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Abstract

In the following Part II the deterministic and stochastic laws of motion arising from the
processes depicted in Part I (particularly Section 2), are analyzed in detail. In Section 4 we
study the typical non-linear logistic model emerging as the deterministic equivalent of the
diffusion processes of Sections 2.3 and 2.4. The interaction of firm size and firm number are
also studied within the same Section. In Section 5 we analyze the (asymptotic) stochastic laws
of motion of the system. In particular, we study the Langevin equation and the approximations
of the Fokker-Planck equations equivalent of the master equations of the same stochastic
processes. We see that stochastic laws of motion may not be equivalent (not even
asymptotically) to deterministic ones (e.g. due to variance effects which determine
increasingly larger fluctuations).

*This work is part of an ongoing research on technological innovation and growth, whose preliminary
results have been presented at seminars held at the University of Trento, the Center for Economic
Dynamics and Institutional Change of the University of Bologna, and at the University of Ancona,
whose organizers Massimo Fgidi and Pier Luigi Sacco, Gilberto Antonelli and Patrizio Bianchi, and
Giorgio Fua, respectively, and qualified audiences we thank wholeheartedly.
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4. Growth and fluctuations: deterministic laws of motion

4.1. Firm size growth

Under the assumptions made in the previous Section we can design the following
simple process for the firm maximized present value growth. In equilibrium, maximized cash
flows imply that net profits are zero and that the firm present value sticks at the stationary
steady state rate R. Yet, investment in R&D induces technological advances in the form of
productivity increases and the perspective of positive, albeit temporary, profits. Once a new
technology is implemented, a higher individual level of output is attained, together with a
higher share of aggregate output. As cash flows increase, the maximized firm equity capital
(given by the firm’s market value) raises. If diffusion of the new technology takes place,
either by means of adoption by imitation or by true innovation, profits will be slowly eroded.
Thus, as the number of innovator increases, cash flows decrease and so does the firm market
value.

More formally, let:

q() = $(1) 1(t) @1
be a production function linear in the labour input, where ¢(#) denotes labour productivity
at time #: the latter is not a constant as it represents technology, which evolves over time.
Suppose innovations arrive at a mean rate A. Then, the average growth rate of productivity

is w\, corresponding to the differential equation:

LIO R, .2)
0) ’

p—

which implies that the mean growth rate of output, for a given labour demand /(¢) =1, is:
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q(t)E dr dt
q(r) q(t) (1)l

4.3)

a constant. Also, if prices are expressed as an inverse demand equation (as in Section 3

above) we will have that:

P(r) = _____dP(dq[(t)) = % q(1)

= —b[m+(7r—1)n]7r)\q(f)

4.4)

Finally, assume that ¢(¢) is a function of A(r) and approximate such a function by a linear one

(we might consider that it is certainly so in the neighborhood of the equilibrium but, for the

sake of simplicity, we assume it holds everywhere):

q(t) = q(A(0) = nA@)|,_,. .

Thus:

4(t) = TARA(L) .

Also:

P(t)y = -b[m+(x- Dn]oAnA(r) .
Consider once more equation (3.6) substituting for P(¢) from (3.19):

A1) = RA(1) = (1-9)[a-b[m+(x-1)nlq()]q (1) + (1-¢) WI(r)

and differentiate it with respect to time:

A(t) = RAQ) - (1-y)[a-bIm~+x-D)nlqn)]q(r)
+ (L=y)bIm+(m=1)n1q(e)q(r) + (1-y)wi ()

that is

4.5)

(4.6)

4.7

4.8)



A(r) = RA(D) = (1-)[a-2b[m+@-Dnlg®))qr) + A-p)wi@ry . 49
Substituting from (4.6) and (4.7) and assuming a given (fixed) demand for labor, i.e. I(r)=I,

we have that;

A(r) = RAG) ~ (1-y)[a=2b[m+(x - Dnlnd () Jn (o) 4.10)

= RA(t) - (1-y)anwrA(r) + (1-Y)2b[m+(z-D)n]ln* TAA2(1) .

This is a second-order non-linear differential equation in A(f) which can be solved by letting:

x(t) = A(1);

() = A(1);

o = R;

B =(-yY)anr;

v = 2(1-yY)b[m+(x-Dn]ln’r;

@.11)

so that we can write (4.10) as the first-order system in x and y:

x(6) = ax(f) = BAY(r) + YAy (¢) (4.12)
(1) = x(1) .

which is has two singular points at:

i){

The Jacobian matrix of the linearized system can be easily computed to be:

=0 (x=0 4.13)
=0 ll){§=6/7

< =i

;- a =BAN+2N\yy
) \1 0 =X,y=y

R

<% PM for =05 -8/
—\1 o | for (x=0;y=6/y)

= 1% M o =0, 50
|y o | Tor ¢=05y=0)

