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ABSTRACT

In a simple dynamic general equilibrium model, we introduce the concept of
an intertemporal Cournot equilibrium. We show that if the number of strategic
agents increases without limit, the intertemporal Cournot equilibrium converges
to the intertemporal Walras equilibrium only when the time horizon for the
agent is finite. If the time horizon is infinite, each strategic agent is able to
exert nonnegligible market power, no matter how large their number is.
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1 Introduction

The equilibrium concept introduced by Augustin Cournot (1838) is one of
the most widely used notion of noncooperative equilibrium in modern game
theory and its applications in economics. In the partial equilibrium context,
1t is a combination of outputs, one for each firm, all producing the same good
such that no firm can gain from unilateral deviation. It is also known as a
Cournot-Nash equilibrium. A strategic agent in the Cournotian framework
perceives the influence of his output decisions on the market-clearing price
while a Walrasian competitive agent does not. Perfect competition or the
Walrasian general equilibrium theory is an analysis of coordination between
decentralized economic agents under the hypothesis that prices are treated
as exogenous by these agents. It is well-known that, in the static Cournot
model, the behaviour of the agents become more competitive (or, have less
market power) as their number becomes larger!.

In this paper, we show that this property of convergence need not hold if
the strategic agents live forever. With the help of an example we show that,
a Cournot-Nash equilibrium does not converge to the competitive Walrasian
equilibrium, even when the economy is replicated unboundedly. However,
1t 1s interesting to note that if agents live for a finite time, their strategic
effect vanishes as their number becomes very large.

Much work has been done on the relationship between the set of per-
fectly competitive equilibria and the set of Cournot-Nash equilibria in large
economies. Many important contributions related to this topic are gathered
in the Symposium issue of the Journal of Economic Theory (1980, vol. 22,
no. 2) on noncooperative approaches to the theory of perfect competition.
Dubey (1980) and Dubey-MasColell-Shubik (1980) are concerned with static
noncooperative equilibrium in a general equilibrium framework of “market
games”. Green (1980) and Radner (1980) consider a dynamic setting and
analyze the noncooperative equilibrium of repeated games for partial equi-
librium models. MasColell (1980) presents an overview of the results. Most
of the work look explicitly at perfect competition as a limit case of various
types of market imperfections. It is generally expected that every Cournot
equilibrium is approximately competitive.

The questions we attempt to answer are in the tradition of the above-
mentioned literature, but the framework we consider is different. The exam.-

T«gil y avait 3, 4,..n producteurs en concurrence [...] la valeur de p, qui en résulte,
diminuerait indéfiniment par P’accroissement indéfini du nombre n”, Cournot (1838}, page
63.



ple we present is a dynamic version of the Gabszewicz-Michel (1992) general
equilibrium oligopoly model. There are two types of agents and two goods.
Each agent produces one good but consumes both. The type is identified
with the good produced by the agent. There is a spot market in every
time period in which the agents trade. No trade occurs across time-periods.
There are no futures market for goods to be delivered at a later date?. Pro-
duction has a time lag: inputs in the previous period generate outputs at
the current period. A part of the current output is used for current con-
sumption and the rest used as input to produce future output. Consumption
generate utility and agents maximize the discounted sum of utilities over the
relevant time horizon. We analyze two cases: first, in which the agents are
finitely-lived and, second, they are infinitely-lived.

A Walrasian agent is a price-taker. In the Cournotian framework, the
agent is strategic and takes into account the effect of its quantity decisions
on the market clearing prices. We contrast the outcomes in the two cases.
Every Cournotian agent perceives a market power, since it controls a share
of the market in the good it produces and supplies. There is one such
market in every period of its life. We need to solve a dynamic game to find
a Cournot equilibrium. We show that consumption of own good per unit
of production is higher under Cournot-Nash equilibrium compared to that
under the Walrasian equilibrium. The agents manipulate the market price
in their favour by restricting the supply, in the former case.

