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EXTRACTION IN MACROECONOMIC
TIME SERIES'
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COREandILRE.S
Université Catholique de Louvain
B-1348, Louvain-la-Neuve

Preliminary version: June, 1992,

ABSTRACT: A procedure based on density estimation is suggested
in the paper to discriminate trend stationary processes about local
linear time trends from difference stationary processes. A ’rule of
thumb’ is constructed to detect the suitability of a segmented trend
representation, and a regression analysis is used to identify the
number and the dates of structural breaks. The U.S. series of nominal
wages over the period 1900-1970 is analysed according to the
assumption the dynamics are driven by exogenous shocks which
occur infrequently. In a multivariate domain, implications of
segmented trend modeling for cointegration theory are also briefly
considered. '
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1. Introduction

In recent times much effort has been devoted in the literature to test for
unit roots in macroeconomic time series. The main interest in this literature
was that in presence of unit roots random shocks have persistent effects on
economic variables, with potentially important implications for business cycle
theorizing (see Nelson and Plosser, 1981, section 5). Former unit root tests
were developed by Fuller (1976) and Dickey and Fuller (1979, 1981) according
to simulation-based critical values, while complementary approaches, based
on estimates of spectral densities at frequency zero, were thereafter developed
by Campbell and Mankiw (1987a,b) and Cochrane (1988). Results persuaded
in most cases economists about the strong empirical evidence of unit roots in
macroeconomic time series, as recently reviewed for example by Campbell and
Mankiw (1987a,b; 1989) and Perron (1988)in the domain of classical inference,
and, even more recently, by Phillips (1991)in the domain of Bayesian inference.,

Despite the broad agreement on unit roots and persistence of shocks, Perron
(1989) published a paper in which he argued to what extent the acceptance of
the null hypothesis of a unit root may be the result of an inadequate specifi-
cation of the alternative hypothesis in the form of a global linear time trend,
rather than the identification of the *true’ underlying data generating process.!
Perron provided in fact a test of difference stationarity against the alternative
hypothesis of trend stationarity in the form of local time trend with one break
in the trend, and found then that the unit root hypothesis was rejected for 8
of the 11 series originally considered by Nelson and Plosser (1982): Thus, he
concluded that "all series analyzed have a unit root if the trend function is not
allowed to change" (p. 1385), that is "trend stationary processes with a break
are nearly observational equivalent to unit root Dprocesses with strong mean
reversion and a fat-tailed distribution for the error sequence" (p. 1389).

Along similar lines of research, Hamilton (1989) proposed a model in which
changes in regime were allowed for, through the assumption the mean growth
rate of a series is subject to occasional shifts which “follow a nonlinear
stationary process rather than a linear stationary process" (p.357). Rappoport
and Reichlin (1989) and Balke and Fomby (1991) also advocated that shocks
may occur infrequently with ’strong’ persistent effects (permanent effects on
the growth rates of the series), rather than frequently with 'weaker’ persistent
effects (permanent effects on the levels but not on the growth rates of the
series). Balke and Fomby, in particular, explicitly pointed out that Dickey-
Fuller unit root tests and Cochrane (1988) variance ratio statistics, despite
they are useful for determining the persistence of shocks, cannot discriminate
in fact between frequent permanent shocks with small variance from

"Indeed, after the contribution of Nelson and Kang (1981), there are now few doubts that
fitting pure deterministic time trends to most economic time series would deliver spurious
regressions in the sense of Granger and Newbold (1974).



infrequent permanent shocks with large variance.

In this context, where only occasionally shocks have persistent effects, the
aim of a statistical analysis goes clearly beyond the simple response ’yes’ or
'no’ to the null hypothesis of a unit root against the alternative of a global
linear time trend, or to the estimate of some measures of persistence; rather,
the real problem is to identify an array of historical dates at which infrequent
permanent shocks are suspected to occur. In the unit root literature, as far as
shocks were assumed to occur frequently with persistent effects on the levels
of the series, there were in practice no reason to discriminate among different
types of shocks, that is to attribute them to different historical dates. In Balke
and Fomby (1991), on the contrary, the discrimination was implemented
through an outlier analysis of ARIMA residuals, along the intervention method
proposed by Tsay (1988).

In this paper, the possibility that events that have important and
long-lasting effects on economic time series do not occur every period (that is
precisely the hypothesis that shocks occur infrequently) lead us to consider in
further details Perron’s segmented trend framework. In particular, we propose
a procedure for discriminating difference stationary versus trend stationary
processes when breaks are allowed for, while no particular restriction is
imposed on their number. The basic intuition behind the procedure is that
when a random walk model with drift is estimated, but the underlying process
is a segmented trend plus noise, residuals display, according to Perron, "fat
tails or multiple modes density distributions": Hence, useful information can
be gained in principle by an accurate estimate of the density distribution of
the residuals. More generally, nonetheless, the problem of the identification
of the ’true’ data generating process under the hypothesis of infrequent
permanent shocks is equivalent to a statistical problem of signal extraction in
time series, where the signal itself is restricted to be a step function of time.
Asolution to this problem is considered based on a regression strategy proposed
by Kashiwagi (1991), that we will later discuss in details.

The plan of the paper is as follows. In section 2 alternative data generating
processes are introduced and compared, and a simple procedure for discrimi-
nating among them is suggested on the basis of density estimation. An
application of such a procedure is provided with a simulated time series. In
section 3 nonparametric methods for signal extraction are briefly considered,
with a short reference to the main advantages and disadvantages associated
with these methods. The conclusion that nonparametric regressions produce
satisfactory results in time series only at the condition extra information
concerning the number and the location of knots (or change points)is previously
incorporated, leads us to consider in section 4 a regression approach for the
detection of change points in a sequence of observations. In section 5 an
application to the U.S. series of nominal wages over the sample 1900-1970 is
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carried out, while in section 6 some implications for cointegration theory are
briefly considered. The last section summarizes and concludes with some
remarks for economic modeling.

2. Random walks versus segmented trends

Because of widespread empirical evidence, unit roots are now very popular
in macroeconomics. On the economic front, however, but we will see in this
section on the statistical front as well, random walk modeling is not immune
from critiques and objections of various type. Some of them are for example
the following:

a) What is the economic sense of the proposition: "The economy evolves as
a random walk with drift" ? If the economy were a random walk, there would
be no hope for predicting future values; furthermore, despite current
innovations would produce permanent effects on the levels, the growth rate of
the economy would be postulated constant, that is the possibility of shifts in
the natural rate would be excluded a priori.

b) Why should exogenous shocks have permanent effects on the levels of
the series at each point of the time ? And, on the other hand: Why should be
neglected the possibility that shocks can have, but infrequently, permanent
effects on the growth rates of the series ?

¢) Whatis of the Lucas critique, in presence of unit roots ? The random walk
model, as any model in which parameters are assumed constant over time, is
incompatible with the Lucas critique.

It is perhaps accordingly to the above objections that Rappoport and Reichlin
proposed in 1989 a segmented trend model (ST hereafter) which they
recognized as a flexible representation in between the two extreme cases of
‘trend stationary’ (TS hereafter) and ’difference stationary’ (DS hereafter)
processes. On the economic side, their motivation was that "economists are
accustomed to attributing changes in trend rates of growth to event that occur
infrequently" (p. 169), that is "the economy can persist in a particular steady-
state for some time, and should therefore produce segmented trend data" (p.
176). To the extent the simple TS model revealed however inappropriate,
because inconsistent with the view that trends are subject to permanent
shocks, Rappoport and Reichlin did also make clear their considerations "do
not conflict with this view, but suggest that, in contrast to the standard DS
model, these shocks are more accurately characterised as occurring
infrequently” (p. 176). Along a similar line, Hamilton (1989) explained why a
DS model can be better replaced by a stochastic model in which changes in
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regime follow a first order Markov process, rather than a simple linear process,
while Balke and Fomby (1991) assumed a stochastic process of the Bernoulli
type - but they also admitted a deterministic or a stochastic modelization is
Jjust a way to approach the same problem from an ex-post or ex-ante view (see
Balke and Fomby, 1991, p. 67).