The determinant of J is equal to 8\ and so is positive for x=0 and y=0, whereas it is equal



to -BA and so is negative for x=0 and y=4/. The trace of J is equal to « in both cases and
so 1s positive. In the first case, the characteristic roots are complex conjugates with positive

real parts (as o> 0) if:

-4 <0 = <48 = a<2/8

that is, if:

danw danw R?
R? < 4(1-Y)a = < -1 = <1 - (4.15)
(-payr = M7y o 4oy v =

Just looking at the parameters it appears that (4. 15) looks reasonably likely'. Hence, the first
singular point is an unstable spiral point: all trajectories will diverge from it according to an
oscillating exploding motion?. In the second case, the characteristic roots are both real and
positive: the equilibrium is a wnstable node. All trajectories will diverge from it

monotonically. Therefore, the two singular points are both unstable.

4.2. Firm growth (in number): aggregate growth

Insofar we have considered the deterministic law of motion of the maximized firm
market value, given by the present value of the future stream of cash flows, in terms of the
parameters of the model, taking the number of innovative firms as fixed. We are now going
to consider explicitly how the laws of motion of the second state variable, namely the number
of innovative firms, affects the dynamic behavior of the other variable, the firm market value

(which proxies for size).

! Recall that a is the intercept of the inverse demand function. The product of a times = times 7 is likely
to be very large, so that the second member on the r.h.s. of (4.15) is bound to be small. Thus, the conditions
for having complex conjugates roots are verified.

21f o> 46N, we would still have an unstable singular point, albeit of a node type. Thus, we would have
a monotonically divergent motion away from the equilibrium.



Let us consider, first, the models of innovation and diffusion introduced in Section
2, as they all follow deterministic laws of motion, about which the random component hinges
in a fluctuating manner. Those are, in fact, all Poisson processes, whose deterministic
equivalent can be derived (but only under some assumptions, as we will see below in Section
5) when coinciding with their expectations. Consider, for instance, the diffusion process in
a total population of firms of unlimited size (Section 2.2). The quantity A, in (2.8) could be
called the average growth rate of a population of innovative firms of size n, and in the
special case of (2.8) it is proportional to the actual size of the population of innovative firms.
If the growth of the number of innovative firms would not be subject to random fluctuations
and had a rate of increase proportional to the instantaneous size n(r), then the latter would

vary in accordance to the deterministic differential equation:

A(t) = An(o), (4.16)
implying:

n(r) = n(0)e™, 4.17)

namely, exponential growth. In this case, the expectation of n(r), the random variable
following a Poisson process, coincides with the average growth rate of the deterministic
process: this is why the latter is the deterministic equivalent of the former. Thus, n(f)
describes not only a deterministic growth process, but also the expected population size at
time ¢ (see Figures 4.1 and 4.2).

In a similar manner we can treat the case of a diffusion process in a total population
of firms of limited size m (Section 2.3). If we focus on the number of innovators only, as
we have done in Section 2.3, by keeping the size of the total population fixed, then A, in

(2.9) indicates, again, the average growth rate of a population of innovators of size n, whose
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growth process starts at time O with one individual and ends when it reaches the given
maximum size m. Again, if growth would not be to random fluctuations, the instantaneous

population size n(f) would vary in accordance to the deterministic differential equation:

A() = (m = n(6))Nn(r) (4.18)
a well-known differential equation of the logistic type. This equation has two singular points
in n=0 and n=m, but since 7() = 0 for n(r) = 0, it moves asymptotically toward m unless
n(¢) is exactly zero. Thus, zero is an unstable state, while m is asymptotically stable (Figure
4.3). The higher the diffusion rate \, the faster the convergence toward the equilibrium
(Figure 4.4).

The case of multiple technological paradigms can also be treated accordingly. As we
have seen in Section 2.4, a succession of technologies can be treated as a birth-death process,
where the state of the sistem is defined by the number of firms adopting a given technology.
Thus, the state n is defined as the state in which there are n firms who have already switched
from an old technology to a new one but have not found yet a newer technology to switch

to. In a deterministic treatment the variable n(t) satisfies the equation
n@ = Mn@) - w(n@®),
or

R = Nm-n@®1n@) - un(), (4.19)

with possible equilibria at the roots of:

ANn) =pu(n) = Nm-n)n = un (4.20)

which are



n =0, ﬁ=m—§. (4.21)

By solving the linearized approximation of (2.19) and evaluating it at the two equilibrium
points, we find that, for n=0, the system has unstable behavior, of a monotonically divergent

type, whereas for n=m-Nyu the system is asymptotically stable (see Figure 4.5).

