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Abstract

In this work we study the relation between investment in R&D, technological innovation,
diffusion, fluctuations and growth of output. Technological innovation is the result of a
process (investment in R&D) whose final outcome is fundamentally uncertain. We model
innovation as a Polya urn scheme, where the probability of an individual success increases
with the number of (previous) successes. We also model technological diffusion as an
epidemic birth-and-death stochastic process, tipically a non-linear process. The diffusion of
a new technology is to a degree intrinsically stochastic: it depends on aggregate feedbacks
(global environment) as well as on local feedbacks (imitation) or investment (output demand).
Firm growth and aggregate growth are related: if we measure the former in terms of firm size,
the latter depends both on firm growth and on growth in the number of innovators. Firm
growth is due to productivity growth (technological change), whose incentive, from the firm
point of view, is profit. Higher cash flow (profits) implies higher funds for investment, higher
research effort, and thus potentially faster technological change. However, if innovations
spread out, monopoly rents will be temporary, and when someone innovates sooner or later
everybody will innovate (unless exiting the market). In Part I of the paper we describe the
mechanics of technological innovation and diffusion and a model for an innovating firms. In
Part II the deterministic and stochastic laws of motion which arise are analyzed in detail.

*This work is part of an ongoing research on technological innovation and growth, whose
preliminary results have been presented at seminars held at the University of Trento, the Center for
Economic Dynamics and Institutional Change of the University of Bologna, and at the University of
Ancona, whose organizers Massimo Egidi and Pier Luigi Sacco, Gilberto Antonelli and Patrizio Bianchi,
and Giorgio Fua, respectively, and qualified audiences we thank wholeheartedly.



1. Introduction

Several contributions in growth theory have recently emphasized the positive relation
between firm investment (maybe through self-financing), R&D expenditure, technological
innovation and economic growth (e.g. Levin, Cohen, and Mowery (1985), Scott (1989),
Cohen and Levinthal (1989), Aghion and Howitt (1993)). A great deal of recent models
emphasizes R&D as an important source of productivity growth and hence of overall
aggregate economic growth, as opposed to the traditional neoclassical framework where
productivity growth was conceived as purely exogenous. As we know, the simple neoclassical
model predicted a zero long-run growth rate. Thus, in order to explain observed aggregate
growth, an exogenous productivity growth was incorporated into the neoclassical production
function. Technological progress, in the form of Jactor-augmenting change in the scale of
production was then introduced, giving rise to a composite taxonomy according to whether
such progress was just capital-saving, labor-saving or both (see e.g. Burmeister and Dobell
(1970)). Examples of such production-function concept of technological change are the well
known works of Hicks (1932), Harrod ( 1948) and Solow (1956). Yet, technological advances
as such were left unexplained: technological change was not only exogenous but also
disembodied, i.e. not incorporated in new capital goods. Later models had induced
technological change (e.g. Kennedy (1962)) or embodied technological change (Solow (1960)
or Bliss (1966)), thus trying to endogenize the current productivity of factor inputs. Yet,
vintage models have not succeded in separating investment in new technology from
investment in capital replacement. Thus, the interest in technological change as an
endogenous phenomenon has recently increased (see e.g. Gomulka ( 1990) for an overview).

As any theory of growth must have technological change as one of its central

elements, a major task that the literature starting from the work of Arrow (1962) on the
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effects of learning and the accumulation of knowledge has tried to cope is the understanding
of the sources of technological change. Several different strands of literature have studied the
interactions between the acquisition of new technology and the accumulation of knowledge:
from Griliches (1979) to Machlup (1980), to Rosemberg (1972), to David (1985). An
explanation of the relation between endogenous innovation and economic growth has also
been given in recent works in the evolutionary tradition (see for instance the volume edited
by Freeman (1990)).

Among these contributions, one major source of productivity growth has been
identified with investment, and therefore, whether directly or indirectly, with R&D
expenditure. R&D expenditure may contribute to growth in different ways. It allows to
introduce new types of goods, either capital or consumption goods. Also, it may generate
spillovers on the aggregate "stock of knowledge". In both cases there will be constant returns
to investment in R&D, as opposed to diminishing returns as in the traditional approach. Also,
there may be temporary monopoly profits and externalities at the aggregate level. while the
former will form an incentive to keep investing in R&D, the second will give rise to
increasing aggregate long-run growth. These R&D models are the most recent offspring of
the endogenous growth literature, whose interesting feature is that "endogenous" growth can
be generated through the accumulation of knowledge alone, broadly defined. In general these
are multi-sector models, based on product differentiation, monopolistically competitive
markets and given rate of arrivals of new technologies: examples are the work of Romer
(1987), Aghion and Howitt (1993), and Barro and Sala-i-Martin (1990).

In this paper we want to address the issue of long-run growth as due to productivity
growth which stems from technological change induced by investment in R&D generating

technological advances. By taking aggregate growth as the interaction between productivity
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growth and firm-size growth, we are able to focus on firm behavior and hence to its
investment policy. We denote with investment in R&D that investment that is not devoted to
the mere replacement of obsolete physical capital and which, for that matter, it could be just
plain investment. Yet, we know that the standard neoclassical investment theory framework
would predict and optimal investment rate just equal to depreciating capital (Lucas (1972)).
Hence, we ought to distinguish investment in new capital or more generally in new
technology from replacement investment. Also, we want to consider a key aspect of
technological innovation, namely the fact that it is the result of a process (research and
implementation) whose final outcome is fundamentally uncertain. And this is the reson why
we think that technological change, whatever form it takes, ought to be modeled as a
stochastic process.