As far as we are concerned in this paper, our goal is to assess and compare
the general performance of four alternative data generating processes (DGP)
for a genericnon stationary time seriesy,. The models we consider are described
by the equations

TS: B/ THE ST ' 1
RW: Y=ty +v,, (2)
DS: Ye=Hs+y,., +j§17,-Ay,-,+v3,, 3)
ST: Yi=0+gt+e, g~NO,0), jl)+1<t<ji+1) @)

where: y, is a series in natural logarithms non stationary in mean (and
eventually in variance); ¢ is the time index, with ¢ = 1,2,...,T% i is the index for
the generic change point (structural break), with i = 0,1,2,...n; j(i) are the dates
at which change points are located, and by definition J(0)=0 and j(n+1)=T. The
error terms generated by the first two models are not necessarily normally
distributed or white noise processes; residuals generated by the DS model are
white noise by construction, but not necessarily normally distributed; residuals
generated by the ST model are assumed white noise and normally distributed.

Other main features of the models above may be described shortly as follows.
According to equation (1), the pure TS model fits a global linear time trend to
the actual series in levels, that is shocks are not supposed here to affect the
trend component of the series. Equation (2) suggests y, evolves as a random
walk with drift, while equation (3) represents a generalization of the simple
RW model in which lagged differences are accounted for, to ensure the white
noise nature of the innovation term. Contrary to the TS case, both models
imply shocks occur at each period of time which have permanent effects on the
levels of the series. The segmented trend model of equation (4) suggests only
infrequently shocks have persistent effects (either on the levels and on the
growth rates of the series), while most of the time they have only transitory



cffects.?
In order to see the conscquences of the above representations on the growth
rate series, it is useful to rewrite (1)-(4) in first differences. We have then:

TS: Ay, =1, +Ay,, (3)
RW: Ay, =+, ®)
DS: Ay, = u-,+15il YA, Vs Q)
ST: By, =p,+Ae,  Ae~N(©0,20%), j)+1stsji+1) (8)

It is easily seen from equations (5) and (6) that TS and RW models predict
a constant average growth rate, that is they assume Ay, to.have a unimodal
density centred respectively at j1, and ;. Such representations obviously de
not allow for shocks to have permanent effects on the growth rates of the series,
and moreover, to the extent estimates of 1, and i, are not too different, they
are in fact observationally equivalent for the growth rate series.? On the other
hand, DS and ST models predict fitted growth rates shifi over time, i.e. both
DS and ST models assume Ay, to be characterized in fact as a multimodal
density: The only difference is then just in the way the average growth rate is
supposed to shift, the shift being continuous (frequent) in the DS mode! and
discrete (infrequent) according to the ST model. Notice finally the ST model is
the only one to be consistent with the Lucas critique.

The above remarks induce to consider a natural procedure for the statistical
discrimination of alternative DGP, which is based on the density estimation
of Ay, Suppose in fact that estimating the density function of Ay,, this has a
multimodal shape; in such a case both the TS and the RW models are
immediately ruled out, and the statistical task simply reduces to identify which
is more apprepriate between the DS and the ST model. At the same time, as
far as the TS and the RW models are particular cases of the segmented trend
plusnoise model, in which pg =y, (orp,} v i=1,2,...,m=n+1, under the hypothesis
the 'true’ data generating process is a segmented trend, it must be the case
that outliers and/or multiple modes characterize the density function of the

*In the case of the ST model, as it has been noticed bg Perron (1989), a particular postulats
is introduced which differenciates the ST approach from previous approaches. Indeed,
aceording to the ST model "only ﬁew events (shocks) have permanent effects on various
macroeconoric variobles”, that is shocks are not “realizations of the under ing data-gener-
ating mechanism”. It is then in this sense shocks themselves are postulated exo srious, but
to use the exogeneity assumption as 6 device to remove the influence of these shocks from the
noise function. (Perron, 1989, p. 1362).

*This can perhaps explain the well-known difficulty of discriminating between TS and RW
repregsentations in samples of small size (sece for example Blough, 1988), but also revises in
part the attraciiveness of unit root tests, sspecially when the null hypothesis is modelled as
a pure random waik with drift,
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residuals Av,, (or v,). To understand how such a simple discrimination can be
carried out, we consider in the rest of this section a time series artificially
generated as a segmented trend plus noise, with one level’ and one 'growth’
effect.*

The series displayed in fig. 1 have been generated according to model (4)
with n=4, with change points at J()=10, 12, 17, 22, and the following structure
of growth: 1, = 0.05 for te [2-10], M4z =0.10 forte[11-12], 5 =0.05 for te [13-17],
My = -0.01 for te[18-22], and i, = 0.05 for te [23-35]. The initial condition is
¥,=10, and v4~N(0,0.0002).°

Because the first break occurring at t=10 determined a transitory shift in
the (let us call it) ‘natural’ rate (two periods only), this is the level effect in the
series, while the second break, occurred at t=17, is the growth effect. The 4
change points split the sample into 5 separate sub-samples or regimes.

A careful analysis of the simulated series, reveals then the following points:

a) Estimating the density distribution of the simulated series in first
differences, the multimoﬁa/l/shape reported in fig. 2 (left picture) |
indicates the invalidity of both the TS and the RW model..

b)Estimates of the growth rate parameters 1, and yi,, derived running
the regression equations (1) and (2), are found to be 0.041 in the TS
case, and 0.044 in the RW case. This is a mean value of the true local
growth rates, as it is also clear from fig. 2, right picture.

¢) The inadequacy of the TS and the RW models is fully confirmed
by the spectral estimate reported in fig. 3 (left picture), in which most
of the variability in Ay, is explained at the low frequencies. Ay, has a
trend structure which is not allowed for by those models.

*The terminology is borrowed from Lucas (1988), who emphasised “the distinction between
growth effects’ - changes in parameters that alter growth rates along balanced path - and level
effects’- changes that raise or lower balanced growth path without ﬁ?‘ecting their slope" (Lucas
1988, p. 12). Balke and Fomby (1991) designed the same effects under the names of segmented
and shifting trends respectively.

*The simulation was carried out by replicating 500 times equation (4) for a given deterministic
segmented trend structure. For each local linear time trend a column vector of 500 pseudo
independent and normally distributed error terms, with zero mean and variance 0. 1, was
generated; subsequently, the mean value was taken for each column, which was summed to
the corrisponding deterministic local time trend. Because of averaging the outcome of 500
replications, theoretical variance within each subsample is given by 0.1/500 = 0.0002.



d) The large persistence of shocks signaled by the spectral estimate
is confirmed by Campbell and Mankiw’s (1989) measures of
persistence. The pairs {V, A,) = {2.61, 2.20} for k=3, {3.06, 2.38) for
k=5, {3.07, 2.39} for k=7, and {1.90, 1.88} for k=14, are in fact
estimated for a wide spectrum of lags.® The persistence is however
the consequence in our case of infrequent, rather than frequent
permanent shocks.

e) Running a Dickey-Fuller regression of the type y, = o0 + pt + P Yer
+ 27 Ay, + error, usual diagnostics indicate that 2 first differences
lagged terms have to be included to get white noise residuals, what
again confirms the inappropriateness of the simple RW model for our

simulated series.

D) The t-ratio for the estimate of p in the Dickey-Fuller regression is
smaller than the critical value tabulated in Fuller (1976) (-2.63
against 5% critical value of -3.45), that is the unit root hypothesis is
largely accepted against the alternative ofa global linear time trend.
To the extent the series was generated as a ST process, however, it
is evident the unit root test provides in our case more information
about theinadequacy of the simple TS model, rather than identifying
the true DGP in the form of a DS process.”

&) The relative performance of the DS model compared to the ST
model is reported in fig. 3 (right picture), in which the distinction
between frequent shocks with small variance (dashed line) and
infrequent shocks with large variance (solid line) is particularly
visible. It is quite clear from the picture that under the segmented
trend hypothesis the DS provides imprecise indications about the
dates of the breaks (for example the true signal of the series is shifted
one period forward).