4.3. Aggregate growth by means of firm growth (in size and number)

The examples given in Section 2 have displayed a variety of cases in which the
number of innovative firms follows a Poisson process with different mean rates, depending
on the model specification. In Section 2.1, we have just considered the case of firms who do
not interact, so that their ability to innovate is just a function of their research effort and of
the probability of being successful. In Sections 2.2,2.3, and 2.4 we have considered simple
diffusion processes, where the mean rates of arrival of new technologies depend on the
number of firms already adopting. Those examples are basically intended to capture the
imitating attitude involved in the process of adoption of new technologies. Yet, as we have
seen above, we have not taken into account explicitly the interaction between the process of
technological innovation and diffusion and the dynamic behavior of the single firm who
innovates. Let us start, then, by analyzing how does the number n(¢) of innovative firms of
value A(?) behave. Let z(t) denote the number of firms of a given size, i.e. z(f) =n(HA(@) at
time 7. Here we take into account the interaction of the value of the firm and the number of

firms. In fact:

2(t) = n()A(r) + n(r)A@) . 4.22)

In this way, A(r) becomes a scale factor for n(r), while at the same time n(¢) is a scale factor



for A(r).
An interesting example can be given by considering the logistic birth-death model of

Section 2.4 for n(t) together with the present-value model equation for A(¢):

n(e) = [m-n@OINn@) - pn()

(4.23)
A@ = [R-a(-m]a®) + b(L-y)plm+(x-n@]ae + (1 -gywi
which implies that:
20) = A@OAQ) + nA@) =
2(0) = [Im-n@INn() - wn]A@ (4.249)

R-at-9)a « bt -yl - DREJAO + (1) Wi n(2)
Thus, when n(¢) does not grow, z(r) grows because of the firm-size effect, whereas when A
does not grow, z(r) grows because of the firm-number effect. So, z(f) does not grow if the

growth rate of n(f) equals the negative of the growth rate of A(r). Rewriting (4.24):

2 = [Im-nIn2() - uz®]

J *[[R-a(-9)mlz) + bU-Y)n2im+(x- DI AQ) + (1 - Winy]")
() = [m-nOINn@) - wn()

AW = R-a(-Y)nlA@®) + b(L-Y)Pim+(z - n@)]A0) + (1 -y) Wi

a first-order system in three differential equations whose last one is in the form of a Bernoulli

equation.

A different setting could be put forward as follows (here we look at the interaction
between firm growth and growth of the number of firms by a different perspective). By
considering simultaneously true innovation (as in Section 2.1) and innovation by imitation (as
in Section 2.2 and 2.3), and abstracting by random fluctuations, we can posit the following

deterministic law of motion for n(), the number of innovative firms at time f:



A(t) = p + An(t) + pA@)n() (4.26)
Equation (4.26) is the combination of three different processes. The first is the
deterministic equivalent of a Poisson process whose mean rate indicates the rate at which new
technologies are discovered, independently of the number of existing firms and the research
effort: its expectation coincides with p- This is the innovation component of the whole
process, and it represents a "gain" in the balance. The second is the deterministic equivalent
of a Poisson process describing an ever increasing number of firms who switch to a new
technology proportionally to the number of innovators already present (as in Section 2.2):
its average rate is equal to An, meaning that its growth rate is constant and equal to A. This
represents the diffision component, and it adds to the “gain" in the balance, too. The third
captures the interaction between the rate of change of value of the firm at # and the number
of innovative firms, n(*)*. On one hand, this interaction is certainly positive: the higher the
firm value, the higher R&D investment, the higher expected profits. On the other hand, this
interaction is negative: the more innovative firms are present, the lower are profits. Also,
there can be a negative effect due to the narrowing of market shares for the non-innovators,
which makes difficult for other firms to innovate altogether. Hence, the rate of the process,
given by u, can certainly be either positive (in which case it would be a "gain" in the
balance) or negative (in which case it would be a "loss"). Therefore, the last component
represents the interaction component between Jirm growth and aggregate growth.

Now, a way to get around the problem and solving simultaneously for the

3 The reason why in (4.26) we have the rate of change of A(t) rather than A() itself is that there is a
stationary long-run component in the growth trend of A(r) which is independent of technological change. That
is, as A(t) grows anyway (albeit at a constant rate), we need to capture the change in its rate of change, and
this comes about exactly because of productivity improvements that lead to higher output and higher profits.
Hence, the number of innovative firms is related to the rate of change of A(z) rather than to its level.