A strategic agent creates a (finite) distortion in every market he partic-
ipates. When the agents are finitely-lived, the total oligopolistic distortion
generated by each agent is finite. As the number of agents becomes very
large, the strategic effect of each agent becomes negligible compared to the
economy as a whole. On the contrary, an infinitely-lived agent generates an
unbounded distortion, no matter how large the economy (or, how small the
agent) is. We show that as the economy 1is replicated, the Cournot-Nash
equilibrium does not converge to the Walrasian equilibrium.

Some instances of similar nonconvergence property are Green (1980),
Guesnerie-Hart (1985) and Chari-Kehoe (1990). In the presence of mutu-
ally strategic threats, Green (1980) shows that a noncooperative dynamic
equilibrium do not converge to the price-taking equilibrium in a sequence of
replicating dynamic markets. In a static framework, Guesnerie-Hart (1985)
find that the asymptotic behaviour of welfare loss is sensitive to whether
firms’ average cost curves are U-shaped or everywhere declining. Chari-

*See Allaz-Vila (1993) for an analysis of strategic existence of futures market.



Kehoe (1990) consider a model in which the governments play the role of
strategic agents and perceive the influence of taxation policy on the compet-
itive private agents whose utility they maximize, given the policies of other
governments. The welfare loss associated with the noncooperative equilib-
rium disappears as the number of countries increase only if the taxation
policy is not distortionary. Qur model differs from Green (1980) because
we do not consider trigger strategies. Also, we have a general equilibrium
model in which actions in one period affect the feasible set in the next pe-
riod. In contrast to Guesnerie-Hart (1985) and Chari-Kehoe (1990), we have
a dynamic model and the strategic agent is involved in both consumption
and production.

It is well known that outcomes of games may be very sensitive to the
information structure, we note that we have a model of no uncertainty and
full information. See Friedman (1990) and Fudenberg-Tirole (1991) for de-
tailed analyses of the role of information in oligopoly games. As noted by
Fudenberg-Tirole (1986), “The state-space perfectness concept of dynamic
games Is related to perfectness in games in extensive form. While perfectness
is typically explained in terms of ruling out threats, it can also (equivalently)
be motivated as the natural extension of dynamic programming games with
more than one player. Perfectness is just a many-player version of the princi-
ple of optimality.” We use the technique of Fischer-Mirman (1992) in order
to solve for a closed-loop, subgame perfect Cournot-Nash equilibrium in a
dynamic programming game.

The paper is arranged in the following way. We present our model in
section 2 and define intertemporal “Cournot” and Walras equilibrium. In
section 3, we explicitly solve for the equilibria, when agents live for a finite
time. By comparing the two equilibria, we note that in the finite hori-
zon case, the strategic behaviour of agents does not affect the investment
dynamics. However, the consumption allocations are different. Also, if the
number of agents increases without limit, the intertemporal “Cournot” equi-
librium converges to the intertemporal Walrasian equilibrium. In section 4,
we consider an infinite time horizon. Here, the strategic behaviour affects
the dynamics of the model: the “Cournotian” agents consume more and
invest less in each period than the Walrasian agents. We demonstrate that
“Cournotian” agents maintain a nonnegligible market power even when their
number becomes very large. The intertemporal “Cournot” equilibrium does
not converge to the intertemporal Walras equilibrium. Concluding thoughts
are summarized in the last section.



1.1 Notation

The two goods are denoted by subscripts i, k = 1,2, k # i and time by the
subscript ¢ where ¢t = 0,1,-- )T, T < 0o. There are two types of agents.
Every agent is identified with a commodity and superscript ij stands for
the j-th agent of type i where J=12. n We also denote an agent by
I'=1,2,-.. n but in this case the convention is | # j. If the commodity
subscript unambiguously identifies the type of the agent, then instead of
superscript ij we only use j. The superscript j is omitted when agents of
one type are identical.

z}, is the stock of good i held by the agent J in period ¢. Only an
agent of type 7 holds commodity 1. yft is the amount of good i utilized for
consumption by the agent j in period ¢ and (2], —y{t) is the amount of good
¢ used for investment by him in period ¢. (czg,c;c]t) Is the bundle of goods
consumed by the agent ij in period ¢. The price of commodity 7 in period #
Is given by pi. pr = ;]’2—: is the relative price in period .

