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Abstract
The paper analyzes the question of which cost characteristics are exhibited
by the �rms that exit an oligopolistic market when costs are asymmetric and
�rms can credibly be forced out by the remaining competitors. The main re-
sults are: (i) if reentry is impossible (due to the presence of large sunk costs),
then the �rm with the highest marginal cost function dtays in; if reentry is
costless then the �rm with the highest average cost exits. Consequenty sunk
costs not only a�ect the number of �rms in an industry, but they also enter
the determination of the type of �rms that resist predation.

Keywords: endogenous coalition formation, exit, sunk costs.
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1 Introduction

In markets where �rms di�er as to their cost functions is it possible to predict
what are the cost characteristics of the �rms that stay or that exit? In per-
fectly competitive markets one can predict that the �rms exiting the market
are those with highest average costs. This prediction has been extended by
Ghemawat and Nalebu� (1985), (1990) and Fudenberg and Tirole (1986) to
the case of declining industries with few competitors. Their analyses show
indeed that, in a war of attrition, the less e�cient �rm will be the �rst to
exit1. However many recent works (see chapters 8 and 9 in Tirole (1988)
and Wilson (1992)) show that exit can occur in a wide variety of circum-
stances. We are therefore led to ask if the above prediction continue to hold
in imperfectly competitive markets where �rms are not engaged in a war of
attrition.

This paper argues that the exiting �rm may be the one with the lowest
average cost function. To identify the basic argument leading to this conclu-
sion, consider the following example. Three �rms decide, at a �rst stage, to
stay in the market or to exit and, at a second stage, those that stay decide
how much to produce. All �rms have identical �xed costs. They also have
constant marginal costs with �rm i's marginal cost being strictly smaller
than �rm j's marginal cost which, in turn, is strictly smaller than �rm k's.
Firms can therefore be ranked according to their average cost function with
�rm i having the lowest one.

Then suppose that if all �rms stay in the market, each of them will obtain
a strictly negative pro�t at the Cournot equilibrium while, if only two �rms
stay in, their Cournot pro�t is positive and the third �rm receives a zero
pro�t. It immediately follows that for each couple of �rms to stay in the
market and to produce their Cournot quatity is an equilibrium of the two
stage game. They are therefore three equilibria and a prediction on the cost
characteristics of the exiting �rm cannot be based only on this two stage
game. Note, incidentally, that these equilibria are all Pareto e�cient so that
one cannot use coalitional proofness (see Bernheim, Peleg and Whinston

1For instance, Ghemawat and Nalebuf (1985) show that in a war of attrition with
complete information where �rms di�er according to their production capacity, the biggest
�rm is the �rst to exit. But these authors assume that �rms incur only a 
ow maintenance
cost which is proportional to their capacity. Accordingly, the biggest �rm is the one with
the highest average cost function.
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(1987)) to select one or the other.
A possible route to follow for obtaining a prediction is indicated by

the literature on endogenous coalition formation, as in Aumann and My-
erson(1988), Gul (1989), and especially Bloch (1990a) and (1990b). These
works use a non-cooperative sequential game to analyze the formation of
coalition structures. In the same way, one can assume that a coalition forma-
tion game precedes the play of a game of the kind illustrated by the example
above. We here adopt a speci�cation of the coalition formation game where
each �rm in turn makes a declaration consisting of (i) a set of �rms that stay
in, (ii) a payo� vector for the three �rms that can be obtained by the play
of a non-cooperative equilibrium of the two stage game. One can interpret
these declarations as \o�ers", and we model the acceptance (refusal) of an
o�er as the making of an identical (di�erent) declaration. Since a declaration
corresponds to one equilibrium, if two �rms make the same declaration they
agree to play the same equilibrium. This determines which equilibrium is
played and the payo�s to all �rms irrespective of the declaration made by
the third �rm.

It is important to realize that once two �rms have adopted their equilib-
rium strategies the third �rm has no better alternative than the play of its
own best reply to those strategies, which coincides with the strategy speci�ed
in the equilibrium chosen by the other two �rms. Therefore the way payo�s
are determined has nothing to do with the application of a majority rule in
collective decision making.

For further reference we call this sequential game \the cartel formation
game". The equilibrium of this game gives a prediction of the �rm that exits.
For each order in which �rms declare, there will be a unique subgame perfect
equilibrium outcome in the cartel formation game. But, as one can expect,
the equilibrium outcome will in general depend on the order of declaration.
We are nevertheless able to show that, as long as a �rm exits the market
at the equilibrium, the cost characteristics of this �rm can be identi�ed and
are independent of the order of declaration. The cartel formation game will
therefore provide a strong prediction on the characteristics of the exiting
�rm.

In the example the unique equilibrium is with �rms j and k making the
same declaration of the form (i) fj; kg, and (ii) payo� zero for �rm i, and
Cournot payo�s for j and k. A proof of this statement is trivial. Indeed the
Cournot pro�t of a �rm is increasing in the marginal cost of its rival which
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implies that �rm j makes the highest equilibrium pro�t when k stays on the
market and �rm k makes the highest equilibrium pro�t when j stays on.
Hence the �rm exiting the market is the one with the lowest average costs,
and not with the highest, as it would be predicted in a war of attrition or in
perfect competition.

One is led to wonder if the di�erence in prediction could disappear if
�rms play a supergame instead of a one-shot game. Indeed, in a supergame,
�rms are generally able to maximize joint pro�ts and, since joint pro�t max-
imization requires the minimization of variable cost, they will be induced to
internalize the gain made by having an e�cient partner.

In what follows we shall generalize the example given above by consider-
ing a general cost function and a production game consisting of an in�nite
repetition of the two-stage game of the example. In this game, we say that
a two-�rm cartel is feasible if there exists an equilibrium of the production
game where these �rms stay in and the third stays out along the equilib-
rium path. Obviously the analysis is interesting only if the production game
displays at least two di�erent feasible cartels.

The main results are that (i) if reentry is impossible, then the �rm with
the highest marginal cost function stays on at all equilibria of the cartel for-
mation game, for any order of declaration, while �xed costs only determine
the set of feasible cartels. (ii) If reentry is possible then the �rm with the
highest average cost exits. These results imply that the di�erence in predic-
tion does not depend on the possibility or not to collude, but rather depends
upon the existence or not of sunk costs for reentry.

A novel implication of the presence of sunk costs appears here: not only,
as it is already well known from the literature on entry preemption, they can
determine the number of �rms, but they also enter the determination of the
type of �rms that stay in a market.

The paper is organised as follows: in the next Section we introduce our
assumptions relative to the cost and demand functions and we analyse the
equilibrium outcomes of the production game. In Section 3, the cartel for-
mation game is formally presented. Our results are stated in Section 4 for
the unpro�table reentry case and in Section 5 for the case of costless reentry.
In Section 6 we test the robustness of the results for the case of unpro�table
reentry to changes in the cartel formation game. The results stated in section
4 are shown to go through. Section 7 presents some concluding considerations
to relate the results to the literature on transaction cost economics.
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2 The production game

We consider a supergame involving three �rms. We shall denote this game
by �� and the set of �rms by N . �� consists of the in�nite repetition of
the two-stage game where (i) at the �rst stage each �rm decides to stay in or
to stay out of the market and (ii) at the second stage the �rms which have
decided to stay in the market, hereafter referred to as the active �rms, play
an usual Cournot game whilst an inactive �rm produces nothing. At each
stage decisions are made simultaneously and actions taken at the �rst stage
are perfectly observed by all �rms before they choose their production at the
second stage. The scalar �, belonging to the open interval (0; 1), denotes the
discount factor common to all �rms.

The purpose of this preparatory section is twofold. On the one hand, we
give a precise content to the concept of a feasible cartel. On the other hand,
for each feasible cartel s, we characterize the set of all payo� vectors that
�rms can obtain at a subgame perfect Nash equilibrium of �� where along
the equilibrium path only the �rms in cartel s stay in the market at each
period.