® Measures of persistence V, and A, are measures of trend reverting behaviour of the series,
based on the sample autocorrelations of the process in first differences. k is the number of
autocorrelations included to investigate the degree of trend reverting. The interested reader
is referred to Campbell and Mankiw (1989) for precise definitions,

7On the one hand, this is completely in line with Balke and Fomby’s proof that standard unit
root tests cannot discriminate between frequent shocks with small variance and infrequent
shocks with large variance; on the other hand the result is not surprising at all once it is
considered how unit root tests were originally designed to cope with the alternative hypothesis
of a global, but not local, linear time trend.



h) Analysing the residuals generated by the DS model, the density
estimate reveals (see fig. 5, centre picture) a certain departure from
the normality assumption. Jarque and Bera test statistic is 5.30,
against 0.59 of the ST model, with 5% critical value of 5.99. Other
residual-based regression diagnostics also penalize the DS model
with respect to the ST model: the adjusted R? is 0.43 against 0.93,
the log-likelihood 29.58 against 122.92, the Akaike information
criteria -47 against -226, the Schwarz selection criteria -7.38 against
-9.23.

i) Plotting the residuals of the different models (fig. 4), and estimating
the corresponding density distributions (fig. 5), the conclusion that
the structure missed (captured) by the systematic components of the
different representations is expected to be found (not be found) in
the error component is fully confirmed by the density estimates. Only
in the ST case residuals are completely depurated from the ’signal’
(the trend component) of the series.

108 11.0 11.2 11.4 11.8

10.0 10.2 104 10.8

...............

-0.04

2‘5'101214“1'10222‘212!!&3"

Fig. 1. Left: Simulated series in levels. Right: Simulated series in first differences,
Note: the error term of equation (4) has been imposed normally distributed with
zero mean and variance 0.0002, within each separate regime.
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Fig.2. Left: Density estimate of the simulated series in first differences. Smoothin
parameter 0.005 for a Gaussian kernel, selected using Sheater and Jones’ (1991
method. Right: Simulated series (circles), true ST structure (solid line), and
structure suggested by the RW (dashed line) and the TS model (dotted line). Note:
the structure suggested by the TS and the RW models are Just the plots of ji, and

fiz, estimated by running respectively the regression equations (1) and (2).
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Fig. 3. Left: Spectral estimate of the simulated series in first differences computed
by averaging the periodogram through a moving average of order 7. Ki t:
Simulated series in first differences (circles), true ST structure (solid line), and
structure suggested by the DS model for p=2 (dotted line).
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Fi%:l 4. Graph of the residuals derived as the difference between actual and fitted,
with respect to the simulated series in first differences. In order from the left to
the right: TS, DS, and ST representations.
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Fig.5. Density estimates of the standardized residuals (solid line), compared with
a normal density having zero mean and unitary variance. In all cases, smoothing
parameter selected through the better rule of thumb criteria as defined in Hiirdle,
1991, p.91, or Silverman (1986), section 3.4. (0.21,0.52,0.51). In order from the left
to the right: TS, DS, and ST representations.

3. ST, DS models, and signal extraction: A comparison with the

nonparametric approach

TS and DS representations as defined in section 2 look both as parametric
models, but they can be given a nonparametricinterpretation which may reveal
interesting for the discussion of signal extraction. On the basis of such an
interpretation, in particular, it is possible to clearly point out why DS
representations, despite their wide popularity in current empirical research,
are likely to produce quite misleading results when adopted in presence of
structural breaks. At the same time, it is also emphasized the nonparametric
nature of the segmented trend model, in the sense of a constrained nonpara-
metric regression.?

To introduce this issue, it is useful to rewrite the series in first differences
(growth rates) under the following notation: .

ST: Ay, = p.(t)+error, )
DS: Ay, = (t)+error, (10)

®With the speed actually available from modern computers, nonparametric techniques have

ot more and more attention from both theoretical and applied statisticians. In man cases,
these techniques have produced quite satisfactory results, but in time series the di ion of
such methods have encountered some relevant problems. The basic problem has been that in
time series few observations are usually available, and usually not satisg‘ing the assumption
of indenpendence and identical distribution. The logic of local averaging, en, which is indeed
the essence of any nonparametric method, has revealed in time series much more costly than
elsewhere. There are however signs of developments in the literature concerning nonpara-
metric applications in time series, in which the problem of the poverty of sample information
is balanced through the introduction of more effective constraints. The segmented trend model
is just an example of this, as it represents the attempt to estimate the systematic component
of the model as an unknown function of time, which is restricted however to be a step function
of time. Under the hypothesis of smooth signals, a general approach has been recently
developed by Rodriguez-Poo (1992).
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where 1,(t) i=1,2,...,m and u(¢) = const. + 5 Y &Y, J=1,2,...,p represent the fitted
series based on the estimates of the two parametric models. It is convenient
to interpret the fitted series of a particular regression model as the signal
extracted by that specific model. It is then clear from fig. 3 (left picture) how
both ST and DS representations extract a signal which is a nonlinear function
of time, with the only difference the nonlinear function is a discrete function
of time in the ST case, and a continuous function of time in the DS case -
subscript i in equation (9) stands then to emphasizes discreteness. In the DS
case, in particular, the fitted series is just a moving average of order p, with
weights given by OLS estimates of the vs.

Consider now the nonparametric approach for a direct signal extraction, in
place of the indirect signal extraction-through estimates former derived. by a
parametric regression. The uncontroversial advantage of nonparametric
regression with respect to the simple linear regression model is that in most
practical situations the assumption of linearity may reveal inadequate, what
makes more appropriate to let the data show the effective functional form. The
basic idea behind nonparametric regression is indeed the idea of scatterplot
smoothing (see Hastie and Tibshirani, 1990, chapters 1 and 2), where the mean
dependence of a response variable ¥ on a predictor variable x is modelled
according to the regression

y=m@E)+n, n~id0,62) j=1,2,...,T,

where {y,x}; is a sample of independent and identically distributed G.id)
observations, and m(x;) an arbitrary unspecified function. A smoother is defined
in this framework as an estimate of m(x) less variable than y itself, but capable
of well fitting the scatterplot of the two variables.

Technically speaking, the problem of smoothing is determined by
identifying a smoother matrix S that applied to the observations vector yis
able to produce the smoothed curve in accordance to the relation m=Sy (in
which case the smoother is said to be linear). Being S a matrix of weights,
nonparametric regression is just a procedure for local averaging the response
variable at any given neighbourhood of the predictor variable.

Despite well-established methods such as regressograms, running-lines,
running medians, kernel smoothers, k nearest neighbourhood smoothers, cubic
splines, etc. are known in the nonparametric literature, which are employed
in general with satisfactory results,® the main problem in time series is that
observations usually do not match the i.i.d. assumption. This makes that
‘boundary’ observations (that is observations in between different regimes) are
averaged sometimes which should not be averaged in fact for the ’true’ signal

?See Hastie and Tibshirani (1990) and Hardle (19905) for a good survey of the different
possibilities, together with all major technical details,
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of the series not to be masked.

To realise this point, take for an example the simulated series of section 2.
The predictor variable is time, and the scatterplot is simply the plot of the
series. Fitting a regressogram, a k-NN smoother, or a running median, all the
results reported in fig. 6 indicate the difficulty of the different smoothers to
extract the true signal out from the actual time series. For the same reason,
the DS model, which is in fact a real nonparametric model in the form of a
weighted moving average, is also badly performing in presence of structural
breaks (remember the signal extracted for the simulated series, in fig. 3 - right
picture).

A natural solution to prevent the problem of averaging observations
generated by different regimes is to use nonparametric regression only after
previous information has been gained about the number and the location of
knots (change points). This can be interpreted as a constrained nonparametric
regression, or piece-wise regression with known location of knots, and the
goodness of such a strategy is particularly clear for economic time series, under
the hypothesis of infrequent permanent shocks. This is the reason why we
would consider in the next section a method for estimating the number and
location of change points. '
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Fig. 6. Scatterplot of simulated series in first differences against time (circles)
and nonparametric regression (solid line). Dashed line is the true signal. Left:
Regressogram of order 3. Centre: Running-median of order 4. Right: k-Nearest
Neighbourhood of order 4.