Yit 1s the n-dimensional vector with the typical element yft and, y;;j, the
(n — 1)-dimensional vector with the typical element yft with I # j. Finally,
oy = 2oLk (v — ci) and {a¢} for the time sequence of the variable a.

2 The Model

We consider an economy with two goods (1 and 2) and 2n agents. There
are two types of agents (i = 1, 2). Each agent owns and produces one good.
The types are identified with the goods being produced. There are n agents
of each type. In the initial period, (t = 0), they have an endowment of the
same good. In all subsequent periods, t = 1,2, ... T, T < oc, the goods are
produced.

2}, denotes the stock of good the jth agent of type i holds in period t. The
Jth agent of type 7 is called the agent i7. A fraction of this stock is utilized
for consumption and the rest is invested. There is no borrowing or lending.
Each agent derives utility from the consumption of both goods. Investment
is needed to support future consumption. Let y/, be the amount of good
the agent ij uses for consumption in period ¢. A part of this is consumed
directly and the remainder is traded for the other good. We assume agents
of each type are identical. They have the same initial endowment, preference
and technology. The technology of the type i agent Is given by:



zf(t+1) = (zh— )™, (1)

where o' > 0. Let (c:{,c;]t), i,k = 1,2 and k # i be the bundle of goods 1
and k consumed by ij in period ¢. This yields utility,

Inc::{ + Inc;i.
The agents maximize the discounted sum of utilities subject to the bud-

get constraint and technical feasibility every period. The choice of the agent
tJ is dictated by the following optimization problem:

T
max E (6‘)t(1nc?{+1nc}f ,
LIRS I t ¢
{c'-t 'ckz'yit} t=0

subject to

pici + precll, = pad, (P1)
0< y‘iit < szt = (Zj(t—1) - y{(t—1))a'

and c:{ > O,CZ >0, given zf;) > 0.

Here p;; is the price of good i in period ¢ which is taken as given only when
agents behave competitively and §° in (0,1) is the discount factor,

Notice that the consumption choice (i, cg;) cannot solve the intertem-
poral optimization problem unless the ¢th period utility is maximized sub-
Ject to the budget in that period. Thus, for every period t the following

maximization has to be solved:

y .
max Inc? + Inc?
s it kt)
J 8

Cit oCrr

subject to

pPitci + precy, = piyly,

and ¢;f > 0,¢, > 0.
Or, in other words,

max Inc] + In[22 (4, — cify] (2)
Y Pkt

We analyze the behaviour of the agents in two different cases. In the
first case, the agents behave as price-takers and we call them Walrasian



agents. In the second case, the agents perceive the influence of their supply
on the market-clearing price and we call them “Cournotian” agents. Since
the utility function is intertemporally separable and we do not allow trade
across different time periods, the equilibrium price depends only on the
demand and supply in that period. In subsections 2.1 and 2.2, we explain
in detail the behaviour of a Walrasian and a “Cournotian” agent and define
the corresponding equilibria.

2.1 The Walrasian Behavior

When the agents behave as price-takers, in the “Walrasian” tradition, the
solution to the tth period utility maximization problem (2) is,

J
s
=t 3)
and using the tth period budget constraint,
iy y;']t Dit
ckt —_— _2—‘—‘.
Pkt

The agent 75’s indirect utility function is,

(4)

j j j
Yit Yility _ o) Yit
In(5H) + In( S ) = 2In( 50 +in(=). (5)

Dit
2Pkt
We may rewrite the problem (P1) as,

T

't y]t y]tpt
max NV [In( 2 4 In( 2t
ma S (5 in(5) + (S
subject to (6)

0<y}, <2, = (zf(t_l) - yf(t_l))"" and given 2z}, > 0.

The relative price, p; = i—ff, that clears the market in period ¢ is,

no 7
=1 y;t (7)

Pt = = 7
=1 Yot

An intertemporal Walras equilibrium (IWE) is defined as a competitive

equilibrium of the 2n-agent economy in which each agent maximizes the
discounted sum of utilities and markets clear.