10



deterministic laws of motion of the value of the firm (the growth of the firm) and the number
of innovators (the growth of the economy) could be the following. If we put together the
first-order differential equation (4.26) with the first-order differential system (4.12), by

letting

x(1) = A(1);

= A(1);
r ) R (") 4.27)

we then have:

AW = p o+ An()) + wx(D)n() @.28)
X(1) = ax(e) = FAY(1) + YAmy* (1) + y(x-D)An(0)y(1)
y(1) = x(1) .

whose singular points are given by:

_ no= -p/\

n = -p/\ i’ P g (4.29)
8 R R Ty

Y= X=0

The Jacobian of the linearized system can be computed to be:

Ntpx  pn 0
J = y(r-DAy?  « _6>\+2'Y>\my+2'y(7r—l)>\ny (4.30)
0 : 0 (n=n,x=X,y=y)

Now, the trace of this matrix is positive for x=0: hence, we would certainly have that some
of the roots are positive. The first principal minor is positive (A >0), while the second can

be negative if o\ + [Bup(w-1)/(m-(7x-1)p)] <O: this happens if 4 <0and o\ < —[Bup(x-1)/(m-

11



(w-1)p)]. In any case, the system is unstable (maybe with oscillating behavior). A more
detailed analysis of this system, which is not carried through here, may reveal interesting

dynamics, although it is rather complicated and subject to a difficult interpretation.

5. Growth and fluctuations: stochastic laws of motion

S.1. Deterministic and stochastic forces at work: the Langevin equation

As we know, the existence of macroscopic deterministic laws is a very significant
result, although there is often a limit in which the solution of a master equation (like the
Chapman-Kolmogorov equation) can be approximated asymptotically by a deterministic part
(which is the solution of a deterministic differential equation), plus a fluctuating part,
describable by a stochastic differential equation, whose coefficients are given by the original
master equation. There are cases in which the deterministic laws of motion approximate quite
satisfactorily the dynamics of a system, through the deterministic equivalent of the stochastic
process. However, these descriptions are generally unable to capture the intrinsically random,
and therefore fluctuating, component of the process (an example will be discussed below in
Section 5.2). Yet, the description of a dynamic process in terms of a deterministic component
with which a stochastic part interacts, whether additively or multiplicatively, is of interest
for some purposes. The Langevin equation, which combines a deterministic law of motion
and a stochastic process, is one such case. The Langevin equation can be described
heuristically as an ordinary differential equation on which a rapidly and irregularly
fluctuating random function of time acts. Here, a deterministic law is assumed first and then

a random component is added, under some additional albeit restrictive assumptions. Although

12



generally dismissed as a good approximation of a stochastic law of motion, it provides an
interesting example on the way to a completely stochastic dynamic modeling.
We first consider a completely deterministic motion and treat equation (4.19),

rewritten here as

) = Nm -n@®) n(t) = pn@) = \m - p)n(t) - A n@) G.D

which may be interpreted as the equation of overdamped motion of a population (in our case,
the number of innovative firms) under the two "opposite” forces \ and p and an upper bound
m. Since we want to derive equations capable of describing both deterministic and random
processes we treat the motion of the population according to a different formalism. We
suppose that our population follows the deterministic law given in (5.1). In the course of
time, the population proceeds along a path in the n-¢ plane. Thus, if we pick out a fixed time
f, we can ask for the probability of finding the population at a certain coordinate n. We
know, in fact, that (5.1) describes the growth as proportional to the population size and
inversely proportional to the square of the population size. The probability of finding the
population at a certain coordinate # is evidently zero if n=n(r), where n(f) is the solution of
(5.1). We know that one such a solution is n=m-Np (the other being n=0). What kind of
probability function yields 1 if n=n(¢) and 0 otherwise? This can be achieved by introducing

a probability density equal to the 8-function:

P(n, ) = 8(n-n(@)) (5.2)

(see Figure 5.1). We know that an integral over a function 8(n-n,) vanishes if the integration

interval does not contain n, and that it yields 1 if that interval contains a surrounding of n,:

13



1
Ju—,

j é(n - n,) (5.3)

0 otherwise.

We now want to derive an equation for the probability distribution P. Thus, let us

differentiate P with respect to time to get:

. d dP(n,t
P D) = =gl - ) n() =~ D G4
and, substituting from (5.1):
P(n, 1 = - d__l;(n’_l__, ) Am-pu-An@®)n@ (5.5

Consider now that, as n can follow several different paths, the probability distribution for a

given path, i, is

P(n, 1) = 5(n-n,) (5.6
If we take the average over all paths we can write the function

S, 0 = (P(n, 0 5.7

and if we denote the probability of occurrence of a path i with p,, this probability distribution

can be written in the form

f,0 =Y ps(n=-n) = (5(n-n@®)y . (5.8)
Here fdn gives the probability of finding the population at position n in the interval dn of

time . To this end, we can investigate the change of fin a time interval At
Af(n,0) = f(n,t+A1) = f(n, 1) ©-9)
which, by use of (5.8) takes the form

14



Af(n, ) = (8(n-n(+AD)y - (8(n-n()) . (5.10)

Now put

n(t+At) = n(s) + An() (.11)
and expand the é-function with respect to powers of An

1

d & (5.12)
Af( 1) = (L= g5 8(n =n@)1An@) + 5 (775 8(n = n®)] AnOF .