To simplify the exposition we shall proceed in three steps. First, in sub-
section 2.1., we shall introduce the assumptions on the cost and demand
functions. In the second step, in subsection 2.2., we shall ignore the �rst
stage of the constituent game and concentrate on the game ��(s) consisting
of the in�nite repetition of the Cournot game where the set of players is given
by s (i.e. �rms in s decide to stay in the market at every period and the �rm
outside s, if s 6= N , decides to stay out of the market at every period). We
can thereby use the results from the literature on in�nitely repeated games
to bring forth a characterization of the set of equilibrium payo� vectors of
��(s) . In the last step, subsection 2.3., we introduce the possibility for each
�rm to exit the market. This will allow us to de�ne what we mean by a
feasible cartel and characterize, for each feasible cartel, the set of attainable
payo� vectors V�(s).

2.1 Assumptions

An active �rm has to pay a (time-invariant) �xed cost Fi as well as a variable
cost given by the function c(qi; �i; �qi) where �i and �qi are (time-invariant) �rm-
speci�c parameters and qi stands for quantity (the time index that should be
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assigned to the quantity variable is omitted as long as this does not create
confusion). If a �rm decides to stay out, it produces nothing and incurs no
cost. Furthermore if a �rm, say i, has decided to stay out at period t� 1, it
must pay a reentry cost, Ri, if it decides to stay in the market at period t.
We simplify the analysis by considering in turn two polar cases namely:

Assumption 1 Reentry is unpro�table i.e. Ri is as large as we want, for
i = 1; 2; 3.

Assumption 2 Reentry is costless i.e. Ri = 0, for i = 1; 2; 3.

The variable cost function c depends upon two �rm-speci�c parameters,
�i and �qi. �qi stands for the �rm i's capacity constraint which means that,
for a given �i, �rm i cannot produce more than �qi and accordingly c is only
de�ned for 0 � qi � �qi. On the other hand, �i is a convenient way to rank
�rms according to their marginal cost function. We shall indeed suppose that
for any quantity q such that the marginal cost to produce this quantity is
well de�ned for �rms i and j, �rm j's marginal cost is strictly greater than
the one of �rm i if and only if �j > �i. More precisely way, let Xi = [0; �qi],
then our assumptions regarding the variable cost function of any �rm are the
following:

Assumption 3 Let �qi > 0. The variable cost function is twice continuously
di�erentiable with respect to qi and �i on Xi � R++. In addition, c satis�es
the following properties:

1. c(0; �i; �qi) = 0, 8�i 2 R++,

2. 0 � @c(qi; �i; �qi)=@qi � �i, �i 2]0;1[, and @c(qi; �i; �qi)=@�i > 0, 8(�i; qi) 2
R++ �Xi,

3. @2c(qi; �; �qi)=@qi@�i > 0, 8(�i; qi) 2 R++ �Xi.

Now let Q stand for aggregate output. At each period, the inverse demand
function for the homogeneous good, denoted f(Q), satis�es:

Assumption 4 For all Q 2 [0;
P3

i=1 �qi], f is twice continuously di�eren-
tiable with f(Q) � 0 and @f=@Q < 0.
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Note that we suppose that �rms produce perfect substitutes in order to
be able to concentrate ourselves only upon the in
uence of the cost charac-
teristics on market structure.

For an active �rm the pro�t function (gross of the reentry cost) in the
Cournot game will be written as:

�i(qi; Q�i) = f(qi +Q�i)qi � c(qi; �i; �qi)� Fi (1)

where Q�i = Q� qi. We shall assume:

Assumption 5 For all i 2 N , �i is strictly quasi-concave on Xi�[0;
P

j 6=i �qj].
Furthermore there exists (q1; q2; q3) 2 X1 � X2 � X3 such that, for all i,
�i(qi; Q�i) > 0.

Obviously these assumptions, together with the restriction that any active
�rm i must choose a quantity in [0; �qi], are su�cient for the existence of a
Cournot equilibrium. The second part of Assumption 5 will ensure, as we
shall see later on, that there exists some \agreements" between the three
�rms with all of them remaining on the market. This could be assumed
away, in fact simplifying the analysis without changing the results, but it is
kept for the sake of generality.

The last restriction on the cost and demand functions is that whenever
only two �rms are active then, for any quantity its opponent can produce, a
�rm can achieve a positive pro�t. Formally, let us de�ne wi(s) with s = fi; jg
as the minimal payo� �rm i can guarantee to itself when it faces �rm j, i.e.:

wi(i; j) = min
qj2Xj

max
qi2Xi

�i(qi; qj)

Under assumption 4 �i is a strictly decreasing function of qj. Therefore,
de�ning qRi (�qj) = arg maxqi2Xi

�i(qi; �qj), we have:

wi(i; j) = �i(q
R
i (�qj); �qj)

We shall require:

Assumption 6 For all i; j 2 N , wi(i; j) � 0 and qRi (�qj) < �qi.

This will guarantee on the one hand that the market cannot be mo-
nopolized and on the other hand that there exist couples (qi; qj) such that
�i(qi; qj) > wi(i; j). We now turn to the characterization of the set of sub-
game perfect equilibrium payo� vectors of the in�nitely repeated game ��(s)
.
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2.2 Equilibrium payo�s in ��(s)

The typical payo� for �rm i in the game ��(s) is given by:

Pi = (1� �)
1X
t=0

�t�i(qi; Q�i)

In�nitely repeated games with discounting have been extensively analysed
in the literature. It has been established (see, for instance, Theorem 3.2
in Sorin (1992)) that the set of subgame perfect Nash equilibrium payo�
vectors of ��(s) converges (with respect to the Haussdorf topology) to the
set of individually rational and feasible payo� vectors of the constituent game
as the discount factor tends to one2. This is one of the version of the so-called
Folk Theorem. Accordingly, for our purposes we only need to characterize
the set of individually rational and feasible payo� vectors of the Cournot
one-shot game where the set of players is given by s. This set is denoted
W(s).

To begin with let us denote the set of feasible payo� vectors with three
active �rms by F(N) and the one with two active �rms by F(i; j). Let
X = Xi �Xj �Xk, F(N) and F(i; j) are given by:

F(N) = convex hull f (P1; P2; P3) j 9 (q1; q2; q3) 2 X such that
Pi = �i(qi; Q�i) for i = 1; 2; 3 g :

F(i; j) = convex hull f (Pi; Pj) j 9 (qi; qj; 0) 2 X such that Pi = �i(qi; Q�i)
and Pj = �j(qj; Q�j)g :

When the three �rms are active, each active �rm can guarantee to itself a
pro�t given by:

wi(N) = min
qj2Xj ; qk2Xk

max
qi2Xi

�i(qi; qj + qk)

Accordingly the set of individually rational and feasible payo� vectors when
�rms in s being active and #s � 2 is simply:

W(s) = f (P1; P2; P3) j (Pi)i2s 2 F(s) ; Pk = 0 for k 62 s

and Pi � wi(s) 8i 2 s g : (2)

2Provided the set of individually rational and feasible points has a non-empty interior.
This is clearly the case under Assumption 6.
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Then, denoting the set of perfect Nash equilibrium payo� vectors of ��(s)
byW�(s) , we have from the Folk Theorem that W�(s) converges toW(s)
when � tends to one. We shall furthermore denote by w�i(s) the minimal
payo� �rm i can obtain in W�(s).

2.3 Equilibrium payo�s in ��

We now consider the game �� , namely the in�nite repetition of the two-
stage constituent game where, at the �rst stage, �rms decide to stay in or
to stay out of the market and, at the second stage, active �rms decide the
quantity they produce. Let V�(s) denotes the set of attainable payo� vectors
for cartel s. At the end of this section it will possible to characterize V�(s) .
Note that this set will depend on which of the two assumptions, 1 or 2, is
taken to hold.

To begin with, let us remark that, from assumption 5, there will always
exist subgame perfect equilibria in �� where along the equilibrium path the
three �rms stay in the market at each period. The set of payo� vectors which
can be obtained at equilibria of this kind is denoted by V�(N) and it is easily
veri�ed that it coincides with W�(N) \R3

+. We shall furthermore denote by
ek(N) a subgame perfect equilibrium of �� where the three �rms stay in at
each period along the equilibrium path and where �rm k obtains a per-period
pro�t equal to maxf0; w�k(N)g and each other �rm, say h, obtains a pro�t
strictly greater than maxf0; w�h(N)g3.