Definition 1 An intertemporal Walras equilibrium is a (2n+1)-tuple of se-

quences ({yl;(zlt)} {y%;(zlt)} {y?*(zlt)} {th(ZZt)} {y%?(z%)}

{yZ*(ZZt)} {pt}) SUCh that fOT (1” i J: 1)2 and ] - 1)2) ty 1L, {yft }
solves the problem (6) given {p}} and

n
*___ Jlli

Pt = .
1 Vit

In section 3.1, we solve for an intertemporal Walras equilibrium (IWE)
for the case in which time horizon is finite and in section 4. 1, for the case in
which time horizon is infinite.

2.2 The “Cournotian” Behaviour

Should the agents behave strategically they do not act as price takers but
perceive the influence of their individual supply on the equilibrium ex-
change rate of goods. If this is the case, each agent will try to improve
his term of trade by reducing the supply of the good he produces. Follow-
ing the oligopoly equilibrium concept proposed by Codognato-Gabszewicz
(1991) and Gabszewicz-Michel (1992) we suppose that, in each period ¢,

the strategic agent ij brings to the market place an amount (v}, — :i

of good i, while consummg directly ci Total supply of good i is thus
given by 37 (y], — ¢il). Moreover, if we assume that agents do not
buy back from the market the good they produce®, they will spend their
total income in the other good. The aggregate demand for good k is
pit[> 3—1(th ng)]/Pkt, i,k = 1,2,1 # k. Thus, the price system which

clears the market in period ¢ must satisfy,

l(y{t Cu
Zj:l (yét - Czt)

By substituting equation (8) in problem (2), the one-period utility maxi-
mization reduces to,

Pt = (8)

max Inc” + In| Z(yt — th + In(y]t cl)—In Z(yjt (9)

C:i G[O,y" ] .7

*It can, nevertheless, be shown easily, with an argument similar to the one developed
by Gabszewmz Michel (1992), that even if we allow this possibility the final outcome would
be the same.



From the first-order condition of problem (9), we have,
i i - -j
Yie —Cy 0y 0y

i TR

it Yix — Gt

C:{ = y;?t + Ui_t] -V Uz'_t](Uz'_t] + yt]'t)' (11)

where o’ﬁj = E;‘;&j(yft — ¢i). We note that once y}, has been chosen,
the optimal consumption decision of an agent ij, (c::{,c;i), are uniquely
determined.

By substituting equation (11) into the objective function of the problem
(2) and simplifying, we express the maximum possible ¢-th period utility
that can be derived by the agent ij, wij(yft,Ui_t],ykt,cft), as a function of

(10)

yft and the choice of the other agents. Here yi; is the n-dimensional vector
with the typical element y,, c’,:tis the n-dimensional vector with the typical
element c:{ yr: and c’,zt contain the choice of all agents of type & and o’
contain the choice of all agents of type 1, except 1.

z.. . _. . k n . k. _4 . _.
w (yiy, o’ yljcta Cki) = ln[Z(yit - Ck{ 1+ 21"[\/‘72‘75] + i — \/Uit]]' (12)

=1

The same argument can be made for every agent. If all agents make their
consumption choices optimally, then c:i i1s a function of yft and ci{ is a

function of ], in a way similar to equation (11). Thus, we may write?,

iy =7 ky _ djr 1 n 1 n
w (yit’Uit ’ykt’ckt)“w](ylta"‘ayltatha"‘ay2t)'

This allows us to reduce the optimization problem (P1) to the following:

T
max Z(é‘fw”(yllt, R VAT F Y2e)
{y;‘z} t=0
subject to (13)

0<y}, <z, = (zf(t_l) - yf.(t_l))c' and given zJ, > 0.

“Because we are only considering cases in which agents make their choice optimally,
we do not worry about what happens out of equilibrium.