We are now ready to introduce the Langevin equation. The simplest form of Langevin

equation can be written as (see Gardiner (1983, p. 80))

% = a0 + b, NE@, (5.13)

where x is the variable of interest, a(x,s) and b(x,) are certain known functions and E@) is
a rapidly fluctuating random term. It is assumed that for t#1°, £(r) and £(¢) are statistically
independent, that <£(z)) =0, since any non-zero mean component can be absorbed into the

definition of a(x,f), and that

CEMEWE)) =8(-1) (5.14)
which satisfies the requirement of no correlation at different times (a good example is an
uncorrelated white noise). Also, and most importantly, it is assumed that x(t) and £(¢) are
uncorrelated at all times*. Hence, from (5.1) the Langevin equation for n(s) can be written

as:

* We will discuss the implications of such assumptions later in Section 5.3, together with the possible
extensions which might overcome the shortcomings of the Langevin equation.

15



i) = (Nm-p-An@)n@) + F@ (5.15)

where F(¢) is a zero-mean random component independent of n(t) as of time ¢. Thus, we can

find An by integration over the time interval A¢

(+Al

[ R()de = n(t+At) -n() = An

{

1+A1 1+AL 1+Al
= [ \m - p)n('ydt' - [ ARE(¢) dt’ + [ F(t)dt

[4 [4 [4

which gives

An = [Am-pu-Nn@]n@) At + AF() . (5.16)

Consider now the first term on the right-hand side of (5 .12). By inserting in it the

right-hand side of (5.16) we get

d (5,17)

- Znl <8 =nO)[\m - p-Xne)n®1Ar Y + {S(n-n@) > {AFQ Y]

The splitting of the average containing AF in the product of two averages is due to the fact
that AF contains the shocks which have occurred after time t, whereas n(f) is determined by
all the shocks prior to this time. Due to the independence of the shocks (this is a Poisson
process), we may split the total average into the product of the averages as in (5.17). Since
the average of F vanishes (the process is on average along the growth path) and so does AF,

(5.17) reduces to

- At {B(n-n0) vm -~ Amyn ) (5.19)

where n(z) has been replaced by n. Consider now the second term on the right-hand side of

(5.12). By the same arguments it can be split as

16



dZ

1
3 72 0(n-n@®)y (IAn@Py . G.19)

When substituting for An from (5.16) we have terms containing A#, terms containing AfAF
and (AF)*. Now, it turns out that {(AF)) goes with Ar. In fact, the average of AF vanishes
(and so does the average of A7) and thus {(AF)®) is the only contribution to (5.19) which

is linear in As. Evaluating {(AF)®) :

+AL [+AL

(AF@Y = (AF@)AFQ)Y = J J de' di" (F(e) F(e™)y (5.20)

1 4
Assuming that the correlation function between the F’s is equal to

FOF()y = Q8 -t') (.21
allows the evaluation of (5.20), yielding
O At (5.22)

Thus, (5.19) can be written as

1

5 == (8(n=n@®)) QA . (5.23)

dz
dn?
Hence, taking the original equation (5.12), dividing it by A¢, substituing from (5.18) and

(5.23), and considering (5.8), we obtain

Aflni df(n,t d L >24
I U R 2geermn O

This is the so-called Fokker-Planck equation, describing the change of the probability

distribution of n over time (see Figure 5.2). The first term on the right, which multiplies f,

17



namely (Am-p-An)n, is called drift coefficient, while the Q term is the diffusion coefficient.
The stationary solution of the FPE is found by equating (5.24) to zero, that is, by

finding those values of (5.24) for which fis time-independent. From (5.24) we have that

a L &fnn
= dn [(Am - - Nn)nfn, 0] + ) Qo an®: 0 (5.25)
d 1 df(n,p
an | Am-p-Amnfn, ) - 50— =
which implies that
df(n,) 2
~dn= = g (\m == Amynfn, 1 (5.26)
which is solved by
ﬂn) = N e—ZV(n)/Q (527)
where
; ! ! (5.28)
V(n)=—J()\m—p.—)\n)ndn=—-j()\m—p.)n2+-3-)\n3 :
(assuming ny=0) has the meaning of a potential, and
N is determined by J fnydn = 1 (5.29)

-

(a normalization constant). The case is illustrated in Figure 5.3.

What happens to our population of innovators with coordinate n can be described as
follows. The random force F(¢) (the stochastic component of growth) pushes the population
up the porential slope, which stems from the systematic force, (Am-u-An)n, namely, the

systematic component. After each random “push", namely a shock induced by a random
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arrival or departure, the population falls down the slope towards the equilibrium state where
n=m=-pu/\. Therefore, the most probable position is n=m— p/ N, but other positions are also
possible, due to the random arrivals and departures. Since many random shocks are necessary
to drive the population far from n=m-u/\, the probability of finding it in those regions
decreases rapidly. When we let A become smaller, the restoring force becomes weaker. As
a consequence, the potential curve becomes flatter and the probability density f{n) is more

spread out.