4. Regression strategy for the detection of change points

There is an old tradition in the statistical literature concerning how to fit
segmented straight lines to a time series, which initiated on the Journal of the
American Statistical Association with early developments of computer
capabilities. Example of this literature are the contributions given by Quandt
(1958,1960), Bellman and Roth (1969), McGee and Carleton (1970), in which
the change point problem has been investigated from the maximum likelihood
viewpoint. Subsequently, the change point problem has been also considered
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from the nonparametric and the Bayesian viewpoint.

We consider in this section an incidentally revised version of the method
recently developed by Kashiwaghi (1991), in which a Bayesian approach is
used to make inference about the number and location of change points in time
series. In Kashiwagi (1991), the predictive log-likelihood is used as an estimate
of the likelihood fuction conditional to a given number and location of change
points, and inference about the number and the location of change points
themselves is based on posterior probabilities, which are derived by combining
the sample information with flat prior probabilities, through the Bayes
theorem (see Kashiwagi, 1991, section 2). Prior probabilities are assigned to
the marginal event that the series has N=n change points and-to the conditional
event (conditional to N=n) that change points are located at j(1), j(2), ..., j(n).

Despite the assumption of flat priors may appear neutral, it turns out that
the detection of outlier observations as change points observations is heavily
penalized within such a Bayesian analysis. For an intuitive understanding of -
this, consider in fact the case where there is only a change point (n=1); flat
priors about the location of the change point means an equal probability is
assigned a priori to each combination, i.e. the change point has the same -
probability to occur at observation no. 3, or, say, observation no. 7, no. 13, etc.
Consider however the case of 5 change points; with respect to the case n=1,
this case is generating a much greater number of combinations, most of whom
areunlikely to be’reasonable’ combinations at all - for example all combinations
of the type 1,2,3,4,5; 2,3,4,5,6 etc. Imposing the same prior probability to all
the combinations is going therefore to penalize the detection of change points
for higher values of n. This is why we take advantage in the following of the
regression strategy proposed by Kashiwagi for the estimation of likelihoods,
but do not make inference upon the number and the location of change points
by elaborating the sample information in a Bayesian way.

4.1 Short review of Kashiwagi’s statistical model

Consider the sequence y,,y,,... yrofobservations at equally spaced intervals,
and define a to be the joint event that the sequencey,,y,,....yr has N=n change
points at j(1),/(2),...j(n). The sequence of random variables Y, Y,, ..., Y, is said
to satisfy event a if and only if the density of y=(y,,y,,....yr) can be factorized
in the form:

p(yIa;eo,...,en,o'z)=ir:10plyi | 9,:,0'2)

=i£11 Plyi16,0°): ,{II P.()',- | 9:"02) (I
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Where yi=(yj(i),l,...,y_,-(,»ﬂ))',j(O):O,j(n+].)=T; k,’zdimb’i), Il = {l l k, = I 0 < l < n} and
L={i|k220<i<n}; p(y16,0% is the density of y; with parameter 6, and o?

(Kashiwagi, 1991, p. 77). Under the hypothesis of n change points, the
integrated likelihood of @ is given by

po1a= [ [po1a,000)0,

where 6 = (6,,8,,...,6,,6%), and w(6) is a prior density for 6. The value of p(yla)
can be obtained theoretically at the cost of specifying the prior density w(6).
In order to avoid such a difficult specification, Kashiwagi suggests to
approximate it by the exponential of the predictive log-likelihood, defined as
the maximum log-likelihood corrected for a bias term. For the switching
regression model described by equation (4), what is called by Kashiwagi "the -
simple regression model", the maximum likelihood estimates of the parameters
6, = (0,,11,) and o are given by:

A

% = Yii+1 rel

8,=AAY'AYy, iel,

where
[ Yigye1] 1 j(@)+1]
Yiir+2 1 j@+2
E=y,-Ab8: y= ).,‘ - A= ¢
£ B TS

The maximum log-likelihood is given by

T

logp(y|a;8,6%) = —-g-log(Zn&z)-—E

which has however the bias
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Bias: =log p(y | a;é,a’z)—-Ezlogp(Z la,b,6" =

___1_ Igz. 0"i"é'-i ’ (ei"éi)’A’iAi(ei"éi) Z
*2[ a2 +iezl]( o ) +iezlz o2 ]—-2

(Kashiwagi, 1991, p. 86), where E, denotes the expectation conditional to Z.
Because of the bias term, the maximum log-likelihood has a tendency to
overestimate the number of change points. The expected bias is obtained by
taking the expectation with respect to Y as

T(T +my+2m,) -Z-BC-Z
Z(Zezzk:-%-Z) 2 2’

E,(Bias) =

where m,, m; are the number of elements included in the set-d, and-I,. (see
Kashiwagi, 1991, p.86). Subtracted from the maximum log-likelihood, the
approximation of the predictive log-likelihood is given by

logp™y | a) =~ —-glog(Zn&z)—-BC. (12)

From the predictive log-likelihood, the likelihood p(yla) is finally derived by
taking the exponential

p(y 1 a)=exp{log p™y | a)}. (13)

For any given a combination of N=n change points, an high score of the
maximum likelihood p(y|a) means in general a small value of the estimated
variance, that is a good fitting of that particular combination to the actual
series. The predictive log - likelihood, however, it is also a negative function
of the BC term, what implies a trade-off between goodness of fit and number
of estimated parameters, as long as the BC term is an increasing function of
the number of change points (0BC/9m, >0 and 9BC/dm,>0). Then, a greater

number of change points not necessarily imply an higher value of the likelihood
function.

4.2 Using the shifting mean value model as the regression model

There is a problem with the simple linear regression model that suggests
not to consider it in applications. The problem is the failure of the model to
precisely detect the location of change points, what we call hereafter the ’split
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decision’ problem. In order to understand this, consider the simple case in
which  the time series is just the deterministic sequence
¥={1,2,3,4,7,9,11,13,15,17}. This sequence is growing of one unit up to
observation no. 4, then hasa jump, and is growing of 2 units afterwards: Hence,
it only contains a change point in correspondence of t=4.

Implementing the Bayesian procedure for detection of change points based
on the simple linear regression model, within the case n=1 the combinations
J(1)=3 and j(1)=4 associate the same predictive log-likelihood. The predictive
log-likelihood is in fact only a function of & and the BC term, and both
combinations j(1)=3 and j(1)=4 associate the same ¢ and BC term. It is in this
sense the simple regression model associate therefore a ’split decision’, due to
the fact that when local linear trends are fitted for different combinations of
change points, the likelihood may be approximatively the same when the
change point is fixed at the last observation of the previous regime, or at the
first observation of the next regime,

For our simulated series, arising of the split decision problem is confirmed
by the results presented in the upper part of table 1, where the top predictive
log-likelihoods are reported for n=0,1,...,5. Indeed, despite the highest top
predictive log-likelihood is found for n=4, that is a correct inference is actually
drawn on the number of change points, the location of the change points is not
precisely detected. True change points are located in fact at t=10,12,17,22,
whereas highest frequencies of occurrency are found for observations no.
10,11,16,22.

A natural way to avoid the split decision problem is to model the series in
growth rates, rather than in levels: In this case Jjumps in the series are
necessarily unmasked, that is estimated variances for different combinations
should associate remarkably different likelihoods. For this reason, we consider
in the following the ST model in the form of the shifting mean value model
(equation (8) of section 2). This model associates the maximum likelihood
estimates

~

i = Yiiyar iel
1, = mean(y,) iel,
and the BC term
BC (T +m,+m,)

T2, k-m-2)

' All the results derived in this paper are obtained through GAUSS programming on IBM-PC
compatible machines. The codes of the programs are available on request from the author.
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while estimate of the variance term is the same as for the simple regression
model. The results in the bottom part of table 1 clearly confirm the good
performance of the shifting mean value model. The highest predictive
log-likelihood is found in correspondence of n=4, and the observations with
higher frequency of occurrency are exactly the true change points of the series
(remember first differencing implies the first observation is lost, so that a
change point at observation no. 10 for the series in levels is a change point at
observation no. 9 for the series in growth rates).