In what follows, we present a model in which both technological innovation and
innovation diffusion across firms are driven by stochastic processes. Our aim is to offer a
general framework by which to explain the discontinuous character of the introduction and
adoption of technological innovations as well as their diffusion and, ultimately, overall
economic growth. While the recent growth literature has emphasized the endogeneity of
technological advances that generate increases in factor productivity (e.g. Romer (1986),
Lucas (1988)), few have been the contributions (most notably Aghion and Howitt (1993),
Grossman and Helpman (1991)) that have pointed out one of the main feature of technical
progress, namely that technological improvements are essentially stochastic, being the result
of a research process whose outcome is uncertain.

In this paper, technological innovations are conceived as Poisson process, whose
arrival rate is variable as being generated by a Polya urn scheme, while the diffusion of

innovations is conceived as a Poisson process of the kind of an epidemic birth processes. A
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major caveat is of order at this point. When we speak of innovation (or technological
advances), we mean technologies whose productivity is higher then the existing ones. In this
context, innovations (or even inventions) do not come out of nothing: in a way they are all
already there, in an imaginary shelf, ranked according to their productivity (in ascending
order)'. Two are the restrictions we impose on the acquisition process. In the first place,
each firm can choose only between rwo technologies: an existing one and a new one. The
latter is new because nobody is already adopting it. Firms cannot switch to a newer
technology before they have switched to the new one (this is to avoid technological laps).
Secondly, this choice is srochastic, meaning that technological change does not occur with
certainty (albeit on average productivity does have a positive rate of growth), nor it does
occur with certainty ar a given time. The first assumption implies the continuity of
technological change, as well as its cumulativeness (in line with Dosi (1988)). The latter
encompasses overall learning for individual firms: before switching to a newer technology
we have to learn what the new is. The second assumption implies that technological progress
is not certain at the firm level (there might be delays of any kind in the learning process as
well as in the adoption process) while it is at the aggregate level (on average). This also
emphasizes that innovation is the uncertain outcome of investment in R&D, broadly defined.
Technological innovations are introduced randomly by firms, according to a Poisson
law generated by a Polya urn drawing scheme which "simulates" the trial-and-error lying
behind investment in R&D and R&D output and more generally technological research. As
the overall chances of success increase with the number of draws (amount of investment),

the positive relation between R&D expenditure and innovation is apparent. Here we want to

! This shelf resembles the blueprint book where all possible future blueprints have already been patented.
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focus on the mechanics of technological innovation, by means of a scheme which emphasizes
the stochasticity of the research effort. Such a general scheme simply assumes that a given
amount of investment is devoted to technological change: obviously, this approach
encompasses models that emphasize human capital as the fundamental input of the innovation
process, as well as models that specify a research sector as distinct from the
intermediate/consumer goods sector.

Yet, technological innovations take time to spread, innovative firms are often followed
by imitators, and the introduction of an innovation and its diffusion by adoption appear to
be distinct processes. Thus (differently from Aghion and Howitt (1993)), we model
innovation and diffusion separately. The best way to model diffusion seems to be that of
(discrete) stochastic diffusion models, namely birth-and-death Poisson processes. By adopting
an epidemic model, we can model technological diffusion according to a non-homogeneous
birth process, where the speed of adoption is non-linear in the number of adopters (from an
initial slow speed to a faster one to a slower one in the end). The result is a growth path
which is locally linear but globally non-linear, albeit convergent. Again, by focusing on the
mechanics of the diffusion process, we abstract from a specification of the determinants, the
latter being implicitly subsumed in the framework we adopt. Our approach, in fact,
encompasses those models where innovations take the form of blueprints that are sold to the
other sectors by the research sector (like Aghion and Howitt (1993) or Grossman and
Helpman (1991)).

If the search for new technologies starts over again at any technological switch, the
process keeps going forever (we have multiple technological paradigms), and the productivity
increase is potentially unbounded. Thus, as technologies are ranked according to their

productivity, we design a stochastic birth-and-death process where the state of the process
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is defined by the number of firms adopting a new (but well-established) technology. Firms
will enter the state from the existing ("old") technology and will exir the state towards the
newest (advanced) technology. This is a nonlinear stationary birth-and-death process. If
multiple technological paradigms are allowed, stochastic trends in the growth path may show
up at the aggregate level in the long run as the result of the superimposition of many
different segmented locally linear trends. In a way, this resembles the "old" turnpike models,
albeit in a different context. Here two elements contribute to the dynamics. There is a short-
run component, given by the distribution across firms of technologies in any given time. That
is, in any given time each firm will be adopting a given technology according to its own
chances of success in innovating or in adopting an already existing new technology. This
generates fluctuations around the short-run dynamic path which is convergent and locally
linear. But there is also a long-run component. In the long-run, firms tend to stick to the new
technology, which is established, not to the old nor to the newest (the largest proportion of
firms, in fact, tends to concentrate on the new technology). But as newer and newer
technologies are introduced, the shifting will go on. Trends that appear as linear at a local
level (in the short run) become piecewise linear at the global level, and hence globally non-
linear (in the long run). Yet, as the switching points are stochastic, even in the aggregate,
they can well be considered as stochastic trends.

Thus, the stochastic approach we adopt allows a full description of the mechanics of
innovation and diffusion, which can be given an economic content in a more structural
model. A stochastic model typology is illustrated below in Section 2, while a theory of firm
investment incorporating the dynamics of technological innovation is sketched in Section 3.
The setup we adopt is fairly simple. By resorting to a standard investment model for an

individual firm, we can express the growth of the market value of the firm (which is the
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choice variable and proxies for the firm size) as a nonlinear differential equation, where both
the rate of growth of productivity and the number of innovarive firms in the economy (or in
an industry) appear as explanatory variables. All the assumptions lying behind this simple
model are quite standard: all markets are perfectly competitive, all prices are given to the
firm, its labor demand is also given by a production technology which is a function of labor
only. The rate of growth of productivity is given by technological progress. The latter
depends on firm investment, which we assume as proportional to total cash flow. As it is,
the setup if fairly different from the recent "aggregate" representative agent optimizing
models. Aggregate growth, in our context, stems from growth in firm size as well as in firm
number.