Then let us suppose that there is a �rm, say k, such that w�k(N) < 0.
Consider �rst the existence of subgame perfect equilibria of �� where �rm
k stays out of the market at each period4. For � su�ciently close to one, the
following strategy combination is a subgame perfect Nash equilibrium of the
subgame starting after the three �rms have decided to stay in the market
at a given period: produce (�qi; �qj; qRk (�qi + �qj)) followed by, wathever the
quantity produced by �rm k, either ek(N) if �rms i and j have produced or

3Note that there are many output combinations that give �rm k a payo� equal to
w�k(N). For some of them the payo�s to i and j will be as speci�ed in ek(N).

4We implicitly assume that �rm k's outside opportunities has a per period value of zero.
However the reader will easily verify that all our results go through if we have assumed
that the per period value of �rm i's outside opportunities, i = 1; 2; 3, is given by a function
O(�i) satisfying @O=@�i � 0. The point is to de�ne ŵ�i(s) = w�i(s)�O(�i) for all possible
cartels and work with ŵ�i(s) instead of w�i(s).
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both did not produce �qi and �qj respectively, or ei(N) if �rm i did not produce
�qi while �rm j has produced �qj, or ej(N) if �rm j did not produce �qj while
�rm i has produced �qi. This is an equilibrium, in the subgame starting at
the node where the three �rms have entered the market, with �rm k having a
negative payo�. Therefore using this equilibrium as a punishment triggered
by the �rm k's decision to stay in the market, �rms i and j can force �rm k
to stay out of the market at each period. We shall refer to this situation by
saying that the cartel fi; jg is feasible. It must be clear that the feasibility
of a particular cartel, say fi; jg, neither excludes nor implies the feasibility
of another cartel like fi; kg for instance.

To sum up: we consider that the grand cartel, N , is always feasible since,
by assumption 5, there always exist subgame perfect equilibria of �� where,
along the equilibrium path the three �rms decide to stay in at each period.
On the other hand we say that a two-�rms cartel, say fi; jg, is feasible if and
only if �rms i and j can credibly predate �rm k i.e. w�k(N)< 0 5. We shall
denote the set of feasible cartels by S.

Before examining the set of equilibrium payo� vectors of a feasible cartel
in the game ��, we must recognize that there is a third kind of market struc-
ture which could emerge namely the monopoly one. However this possibility
is ruled out, whether reentry is costless or unpro�table, by assumption 6.

We now turn to the characterization of the set of equilibrium payo� vec-
tors that a feasible cartel, say fi; jg, can obtain in a subgame starting after
the decision of �rm k to stay out of the market and the decisions of �rms i
and j to stay in the market. Consider �rst the case where the reentry cost is
so high that it is never pro�table for �rm k to decide to stay in the market
at any period of this subgame (i.e. assumption 1 holds). In this situation
assumption 6 will ensure that �rms i and j will decide to stay in the market
at each period of the subgame. This immediately implies that the set of
equilibrium payo� vectors of the subgame coincides with the set of equilib-
rium payo� vectors of the game ��(s) , with s = fi; jg. Therefore we have
V�(s) =W�(s) for all feasible two-�rms cartel s.

Consider now the case where reentry is costless, i.e. assumption 2 holds.
Then the worst per-period payo� �rm i will obtain is equal to maxf0; w�i(N)g.
Indeed consider the subgame which starts after �rms i and j have decided

5The use of w�k(N)� 0 instead of w�k(N)< 0 in the de�nition of a feasible cartel does
not lead to any change in the analysis.
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to stay in while �rm k has decided to stay out of the market and either
�rm i or �rm j has deviated from their respective quantity speci�ed in a
given strategy combination. Since reentry is costless, ei(N) and ej(N) are
perfect equilibrium of this subgame. In other words, with costless reentry,
�rm k can be used to punish a deviation by a member of the cartel so that
the worst payo� a �rm, say �rm i, will obtain if it deviates from a speci�ed
quantity is simply the maximum between 0 and w�i(N). Note that if car-
tel fj; kg is feasible, if �rm i deviates it could be punished by its exclusion
of the market leading to a zero payo�. But since cartel fj; kg is feasible if
and only if w�i(N) < 0, the worst payo� �rm i will obtain is still equal to
maxf0; w�i(N)g. It follows that the set of equilibrium payo� vector a feasible
two-�rm cartel s can obtain under assumption 2, V�(s), is simply equal to
the following set:

V�(s) = f (P1; P2; P3) j (Pi)i2s 2 F(s) ; Pk = 0 for k 62 s;

and Pi � maxf0; w�i(N)g8i 2 s g : (3)

Note that, since w�i(N) is strictly smaller than w�i(s) for any s 6= N to
which i belongs, then V�(s) is larger than W�(s).

3 The cartel formation game

Due to the multiplicity of equilibria in the production game, �rms must
coordinate upon the play of a particular equilibrium before the production
game starts. The way �rms solve this coordination problem is described by
a three-stage game where at each stage one �rm makes a declaration. The
order in which declarations are made is exogeneously given and it is common
knowledge.

A �rm i's declaration, di, consists of a feasible cartel, si, to which �rm
i must belong and of a payo� vector pi = (pi1; pi2; pi3) which must belong
to V�(si). The set of �rm i's declarations is thus Di = f(s; p) j i 2 s; s 2
S and p 2 V�(s)g. Furthermore let Hi denote the set of declarations preced-
ing that of �rm i with Hi = ; if �rm i is the �rst to make a declaration.
Then a strategy for �rm i is a mapping �i : Hi ! Di.

Let d denote a declaration vector, �rm i will receive the payo� gi given
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by:

gi(d) =

8>>>>>><
>>>>>>:

pii i�

8><
>:

either di = dj ;
or di = dk;
or di = dj = dk;

pji i� di 6= dj and dj = dk;
�gi otherwise:

Accordingly �rm i will receive its proposed payo� pii if its declaration is
compatible with (identical to) either that of �rm j (i.e. di = dj) or that of
�rm k (i.e. di = dk) or both. If the declarations of �rms j and k are compati-
ble then �rm i will obtain the payo� assigned to it in the �rm j's declaration.
This payo� assignment follows from the fact that, once two �rms agree to
play according to a partiacular equilibrium of the production game, the third
one's best response in the production game is to play according to this equi-
librium too. Consequently all �rms will receive the payo� corresponding to
the equilibrium upon which two �rms have decided to coordinate. Finally, if
all the declarations are pairwise incompatible no agreement is possible and
�rm i will receive some predetermined payo� �gi. We suppose that �rm i's
reservation payo�, �gi, corresponds to the worst payo� it can obtain in the
production game �� or, in other words, the best payo� �rm i can guarantee
to itself in this game. Accordingly6, �gi = maxf0; w�i(N)g 8i 2 N . To end up
note that since any strategy combination (�i; �j; �k) leads to a declaration
vector the payo� of �rm i in the cartel formation game will be given by gi.

4 Equilibria in the cartel formation game

with unpro�table reentry

We turn now to the characterization of the equilibria of the cartel formation
game when, in the production game, reentry is unpro�table i.e. assump-
tion 1 holds. To simplify the exposition we shall introduce some pieces of
terminology: We shall say that, for a given order of declaration, say (i; j; k),
cartel s forms if and only if, for this order of declaration, there exists a sub-
game perfect Nash equilibrium of the cartel formation game, ��, leading to a
declaration vector d� de�ned by ��i = d�i ; �

�
j (d

�
i ) = d�j ; �

�
k(d

�
i ; d

�
j ) = d�k such

6Recall that outside opportunities, if there exist, are taken into account in the stay
in/stay out decision, see footnote 4.
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that:
d�h = d�l for h; l 2 s

On the other hand, we shall say that cartel s will not form for a given
order of declaration if and only if there does not exist at least one subgame
perfect Nash equilibrium of the cartel formation game satisfying the above
requirement.

As one could expect subgame perfect equilibria of the cartel formation
game di�er according to the order of declaration. However we can identify
the cartels which do not form whatever the order of declaration. Let W�i(s)
be the highest one-period pro�t that �rm i can obtain in W�(s). Then,

Proposition 1 Suppose all our assumptions except assumption 2 hold. Then
there exists �� < 1 such that for all � 2 (��; 1) and whatever the order of
declaration we have:

1. A cartel forms,

2. if S = ffi; jg; fi; kg; Ng and �j < �k, then cartel fi; jg does not form,

3. if S = ffi; jg; fi; kg; fj; kg;Ng and �i < �j < �k, then (a) cartel fi; jg
does not form and (b) if in addition �qj � �qi and W�j(i; j) � W�j(N)
then cartels fi; jg and fi; kg do not form.