The top predictive log-likelihood associated with the case n=5, however, is
also high, so that we might wish to check the performance of Kashiwagi’s
approximation by testing the hypothesis of the significance of an additional
change point. This can be easily done by using the likelihood-ratio principle.
The shifting mean value model can be written in fact as a standard linear
regression model

y=Xu+u

where X is a Txn design matrix of 0’s and 1’s. Under the null hypothesis of n
structural breaks, the parameter space is Q, = {1, 1, ...,1, ..}, while under the

alternative  hypothesis of n+h  structural breaks we  have
Q= {l, My, s Mps Wy 45 -5 My 4141 }- Estimating the model under both the null and

the alternative hypothesis," under the hypothesis of normality of the errors
the maximum log-likelihoods /; and I} can be compared, and the likelihood ratio

statistic computed as

H,
.

IR = A1 -1) = %, forT e

When & additional change points are considered which are in fact ’not
significative’ change points, the likelihood of the model should not improve
significantly, i.e. values of the LR statistic should not be significantly different
from zero. In the case the hypothesis of 4 against 5 change points is tested for
the simulated series, the likelihood ratio statistic is as low as 0.49 (against a
5% critical value of 3.84), that is the significance of observation 20 as a change
point is highly rejected by the data.

To summarize, our procedure for change point detection is as follows: Given
the whole set of all data points, this can contain in principle all as much as no
change points. Through the regression analysis we cluster a subset of

"' As far as X is by definition such that (X'X)" is always a singular matrix, estimates of the
s are derived by computing the Moore-Penrose generalized inverse,
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observations that, more than others, may be suspected of being change points
in the series. Then, we use the likelihood ratio testing strategy as a validatory

or stopping rule procedure.

Table 1: Top predictive log-likelihoods for the simulated series.

levels

n=0
n=1
n=2
n=3
n=4

n=>5

first

n=3

n=5

max j(1)
pred

4.55

1512 19
22.18 16
32.03 10
3892 10
3884 10
max j(1)
pred

21.41
21.86 16
2894 16
2891 9
3621 9
3583 9

J(2)

16
11
11

J(2)

21
16
11
11

J(3)

16
17

H3)

21
16
16

J4)  j5)
22
21 22
J4)  j5)
21
20 21

Table 2: True structure and structure suggested by top predictive log-likelihood estimates

J@
freq.
true j(@i)'s

J@)
freq.
true j(i)'s

10
3
10

11

2

12

11

11

16

3

17

16

16

17

1

22

20

21

19 21 22
1 1 4
21

4
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5. An application to the U.S. series of nominal wages, 1900-1970

In the previous sections, the example provided by the simulated series has
served as a benchmark case in order to understand some basic properties of
ST processes, and to evaluate possible regression strategies for estimating the
number and the location of change points.

In this section we consider a real observed economic time series, which is
given by the U.S. series of nominal wages over the period 1900-1970 (see fig.
7), and apply to this series the methods presented in sections 2-4. The reason
for examining U.S. nominal wages is that the same series was previously
analyzed by Nelson and Plosser (1982) and Perron (1989), what favours fair
comparisons of alternative modelizations. The aim is in particulartoreconsider
earlier results from the point of view of infrequent permanent shocks.

5.1 Attained empirical evidence

In the pioneristic work of Nelson and Plosser (1982), the hypothesis of
frequent permanent shocks was implicitly assumed for the nominal wage
series. A unit root test was performed on the series, and the null hypothesis
of a DS process with p=2 was accepted against the alternative hypothesis of a
TS process (¢-ratio statistic of -2.09 against a critical value of -3.45).!2 In Perron
(1989), on the other hand, the hypothesis of infrequent shocks was considered
for the first time in the form of a shifting trend model with one break in the
trend at time ¢=1929, by estimating the regression equation y.=a+ B DU}
+ Wi + error, with DU(t) = 0if t £ 1929 and DU(t) = 1 if £ > 1929. In fig. 9 and
10 the fits of both models are reported, and compared with the simplest case
of trend stationarity about a global linear time trend (fig. 8).

A main comment about the results refers to the different modelization of
the trend component for the same observed time series. It is seen in fact the
TS representation models the trend in a very inflexible way, while in the DS
model the trend is moving ateach point of the time. Perron’s ST model suggests
an intermediate position such that the trend is moving, but only at £=1929.
Interpreting the residuals in figures 8-10 as representing the cyclical
components of the series, it is with no surprise the way cycles are derived
directly depend on the way trends themselves are modeled. Then, in the TS
case a very inflexible trend associates large’ fluctuations about (but these
fluctuations are spurious in fact), while in the DS an extremely flexible trend
associates no fluctuations about. Perron’s ST suggests once again an
intermediate position, where the magnitude of fluctuations is in between the

2 Measures of persistence also indicate large persistence of shocks being the pair V,A,) =
{1.42, 1.25} for k=3, {1.42, 1.25} for k=5, {1.52, 1.30} for k=7, and {1.50, 1.28} for k=10.
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two extremes.

Estimating the spectrum of the nominal wage series in first differences, and
the density distribution, the inappropriateness of the TS and the RW
representations is revealed in fig. 11. The DS process identified by Nelson and
Plosser (1982), as well as the shifting trend suggested by Perron (1988), are
however also likely to be problematic modelizations of the true DGP. In Perron
(1988), in particular, y is estimated to be 0.051; since fitted values between
1929 and 1930 associate a growth rate of -0.057, Perron’s shifting trend
implicitly assumes for Ay, a bimodal density with a big mode centred around
0.051 and a smaller mode centred around -0.057, which is not confirmed by
our density estimation. This suggests almost for sure a deterministic trend
with only one break is not flexible enough to avoid the appearance of spurious
cycles.'®
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Fig. 7. Left: Natural logarithm of nominal wages. Right: growth rates of nominal
wages. .
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Fig. 8. TS modelization of the nominal wage series (left) and associated residuals
(centre). Right: Implication of the TS mode for the series in first differences.

“Indeed, in Perron ST model as in the pure TS case, regression diagnostics indicate an high
value of the R? (0.98 - 0.96 in the TS case) associated with a low value of the Durbin-Watson
statistic (0.48 - 0.16 in the TS case), that is the typical symptoms of spurious regressions
according to Granger and Newbold ( 1974).
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Fig. 10. Perron’s ST model with break in 1929 (left) and associated residuals
(centre). Right: Implication of the ST model for the series in first differences.
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Fig. 11. Left: Spectral estimate of the nominal wage series in first differences
computed by averaging the periodogram through a moving average of order 5.
Right: Density estimate of the nominal wage series in first differences
(standardized). Smoothing parameter computed by Sheater and Jones’ (1991)
method: 0.0052 for a Gaussian kernel.
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5.2 Infrequent shocks and change point detection

According to the hypothesis that shocks occur infrequently, a running mean
smoother can be estimated for the nominal wage series in first differences,
after the detection of change points. A visual inspection of the density estimate
clearly suggests the appearence of 9 modes, that is the presence of at least 9
change points (10 regimes) in the growth rates of the nominal wage series. The
growth rate occurring more frequently is without doubt about 5% per year.