The strategy of the agent j of type i is a sequence {yft(zft)} for t =
0,1,---,T, and the payoff,

T
o . .
HZ](ylti T )y{Lt) y%t) e )ygt) = Z(gz)tw”(y%t) T y?t) y%t) e )ygt)'
t=0

With these strategies and payoffs, we have a 2n-agent dynamic game. We
define an intertemporal “Cournot” equilibrium as a Nash equilibrium of this
game.

Definition 2 An intertemporal Cournot equilibrium is a 2n-tuple of strate-

gies ({vif )b vy G0 b - vl (101 Audi (0} (B (20 ), - e (30))

such that for all 4,51 =1,2 and j =1,2,--- n,

(), S (A, T R Wb ) W ), u (3)) >
Hl](y%?(zllt)) T )y{t) e )y?t*(z?t)) y%?(z%t)) e )y%:(z%t)) Tt ygt*(zgt)))
and

Hz](yll?(zllt)) Tt y{:(z{t)) Tt )y?t*(z?t)) y;:(z%t)) T y{:(z{t)) e )yg;(zgt)) 2

y 7L
| J(y}:(z}t)) e )y{:(z{t)) e )y?t*(zilt)) y%?(z%t)) e )y%t) B y;t*(zgt)))
for all y{t and ygt feasible.

In section 3.2, we compute a closed-loop intertemporal “Cournot” equi-
librium (ICE) for the case of finite-lived agents and in section 4.2, for the
case in which agents are infinitely-lived.

3 The Finite Horizon Case

3.1 The Intertemporal Walras Equilibrium

In this section, we find an intertemporal Walras equilibrium, when the time
horizon is finite and we show that equilibrium is unique. We need to solve
problem (6) for T < oo to find the IWE. Since the agent treats prices,
{pit,pre}, for t = 1,2,-.. T, as given, problem (6) is a familiar one-sector
optimal growth problem with a unique solution. In the terminal period,
T'\the agent ij has incentive to save nothing and consume the T-th period
stock entirely. Thus,



vir = #p.
For all other time periods, t < T', we have an interior solution given by the
following first-order condition which equates the marginal benefit of using
an additional unit of own good towards consumption in period t and the
marginal benefit of consumption from the additional stock in period (t + 1)
resulting from that unit of investment in period t:
6iaizzj(t+1)

(zgt - ytjt*)yz](:-i-l) .

1

vl

On rearrangement, we get,

8ot it*zg(t+l)
z;?.t - yz]t*

Consequently, from equations (3) and (4), the optimal consumption choices

are,

yj(:+1) = (14)

W e i
1J% 1t 1Kk 1 1

C’t = - y th = . ( 15)
¢ 2 2%,

The equilibrium price ratio can be found by substituting y{:‘ and yg in
equation (7). Since y" is uniquely determined, Walras equilibrium is also
unique.

3.2 An Intertemporal Cournot Equilibrium

In this section, we compute an intertemporal “Cournot” equilibrium when
the time horizon is finite and compare it with the intertemporal Walrasian
equilibrium derived in the previous section. In order to derive an ICE, we
solve problem (13) for T' < oo.

In the terminal period, T, there is no incentive to save or invest and the
agent 17 consumes the entire stock,

vir = #ir-
For t < T, agent ij equates the marginal benefit of using additional unit y{t
towards consumption in period ¢ and the marginal benefit of investing it:

10



1

(077 + W) —Jow 0k + )

J
i(t+1)

(2l — yft*)[‘fz‘_(tju) + yz?(:+1) - \/‘Tz‘_(t]+1)(‘7i_(t]+1) + y;?(:+1))]

Since agents of type i are identical we have,

Satz

o’ = (n = D ~ f). (16)
(From equations (16) and (11) we get,

‘—j — (TI. —_ 1)2y{:
T 9n—1
and the first order condition reduces to,
-1 an—1 8z,

PR

nyy, "yf'(:+1) Zit — Vit

or,
oy
yr Satyl “i(t+1) (17)
(t+1) — T 7 g% -
) o — vl
The consumption choices are,
% *

ijx _ N ix _ _ Ny DYy (18)

T -1 R T a1y
and using equation (8) we get the equilibrium price.