The dynamics of the models is fully developed in Sections 4 and 5. As the stochstic
processes described above all admit deterministic equivalent versions, we are able to analyze
separately the behavior of a model where technological change follows deterministic laws of
motion from a model where it follows stochastic laws. Both technological change and the
firm value have their own dynamics, but it is their interaction which is the key aspect of our
analysis. As it turns out, while a fully deterministic model predicts local saddle path stability
along a balanced growth path, the stochastic model emphasizes the fluctuations thereby
generated, as well as the nonconvergent asymptotic behavior of the model.

The approach we adopt is not an optimizing one, at least in the usual sense. In a way,
we consider the behavior of the firm after the state variables of its maximization problem
have already been "optimized out". The interaction between firm size and technological
change is in fact the key aspect. Thus, the model is not even a model of aggregate growth,
properly speaking. Further developments along the lines of a fully optimizing model are

presently under study (Ardeni and Gallegati (1993)). Yet, many are the further developments
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we presently foresee of such an approach: from "segmented trends" to "stochastic
endogenous dynamics", from the distinction between " generation effects" and "development
effects” to the role of credit (i.e. availability of financial resources) in the growth process.
One major result of this work is the attempt to combine the analysis of the growth process
at the firm level with that at the aggregate level: there are obvious interactions which may
potentially give raise to interesting dynamics that have been neglected in the literature on
growth and investment. Both deterministic and stochastic laws of motion arise, generating
growth paths about which fluctuations develop. The study of their behavior is a task which
appears to have not been fully accomplished yet.

The paper is divided in two parts. In Part I we describe the mechanics of
technological innovation and diffusion and derive a class of stochastic processes for the
number of innovating firms (Section 2), while discussing the economic rationale which
justifies them and their consequences (Section 3). In Part II we describe the deterministic and

stochastic laws of motion associated with such processes (Sections 4 and 5).

2. The mechanics of technological innovation and diffusion. A stochastic model typology

2.1. Innovation with no diffusion

We can conceive any technological improvement as the result of a research process
whose final outcome is uncertain albeit positively related to the research effort. Consider a
closed economy with no public spending, in which all technological advances come from
firms who try to exploit an exogenously given scientific body of knowledge. Such aggregate
stock of knowledge is a purely public good, which cannot be used directly and has to be

converted in the form of technical knowledge. The existing body of knowledge is thus
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assumed to be already "incorporated” in the current prevaling technology. Suppose firms
invest in R&D in order to discover (devise or invent) more efficient technologies. Since with
the existing technology (shared by everybody) all firms operate at a normal profit level, there
is an incentive due to the temporary monopoly rents which might be gained by adopting a
more efficient technology. These monopoly rents will be slowly eroded as innovation
diffusion will take place, thus driving down all temporary profits. However, as the timing
of discovery and adoption is random, the whole process may take place in quite different
ways, thus potentially generating fluctuations around the mean growth path.

The devise of a new technology can be modeled as an urn drawing scheme, where
we can think of an urn containing two patents (blueprints) in different proportions, one
representing a new technology and the other an old one. Assume every new technology is
more productive than the older one (it produces a higher level of output given the same
quantity of inputs). For simplicity, consider the case of just one urn, containing r red balls
representing the new technology and & black balls for the old technology. Thus, the drawing
of a red ball symbolizes the "discovery" of a new technology, i.e. a technological innovation
by the firm who drew the ball. Firms partecipate to this "urn lottery” through their R&D
expenditure: they pay a ticket to join the lottery so that the higher their R&D expenditure,
the more tickets will be available to them, the higher the chances to draw a red ball.

To model this innovation process we might start with the urn model introduced by
Polya (Feller, 1971). An urn contains  black balls and r red ones. When a ball is drawn,
it is reintroduced together with ¢ balls of the same color (the simplest process has c=1).
Thus, if we draw a red ball from an urn with b+ 7 balls, at the next drawing we will have
b black balls and 747 red ones. In that case, while the probability to pick a red ball in the

first draw was r/(b+7), given that the first ball drawn was red, the probability to pick a red
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ball in the second draw will be (r+1)/(b+r+ 1). Therefore, the drawing of one of the two
colors increases the probability that the color drawn is drawn in the next draw. Thus, the

probability of getting n, red balls (when 7, are black ones) in n=n,+n, draws is:

-r -b
b = n, n, 2.1
et -(b+r)
n

Now, if we let p=r/(b+r), q=b/(b+r), and y=c/(b+r)=1/(b+r), we get the so-called

Polya distribution on the integers {0, 1, ... , n}:

-ply ~qly
b - n, n, (2.2)

such that p+g=1. It is well known that the limit form of the Polya distribution is the
negative binomial distribution. In fact, if n—oo p—>0and y—0, we have that np—\ and ny-»p,
and, for a given n, :

plllle

1

[7\1)+n1—1] Ly 2.3)
3 +p 1+p

which sums to unity for fixed values of \ and p.
Now, if we let a binary random variable X, be 1 or 0 depending on whether the n-th
draw is red or black and Y, be the number of red balls in n draws, i.e. ¥,=X,+X,+... +X ,

we then have that
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_nr
E(Y) = 57

(2.4)
nbr(b+r+c)

VAR(Y,) = _[10r0+r+c)
(b+1)? (b+r+c)

and the sequence {Y,} is an ordinary Markov chain, with constant transition probabilities.
This allows us to derive the so-called Polya stochastic process which is nothing but a
Markovian process in continuous time, a pure non-stationary birth process. Such a process
can be obtained as the extension to the limit of the Polya urn scheme. If we define the state
of the system as the number of red balls drawn, then the transition probability E—~E,,, at the