Fixed costs, marginal cost functions and capacity constraints determine
all together which cartels are feasible i.e. which �rms can be forced to stay out
by the two others. However on the basis of marginal cost functions alone we
can conclude that if the �rm with the highest marginal cost function belongs
to a feasible two-�rms cartel then it will stay in the market. This means
that a su�cient condition for the highest marginal cost �rm to survive is the
existence of a partner with which it can predate the third �rm. Furthermore
if in addition we suppose that �qj � �qi7 and W�j(i; j) �W�j(N) then we can
be more precise about the survival of the lowest marginal cost �rm. Indeed in
this case the results state that if a �rm is forced to stay out of the market it

7As the reader will see in the proof of Lemma 4 the result will hold under the weaker
but less transparent (su�cient) condition: �i(qRj (qi); qi) � �i(qRi (qj); qj).
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is the one with the lowest marginal cost function once there exists a feasible
cartel to which this �rm does not belong. Accordingly a low marginal cost
function and, since the results do not depend on the level of �xed costs, a low
average cost function is not an advantage to survive in a market, if we except
its role in the determination of the set of feasible cartels. Put in another way,
our results suggest that to face predation the use of a technology leading to
a small �xed cost and a (relatively) high marginal cost function do provide
strong advantages with respect to the use of a technology leading to a large
�xed cost and a low marginal cost function.

The cornerstone underlying our results is:

Lemma 1 Suppose all our assumptions except 2 hold and let W�i(s) be the
highest payo� �rm i can obtain in V�(s). Then there exists �� < 1 such that
for all � 2 (��; 1), W�i(i; j)<W�i(i; k) if and only if �j < �k.

Proof: Let Wi(s) be the highest payo� �rm i can obtain in W(s). If we
are able to prove that Wi(i; j)<Wi(i; k) if and only if �j < �k then the result
will follow immediately by the application of the Folk Theorem.

It is obvious that:

Wi(i; j) = max
qi2Xi qj2Xj

�i(qi; qj) subject to �j(qj; qi) = wj(i; j) ;

Wi(i; k) = max
qi2Xi qk2Xk

�i(qi; qk) subject to �k(qk; qi) = wk(i; k):

Remark immediately that the constraints in these optimization programs do
not depend on the �xed cost and hence the constraints di�er only in the level
of �.

For qi = �qi, the constraints in these maximization programs are satis�ed if
and only if qj = qRj (�qi) and qk = qRk (�qi) respectively. Under our assumptions
we obviously have qRj (�qi) > qRk (�qi) if and only if �j < �k. Futhermore for any
given qi 2 [0; �qi) let us di�erentiate �j(qj; qi) =wj(i; j) with respect to qj and
�j. We obtain:

@�j(qj; qi)

@qj
dqj =

"
@c(qj; �j; �qj)

@�j
�

@c(qR(�qi); �j; �qj)

@�j

#
d�j:

where all derivatives are evaluated at (qj; qi) such that �j(qj; qi) =wj(i; j).
Since �j is a strictly quasi-concave function we have that @�j(qj; qi)=@qj is
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strictly negative for any qj 2 (qR(�qi); �qj] and strictly positive for any qj 2
[0; qR(�qi)). Moreover, by assumption 3, marginal cost is increasing in � so
that @c(qj; �j; �qj)=@�j � @c(qR(�qi); �j; �qj)=@�j is strictly positive for any qj 2
(qR(�qi); �qj] and strictly negative for any qj 2 [0; qR(�qi)). It then follows
that dqj=d�j is strictly negative for any given qi 2 [0; �qi) and qj satisfying
�j(qj; qi) = wj(i; j). This establishes that the isopro�t curve �j(qj; qi) =
wj(i; j) shifts rightwards in the coordinate (qj; qi) as �j decreases. As shown
in Figure 1 the result then follows. 2

As shown by the proof, the �xed cost does not matter since it a�ects
both sides of the constraint in the maximization program in the same way.
Hence, for any quantity produced by �rm i, the quantity required to satisfy
the constraint is independent of the �xed cost. On the other hand, the level
of �, i.e. the level of the marginal cost for a given quantity produced, a�ects
the constraint in two ways. First, if the right-hand side of the constraint
were independent of � then, in the coordinates of Figure 1, �rm k's isopro�t
curve will be entirely below the �rm j's one as long as �j < �k. This e�ect
re
ects the advantage to form a cartel with a low marginal cost �rm. Second,
however, the minimal payo� required by a �rm to participate in a cartel
with �rm i clearly decreases with �. This translates the intuition that a low
marginal cost �rm will be more greedy than a �rm with a higher marginal
cost. What the Lemma states is that the second e�ect dominates the �rst
one.

According to this result, for �k larger than �j, �rm k can always give to
�rm i a greater payo� than the highest payo� �rm i can obtain with �rm j.
On the other hand if cartel fi; jg forms then �rm k will receive a zero payo�
while it will obtain at least w�k(i; k)> 0 if cartel fi; kg forms. Hence, loosely
speaking, �rm k has always the opportunity and the willingness to prevent
the formation of cartel fi; jg so that this cartel cannot form.

Remark that we cannot exclude the formation of the grand cartel, N ,
for all orders of declaration. Indeed consider, for instance, the case where
S = ffi; jg; fi; kg; Ng with �j < �k and �rm i is the �rst �rm to declare.
If w�k(i; k) is su�ciently large it could happen that W�i(i; k) is strictly
smaller than the greatest payo� �rm i can obtain in V�(N). Consequently,
�rm i will propose the formation of the grand cartel and the best either �rm
j or �rm k (or both) can do is to make a declaration compatible with that
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of �rm i8. This shows that the availability of a predatory strategy is not
su�cient for predation to occur.

Finally, Part 3 of Proposition 1 corresponds to the example given in the
Introduction above, except for the feasibility of the grand cartel. However,
to have the same prediction, i.e. that the low marginal cost �rm is excluded
for all orders of declarations, two additional requirements are needed. The
�rst is that the maximal capacity of �rm j is smaller than that of �rm i;
the second is that the maximal payo� that j can obtain in the cartel fi; jg
is larger than the one it can obtain in cartel (N). These conditions seem
fairly unrestrictive: as �rm i has a lower marginal cost function than j it
is reasonable to assume that it has installed a higher capacity; while it is
quite plausible that a �rm can obtain more in a two-�rm than in a three-
�rm cartel. obviously, if cartel (N) was not feasible, as in the introductory
example, then this second condition is trivially met.

As it can be seen from the Proof of Proposition 1 in the Appendix, these
two conditions are super
uous for all orders of declaration except when k is
the �rst to declare. In this case k in order to induce j to enter the cartel
fj; kg must give to j a payo� at least as great as the maximum payo� that
j could obtain in the cartel fi; jg, W�j(i; j). The same is true if k wants to
induce i to enter the cartel fi; kg, that is k must give W�i(i; j). Thus, k will
prefer the cartel fj; kg if it gets a higher payo� in it rather than in fi; kg ,
given the constraints imposed by what he must o�er to j and i. This is the
case if the conditions in Part 3 of Proposition 1 are met, as it is shown by
Lemma 4 in the Appendix.