5.2. Approximations of the Fokker-Planck-Equations equivalent of Master Equations

Even though macroscopic deterministic laws can show to exist, a limit is known to
exist at which the solution of a master equation (like the Chapman-Kolmogorov equation) can
be approximated asymptotically in terms of a parameter describing the system size by a
deterministic part (which is the solution of a deterministic differential equation), plus a
fluctuating part, describable by a stochastic differential equation, whose coefficients are given
by the original master equation. The results of these expansions is the development of simple
Fokker-Planck equations equivalent (in an asymptotic approximation) of master equations.
Even though there are different ways of formulating the first-order approximate Fokker-
Planck equation (see e.g. Gardiner (1983)), we will follow here the system size expansion
of van Kampen.

Consider the case of multiple technological paradigms, as modeled by a birth and
death process where the state of the system is defined by the number of firms, n, adopting
a given technology. Here, the random variable is N, which denotes the number of innovative
firms, and the values it can take are denoted with n (a non-negative integer). To model such

a process we need to consider the conditional probability P(n,t|n’,t’) of N being equal to n
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at time ¢ given that N was equal to n” at time ¢’ and its corresponding master equation. Let
A denote the (generic) birth-rate of the process (the transition probability p*(n) per unit time
of going from n-1 to n, that is, of entering state n) and un denote the death-rate of the
process (the transition probability p*(n) of going from n to n-1, that is, of exiting state ny.

Notice that the mean of n satisfies

d
7 <Dy = () - (pr(m) (5.30)

whose corresponding deterministic equation is the one which would be obtained by neglecting

fluctuations, that is

%n(t) =p(n) - p(n). (5.3D)
Notice also that a stationary steady state occurs deterministically when
p(n) = p(n). (5.32)
The generating function of such process is, in general:
G(s, 1) = F(s-1)e*] ¢©-bNx (5.33)

where normalization requires G(1,7)= 1, and hence F(0)=1. The initial condition determines
F, and the conditional probability P(n, ¢ | n, 0) can be calculated, but is very complicated and
of little practical use. It turns out that it is better to work with the generating function from

which we get:

G(s,0) = s" = F(s-1) g¢-DVe (5.34)

and
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Gis,0) = ex U w (s - e, (5.35)
From the generating function we can compute the mean, the variance and the correlation of

n(t):

@)y = %(1 —e*) + nert (5.36)

<n([) [n([)"l]> = <n([)>2 _ "'Z'e_zlu

- A (5.37)
VAR[n@®] = [n e+ ;] (1-e+%
As ¢ tends to infinity, we find from (5.33) the generating function:
G(S, [__>O°) = e&-DNMp (5.38)
corresponding to the Poissonian solution, namely the stationary solution P'(n):
(G) - (5.39)

P'(n) = XL _¢'*
n!
Since the equation of time evolution for {n(r)) is linear, we can apply the regression
theorem (Gardiner (1983)), which states that the stationary autocorrelation function has the

same time dependence as the mean, and its value at =0 is the stationary variance. Hence:

A
oy " =4 (5.40)
A
{n() n©)>y * = e‘*";
\ (5.41)
VAR[n()]" = o

These were time-independent solutions, but there also exist Poissonian time-dependent
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solutions. Suppose we choose:

—X, n

¢ "% 5.42
P(1,0) = — (.42
then
G(s,0) = ¥V (5.43)
and
G(s. 1) = pOVEE™ D (5.44)
corresponding to
e O ()"
P, 0 = — (5.45)
with
A
a({) = aoe'l"t R (5.46)
7
where «(?) is the solution of the deterministic equation:
@) =N - pn( (5.47)

with the initial condition 7(0) =ay. We will come back to the qualitative effects of this time-
dependence in a moment, as it is the dependence on time which is the distinctive
characteristic of this approach.

Let us first introduce a system-size parameter Q (in our case it can be m, the total
number of firms in the economy) such that the transition probabilities can be written in terms
of the intensive variables n/m. In van Kampen’s notation (Gardiner (1983, p. 250ff), let n

denote the extensive variable (number of innovative firms) and z=n/m the intensive variable
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(concentration of innovative firms). The limit of interest is large Q (i.e. large m) at fixed z,
which corresponds to a macroscopic system. Thus, we can choose the new variable, z, so
that

no=Q¢@) + W2z = mé@) + m2z (5.48)

where ¢(z) is a function to be determined. We can define the Kramers-Moyal dummy

variables (Gardiner (1983, p. 249)) a,(x) to be proportional to Q, so that

o (n) = Q&q(n)

ma (n) (5.49)

In our case

A
a,(n) =m(, - pz)

(5.50)
A
a(n) =m(5. + pz)
By taking the Kramers-Moyal expansion and changing the variable one gets:
dP(z,0) daP(z,0) > Q92 d19._ i (5.5
o WO —5— = ; 7 [—;9;] &, [6(0) + Q717 2] P(z,1)
where the terms of order Q2 on either side will cancel if $() obeys
¢'() = & [6()] (5.52)

which is the deterministic equation expected. As (5.50) shows, this holds true in our case.