Before we proceed towards change point detection, an important remark
concerns the best conditions under which the statistical model presented in
section 4 correctly performs. Indeed, Kashiwagi’s procedure successfully
detected both the number and location of change points in the simulated series,
but because the assumption of homoschedasticity among different regimes was
respected. The nominal wage series, however, clearly displays a bigger
variability in the first period of the sample, compared to the second period (see
fig. 7). A preliminary analysis of variance patterns is therefore recognized, in
order to possibly identify a cut-point in the sample.™*

In fig. 12, two plots of variability for the series in first differences are
reported. The former is obtained by graphing the square of the distance
between any observation and its right-hand neighbour (first sample
observation is lost); the latter is derived by plotting the square of the distance
between each observation and the mean value of the series. According to the
first plot, the splitting date would be 1923, while from the second plot it is clear
a much lower variability characterizes the series after 1933. In what follows
the analysis is carried out by splitting at 1933 (i.e. analysing the subsamples
1901-1933, and 1934-1970), that is at the date of the through of the *big crash’.
Analoguous results has been found however splitting the sample at 1923.

The results of the regression analysis are presented in tables 3 and 4, for
the subsamples 1901-1933 and 1934-1970 respectively. In the former period,
suspect change points are found in correspondence of observations no. 7, 8, 15,
20, 21, 23, and 29, that is at time £=1907, 1908, 1915, 1920, 1921, 1923, and
1929. In the latter subsample, on the other hand, suspect change points are
found in correspondence of observations 4, 5, 7, 10, and 15, that is at the
historical dates of 1937, 1938, 1940, 1943, and 1948.

The results of the likelihood ratio tests reported in table 5 basically confirm
the accurancy of the change point estimation, except for the date of 1937, which
1s insignificant as a change point at 5% confidence level. In the subsample
1901-1933, instead, change points at 1907 and 1908 are found to be quite

"Notice how selecting a cut point for the original series, not only ensures a better consistency
with respect to the homoschedasticity assumption involved by our statistical model, but allows
at the same time for the feasibility of the fufl computation. Indeed, the computational effort
required for the series as a whole, say for a maximum number of 10 change points, is the
estimate of 70Y/(10!60!) = 4.72E+11 likelihoods, while splitting the sample heavily reduces the
amount of computations.
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significative, and the test statistic for the date of 1923 is very close to the
rejection border too.

Based onthe regression analysis, the likelihood ratio testing procedure, and
the residual diagnostics obtained in the various cases, change points are
imposed finally at 1907-1908, 1915, 1920-1921, 1923, 1929, 1933, 1940, 1943,
1948. Data suggests then the presence of 9 permanent shocks over 70 years of
economic history about the U.S. nominal wage series - rememberin fact despite
there are 11 change points, whenever two change points are adjacent, they are
generated by a single shock. This is on average an evidence of about one
‘permanent’ shock every 7 years.

Allthe dates are associated moreover with well identifiable economic events.
In Friedman and Schwarz (1963), for example, October 1907 is referred to as
the date of the "banking panic, culminating in the restriction of payments by
the banking system, i.e., in a concerted refusal by the banking system to convert
deposit into currencies or specie at the request of the depositors"; this was
basically due to the "reversal in gold movements from net imports to net exports"
(p.157). The "contraction of 1920-1921" (Friedman and Schwartz, p. 231) is
alsoreferred to as a depression caused by the banking System, as a consequence
of the member banks decision to rise interest rates at "the higher rate that has
ever been imposed by the System, before or since" (p. 233), in order to ensure
profitability of their borrows. All the other dates are also relatively easily
accounted for, being 1915 the date of the beginning of World War I, 1923 the
peak of capital inflows (see for example the same Friedman and Schwartz,
chart 17, p.201), 1929 the date of the 'big crash’, 1933 the through of the Great
Depression; 1940 the beginning of World War II, culminating in 1943 with the
peak of industrial production (chart 45, p.547, in Friedman and Schwartz),
and 1948 the date of the post-war era initiated with the Marshall plan and
with other forms of financial and economic aids for the recovery of Western
Europe economies.'®

On the statistical front, given the above identification of change points, a
segmented trend model (equation (4) of section 2) and a shifting mean value
model (equation (8) of section 2) are estimated, yielding the signal extractions
reported in fig. 14.

*Of course a much deeper analysis would be requested here from the viewpoint of institutional
factors, economic history, economic theory ments, etc. This would without doubt play an
important role for a better understandin oE the working of the economic system from an
historical perspective, what would robab%y much involve authorities in charge of economic
policies. But this is also something which goes beyond my specific task, which is in the following
rather confined to the viewpoint of ‘data-analysis’.
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Table 3: Top predictive log-likelihoods for the nominal wage series, 1901-1933.

max
pred

2.37
2.57
3.58
4.12
4.96
4.16
3.62

J(1)

1929
1915
1915
1915
1915
1907

J(2)

1920
1920
1920
1920
1908

J(3)

1921
1921
1921
1915

J(4) J(5) J(6)

1929
1923 1930
1920 1921 1929

Frequency of occurrency of observations suspected to be change points:

1907 1908 1915 1920 1921 1923 1929 1930

J@

freq.

1

1 3 1

Table 4: Top predictive log-likelihoods for the nominal wage series, 1934-1970.

n=2
n=

n=4
n=5

n=6

max
pred

19.7
19.5
25.1
254
25.6
25.5
25.4

1 5 5 4
J(D J(2) Jd
1940

1940 1943

1940 1943 1948
1937 1940 1943
1937 1938 1940
1937 1938 1940

J(4) J(8) J(6)

1948
1943 1948
1941 1943 1948

Frequency of occurrency of observations suspected to be change points:
1937 1938 1940 1941 1943 1948

J@)

freq.

3

2

6 1

5

4
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Table 5: Likelihood ratio tests on the significance of change points, for the nominal wage
series,

H, H, LR

1915,1920,1921 1915,1920,1921 7.56"

1929,1933,1940 1929,1933,1940 (56.99)
1943,1948 1943,1948
1907,1908

1907,1908,1915 1907,1908,1915 3.62
1920,1921,1929 1920,1921,1929 3.84)
1933,1940,1943 1933,1940,1943
1948 1948
1923

1907,1908,1915 1907,1908,1915 1.66
1920,1921,1923 1920,1921,1923 (3.84)
1929,1933,1940 1929,1933,1940

1943,1948 1943,1948

1937,1938

1907,1908,1915 1907,1908,1915 0.00
1920,1921,1923 1920,1921,1923 (3.84)
1929,1933,1940 1929,1933,1940
1943,1948 1943,1948
1930

Note: In the third column, the LR statistic is reported together with the 5%
critical value (in parenthesis). In the second column, the date(s) underlined
is (are) the date(s) tested as statistically significative change point(s).
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Fig. 14. Signal extraction on the nominal wage series in levels (left) and first
differences g-lilght).

5.3 Comparison of the results

The motivation for our analysis so far has been Perron’s critique to standard
unit root modeling. DS modelizations of time series extract the signal as a
discontinuous, instead of a step function of time, that is they are by definition
inconsistent with the assumption of infrequent permanent shocks. Nonethe-
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less, the model fitted by Perron (1989) to the nominal wage series only imposes
a structural break in 1929, while the same Perron advocates tests "for
structural changes in the trend function occurring at unknown dates" (Perron,
1989, p. 1388). The above results are informative about the trend structure of
the series, and also make use of the likelihood ratio test to validate the change
points discovered by the regression analysis.

The results obtained under the hypothesis of infrequent permanent shocks
can be compared now to existing modelizations. The comparison is carried out
on the basis of the analysis of the residuals, i.e. according to the philosophy of
residual diagnostic checking for the evaluation and validation of statistical
models. In particular, the comparison is carried out with respect to Perron
(1989) when analysing the residuals generated by fitting the series in levels,
and with respect to Nelson and Plosser (1982) when analysing the residuals
generated by fitting the series in first differences. S '

In the former case comparative plots are presented from fig. 15to 17; in the
latter, from fig. 18 to 20. In both cases, it can immediately be seen some major
improvements are obtained, guaranteed by a more flexible modelization of the
trend component of the series. For the segmented trend model with 12 regimes,
in fact, residuals always appear white noise and normally distributed
processes, while analogous good properties are not simultaneously associated
with the competitive models. Specification diagnostics reported in table 6
validate the better fitting of the ST models, while estimates of the shifting
mean rates, together with standard errors and ¢-values are finally reported in
table 7. It is evident from all such results the superiority of the segmented
trend model.
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Fig. 15. Residuals generated by Perron’s model (left), and by a ST model with
m=12 local time trends (right), plotted in the same scale.
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Fig. 16. Graphical test for white noise residuals. Camulative periodograms with
95% confidence bands for the residuals generated by Perron’s model (left), and by
a ST model with m=12 local time trends (right).
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Fig. 17. Graphical inspection for normally distributed residuals: Kernel density
estimation of the standardized residuals in the two cases (solid lines), compared
with normal densities having the same sample means and variances. Bandwidth
selected through the better rule of thumb, respectively 0.045 and 0.040.
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Fig. 18. Residuals obtained from a DS model with p=2(left), and a ST model with
m=12 local time trends (right), plotted in the same scale.