(n+1)-th drawing? is given by:

Pen = e - Py @)
+P+NC DRy

where p=r/(b+r) and y=c/(b+7r). If one assumes that draws occur at a rate of one every
h time units and 40 as n>o0 so that np—t and ny->at >, we then have that, in the limit,

(2.5) tends to:

)\,,(t) - l+an (26)
l+at

where A (t) is the birth rate of the non-stationary Markovian birth process, which thus

depends on time 7 *. We also have that, in the limit, (2.5) becomes:

l/a
P = [1 . } (2.72)

+ at

2 That is, the probability to go from & red balls drawn to k+ 1 red balls drawn at the 5+ I-th drawing,
3 This implies that nr/(b+r)->t and nc/(b+r)at, that is c/ra.
* We can write (6) as \()=(1 +nc/r)/(1 +nc/(b+1)).
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n-1
Po([) = = n-1

nt (1 +a ™

that is, given the initial condition P,(0)=1, (2.7) is a solution of (2.6).

As the Polya urn model, and the derived Polya stochastic process, can thus be treated
as standard Markovian processes (of which we know the asymptotic behavior and the
distribution), we can couch the problem in terms of well established theory of stochastic
processes. In our case, the pure birth process is a non-stationary Markov process, and
belongs to the class of time-dependent (non-homogeneous) Poisson processes. Now, the
modeling of the technological innovation process as a non-homogeneous time-dependent
Poisson process surely captures the basic notion of innovation as a search process with an
uncertain outcome. In the evolutionary literature, Dosi (1988) has pointed to this aspect of
the innovation process. Dosi makes a distinction between weak uncertainty (the probability
distribution of an event is known) and strong uncertainty (not even the probability distribution
is known) and argues that innovation involves a considerable degree of strong uncertainty.
Of course, this latter notion is not captured in the model discussed here (where the
probability distribution is known), as we do need some distributional results to model the
process quantitatively. However, resorting to a Polya urn model for modeling technological
innovation has a few advantages over other models in which technological advances are also
stochastic but where the arrival rate of research success is constant over time. Aghion and
Howitt (1993), for instance, assume that the research sector produces a random sequence of
innovations: the Poisson arrival rate of innovations in the economy at any instant is An,
where n is the flow of labor used in research and A\ a constant parameter given by the

technology of research. The intensity of the research effort (which is R&D expenditure in
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our case) will thus depend on the amount of labor employed, but the chance of success will
be constant. Within a Polya urn model as the one depicted above, the chance of success at
each drawing is constant, too (and is given by the initial proportion of red balls), but the
overall number of red balls drawn will increase over time linearly.

Now, we have assumed that there is just one urn, so describing two alternative
technological paradigms, a new and an old one. If we let p=r/(r+b) and y=c/(r+b) as
before, as n becomes large, the stochastic process we have just described has mean equal to
np (it is non-stationary in mean, albeit ergodic) and variance equal to np(1+ny) (it is also
non-stationary in variance). Such a process can thus be thought of as evolving around a linear
trend: the more firms draw balls from the urn (the more they spend in R&D), the larger the
number of red balls in the urn®. Yet, the proportion of red balls will remain constant, but
the number of firms "discovering" the new technology will increase linearly over time: in
the limit, all firms will discover and adopt the new technology. Thus, the process, which
evolves around a linearly increasing trend, is non-stationary in mean and has a variance that
increases over time: this means that fluctuations around the mean growth path increase over
time. An example is given in Figure 2.1.

Of course, this simple scheme does not allow for diffusion and adoption of the new
technology other than by investing in R&D and successfully devising it. Namely, there is no
imitation nor diffusion by knowledge spillovers or by imitation. In other words, we have
implicitly assumed each firm must go through the same search process: there is no external
benefit in the R&D expenditure of others. How then to model the diffusion of technological

innovations, i.e. the increase in the number of firms that will adopt the new technology as

% Since P >P V n<m, as the number of drawings increases, the probability of drawing at least

n.m 0

one red ball will increase, as Po,n > PO,m sn<m=({1~P )<l ~-P ), n<m.

[ X723
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the latter becomes popular? The diffusion process typically takes place over time (or space,
for that matter), possibly with diminishing marginal costs. Simple models for technological
diffusion are illustrated in the following Sections 2.2, 2.3, and 2.4.

The simple Polya urn scheme depicted above is Just one example, in a way the most
general. We have in fact assumed that no matter how much firms invest, as far as they do
not devise the more efficient technology, they will keep on drawing from the urn. Overall
uncertainty regarding the probability of a discovery remains unchanged (asymptotically the
probability converges to p). Yet, it is the timing of such discovery that changes, as it
decreases the more draws are made. This simple process does not allow for learning, strictly
speaking, and it concerns a very raw binary choice between two technologies, one of which
is (maybe) just marginally better than the other. However, learning from past experience is
implicit in the fact that all previous technologies are subsumed in the existing one. A more
complex model would allow, for instance, three or more technologies among which to choose
or a different ball replacement scheme. A typical learning process would imply, say, that one
ball of the color drawn is added only when a red ball is drawn. Or, instead, that two balls
of the color drawn are added when a red ball is drawn. All these extensions are possible and
the implied stochastic process will be different. Here we will exploit this simple model,

leaving all other extensions to future research.

2.2. Diffusion in a population of unlimited size

We are now going to consider a typical diffusion process of an innovation which is
being introduced by one firm at some point in time (time 0). The diffusion process starts at
the time a firm has discovered a new technology and the latter is made available to other

firms independently from their R&D expenditure. This is basically the opposite of the
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previous case, where everybody invests in R&D and no diffusion is allowed. Here, the
moment anyone finds a new technology, the diffusion process starts with no more investment
in research (to make things simple we can assume that all R&D expenditure is then switched
to the acquisition of the newly discovered and available tech).