Then, expanding a [¢@)+Q7"?] in powers of @' and rearranging, one finds

dP(z,1) ® Q2 noo 317
FrED Dl Y 4= % Te] [—5;] 2 P(z,0) .

r=2 g=1

(5.53)

Taking the limit for large Q only the r=2 term survives, thus giving
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dP(z,0) 2

9 1 )
— = - & [6()] 37 2 P.t) + 5&, [6@0] 575 P .

In our case, the deterministic equation is of the form

. A
O = — - o

m
whose solution is
B0 = 6™ + (1~ g
, L .

The Fokker-Planck equation is thus

IP(2) 9 1 3% A
—5 = #&ZP(Z) + E‘a—'z;[% + uo(0)] P(z)

and

D))y = z(0)er .

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

We can assume that z(0) =0, since the initial condition can be fully dealt with by the initial

condition on ¢. Then we find
)\ —pt —pt
VAR[z(9)] = [;,;; + Q) e ](1 - et
so that
A
M0y = mo@) = moO) e + (1 - e

and

24

(5.59)

(5.60)



VAR[n()] = mVAR[z()] = [;}ﬁ + mp0) e+ (1 - e+t | (.61)

If we identify m¢$(0) with 7, we see that these are exactly the same as the exact solutions

(5.36) and (5.37) above. The stationary solution of (5.51) is

ez 5.62
P*(Z) = Ne > (-62)

which is the Gaussian approximation to the exact Poissonian. The stationary solution of the

Kramers-Moyal equation is

P (n) = N(\ + pn) Vg2 (5.63)
It must be noticed that the existence of a system-size expansion as outlined above
depend on the fact that &](n) does not vanish. Consider again (5.48), rewritten as
n=Qé@) + Xz (5.64)
so that (5.51) becomes
aP(z,0) aP(z,0) ® (e

—_— 1-0 41/ —_— e
o WO =Y
g=1

RE (5.65)
[‘I’E] &, [6(0) + 7 2 P, .

Suppose now that the first r-1 derivatives of & (¢ ") vanish, where ¢" is a stationary solution
of the deterministic equation. Then, if we replace ¢(r) with ¢°, (5.65) becomes to lowest

order:

dP(z,t 1 1 0° 5.66
——8(7—) = -7 & () Quma-o 50,(¢") Q“Z"E P(z,H) + higher terms . ©-66)

To make sure z remains of order unity, set
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A-Nnl-9=U-20 = ¢=— (5.67)

so that the result is

Pz - 1 - 19
e = () a, 2" Pz, + 5 azazP(zl)

where &” and a, are evaluated at ¢". This is very interesting, because now the fluctuations

vary on a slower time scale 7 given by

. [Q—} (5.68)
and the equation for the average is
d {ny
- - _r—' a,(r) (n" (5.69)

which is no longer the one associated with the linearized deterministic equation. Obviously,
stability depends on the sign of & and whether  is odd or even. Conversely, the long-time

scale is given by

1
- 5.70
7'=th2 ( )

We can see that for large Q (large m, which means a large economy), ther system’s time

dependence is given as a function of 7, where r is given by (5.70). Only for times

1
r> 02

does 7 become a significant size, and thus it is only for very long times ¢ that any significant
time development of the system takes place. Thus, the interesting conclusion is that the

motion of the system becomes very slow at large Q. With a large initial number of firms, m,
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the motion of the system is therefore very slow.

5.3. Stochastic processes and the description of fluctuations and growth

We have seen in Section 5.1 the derivation of a Langevin equation and the
corresponding description of the dynamics which comes out of that picture. As we
mentioned, the assumptions that lay behind the Langevin equation are quite restrictive, so
that we may just consider it as a first approximation toward a fully stochastic description of
a dynamic process. Yet, as Gardiner (1983) has pointed out, although a strict version of the

Langevin equation is not consistent, the corresponding integral equation

{ {

x(®) - x(0) = [ afx(s), s]ds + [ blx(s), 5] £(s) ds

can be interpreted consistently by making the replacement, which follows directly from the

interpretation of the integral of £(r) as the Wiener process W(r), that
dW(@) = W(+d) - W@ = £
and thus writing the second integral as

{

I' blx(s), s1d Ws(s)

which is a kind of stochastic Stieltjes integral with respect to a sample function W(?) that can
be solved by stochastic integration.