5 Equilibria of the cartel formation game

with costless reentry

It has been shown in section 2.3, that the case with costless reentry di�ers
from the one with unpro�table reentry only by the fact that in the former
case the minimal payo� required by a �rm, say j, to participate to a two-
�rms cartel, say fi; jg, is equal to maxf0; w�j(N)g while in the latter case

8Note that if the cartel fj; kg were also feasible then the grand cartel could form with
�rm i being the �rst �rm to declare and �rm j (resp. �rm k) the second one provided
that W�j(j; k) (resp. W�k(j; k)) is strictly smaller than the highest payo� �rm j (resp.
�rm k) can obtain in V�(N).
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it equals w�j(i; j). Accordingly if cartels fi; jg and fi; kg are feasible, that
is, if w�j(N) and w�k(N) are negative, then the minimal payo� obtained by
�rms j and k in these cartels are equal to zero. Therefore, the highest payo�
�rm i can obtain in a cartel, W�i(s), depends on both the marginal and �xed
costs of its partner. More precisely, let q0h be the rival's output which leads
to zero pro�t for �rm h when it plays its best reply, qRh (q

o
h), that is, q

o
h is

such that �h(qRh (q
0
h); q

0
h) = 0. Furthermore, for all q 2 X0

h with X0
h = [0; q0h),

let q̂h(q) be the smallest quantity produced by h which gives it a zero pro�t
whenever its rivals produce q, that is, q̂h(q) is such that: �h(q̂h(q); q) � 0
and @�h(q̂h(q); q)=@qh > 0. We have:

Lemma 2 Suppose all our assumptions except assumption 1 hold. There
exists �� < 1 such that, if cartels fi; jg and fi; kg are feasible and (�j; Fj)
and (�k; Fk) are such that q̂k(q) > q̂j(q) for all q 2 X0

j \X
0
k , then W�i(i; j)>

W�i(i; k) > W�i(N) for all � 2 (��; 1).

Considering Figure 2, the proof of this result is clearly quite obvious
and is thus omitted. It must be noticed that a necessary and su�cient
condition for W�i(i; j)>W�i(i; k) to hold would involve a comparison of the
cost structure of the three �rms. We thus choose to state our results in terms
of a su�cient condition which actually requires only the comparison of �rms
j and k average cost function.

Clearly, Lemma 2 here will play the role of Lemma 1 in the case of no-
reentry. It therefore follows:

Proposition 2 Suppose all our assumptions except assumption 1 hold. There
exists �� < 1 such that for all � 2 (��; 1) and for any order of declaration we
have:

1. A cartel forms,

2. let S = ffi; jg; fi; kg; Ng and q̂j(q)<q̂k(q) for all q 2 X0
j \ X0

k , then
cartels fi; kg and N do not form,

3. let S = ffi; jg; fi; kg; fj; kg; Ng and (i) q̂i(q) < q̂j(q) for all q 2 X0
i \

X0
j , (ii) q̂i(q) < q̂k(q) for all q 2 X0

i \ X0
k , (iii) q̂j(q) < q̂k(q) for all

q 2 X0
j \X0

k then cartels fi; kg; fj; kg and N do not form.
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This Proposition9 contrasts with our previous results in two ways: First,
the grand cartel, N , does not form, so that if seeing that there exists a
predatory strategy it will be played i.e. predation occurs. This comes from the
fact that, as long as cartels fi; jg and fi; kg are feasible, the minimal payo�
�rms j and k will obtain in both a two-�rm cartel and in the grand cartel is
equal to zero. It then follows that �rm i can always obtain a larger payo�
in a two-�rm cartel than in the grand cartel (see Lemma 3). Consequently
if �rm i is the �rst �rm to declare it will never propose the formation of the
grand cartel. On the other hand if it is �rm j (resp. �rm k) which is the
�rst to declare then it will never propose the formation of the grand cartel.
Indeed if it does so then both �rm i and �rm k (resp. �rm j) can obtain a
higher payo� than the one proposed in �rm j's (resp. �rm k's) declaration
by making compatible declarations which propose the formation of the cartel
fi; kg (resp. fi; jg).

The second di�erence between the results with costless reentry and the
ones with unpro�table reentry can be illustrated if we suppose that �rms
have identical �xed costs10. In this case q̂j(q) < q̂k(q) for all q 2 X0

j \ X0
k

will hold if and only if �j < �k. Then Proposition 2 states simply that the
�rm with the highest marginal cost function will be predated. Therefore
with costless reentry, contrary to what happens in the unprop�table reentry
case, a low marginal cost constitues a strong advantage to face predation.
On the other hand, if we suppose that �i = �j = �k then the conditions
used in Proposition 2 will be satis�ed if and only if Fi < Fj < Fk. Hence we
�nd back a result stated �rst by Ghemawat and Nalebu� (1985) for declining
industries according to which the �rm with the largest capacities i.e. with the
highest �xed cost level is the �rst �rm to exit the market. Such conclusion
has also be drawn by Fudenberg and Tirole (1986) from the analysis of an
incomplete information game.

To conclude with, if we are able to rank the �rms with respect to their
average cost function then Proposition 2 states that the exiting �rm is the
one with the highest average cost function.

9The proof of this Proposition follows so closely that of Proposition 1 that it s omitted.
10Recall that our results in the case of unpro�table reentry do not depend on the �rms

�xed costs.
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6 Robustness of the results with unpro�table

reentry

One speci�c feature of the cartel formation game presented above is that
each �rm in its declaration proposes simultaneously a particular cartel and
the payo�s that each member of the cartel will receive. As a consequence,
the cartel formation game gives to all �rms a strong in
uence on the way
payo�s are allocated among cartel members.

This seems reasonable when reentry costs are negligible. In this case
indeed the production game remains a three players game even if a �rm exits
the market. However when reentry costs are large, the production game
becomes a two players game once a �rm decides to stay out of the market.
In this case one can ask the question if the cartel formation game does not give
to the exiting �rm an unrealistically excessive in
uence on the equilibrium of
the resulting two �rms production game which shall be played. In order to
provide an answer, we shall analyze the sensitivity of the ine�ciencies stated
in Proposition 1 to the way �rms are supposed to coordinate.

To investigate this issue we look at a two step coordination process where
the exiting �rm has no in
uence on the way the remaining �rms will share the
gains from cooperation in the production game. This coordination process
constitutes a game: its �rst step is a substitute for the cartel formation game
presented before. The only di�erence is that it is now supposed that a �rm
declaration only consists of a feasible cartel, s. If all declarations di�er the
game ends and each �rm receives its reservation payo� �gi. Otherwise one
moves to the second step.

The second step consists of a negotiation between the members of the
cartel given in the identical declarations of the �rst step, say s, to determine
a payo� vector, p, belonging to V�(s). If a �rm does not belong to s then its
action set in this step is simply fdo nothingg.

We shall not specify explicitely the bargaining game procedure. We as-
sume instead that, the gains from cooperation (i.e. the actual payo� minus
the sum of appropriately discounted Cournot pro�ts of the one-shot quantity
game) are shared according to a bargaining solution. The bargaining solution
we adopt here belongs to the family of egalitarian (also called proportional)
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solutions as axiomatized by Kalai (1977) and Kalai and Samet (1985)1112.
To be precise, let us �rst assume that:

Assumption 7 For any feasible cartel, s, the Cournot equilibrium in the
quantity game is unique.

Then, let �ci (i; j) denote the �rm i's Cournot equilibrium pro�t when only
�rms i and j are active on the market. Furthermore denote by (qei (i; j); q

e
j(i; j))

the quantity vector which maximizes Pi subject to Pi��ci (i; j) = Pj��cj(i; j)
and let P e

�i(i; j) (resp. P
e
�j(i; j)) be given by (1��)

P1
t=0 �

t�i(qei (i; j); q
e
j (i; j))

(resp. (1 � �)
P1

t=0 �
t�j(qej (i; j); q

e
i (i; j)) ). Obviously (P e

�i(i; j); P
e
�j(i; j)) is

the symmetric egalitarian solution13 to the cooperative bargaining game de-
�ned by a set of outcomes given by F(i; j) and a statu-quo point given by
(�ci (i; j); �

c
j(i; j)).

We can immediately state:

Lemma 3 Let all our assumptions except 2 be satis�ed. Furthermore, for
any feasible two-�rms cartel, say fh; lg, suppose that (qeh(h; l); q

e
l (h; l)) belongs

to ]0; �qh[�]0; �ql[ and that there exits (qh; ql) � 0 which maximizes Ph + Pl.
Then there exists �� < 1 such that, for all � > ��, P e

�i(i; k) > P e
�i(i; j) if and

only if �k > �j.