Fig. 19. Graphical test for white noise residuals. Cumulative periodograms with
95% confidence bands for the residuals generated by Perron’s model (left), and by
a ST model with m=12 local time trends (right).
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Fig. 20. Graphical inspection for normally distributed residuals: Kernel density
estimation of the standardized residuals obtained from a DS model with p=2 (left)
and a ST model with m=12 local time trends (solid lines), compared with a norm
density having the same sample means and variances (dotted lines). Smoothing
parameters: 0.26 and 0.41 respectively.
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Table 6: Specification diagnostics for the evaluation of alternative models of the nominal

Ye

ST
(n=2)"

ST
(n=11)
Ay,
DS
=2\

ST
(n=11)

Note:* = Perron (1989) shifting trend model; ®
difference stationary model. AIC = Akaike i
Schwarz selection criteria;
final prediction error crite

RZ

0.98

0.99

0.10

0.78

R

0.98

0.99

0.07

0.74

critical value is 5.99).

6. ST in the multivariate domain: implications for prediction

Period
1901-07
1908
1909-15
1916-20
1921
1922-23
1924-30
1931-33
1934-40
1941-43
1944-48
1949-70

log-lik.

51.0

166.6

21.8

141.9

wage series.

AIC SC FPE NT

-90.1 -4.0 -21.1 0.016 0.05

-239.1  -53  -141.7 0.002 1.79

-31.6 -5.18 -221 0.005 325

-2358 -5.79  -73.7 0002 194
= Nelson and Plosser (1982)

]
0.042
-0.118
0.029
0.163
-0.203
0.099
0.022
-0.073
0.031
0.136
0.071
0.045

and cointegration theory

s.e.
0.005
0.035
0.005
0.007
0.035
0.018
0.006
0.009
0.005
0.012
0.007
0.002

Table 7: Regression results for the nominal wage series.

t-value
8.33
-3.38
5.83
23.9
-5.8
5.68
3.78
-8.38
6.13
11.6
10.2
28.5

nformation criteria; SC = -
HQ = Hannan-Quinn selection criteria; FPE =
ria. NT = Jarque and Bera normality test (5%

On the statistical front, whether economic time series are better
characterized by ST rather than DS processes has intuitive implications for
prediction and cointegration theory. For prediction purposes, for example, the
signal extraction recommended by the shifting mean value model in the form
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of a step function of time represents a foremost information for the evaluation
ofthecurrent natural rate. Take for an example an hypothetical economy which
was growing about a (natural) rate of 5% per year up to ten or five years ago,
but which is growing since then at a smaller (natural) rate of 2%: Such an
economy cannot be expected to grow at 5% in the next period, unless ‘excep-
tional’ events occur. Past observations, as much as they were generated by a
different regime, do not provide at all useful information to make better
predictions under the current regime (i.e. under the current economic
environment).

It is however about cointegration theory that ST representations may have
interesting applicationsin macroeconomics, in order to check for co-movements
or common trends in multiple time series. For this reason, we consider in the
remaining of this section a concrete example in which the post-war nominal
wage series is analysed together with the consumer price index series. An
economist who wishes to explore the theoretical hypothesis that a close
(positive) relation exists in the long run between growth in nominal wages and
the cost-of-living, but who has at the same time the feeling that the dynamics
in these series were driven by infrequent exogenous shocks, might proceed in
accordance to the following strategy:

i) according to the hypothesis that shocks occurred infrequently,
consider every single series separately, and extract the signal using
the method described in sections 2-5. Two segmented trends would
be recovered on the basis of the available data set;

i) compare the dates of structural breaks, and, in the case dates of
permanent shocks roughly coincide in the two series, interpret this
as an empirical evidence of co-movements.

In fig. 21 (left picture) the series of nominal wages and the consumer price
index in growth rates are plotted which give a clear impression of moving
together. However, implementing the two-step cointegration regression
strategy suggested by Engle and Granger (1987), the DW associated with the
static regression w(f)= const.+bp(t)+u(t) is 0.10, and the ADF statistic
associated with the regression Au(t) = —du(t - 1)+yAu(t - 1)+error is -1.26. The
null hypothesis of absence of cointegration between nominal wages and the
consumer price index is then highly accepted by the data.

Nonetheless, as long as the density estimate of fig. 21 (right picture)
suggests the presence of several outliers, we consider the series of price index
in first difference, and run the univariate analysis already implemented on
the nominal wage series. Once again, the observation at time t=1933 appears
to be the date at which splitting the sample (alternatively, we should split at
1920 - see fig. 22), so that the change point analysis previously implemented
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on the nominal wage series can be now repeated for the same subsamples
(graphed in fig. 23). The results reported in terms of top predictive log-likeli-
hoods {table 8)and likelihood ratio tests (table 9} indicate that 10 change points
are overall detected at the historical dates of 1915, 19186, 1920, 1622, 1930,
1933, 1940, 1943, 1945, and 1948.'¢

This yields the regression results reported in table 10, in which all
diagnostics confirm the goodness of the statistical model for the price index
series in first differences, with the only exception of the £-value associated with
the change point at time 1930, which appears non-significative. This can be
due to the restriction imposed by the regression model in the form of shifting
mean value model, ag long as such model assumes observations stands locally
on horizontal lines. Indeed, by looking at observations from 1923 to 1933, it
can be seen perhaps a downward sloping line would better fit the data, in which
case we would not need to recognize the date of 1930 as a change point.
Applications in thiz case, which would require the use of the different
regression model, called by Kashiwagi the "discrete spline” model (see
Kashiwagi, 1991, sections 5.2 and 5.3), are left for future work in this area.

The signal extraction derived on the basis of the structural break analysis
is reported in fig. 24 (left picture), and compared (right picture) with the
cerresponding signal extraction obtained for the nominal wage series. Some
main comments are then in order:

a) A good correspondence between historical dates is found. Change
in dynamics in the two series sometimes occur with one lag of
adjustment, but most of the time without any lag of adjustment at
all. This is particularly true starting from 1933. We have in fact
changes at 1933, 1940, 1943, and 1948 in the nominal wage series
are immediately matched by changes (in the same direction) in the
dynamics of the price index series. Instantaneous adjustments take
also place in 1916 and 1920, while changes in 1921 and 1929 in the
nominal wage series are matched by the price index series only one
period later.

b} Variations in the nominal wage and price index series are on
average of the same size up to year 1920 (if we make the exception
ofthe change in 1907 in the nomina! wage series not matched by the
price index series). Subsequently, reactions in the price indices
appear to be more contained with respect to variations in the nominal
wage series, with exception in 1946 (see also fig. 21, left picture), the
date of the "price peak” (see Friedman and Schwarz, 1963, p. 574).

¥The dats of 1915 is also accepted to be a change point, given the value of the LR statistic
extremely close to the rejection border.
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¢) In 1915, the adjustment of the price index series is partial, being
only in the subsequent year it becomes fully effective. This suggests
if a link of causality has to be established between the two series,
this goes more probably from wages to price indices (i.e. dynamics in
wages produce inflationary or deflationary effects), rather than the
contrary. This is a general conclusion particularly true up to 1933.
When the dates of change points exactly coincide, however, deeper
inquires are requested in order to inference the direction of causality.

d) The breaks in 1907 and 1923 represent, the only dates where the
price index does not react to cuts in nominal wages. In 1945, on the
contrary, a switch in the dynamics of the price index series does not
associate a corresponding switch in the dynamics of the nominal wage
series.