The simplest model of diffusion could be of a kind of a pure birth process. With full
appropriability of the new technology, we can think of the diffusion process as growing
linearly with the number of firms adopting the new technology. This is equivalent to a birth
process where each member of a population acts independently and gives birth at an
exponential rate . If we suppose that technological adoption is irreversible and the overall
population of firms is of unlimited size, then, if X(z) represents the size of the population of
adopting firms (the number of innovating firms) at time ¢, the sequence {X(t), t=0} isa pure

birth process with rate:

x = nx’ TZEO . (2.8)

n

This is a pure birth process called Yule process (Ross (1983, p. 144)) starting with a single
individual (a firm devising a new technology) at time 0. Hence we know that the population
size at time ¢ will have a geometric distribution with mean €. If we let T; be the time it takes
for the population size to go from i to i+/, it follows that T; is exponential with rate i\.
Now, this is indeed a very simple diffusion process and can hardly be realistic. The
size of the population of innovating firms increases linearly, i.e. the number of firms
adopting the new technology grows unlimitedly. Also, even if we let the birth rate A depend

on the firm R&D expenditure, the total population is asymptotically unbounded.
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2.3. Diffusion in a population of limited size

In order to model the diffusion process more satisfactorily we can resort to a simple
epidemic model of the kind of a stationary pure birth process. As before, by diffusion we
mean the adoption of an existing newly discovered technology. Suppose we have a population
of m firms that at time O consists of one "infected" and m-I “susceptibles" (time 0 is
basically the moment any of the m firms draws a red ball). Once infected, i.e. once a firm
has discovered a new technology, an individual firm remains in that state forever (the truly
innovative is the first firm infected, while all the subsequent infected are the imitating ones)
and we suppose that in any time interval A any given infected firm will cause, with
probability Mr+o(h), any given susceptible to become infected. Put another way, in any time
interval any given susceptible firm will adopt (discover, i.e. devise, or imitate, or copy, or
buy), with probability Nz +o(h), the same new technology. If we let X(#) denote the number
of infected firms in the population at time ¢, the sequence {X(¢), t=0} is a pure birth process

with rate:
N, = (m - n)nk, n=1,..,m1. 2.9

This is a non-homogeneous Poisson process, with a state-dependent arrival rate. Equation
(2.9) follows since when there are n firms adopting a new technology, then each of the m-n
susceptible will switch to the new technology at the increasing rate n\: the more the new
technology is spread over firms, the more likely other firms will adopt it. Clearly, if we let
the total population size m go to infinity, we are back to the previous case. Yet in that model
we did not have a contagion effect, which now comes in through a multiplicative effect.
If we let T denote the time until the total population adopts the new technology, then

T can be represented as:
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r-% 1, 2.10)

where T; is the time to go from i innovative firms (infectives) to i+/ infectives. As the T,
are independent exponential random variables (as X(z) is Poisson) with rates \, = (m-1) i\,

with i=1,...,m-1, we have that:

IR @.11)
=% e
and:
. 1 2
-1 - 2.12
Var[T] X ; [z’ = i):] . (2.12)

For a population of firms of reasonably large size, Ef7] can be approximated as (cfr. Ross

(1983, p. 147):

. 1 1 2 log(m - 1)
E[T] = L 2y = 2logm - 1) (2.13)
171 m)\;(m-i+i) mA\

In order to give a better understanding of the actual implications of this diffusion
model consider the following example. We have a finite number of firms m, each of which
has access to an urn with r=1 red balls and b=m-1 black balls. Thus, a new technology can
be discovered with a probability A=1/m at each draw. When any of the firms draws the red
ball, the diffusion process begins (that is time 0). The number of adopting firms will then
increase at a rate A, where i is the number of adopters (notice, however, that the rate of
discovery of a new technology for a single firm at any draw is still given by \, but now the

overall rate of adoption of that new technology is higher, and given by A, since someone else
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has already "discovered" it). Now, suppose there are only ten firms®, i.e. m=10. Thus, we

will have (see also Figure 2.2):

}\l=_9_; }\2=_1_6; }\3=_2_1; }\4=_2i; }\5=_2£;
10 10 10 10 10
24 21 16 9

>\ = ——, >\ = ——, }\ = __; }\ = ___

10 710 * 10 10

As we can see, the diffusion rate increases from 0.9 up to 2.5 (corresponding to n=m/2) and
then decreases. This is very interesting, as it captures quite well the essential feature of
actual innovation diffusion processes: slow at the beginning (few adopters for a technology
not yet established), then faster, then slower again (last come those firms who find more
difficult to invest in new technologies). We can also compute the time it takes until the total
population has switched to the new technology. From (2.10) and (2.11) above we have that
it will take, on average, 1.11 time units to have one adopter, 1.74 time units to have two
adopters, and so on, and 5.658 time units for the whole population of ten firms to follow the
innovative leader. From (2.13) we can also see that, if the number of firm is large, say
m=10000, it will take 18.42 time units, on average, for the whole population to adopt a new
technology introduced by a single firm’.

The diffusion process we have just described has several interesting features. It is a
stationary process, albeit of finite length, as opposed to the model sketched in Section 2.2

above, which was nonstationary and unbounded. It is a non-linear process, as the size of the

§ This implies that for each one of the ten firms, the probability of a successful research effort is 1/10.
Now, this is a really high probability, if we consider that almost surely at least one out of ten drawings will be
the right one. In fact, with n=10, Py,=0.2105, with n=20, P,,,=0.088, and with n=230, P,;,=0.048, i.e. the
probability of no success in n trial decreases as n increases. If each firm pays a ticket corresponding to three
drawings, the probability that nobody draw a red ball is less than 5%.