11This kind of structure has already been used in the literature. For instance, in Gross-
man and Hart (1986), two agents �rst choose non-cooperatively and simultaneously a
level of investment and then, given these investments, take actions such that the gains
from renegotiation, which correspond to the gains from cooperation in our framework,
is shared equally. In their context, this corresponds also to the Nash bargaining solu-
tion. The Groosman and Hart's analysis has been extended by Hart and Moore (1990)
to many agents and the bargaining solution adopted there to share the gain from trade is
the Shapley value.
We adopt here an egalitarian solution one the one hand because it is muchmore tractable

than the other ones (in particular the Nash bargaining solution), and on the other hand
because the egalitarian solutions are the only ones which, in the presence of other stan-
dard requirements, satisfy the monotonicity property (see Kalai and Samet (1985)). This
condition simply states that if the feasible set of one coalition increases and the feasible
sets of all other coalitions remain the same, then none of the members of this coalition
should become worse o� because of this change.

12Note that similar results could be obtained by using the symmetric Nsah bargaining
solution.

13It will be obvious to verify that the results presented below will hold if we take an
asymmetric egalitarian solution provided the weight of �rm i in the solution depends
negatively on �i and is independent on the �xed costs level.
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Notice that the �rst additional assumption in this Lemma will simply
guarantee that there exists a feasible payo� vector strictly greater than the
Cournot equilibrium pro�ts vector.

Again an increase in �j will have two e�ects on the cooperative bargaining
game involving �rms i and j: On the one hand, it leads to a modi�cation in
the set of feasible outcomes which a�ects negatively the payo� of �rm i at the
egalitarian solution while, on the other hand, it increases (resp. decreases)
�rm i's (resp. �rm j's) statu-quo payo� which will rise the �rm i's payo� at
the egalitarian solution. The Lemma14 states simply that the positive e�ect
arising from the move in the statu-quo payo� dominates the negative e�ect
coming from the reduction in the set of feasible outcomes.

This result will play, for Proposition 3 below, the role played by Lemma 1
and 2 for Proposition 1 and 2 respectively. To see this it su�ces to realize
that the set of subgame perfect equilibria of the game deriving from the two
step procedure here considered coincides with the one of the cartel formation
game where a �rm i's declaration consists of a feasible cartel, si, to which �rm
i belongs and of a payo� vector which gives to each �rm in si the symmetric
egalitarian payo� de�ned above15 and a zero payo� to a �rm (if any) which
does not belong to si. Formally the set of �rm i's declarations is now Di =
f(s; p) j i 2 s; s 2 S; for all h 2 s ph = peh(s) and, for l 62 s; pl = 0g.
Therefore we have:

Proposition 3 Let all assumptions in Lemma 3 hold. Then there exists
�� < 1 such that for all � 2 (��; 1) and whatever the order of declaration we
have:

1. A cartel forms,

2. if S = ffi; jg; fi; kg; Ng and �j < �k, then cartel fi; jg does not form,

3. if S = ffi; jg; fi; kg; fj; kg; Ng and �i < �j < �k, then cartels fi; jg
and fi; kg do not form.

14The proof of this result comes quite straightforwardly from the application of the
envelope theorem as well as the Folk theorem. Hence it will be omitted.

15To save space we do not de�ne formally the egalitarian payo� when the three �rms
are active. However this can easily be done even if one wants to consider a coalition form
game instead of a cooperative bargaining game. Anyway this does not matter for our
analysis.
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This shows the robustness of our conclusions with respect to the in
uence
of the exiting �rm on the way payo�s are allocated in the production game.

7 Concluding remarks

We have considered in this paper a dynamic production game involving three
�rms which are di�erentiated according to their cost function. More precisely
we have assumed that �rms can be ranked unambiguously according to their
marginal cost function and that their �xed cost may di�er. Furthermore we
suppose that one �rm can be credibly forced to stay out of the market by
the two others and that at least two �rms can be put under such a threat.
We then investigate the cost characteristics of the exiting �rm under two
alternative hypothesis concerning the possibility of reentry namely the case
where reentry is unpro�table in any circumstances due to the presence of
large sunk costs, and the one where reentry is costless.

We have obtained two predictions (which appears quite robust to the
speci�cation of the cartel formation game). First if reentry is always unprof-
itable then the exiting �rm has the lowestmarginal cost function as compared
with the marginal cost function of the �rms which can credibly be predated.
Furthermore this result does not depend on the level of �xed costs16. Ac-
cordingly, in this case, cost ine�ciencies will arise since the exiting �rm is
the one which uses the most e�cient technology.

A second result is that when reentry is costless and when we can rank
�rms according to their average cost function then the exiting �rm has the
larger average cost function as compared to the average cost function of the
�rms which can be put under the threat of predation. Therefore in this case
cost ine�ciencies do not appear.

The result obtained in the no-reentry case looks strange since it goes
against the common belief that the most e�cient �rm will remain on the
market. But this belief has been developped in the context of \neo-classical
economics". If instead we look at this result from the point of view of \trans-
action cost economics" (as developped in Williamson (1985) for instance)
then they appear rather unsurprising. Indeed in this context such kind of
ine�ciencies are frequently obtained. It is worthwhile emphasizing the deep

16However the set of �rms which can be predated depend obviously on the level of �xed
costs.

22



relationship between our analysis and the transaction cost approach. In-
deed although the latter approach focuses mainly on the internal organisa-
tion of the �rm the present study shows that the basic points which distin-
guish transaction cost economics from other economic approches are also well
suited to study the composition of an industry and more generally to make
substantial progresses in the understanding of the formation and composition
of groups or coalitions on a market.

Roughly speaking transaction cost economics seeks to analyse situations
involving agents characterized by opportunism and bounded rationality where
(i) agents will meet frequently, (ii) agents do not rely on courts for settling
disputes among them i.e. private ordering prevails, (iii) agents have the
opportunity to make asset speci�c investments and (iv) agents evolve in an
uncertain environment.

In the present analysis we have ruled out both uncertainty and bounded
rationality since these characteristics appear unessential for our results. Note
furthermore that frequency will not be relevant here as the example given
in the Introduction points out. The di�erence between opportunism and
self-interested behavior does not matter here because the set of subgame
perfect Nash equilibria and the set of Nash equilibria of the production game
coincides for a discount factor su�ciently close to zero. We shall however
argue that if we make abstraction of the presence of either private ordering
or asset speci�c investments then the cost ine�ciencies obtained in the paper
disappear.

Let us begin with private ordering. Many exchange analysis suppose that
e�cacious rules of law are in place so that any disagreement regarding the
execution of a contract is settled by courts in a fully informed and low-cost
way. This assumption of court ordering is very convenient since it allows to
disregard the ex-post side of a contract. In our context, �rms cannot rely
on court since the kind of contract they are willing to do is simply illegal.
An immediate consequence of private ordering is that we cannot disregard
the execution phase of the contract since the latter must be self enforcing.
This entails that �rms, as is supposed in the cartel formation game, will only
consider payo� vectors which can be associated with a subgame perfect Nash
equilibrium of the production game.

But suppose to the contrary that �rms can rely costlessly on court to
enforce an agreement. This implies that the set of payo� vectors that must
now be considered in the cartel formation game coincides with the one cor-

23



responding to the costless reentry case. Indeed, a �rm which can be forced
to exist can commit to obey an agreement in which it receives a zero payo�.
Without this possibility of commitment, such an agreement is not credible
in the no-reentry case while it is in the case of costless reentry. Conse-
quently, the result stated in Lemma 2 will hold even if reentry is unpro�table
and the exiting �rm is the one with the highest average cost function (see
Proposition 2 for a more precise statement). Therefore the cost ine�ciencies
disappear once court ordering is allowed for. Remark that this clearly shows
that considering tacit cooperation between �rms as illegal is possibly costly.

Let us now turn to the asset speci�c character of investments. Invest-
ments are said wholly asset speci�c if they are unredeployable. Accordingly
investment costs are sunk for wholly asset speci�c investments while they
are �xed when investment looses its asset speci�c character. The main con-
sequence of the presence of asset speci�c investment is the occurence of the
fundamental transformation. The latter concept refers to the transformation
in the nature of the competition prevailing before and after the adoption of
the contract.