A different (and more complicated) formalism is therefore called for here. Notice that
the kind of stochastic integral that most satisfactorily one would use, the Ito integral, is not
a natural choice in this case. As ¢ is most likely not a white noite but just a real noise with

finite correlation time, the Stratonovich integral would be a better choice, albeit more
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difficult to treat. This issue points to another and maybe more relevant issue: the nature of
the random force we assume it affects the growth path of our variable of interest. In general

we are interested in a limit of a differential equation

dx
Tr = A0 + b() ay()

where a(x) can be zero and a(f) is a stochastic source with some nonzero correlation time.
If ay(?) is a Markov process, in the limit it becomes a delta-correlated process, and the
differential equation becomes a Stratonovich stochastic differential equation with the same

coefficients:
dx = a(x)dt + b(x) dW(¢)
which is equivalent to the Ito equation
dx = [a(x) + % b(x) b'(x))dt + b(x) dW(p) .

It can be shown that for a Markov process all that is needed is a mean equal to zero and

stationarity to have an evolution equation of the form

ad
29 - Lp@

where L is a linear operator. A Fokker-Planck equation for the pair (x, «) can also be
derived.

More general fluctuation equations can be derived along the same lines, as well as
time-nonhomogeneous systems and time-dependent systems. All this leads to consider the
general case of two variables x and o which are coupled together in such a way that each
affects the other: for instance, the adiabaric elimination of fast variables, the slaving

principle introduced by Haken (1983), and so forth. But all this is left to further research.
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What is interesting to notice here is that the formalism we have introduced above
really fits a lot of different cases and situations. So far in this Section we have focused on
the dynamics of the number of innovative firms in an industry or an economy. We have left
the dynamics of the firm value out, although nothing prevents us to consider it, as we did
in the treatment of the deterministic laws of motion in Section 4. The Langevin equation and
the Stratonovich stochastic differential equations can be used as well in this case. For if we
let the firm value be our "deterministic" variable x(f) and the number of innovators be the
"stochastic” force, we would actually have a heuristically better model. But, as this would
need the introduction of further approximation methods for diffusion processes, we leave the
development of it for future research.

Before we conclude, let us go back, for a moment, to the solution of the birth-and-
death process we found above in Section 5.2. We saw that there exist a Poissonian stationary
solution, corresponding to the steady state, which coincides with the equilibrium solution of
the deterministic equivalent equation. And yet, we saw that there also exist time-dependent
solution. Now, while the stationary solution implies that the mean and the variance of the
process do not depend on time, the latter solution does not. When then one solution applies
instead of the other? When the local aspects of the phenomenon, for instance, fluctuations
in small volumes, are to be neglected, namely when we are mainly interested in the
macroscopic dimension of the problem, then the asymptotic solution may be obtained.
However, although the initial variances can be set to zero and the system is macroscopically
at a steady state, the variances increase over time and deviate immediately from the initial
values. It is impossible for the variances to reach a new steady state. Thus, the steady state
describes the equilibrium ar a macroscopical level which nothing prevents to leave once we

let the system move. The steady state is aremporal, but once we take time into account we
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will “"automatically" depart from it without never coming back. Stochastically, the
macroscopic equilibrium is just meaningless even in the limit of small fluctuations. The
system exihibits abnormal fluctuations that increase linearly over time and eventually these
fluctuations cannot be neglected. As a result, the average values are driven by the
fluctuations to a time dependent regime far from the steady state, which implies that the
fluctuations play a decisive role by qualitatively altering the prediction of a macroscopic
analysis.

The possibility of spontaneous deviations from the equilibrium regime of the
fluctuations provides a striking illustration of the breakdown of the law of large numbers. As
pointed out by Nicolis and Prigogine (1977), this is a consequence of the coupling, as a
result of which a transition undergone by the stochastic variables are not statistically
independent events, even in the limit of a large system.

To conclude, we see that there are quite a lot of suggestions for further research as
several issues remain open. We have seen that stochastic laws of motion may not be
equivalent (not even asymptotically) to deterministic ones (variance effects which determine
increasing fluctuations). The effect of "noise" on nonlinear stochastic systems close to critical
points remains to be analyzed, as bifurcations may occur in such systems. This means that
the solutions of these systems starting with slightly different initial values in the vicinity of
a crifical state may have completely different paths so that adding fluctuations to such
systems may lead to completely different paths from those determined by the corresponding
deterministic equations.

But several other issues may be addressed if we extend the horizon of our basic setup.
A number of these can be listed, as an example, but several others can be called for: a)a

simultaneous growing number of innovators and a decreasing number of non-innovators; b)
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the interaction between firms by means of interacting particle systems; c) slow variables
versus fast variables; d) macroscopic effects versus microscopic effects; e) hysteresis effects
(memory and catastophes); f) all the possible limit cycles of any interest, bifurcations and
chaos. Let the valuable and faithful reader be sure that further research on these is already

in progress and will become publicly available as soon as we can.