By comparing equations (14), (15) with (17) and (18) we note that the
investment decisions are the same in the “Cournotian” and the Walrasian
framework while the consumption decisions are not. Proposition 1 states
that as the number of strategic agents become very large, their consumption
choice approach the Walrasian allocations.

Proposition 1 If time horizon is finite and the number of strategic agents,
n, goes to infinity,the consumption and investment choice that correspond
to the intertemporal “Cournot” equilibrium converges to the consumption
and investment allocation in the intertemporal Walrasian equilibrium, re-
spectively.

11



Proof: Take the limit as n — oo in equation (18). O

In the finite horizon set-up, the strategic behaviour of the agents does
not affect the dynamics of the investment-saving decision. Qligopolistic dis-
tortion is only generated by the consumption allocations in every period and
becomes negligible as the number of agents becomes very large. The same
result is demonstrated by Gabszewicz-Michel (1992) in a static framework.

4 The Infinite Horizon Case

4.1 The Intertemporal Walras Equilibrium

In this section, we find an intertemporal Walras equilibrium when the time
horizon is infinite and we show that it is unique. As in section 3.1, we solve
problem (6). The agents treat prices as exogenously given. To avoid the case
in which every solution is trivially optimal, we assume the relative price to
be bounded, in particular, Ztoio(ﬁi)tln(ﬁj—;) is finite. Note that the dynamic
programming problem (6) is not stationary if the sequence of relative price
is not a constant sequence. However, for our simple linear-logarithmic econ-
omy, we may solve the following equivalent stationary dynamic optimization:

o0

e
max } (6)'[2In(=t)]
(.} ; 2

subject to (19)

0<y, <z, = (zf(t_l) - yf.(t_l))a' and given zJ, > 0.

This is a well-known one-sector optimal growth model in the tradition of
Koopmans (1963) and Cass (1965) in which the unique solution is,

yft* =(1- 6iai)zf't, for all ¢. (20)
From equations (3) and (4), the optimal consumption choices are,
Cz:j* _ yi]ti C;'cj* _ yf:pft (21)
t =5 = :
TS W Ty
Since the agents of each type are identical, we omit the superscript j

and from equation (7), we derive the unique relative price, pf, that clears
the market in period ¢,

12



. (1 — 51a1)zlt
= A8ty ,,

Equations (1) and (20) summarize the relation between stocks of two con-
secutive time-periods. We have,

(22)

Zi(t+1) = (zit — yi)™

That is,

Zigepr) = (8ot zy)™". (23)
Taking logarithms on both sides of equation (23) we get,

Inzi141y = o' lnéta’ + olnzy.

The solution for this difference equation [see, for example, Baumol (1970)]
1S

3

ot o’

m(fat)(al),  (24)

ITlZit = 1

— In(6'a’) + [Inzyp — Ty
which gives the time-path of stock of goods in the Walrasian economy. This
implies that for o’ < 1, the stocks converge to a steady-state, in the long
run. Consequently, the relative price also converges. The steady-state stocks

and prices are,

al
_ (1 =s'at)(slat)T=aT

tlim Zip = (5iai)1_§:",tlim i = -
= (1— 62a2)(82a2)T-a7

(25)

4.2 An Intertemporal Cournot Equilibrium

In this section, we solve for an intertemporal “Cournot” equilibrium for the
infinite horizon case. An ICE is a Nash equilibrium of the dynamic game
described in section 2.2. We adapt the technique of Fischer-Mirman (1992)
to compute a subgame perfect Nash equilibrium of this game.