"1t is important to point out that, because of the way this mechanism is designed, everybody actually
benefits from the research effort of others. If in fact only one firm invests in R&D, sooner or later it will be
successful, even though it will take much longer for the whole system to gain from the new technology,
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population increases first and then decreases, whereas the former was linear. It allows for
interaction between innovators and followers (imitators), which certainly ought to be capture

by any reasonable model of technological diffusion.

2.4. Multiple technological paradigms: the diffusion process

Let us now consider the case of multiple successive technological paradigms. That is,
we suppose that once a new technology has been devised by a firm, the latter then begins
searching for a newer one. The stochastic process gets unavoidably more complex, but is still
tractable, if we treat it as a birth-death process. We can define the state of the process by
the number of firms adopting a given technology. Suppose we have just three possibilities:
there is a standard technology (tech A), a new technology which by the end will overtake the
old one (tech B), and a newer one (tech C). We focus on tech B and we define the state of
the process by the number of firms adopting that new technology (i.e. firms that have
switched from the old A to B) who have not found a newer technology yet. As before, the
adoption of a new technology is irreversible, so that once a firm has switched to a new tech
it sticks to that forever. Also, technological laps are not allowed, i.e. to go from AtoC a
firms has to go through B. Hence, we can denote as birth rate the rate at which firms switch
to tech B (from tech A) and as death rate the rate at which firms switch to tech C (from tech
B). Thus, we start at time 0 with a population of m firms consisting of one innovator
("infected") and -1 potential adopters ( "susceptibles"). This means that the diffusion process
begins when anyone out of the m individual firms has discovered the new technology (after
drawing the red ball from the urn). Once a firm has adopted the new technology, it will start
drawing from a different urn, where the choice is between the new technology and a newer

one (we assume the new urn has, say, g green balls for tech C and r red balls, so that the
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probability of getting a green ball for tech C is equal to ). Thus, of the original population,
only a fraction of those who have become "infected” will have a chance to access to the
newer technology (this is also to avoid technological laps). Once the newer technology is
discovered, those firms will "exit" the process, which thus concerns only the number of firms
adopting the new technology (tech B) and not the newest (tech C). Hence, if we let X
denote the number of firms adopting tech B at time ¢, the sequence {X(t), t=0} is a pure
birth and death process with birth and death rates A, and g, respectively:

=(m-nynk, p =0, no=1

)\n
)\n =(m"'fl) fl)\, /,Ln=(n- 1)#’ fl=2, ’m_l; (214)
)\n

=0, b, =(m-1)p, n

[
3

This is a birth and death process® with n states, n=1,...,m, for which it is possible to
determine the limiting probabilities of each state, which give the long-run proportion of time
the process is in state n, meaning the long-run proportion of time we have 7 firms adopting

tech B. By solving the balance equations (see Ross (1983, p. 152)) we get the following:

P = I — = ! ;
n-1 m-1 i
(m - 1! A
| I N “El (m —7 < 1)1 [Z]
1 + E l;l ne . (2.15a)
nal H “i
i
for n=1;

¥ The rationale for such a death rate specification is that only the n firms that have already switched to tech
B can go for trying to switch to tech C, but by innovating only and not by diffusion (as in Section 2.1), and
they will do so at the individual rate . The way the death rate is specified thus corresponds to a Yule process,
albeit with a different rate, i.e. firms exit the process according to the birth rate of a non-stationary process.
This might seem contradictory, but the reason is that the whole process, and hence its birth and death rates,
must depend only on 7 to be modeled as such in a closed form. Otherwise, it would become a branching process
with a potentially infinite number of branches.
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n-1

II )\i (m - 1)'

(m -1 -1)!

b= S— P = ;
II L+ 3 [ (m - 1)t PH (2.15b)
S | m=i-D7 | %

Consider again the case of m=10 and A= p=0.1 of the example above. In this case:

P, =1.013-10% P, = 7.299:107% P, = 51.09-10%; P, = 306.5- 10-:
P, = 0.015; P, = 0.061; P, = 0.184; P, = 0.368; P, = 0.368.

That is, the limiting probability that n firms out of ten will be adopting technology B is
clearly increasing in n, and it implies that 99.6% of the time there will be more than 5 firms
adopting technology B, 98% of the time there will be more than 6, and 91.9% of the time
there will be more than 7 firms. Only 0.00001 % of the time there will be just one innovator
alone. This simple example is illustrated in Figure 2.3. Hence, the average number of firms

adopting technology B will be:

m~1
Y nP, =79 = 8.

nal

Also, if we want to know the long-run pfoportion of time that a given firm sticks to the old
technology A before adopting technology B, we can compute the equivalent limiting

probability of its adopting technology A:

—_

m-

Plfirm adopts AY = ¥~ Plfirm adopts A | n firms adopt B] P,

::11 _1_ m-~1 1 m
=> 2 2p-Yr-_L voar
n=1 m_l n=1 m—l n=1
m-1
1
=1 - 2 nP = 011.
m-1 ,Z{\ "



3. Technological change, production, and investment in R&D

To cast the analysis of technological innovation and innovation diffusion in terms of
a theory of firm investment we need a few introductory considerations. We begin by
assuming that there exists a large finite number of firms of the same kind, starting with a
given initial technology. Output is produced according to a very simple production function
linear in the labour input, which is the only input, whose wage rate is given to firms. This
implies that firms use only circulating capital: technological progress, which is due to firms
investment (R&D expenditure), is disembodied in this model, and comes in the form of
productivity increases of the labour input. A single output good, whose overall demand is
given, is produced and sold at a given price. If let A(r), and WV(¢) denote, respectively, the
firm’s nominal equity (i.e. the firm market value) and cash flow at time ¢, we then have that

the firm’s value rate of return at ¢ is:

Rty = YO AW 3.1)
A(t) A
from which:
R(A() = V() + A(¢) (3.2)
or:
A(t) = R()A(1) - V(o) . (3.3)

By solving (3.3) forward we would get the standard firm maximization problem,
which states that, at any time ¢, firms maximize the present value of the stream of future cash
flows subject to a production function constraint and a technological accumulation constraint.