In our context, the sunk reentry cost we have introduced can simply
be interpreted as the cost of unredeployable investments. More precisely,
the unpro�table reentry case corresponds to the situation where large asset
speci�c investments must be achieved before being active on the market
while in the costless reentry case such investments are negligible. When
reentry is unpro�table the fundamental transformation occurs since, once
a �rm exits, the production game becomes a two players game. If instead
reentry is costless this transformation does not occur. Indeed, in this case
even if a �rm exits it can participate to the punishment of a deviation from
the equilibrium path by one of the two �rms which remain on the market.
In other words the production game still involves three players even if a �rm
exits the market. As we have shown, cost ine�ciencies appear only in the
case of unpro�table reentry which means that the presence of large asset
speci�c investments is a necessary condition for such cost ine�ciencies to
occur.
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Appendix

8 Proof of Proposition 1

8.1 A cartel forms.

The proof that a cartel forms is straightforward and it is therefore omitted.

8.2 Let S = ffi; jg; fi; kg; Ng and �j < �k, then cartel fi; jg does not

form.

Remark immediately that since fi; jg and fi; kg are both feasible we have
�gj = �gk = 0. Obviously, it is useless to consider strategies that lead to the
formation of cartel N since we are only interested to prove that cartel fi; jg
does not form.

8.2.1 Suppose that �rm i is the �rst �rm to declare:

1. (a) Let �rm k be the last �rm to declare. If di 62 Dk (i.e. the proposed
cartel in the �rm i's declaration is the cartel fi; jg) then, whatever
is �rm j's declaration and whatever is its own declaration �rm k
will obtain a zero payo� (either di = dj and in this case �rm
k obtains pik = pjk = 0 since pi 2 V�(i; j) implies pik = 0 or
di 6= dj in which case �rm k will obtain �gk = 0). Now if di 2 Dk

we must distinguish two cases: On the one hand, if di 62 Dj (i.e.
�rm i proposes the formation of cartel fi; kg) then �rm k will
obtain a zero payo� by declaring dk 6= di while it will receive
pik � w�k(i; k) > 0 by declaring dk = di. On the other hand if
di 2 Dj \Dk then �rm k will obtain pik � 0 (since w�k(N) < 0) if
either it declares dk = di or di = dj while it will receive �gk = 0 if
di 6= dj 6= dk. It follows that all �rm k's best-response to (di; dj)
is characterized by: (i) dk can be anything if either di 62 Dk or
di = dj or pik = 0; (ii) dk = di if di 2 Dk and pik > 0 and dj 6= di.
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(b) Remark that if �rm j were the last �rm to declare a similar rea-
soning will lead to the conclusion that all �rm j's best-response
to (di; dk) will satisfy (i) dj can be anything if either di 62 Dj , or
di = dk, or pij = 0; (ii) dj = di if di 2 Dj and pij > 0 and dk 6= di.

2. (a) Let us consider the problem faced by the second �rm to declare,
say �rm j. If di 62 Dj then, whatever its own declaration is, j
will receive a zero payo�. Given point 1.(b) above, if di 2 DjnDk

(i.e. �rm i proposes the formation of cartel fi; jg) then it will
obtain a payo� equal to pij � w�j(i; j) if it declares dj = di or
�gj = 0 if it declares dj 6= di. If di 2 Dj \ Dk (i.e. �rm i proposes
the formation of cartel N) then, since �rm k best-response to
(di; dj), with dj 6= di is dk = di, j will obtain pij � 0 either by
declaring dj = di or by declaring anything else. On the other
hand if di 2 Dj \ Dk and di is such that �rm k's best-response
is dk 6= di for dj 6= di then �rm j will obtain a zero payo� if it
declares dj 6= di while it receives pij � 0 if it declares dj = di.

Therefore all �rm j's best-responses to di will satisfy: (i) dj can
be anything if either di 62 Dj or pij = 0, or di is such that �rm k's
best-response to (di; dj), with dj 6= di, is dk = di; (ii) dj = di if
di 2 Dj, and pij > 0, and di is such that �rm k's best-response to
(di; dj), with dj 6= di, is dk 6= di.

(b) If �rm k were the second �rm to declare a similar reasoning will
lead to the same characterization of all �rm k's best-response to
di.

3. Now consider the problem faced by �rm i.

First, if it declares dji � (fi; jg; (W�i(i; j); w�j(i; j); 0)), �rm j will de-
clare dj = dji (since dji 62 Dk) and consequently �rm i will obtain
W�i(i; j). Second if it declares dki � (fi; kg; (W�i(i; k); 0; w�k(i; k)))
�rm k will declare dk = dki whatever the decalration of �rm j (since
dki 62 Dj and pik > 0) and �rm i will obtain W�i(i; k). Third if �rm
i declares dNi = (N; (Pi(�); �; 0)), for some � > 0 and Pi(�) being the
maximal payo� �rm i can obtain in V�(N) when Pj = � and Pk = 0,
then �rm j will declare dj = dNi and it follows that �rm i will receive
Pi(�). Remark immediately that Pi(�) tends to W�i(N) when � tends
to zero. Finally if �rm i makes a declaration, dOi , leading �rm j to
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declare dj 6= dOi and �rm k to declare dk 6= dOi then �rm i will receive
�g = w�i(N).

Firm i will never make a declaration like dOi since doing so it will
receive w�i(N) which is strictly smaller than the payo� it will obtain
if it decalares dji for instance. Furthermore since �j < �k we know
by Lemma 1 that W�i(i; k) > W�i(i; j) for � su�ciently close to one.
Therefore �rm i will never declare dji and the cartel fi; jg does not
form.

8.2.2 Suppose that �rm i is the second �rm to declare:

1. Let �rm k be the last �rm to declare. Any best-response for this �rm
satis�es the properties given in point B.2. 1a . It follows that by
declaring dki , de�ned in point B.2.1 3, �rm i will obtain W�i(i; k). Con-
sequently for �rm i to maximize its payo� by declaring di = dj it is
necessary that pji � W�i(i; k). Therefore all �rm i's best-responses
to dj are such that: (i) di = dki if pji < W�i(i; k); (ii) di = dj if
pji > W�i(i; k). Now, by Lemma 1, for � su�ciently close to one there
does not exist dj 2 Dj such that dj 62 Dk and pji � W�i(i; k). This
implies that cartel fi; jg does not form.

2. Let �rm j be the last �rm to declare. Reasoning as above, it follows
that all �rm i's best-responses to dk are such that: (i) di = dji if
pki < W�i(i; j); (ii) di = dk if pki > W�i(i; j). But for � su�ciently
close to one, Lemma 1 ensures the existence of dk 2 Dk such that
pki > W�i(i; j). Moreover, by making a declaration dk 62 Dj , which
induces �rm i to declare di = dk, �rm k will obtain a strictly greater
payo� than the one it will obtain by declaring any other dk 2 Dk.
Therefore cartel fi; jg does not form.

8.2.3 Suppose that �rm i is the last �rm to declare:

1. If dj = dk (i.e. cartel N is proposed) then �rm i will obtain pji = pki
whatever is its own declaration. If dj 6= dk then �rm i will obtain either
�gi = w�i(N) by declaring di which di�ers from both dj and dk, or pji
by declaring di = dj, or pki by declaring di = dk. But pji � w�i(N)
and pki � w�i(N). It follows that all �rm i's best-responses to (dj; dk)
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satisfy: (i) di can be anything if dj = dk; (ii) di = dj if pji > pki; (iii)
di = dk if pki > pji.

2. Let �rm k be the second �rm to declare. If dj 62 Dk, i.e. �rm j
proposes the formation of cartel fi; jg, then �rm k will receive a zero
payo� if it makes a declaration such that the best-response to (dj; dk)
is di = dj . However, for � su�ciently close to one, Lemma 1 ensures
that, for any dj 62 Dk, there exists a dk 2 Dk with pki > pji and
pkk > w�k(i; k) > pjk = 0. Therefore cartel fi; jg does not form.

3. Let �rm j be the second �rm to declare. Firm k receives zero if fi; jg
forms. This, however, can be prevented by �rm k: from Lemma 1, it
can make a declaration with pki > W�i(i; j) and s = fi; kg. Therefore,
since a cartel forms and using subgame perfection, fi; jg cannot form.

1.3 Let S = ffi; jg; fi; kg; fj; kg; Ng and �i < �j < �k, then cartel
fi; jg does not form. Furthermore if in addition �qj � �qi and W�j(i; j) �
W�j(N) then cartels fi; jg and fi; kg do not form.