By extrapolating from the form of the value function of finjte period
problem, we assume that the value function for the agent 1j, Wij(z}, s 2l

Zi’
1 ny
Zy, oo, 2y ) s

3
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n . . n i ) B
W (2}, P2k 27) = > (Allnzl) 4 > (Biinz) 4+ DY (26)

1=1 1=1

where Ag,Bi, and DY are constants for all Lk = 1,2k # i and j =

1,2,...,n. By applying Bellman’s principle, we have the functional equa-
tion,
Wij(z})..,lz?;z;),..)zZ) = mnax {wu(y%l])y:‘b]yi))yz)_}_
0<yl <2

WL =)™ G = )™ (e~ uh)™, - (5 — )™ ]H2T)

Using equation (26), the maximand of the functional equation (27) can be
written as,

max {w" (y!, yi?, ye)+8'a’ Y (AN (2] —y!)+6 0h > [Blin(zl—yl)]+6: DV},
o<y <! = =
(28)

which has the following first-order condition,

o+ yl* §'al Al
o o )

\/U;j+yf*—\/0;j - zf—yf*‘

Since all the agents of type i are identical, from equation (16) we have,

R Gl ' (30)

: 2n—-1 "’
which along with the first-order condition (29) suggest an equilibrium in
linear strategies. That is, a strategy of using a constant proportion of stock
every period for consumption is an equilibrium. In fact, it is easy to check
that the strategies of the form y} = v]z] where 0 < 7! < 1 and the value

function (26) satisfy the Bellman’s equation (27) for all i, if

1

Al =
S ey Y (31)
; 1
J_

Bl= s (32)
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Equations (29), (30) and (31) imply an equilibrium strategy,

(2n — 1)(1 — §iai)z!

%
— —_ — . 33
% (2n = 1)(1 = §'a*) + né*al (33)
Now, from equation (11), we find the consumption choices:
o .
ik _ ny igx _ _ MU Pit 4
T mor T @no ), (39
The market-clearing price is,
o (L=8"ab)[(2n — 1)(1 — 6%a?) + né2a?] 2y (35)

P U= 6%a2) [(2n — 1)(1 = 6%al) + nblal] 23
from equations (8), (33) and (34). We may omit the superscript j since all
agents of each type are identical. The stocks for agents of type 7 In two
consecutive periods are related as,

(2n = 1)(1 - 6iai)zg o
(2n = 1)(1 = &'at) 4+ nétar’
which gives® the time-path of stocks,

Zi(t+1) = (220 —

ai
Inzf, = T ailn(

nétal
(2n — 1)(1 = é'af) 4 nétal
at nétal

o "G = san Trea )

)+

[Inz;o —

(36)

It is easy to see that, for o' < 1, the output of the ith good converges to a
steady state in the long run. The longrun steady-state output of good 1 is,

nétat a

e (37)

lim 2% = — -
oo “it [(Qn = 1)(1 = &a?) + nétar

When the stocks reach a steady-state, it is clear from equation (35), that
the equilibrium price will also be stationary. It is given by,

(1 =8'al)[(2n - 1)(1 - 6%7) 4 ns%a?]
Jm pr = (1=6%a?) [(2n — 1)(1 — 6'al) + nélal)

[

(38)

1 2

nélal ]Tf'"f[ né?a? ]1—_0
(2n — 1)(1 — &'al) 4+ nélal (2n — 1)(1 = 62a?) 4+ né2a?

®By solving the difference equation, see, for example, Baumol (1970).
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By comparing equations (20) and (33), we note that the agents consume
more and invests less per unit of stock every period, when they behave
strategically in the “Cournotian” framework than in the Walrasian model.
Proposition 2 summarizes our result.

Proposition 2 The proportion of stock utilized for consumption, in each
period, is higher in the intertemporal “Cournot” equilibrium than the corre-
sponding ratio in the intertemporal Walras equiltbrium.

Proof: Follows directly from equations (20) and (33) and noting that n >
1.0

The intuition for the result is the following: when agents behave strate-
gically they have interest in restricting their supply in the market in the
current and all the future periods and they do so by consuming relatively
more and investing relatively less compared to the Walrasian agent.