In the simplest setting, we take the rate of return on equity capital as given, i.e. R(f)=R for
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all r. Now, cash flow at time ¢ is given by:

V() = Pq(t) - WI(t) - I(2), (3.4)

where P, q(£), W, I(¢), and I(¢) are, respectively, the good price, the output good, the nominal
wage rate, the quantity of labour employed, and R&D expenditure (in nominal terms) at time
t. If we let R&D expenditure be proportional to the firm’s current cash receipts (gross

profits), I(5)=yV(¢), where 0<y <], then:

I() =y V() = V(1) = (1-y)[Pq(r) - WI(1)] (3.5)

that is, profits are gross cash flows net of R&D expenditure by a factor y°. Therefore, after

substituing into (3.3) we get:

A1) = RA(t) = (1-y)[Pq(s) - WI(1)] . (3.6)

We ought to point out, at this point, that, for the sake of uncovering the effect of
technological change on output dynamics, we can not cast the problem in terms of a standard
optimal control program. The reason is that not only the technological accumulation
constraint implies a recasting of the optimal program in an different form, but it is the
intrinsic stochasticity of the accumulation equation which would make it stochastic in the first
place (hence, at best, a stochastic optimal control problem). As it will be clear from the
transitional dynamics to the steady-state (Section 5, Part II), the endogenous stochastic
dynamics thereby generated from the macro effects of small (random) perturbations at the

micro level do alter the definition of a steady-state as a long-run equilibrium position. The

? Since in this model we do not have physical capital, R&D expenditure is basically investment in new
"equipment", i.e. it is not technological "maintainance® of the labour input but the equivalent of an increase in
the "capital stock” by means of productivity improvements. Yet, this form of investment is not directly for
production purposes (as production takes place anyway, even if R&D expenditure is zero) and thus it is not a
production cost: we assume it is proportional to current cash flows (which can be thought of as approximating
the stream of future cash receipts).
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stochasticity makes the equilibrium as a long-run concept meaningless, as the system tends
to stay off the equilibrium most of the time independently of its saddle path stability. Two
factors will be responsible of these features: the shift in productivity, and hence in the
production function, and its randomness, due to the unpredictability of the research effort.
Even though firms are posited equal to each other, in that they share the same technological
endowment at time 0, they do invest in R&D, hoping to access to a better technology. No
matter how we model the devising of a new technology, we know that in the long run the
latter will be available to everybody: it is the very fact that at the beginning of the process,
i.e. when the technology is first implemented and only one or few firms have access to i,
that generates temporary profits. However, since technological innovations will arrive at a
random rate, this will generate different adjustment paths for each firm and a fluctuating
growth path at the aggregate level. Thus, there is a technological uncertainty which will
make the growth path a stochastic one: firms only know their expected productivity level in
advance, but not the actual one (see Figure 3.1).

Once we knew the conditions for (global or local) stability, we would look after the
dynamic paths generated by technological advances, whether stochastic or not, whose effect
will be that of a continuous sequence of impulses, like those of an external force pushing a
pendulum away from its equilibrium. Obviously, under such conditions, it is more interesting
to look at the motion of the pendulum than at its stationary state. Cyclical oscillations around
the steady state growth level due to technological shifts are such fluctuations around the
stationary equilibrium levels, with a difference: shifts in productivity are endogenously
generated, albeit randomly, in this context (see Figure 3.2).

Consider, for instance, the technological urn model depicted in Section 2.1 above.

Firms draw from the urn according to their R&D expenditure. Thus, each firm will produce
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q units of output using /, units of labour by means of the old technology (tech A) and using

I, units of labour by means of the new technology (tech B), where [ >[,. Hence, if:

q(r) = ¢, 1(0), (3.7

where ¢, is the amount of labour required to produce ¢ units of output with technology A,

and:
qr) = ¢, 1,(1) , (3.8)

where ¢, is the amount of labour required to produce ¢ units of output with technology B,
then, for a given level of labour (e.g. the "old"), we will have an increase in the level of
output equal to ¢,/¢,. Now, if we assume that the increase in productivity is constant, we

will have that:

G T _ T = constant, w1 > 1. (3.9)

¢, ¢,

If we let p denote the probability of switching to a new technology (e.g. the

probability of drawing a red ball), then the expected level of output at time ¢ will be:

Elq(D)] = pq,(6) + (1-p)q,(¢) = [p7 + (1-p)1q,(?)
=[1 + (@-Dpl q,(t) = q,(t) + (x=1)p q,(¢).

(3.10)

Hence, at any time ¢, the firm level of output is given by the sum of the output attainable
with the current technology and the output attainable with the more efficient technology,
weighted by the probability of having access to it. Obviously, we are assuming that both the
productivity increase (v is a constant) and the probability of success (p) are known in
advance. The relevant uncertainty lies in the fact that it is the time of inception of the new

technology that is not known to the individual Jirm. Thus, as all individual paths will be

26



different, there will fluctuations around the average growth path.

If  is fixed, the expected value of output is uniquely determined, for any given « and
p (there is basically a once-for-all jump). Conversely, if ¥ is a choice variable, for the
investment structure depicted above to make sense, we might posit a positive relation
between the probability of a successful drawing p and R&D expenditure. Thus, if pisa

function of y asymptotically bounded from above, in the sense that:

. W) oy Y)Y 3.11
0 <py) < I _ETJ—>O’ 7 <0, (3.11)

then we would choose a ¥ value such that aV'/dy is zero, i.e. V" is maximized with respect
to ¥ also (see Figure 3.3).

