, ch.1).
2 Provability Logic is the branch of logic which studies the properties of the provability predicate
Prg(-), when S is a suitably chosen system within arithmetics. It is a very strong tool to represent self-
reference: in our case, the self-reference of an agent to his own inferences (nota bibliografica).
3 Although in this section we shall be concerned with one agent, indexing allows occasional reference
to other agents. Interactions among agents are touched upon in Section 4. The set § form which i is
drawn is a finite subset of N.
4 A remark on notation: is we extend a formal system 7 with other proper axioms Az and inference
rules Ru, the resulting formal system is written for short T + Az + Ru.
5 From now on, the following convention is useful: in writing formulae, ~ link more than Vand A,
which in turn link more than — and —. Parentheses will be omitted accordingly. E.g., (( ~ A) A B)»C
is written ~ A A B-(C.
% On recursively axiomatizable ssystems, see Section 2.1 and Shoenfield (1967, p.125); undecidable
systems have been defined in section 2.1 (see also Shoenfield, 1967, p.123); see also the discussion on
assumption A.1 for a definition of PR A-undecidable.
7 Although in principle this should be the starting point for studying strategic interaction among first-
order formal systems.
81t might perhaps be possible to show that some of these axioms (and hence, geometrical properties)
can be derived as theorems starting from other axioms.
9 In Benassi and Gentilini (1997) we show that for each agent there is at leat one world where the
conjunction of all agents’ optimality theorems is true: although traders are globally inconsistent, they
can choose (optimal) choice-set theorems which, once aggregated, turn out to be consistent with each
other and with respect to each agent. Although there exist no model of the union of all agents, there
exist at least one non-trivial model of the equilibrium situation. It is worth stressing again that the
competitive allocation is in that model.
10 Buristically, MPH may mean something like "no agent is god for other agents”, or "no agent can
be sure about another being in a sane or insane state of mind”.
1 What an agent proves is (metatheoretically) what he knows. Thus agent T'; being able to prove
theorems where any other T'\’s action or predicates appear, together with his knowing only what he
can prove, implies no actual knowledge of T, on T ’part. Indeed, one can support this statement with
a technical note: within F, the union T;UT} is inconsistent. Hence, it has no model in the formal

sense — there is no world where T'’s statements about Ty, Th(T';), Th(7T') are simulteaneously true.
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