We compare the equilibria derived in section 4.1 and 4.2. We replace the
superscript x« by the superscripts Walras and Cournot, respectively, for the
equilibrium price and quantities derived in sections 4.1 and 4.2. Equations
(22) and (35) allow us to compare the steady-state market-clearing prices in
the “Cournotian” and the Walrasian case. We have,

Walras [(217, - 1)(1 - 6202) + 716202]

li Cournot = i
oo Pt oo Pt [(2n — 1)(1 — élal) + nélal] (39)
n T_C’%r( n fi?f

((Qn - 1)(1 - 8lat) + nélal) (2n — 1)(1 - 82a2) + n62a2)

Notice that if the agents have different intertemporal time-preference
but are equally productive, ie., a' = o? and 6! # 62, the steady state
“Cournotian” and Walrasian prices are related as follows:

: C t : Wal
tl_l}rgi) pt ourno < tl~l"r{.lo pt a. 7’(15, (40)
whenever, §' < 62, and the reverse inequality holds for 6! > §2. A stronger

preference for the present amplifies the strategic distortion, since, the in-
equality (39) is equivalent to,

Cournot Cournot
im %2 oy Y
{00 ygit/alras t—00 ylvg/alras :
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The strategic behaviour of the Cournotian agents is reflected even in the
long-run, in the inequality of the prices and in the steady-state outputs®.
We conclude by observing that even when the number of agents becomes
very large the differences in the investment decisions in an ICE and the IWE
does not become negligible” and neither does the steady-state “Cournotian”
price converge to the Walrasian price®. This allows us to state,

Proposition 3 If the time horizon is infinite and the number of agents,
n, increases without limit, the consumption, investment and the markel-
clearing prices in the intertemporal “Cournot” equilibrium do not converge
lo the intertemporal Walras equilibrium consumption, investment and price.

A Cournotian agent creates inefficiency in the model by manipulating
prices every period. In the finite horizon case, the total amount of ineffi-
ciency generated by each agent is finite which becomes negligible as n tends
to infinity. An agent ij controls the supply of good i and the proportion of
own stock of good which is consumed directly is the strategic variable. The
difference between the corresponding ratios in the case of a Walrasian and a
Cournotian agent is a measure of the strategic effect generated by the agent
of the latter type. By comparing the results summarized by equations (14),
(15) with those of (17) and (18), it is easy to see that Cournot-Nash con-
sumption per unit of output of own good converges to the Walrasian ratio
as the number of strategic agents becomes very large. Or, in other words,
when the agents become too small to exert their strategic influence in the
market they behave almost like price-takers.

In the infinite horizon case, however, this is not true because each agent,
no matter how small, generates an unbounded amount of inefficiency since
there are infinite number of periods in which an agent comes to the market.
From equations (33) and (34), own consumption per unit of output is,

(1 - §'at)
(2 - 1)((1 - 8'a?) + §iat’
This is larger than the corresponding ratio in the Walrasian equilibrium

[equations (20) and (21)] even when n becomes very large. In fact, in the
limit, the difference is,

®This can be seen by comparing equations (24) and (36), except in the uninteresting
case in which we have §' = 62, o' = o2

"In equation (33), take limit as n tends to infinity, and compare the investment per
unit of stock in the “Cournotian” case to the same ratio in the Walrasian case given by
equation (20).

*Take the limit as n tends to infinity in equation (37).
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2 )
which can be interpreted as the magnitude of strategic market manipulation
by an infinitesimal “Cournotian” agent, every time he participates in the
process of trading. This is a constant fraction independent of ¢, which

summed over an infinite time horizon is unboundedly large.

5 Conclusions

In this paper, we present a dynamic version of the general equilibrium
oligopoly model introduced by Codognato-Gabszewicz (1991) and general-
ized by Gabszewicz-Michel (1992). By means of an example, we have shown
that the equilibrium allocations and the effects of replication are qualita-
tively different in the finite and infinite horizon economies. The crucial
difference is that in the last period of his life an agent does not invest and
in every other period he does. Of course, there is no last period, if the agent
lives forever. The linear-logarithmic functional forms of preferences and
technologies are chosen to facilitate computation of a closed-loop subgame
perfect equilibrium. In general, it is hard to characterize the properties
of closed-loop solutions of a differential game. Perhaps, one could argue
that, the specific functional forms chosen also simplify the strategic inter-
play between the agents, by introducing “linearity” in equilibrium policies.
Nonetheless, the strategic influence of a very small economic agent cannot
be neglected, in the case in which the agent is infinitely-lived.
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