This simple setting concerns a unique and once-for-ever switch in technology. A
richer and more interesting case is that of a continuously changing technological
environment, where new technologies arrive at a given rate, which may be changing too.
Consider a fixed large number m of firms, each having a positive small probability p of
devising a new technology / in any given short time interval'®, Then the arrival of new
technologies is a Poisson process with rate A=mp. Hence, technology evolves according to
a Poisson law, and so does output. But then, random shifts from technology i-1 to technology
i will occur at times exponentially distributed with mean 1/). Now, if we keep assuming that
each new technology implies a constant percentage productivity increase = with respect to
the previous one, i.e. ¢,=n¢,, then productivity changes according to the same Poisson law,
that is, the probability that an increase in productivity takes place during a sufficiently short

time interval equals A for all i. Thus, the average growth rate of productivity is constant:

10 Assuming each technology i has the same probability of being discovered.,
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this means that, if it would not be subject to random fluctuations, it would vary in

accordance with the deterministic differential equation:

oy = do() _ o 6 _ (3.12)
$(1) = Yh TAD (L) 50 TN,
implying that:
(1) = $(0)e™ 3.13)

where ¢(0) is the initial productivity value (at time 0). It is readily seen that the expectation
of the Poisson process coincides with ¢(f), and thus ¢(¢) describes not only a deterministic
growth process, but also the expected productivity value at time £. Also, if N is a function
of ¥, M¥), and the actual discovery of a new technology for any given firm is, for instance,
proportional to R&D expenditure, then new technologies at time ¢ arrive at rate M(1), that
is, \YV(1), i.e. a time-dependent rate. Again, technology evolves according to a Poisson law,
and so does output. But then, random shifts from technology i-1 to technology i will occur
at times exponentially distributed with mean N VT

Once a new technology is implemented, in any case, output shifts from a trend level
to a higher level and, for a given price, positive profits will be generated. However, it is
easily seen that these profits can only be temporary, as innovation slowly spreads out across

firms. Just write the price of output P at ¢ as an inverse demand function:
P() = PEELQWD; 47 < 0, (3.14)

where E[Q(1)] is expected aggregate demand!!, given by:

' In the simplest case of just two technologies @ and b.
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m-n

E[QW] =3 g, + ¥ q,0)

i=] imm-n+l

= (m=-n) q,(t) +n q,()

Q,(1) + (m=1) n q,(r)

(m=-n) q.(t) +n w q,(r)
mq,(t) +n(x-1) q (1)

(3.15)

namely the sum of current aggregate output (i.e. output produced with the existing

technology a) and the extra amount of output produced with the new technology b. With m

firms, aggregate output is the sum of outputs of individual firms, i.e. m times individual

output, while the extra amount of output is n (the number of innovative firms) times the

individual increase in output. In equilibrium (when all firms adopt the same technology), the

single firm’s share of aggregate output is just given by:

q®) _ q( _ 1
oty  mq@t) m’

while when adopting a new technology it is given by:

q(r) _ ™ q,(0)
() maq,(t) +n(x-1) q(r)

T _ T

m+(m-1)n  m-n+zn

(3.16)

3.17)

As m>1, g(t)/Q(t) > 1/m for all n<m and for all n; <n,. Hence, the smaller the number of

innovative firms, the highest potential profits for the single innovative firm. If the aggregate

demand curve has standard regular behavior and m is large, the price of output will decrease

in the long run. In particular, as Q=(m-n+nm)q:
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db _ dP dQ _ dP d(m-nq+nrq) _ dP [m+(x-1)n] (3.18)

dQ(q)  dQ dq doQ dq )

and positive temporary profits are guaranteed as far as n<m at any level of prices. For the

sake of simplicity, assume a linear inverse demand function like:

P(Q(t)) =a -b0(t); a,b>0

(3.19)
= P(q(t)) = a - b(m-n+wn)q(r)
so that (3.18) reduces to (see Figure 3.4):
dP = dP + - = - + - 320
7000 zl_é[m (r=1)n] = =-b[m+(x-1)n] . (3.20)

A word of caution is of order at this point. Here we keep assuming that firms are sufficiently
small as compared to the total size of the market and they are present in a large number (they
are "price takers"), although they do affect prices (through output). A better model would
admit monopolistically competitive markets, a finite (maybe not large) number of firms and
an active pricing policy. But then, entry and exit from the market (relatively to the possibility
of positive profits) and even bankruptcy should be taken into account. We leave such model
developments to future research (see Ardeni and Gallegati (1993)).

Before we get into the description of the dynamics, which will be illustrated in Part
II, it must be pointed out that, as we will see below, the processes we have to tackle are
processes where typically macroscopic deteministic laws of motion arise, about which the
random nature of the technological "shocks" generates a fluctuating part. Most importantly,
the deterministic motion and the fluctuations arise directly out of the same description in
terms of individual jumps, or transitions. It is in this respect that the descriptions in terms
of jump processes, as the one depicted above in Section 2, and their corresponding master

equations can be very satisfactory, as will be shown in Section 5 below, in modelling growth
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and fluctuations around growth paths simultaneously. We must have un mind that there exist
an intrinsic interaction between output growth, firm growth, and investment, whose effect
(and actually whose purpose) is technological change. Technological change implies higher
output, which generates higher profits, an increasing number of competitors sharing the same
technological level and, in due course, lower and lower marginal profits as the new
technology become popular. Such a process can be thought of as following a deterministic
law of motion, but random in nature in its timing and occurrence: successful outcomes arrive
randomly at given rates, so that fluctuations arise about the deterministic growth path. It is
this circular link between the firm growth engine (incentive to innovate) and aggregate
growth (the diffusion of innovations) that we will try to exploit in the description of the

dynamics in the next two Sections.