Remark immediately since fi; jg, fi; kg and fj; kg are simultaneously
feasible we have �gi = �gj = �gk = 0.

To begin with let us characterize the best-responses of the last �rm to
declare. For the generality of the argument we shall index the last �rm by
o and the two others by m and n. First of all, if dm = dn then whatever
its declaration �rm o will receive pmo. Second, if dm 6= dn and dm 62 Do

and dn 62 Do, then whatever its declaration �rm o will receive a zero payo�.
Finally, suppose that dm 6= dn and either dm 2 Do or dn 2 Do or both, then
�rm o will obtain either pmo if dm 2 Do and it declares do = dm, or pno if
dn 2 Do and it declares do = dn, or zero if it makes a declaration which di�ers
simultaneously from dm and dn. Accordingly, all �rm o's best-responses to
(dm; dn) satisfy: (i) do can be anything if either dm = dn or dm 6= dn, dm 62 Do

and dn 62 Do or pmo = pno = 0; (ii) do = dm if dm 2 Do and pmo > pno; (iii)
do = dn if dn 2 Do and pno > pmo.
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8.2.4 Suppose that �rm k is the last �rm to declare:

1. Let �rm j be the second �rm to declare. For the cartel fi; jg to form
it must be the case that di = dj , di 2 DjnDk. But if �rm i makes a
declaration belonging to DjnDk, �rm j will obtain at most W�j(i; j)
by declaring dj = di while it will receive W�j(j; k) if it declares dkj =
(fj; kg; (0;W�j(j; k); w�k(j; k))), since for such declarations (di; dkj ) �rm
k will maximize its payo� by declaring dk = dkj . By Lemma 1 we know
that, for � su�ciently close to one, W�j(j; k) > W�j(i; j) and therefore
cartel fi; jg does not form.

For cartel fi; kg to form it must be the case that di 62 Di \ Dj . If �rm
j makes a declaration which induces �rm k to declare dk = di then it
will receive a zero payo�. However for any pik 2 [w�k(i; k);W�k(i; k)]
we know by Lemma 1 that, for � su�ciently close to one, there exists
dj 2 Dj \ Dk such that pjk > pik and pjj > w�j(j; k) > 0. Therefore
cartel fi; kg does not form.

2. Let �rm i be the second �rm to declare. For the cartel fi; jg to
form it must be the case that di = dj, dj 2 DinDk. But if �rm
j makes such a declaration �rm i will receive at most W�i(i; j) by
declaring di = dj while it will receive W�i(i; k) if it declares dki =
(fi; kg; (W�i(i; k); 0; w�k(i; k))) since for such (dj; dki ) �rm k will max-
imize its payo� by declaring dk = dki . By Lemma 1, for � su�ciently
close to one, W�i(i; k) is stricly greater than W�i(i; j) and therefore
cartel fi; jg does not form.

For cartel fi; kg to form it must be the case that di 2 DknDj and
di 62 Dj\Dk and dj is such that pik � pjk (the equality between pik and
pjk is allowed only if �rm k, facing two indi�erent alternatives, chooses
to declare dk = dj). In this situation �rm j will obtain a zero payo�
while �rm k will obtain at most W�k(i; k). However, by Lemma 1, we
know that, for � su�ciently close to one, there exists dj 2 Dj \ Dk

such that pjk > W�k(i; k) and pjj > w�j(j; k) > 0. Consequently cartel
fi; kg does not form.

Summing up, if k is the last �rm to declare, Lemma 1 is su�cient to
ensure that the cartel which form is either fj; kg or N .
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8.2.5 Suppose that �rm j is the last �rm to declare:

1. Let �rm k be the second �rm to declare. For the cartel fi; jg to form
it must be the case that di 2 DjnDk and dk is such that pkj � pij
(the equality between pkj and pij is allowed only if �rm j, facing two
indi�erent alternatives, chooses to declare dj = di). In this case �rm
j will obtain at most W�j(i; j) while �rm k will obtain a zero payo�.
However, by Lemma 1, if � is su�ciently close to one then for any di
which does not belong to Di \ Dk there exists dk 2 Dj \ Dk such that
pkj > pij and pkk > w�k(j; k) > 0. Therefore cartel fi; jg does not
form.

For cartel fi; kg to form it must be the case that di 2 DknDj and
di = dk. But since di 62 Dj �rm j will maximize its payo� by declaring
dj = dk as long as dk 2 Dk and pkj > 0. Therefore once di 62 Di \ Dj

�rm k can obtain a payo� of at leastW�k(j; k) while it obtains at most
W�k(i; k) by declaring dk = di. By Lemma 1, for � su�ciently close
to one, W�k(i; k) < W�k(j; k) and consequently cartel fi; kg does not
form.

2. Let �rm i be the second �rm to declare. De�ne DR
i (dk) = fdi 2

Di j pii � pki and (di; dk) is such that �rm j's best-response is dj =
di:g. For cartel fi; jg to form a necessary condition is that �rm k makes
a declaration such that DR

i (dk)nDk 6= ;. But if �rm k makes such a
declaration it will obtain a zero payo� while we know by Lemma 1
that, for � su�ciently close to one, there exists dk 2 DknDi such that
it obtains a payo� strictly greater than w�k(j; k) > 0 and for which
DR
i (dk)nDk = ;. Consequently cartel fi; jg does not form.

Now for cartel fi; kg to form it is necessary that �rm k makes a dec-
laration such that dk 62 Dj and pki � maxfW�i(i; j);W�i(N)g. Indeed
if dk 62 Dj then �rm j will declare dj = di as long as di 2 Dj and
pij > 0. Accordingly for dk such that dk 62 Dj �rm i can obtain either
W�i(i; j) by declaring: dji = (fi; jg; (W�i(i; j); w�j(i; j); 0)) or the max-
imal payo�, denoted by PN

i (�); that �rm i can obtain in V�(N) when
Pj = � > 0 and Pk = 0, by declaring dNi = (N; (PN

i (�); �; 0). PN
i (�)

tends to W�i(N) when � tends to zero. It follows that if dk 62 Dj

and pki < maxfW�i(i; j);W�i(N)g then �rm i will maximize its payo�
by declaring either dji or dNi and cartel fi; kg does not form. Con-
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sequently if W�i(i; k) < W�i(N) cartel fi; kg does not form while if
W�i(i; k) � W�i(N) the maximal payo� �rm k can obtain when cartel
fi; kg forms is equal or smaller than ~w�k(i; k).

On the other hand for cartel fj; kg to form it is su�cient that �rm k's
declaration be such that dk 62 Di and pkj > maxfW�j(i; j);W�j(N)g.
Indeed for such �rm k's declaration there does not exist di 2 Di such
that pij � pkj and thus �rm j will declare dj = dk. The assumption that
Wj(i; j) � Wj(N) together with Lemma 1 ensure that, for � su�ciently
close to one, we haveW�j(j; k) > maxfW�j(i; j);W�j(N)g = W�j(i; j).
Hence there exists dk 2 DknDi such that pkj > maxfW�j(i; j);W�j(N)g.
Futhermore, for � su�ciently close to one, we also have by Lemma 4
that ~w�k(i; k) < ~w�k(j; k). This implies the existence of dk 2 DknDi

such that pkj > maxfW�j(i; j);W�j(N)g and pkk > ~w�k(i; k). Conse-
quently cartel fi; kg does not form.

8.2.6 Suppose that �rm i is the last �rm to declare:

The arguments to prove the results stated in the proposition are so close than
those used in the previous case that we omit them here.

9 Lemma 4

Let the maximal payo� that �rm k can obtain in V�(i; k) subject to Pi =
W�i(i; j) be denoted by ~w�k(i; k).Similarly, ~w�k(j; k) stands for the maximal
payo� that �rm k can obtain in 2 subject to Pj = W�j(i; j).

Lemma 4: Suppose all our assumptions except assumption 2 hold.
Furthermore let S = ffi; jg; fi; kg; fj; kg; Ng, �i < �j < �k, �qj �
�qi and W�j(i; j) � W�j(N). Then there exists �� < 1 such that
for all � 2 (��; 1) ~w�k(i; k) < ~w�k(j; k).

The proof is available upon request.
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