The above comments give an idea of how richer the amount of information
gained from data analysis can be by fitting shifting trend models to actual
macroeconomic series, rather than simple DS models. In the multivariate
framework, as in the univariate domain, the assumption of infrequent
permanent shocks forces in fact the researcher to go beyond a statistical test
about the absence (or presence) of cointegrating relations; rather, a local
analysis is needed from which co-movementes can be identified on the basis
of the correspondence of historical dates.

For the U.S. economy we basically found evidence that wages cause prices
most of the time, what would be in accordance for example with the economic
theory of mark-up in the formation of prices. It would also be interesting (and
not atall difficult) to check weather the same conclusion would hold for Western
Europe economies as well, in particular those with an strong degree of wage
indexation.
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Fig. 21. Left: Nominal wage series (solid line) and price index series (dotted line)
in growth rates: sample period 1901 - 1970. Right. Densiti' estimate for the price
index series in first differences. Smoothing parameter selected through Sheater
and Jones’ method: 0.0052. Gaussian kernel.
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Table 9: Top predictive log-likelihoods for the price index series, 1901-1933.

n=>5

max
pred

6.63
8.15
145
15.3
17.9
18.2
17.5

J)

1920
1916
1916
1916
1915
1915

J(2)

1920
1920
1920
1916
1916

J(3)

1930
1922
1920
1920

J(4) J(5) J(6)
1930
1922 1930

1922 1926 1930

Frequency of occurrency of observations suspected to be change points:
1915 1916 1920 1922 1926 1930

J@

freq.

2

5

6 3

1

4

Table 8: Top predictive log-likelihoods for the price index series, 1934-1970.

n=0
n=1
n=2
n=3
n=4
n=>5

n=6

max
pred

19.1
18.7
20.9
21.23
21.25
21.33
20.1

J)

1948
1945
1940
1940
1940
1937

J(2)

1948
1945
1943
1943
1940

J(3)

1948
1945
1945
1943

J(4) J(5) J(6)

1948
1948 1967
1945 1948 1967

Frequency of occurrency of observations suspected to be change points:

1937 1940 1943 1945 1948 1967

J@)

freq.

1

4

3

5

6

2
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Table 9: Likelihood ratio tests on the significance of chan
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ge points, for the price index

series,

H, H, LR
1916,1920,1922 1916,1920,1922 3.71
1930,1933,1940 1930,1933,1940 (3.84)
1943,1945,1948 1943,1945,1948

1915
1915,1916,1920  1915,1916,1920 1.77
1922,1930,1933 1922,1930,1933 (3.84)
1940,1943,1945 1940,1943,1945
1948 1948
1926
1915,1916,1920 1915,1916,1920 2.20
1922,1930,1933 1922,1930,1933 (3.84)
1940,1943,1945 1940,1943,1945
1948 1948
1937
1915,1916,1920 1915,1916,1920 3.46
1922,1930,1933 1922,1930,1933 (3.84)
1940,1943,1945 1940,1943,1945
1948 1948
1967
Note: In the third column, the LR statistic is reported together with the 5%

critical value (in parenthesis)
is (are) the date(s) tested as

ha
S

-0.2

=03

O3 1908 1915 1821 1927 1933 19 1945 1981 1957 1943 1988

-In the second column, the date(s) underlined
statistically significative change point(s).
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Fig. 24. Left: Signal extraction for the dprice index series in first differences (left).
Right: Signal of the price index series (dotted line), compared to the corresponding
trend structure of the nominal wage series.

7. Conclusions

Inanarticle published in the book "Unemployment, Hysteresis & the Natural
Rate Hypothesis", (see Rod Cross editor, 1988), Summers (1988) has recently
summarized the present debate in macroeconomics in terms of the contra-
position between Keynesian and New Classical theories. In trying to respond
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Table 10: Regression results for the price index series.

Period e s.e. t-value
1901-14 0.013 0.001 9.18
1915 0.076 0.022 3.47
1916-20 0.164 0.005 30.1
1921-22 -0.085 0.011 -7.81
1923-30 -0.0004 0.003 -0.13°
1931-33 -0.08 0.007 -11.1
1934-40 0.0116 0.003 3.72
1941-43 0.073 0.007 10.0
1944-45 0.02 0.011 1.84
1946-48 - .0.102 0.007 - 14.1
1949-70 0.022 0.001 22.3

Note: Other regression diagnostics are the sample variance of the residuals, 0.0005;

the coefficient of determination, 0.86, the adjusted R?, 0.84; the Durbin-Watson

statistic, 1.88; the log-likelihood, 174.5; the Akaike information criteria, -305 and

the Schwarz selection criteria -6.8 1; Jarque and Bera normality test statistic, 1.60

(against a 5% critical value of 5.99)
tothe challenges of New Classicals, Summershas argued Keynesians presently
propose a disequilibrium explanation of business cycle fluctuations as a
consequence of nominal rigidities like overlapping contracts, menu costs,
slowly adaptive expectations, for which there is however mixed empirical
evidence. A completely different approach characterizes on the other hand N ew
Classical economics, that is a world made of intertemporal optimizing agents,
rational expectations, and market clearing, but where the ’extreme’ view of
equilibrium often leads to propositions of neutrality of economic policies, in
the long as well as in the short run. Despite deep divergences, Keynesians and
New Classicals appear however to agree, according to Summers, on the view
that "economic fluctuations represent transitory movements away from
equilibrium” (Summers, p.15), and it is exactly in this sense both approaches
look then dispiriting (p.xxx), as they neglect in practice that economic policies
may have substantial effects on macroeconomic variables.” There seems
nonetheless to be an “empirical evidence of multiple equilibria in GDP
behaviour", according to which "the economy does not fluctuate about a unique
well defined equilibrium, but it is capable of setting at many different equilibria,
one of which is the best. (Summers, p. 23).

In this paper, our aim has been to highlight as much as possible (that is as

The conclusion that policy cannot affect the average output is likely to be a feature of any

17n

model that postulates a unique equilibrium level of output and attributes fluctuations to
disequilibrium situations". (Summers, 1988, p. 15).
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much as supported by the data) the empirical evidence of multiple equilibria
In macroeconomic time series advocated by Summers in his article. The
starting point for our research has been provided by major advances in the
literature concerning unit roots, stochastic trend s,and measures of persistence
in macroeconomic time series.

Early contributions developed by Nelson and Plosser (1982) and others
pointed out in fact for the first time a different nature of business cycle
fluctuations, within a new framework in which the main attention was focused
on forces explaining the growth path of the economy, rather then business
cycles themselves. After the pioneristic contribution of Nelson and Plosser,
however, it is also true there has been a tendency to view persistence of shocks
as affecting the levels of the series, but not yet the growth rates. Empirical
evidence of unit roots, in other words, has been more often interpreted in the
sense of "fluctuations in the natural rate™ (Nelson and Plosser, 1982, p. 160),
rather than in the sense of multiple natural rates (multiple local equilibria)
advocated by Summers.

Now, the fact that economic time series may not exhibit trend reverting
behaviour to previous growth rates opens the debate whether fluctuations in
the natural rate have really to be considered transitory - i.e. whether the
economy really fluctuates about a constant (unique)natural rate. In particular,
the view of infrequent permanent shocks naturally calls for a closer analysis
of modelsin which multiple equilibria arise in consequence of hysteresis effects
- or path dependency - that is models in which movements in actual series do
not simply represent transitory drifts from an underlying well defined (unique)
natural rate. Instead, such movements may just reflect shifts in the natural
rate itself.

On theoretical grounds, this is implicitly Blanchard and Summers’ (1986b)
definition of hysteresis effects in the European unemployment rate series:
"Most of the time the equilibrium rate is stable and unaffected by movements
in the actual rate. But gnce g while a sequence of shocks pushes the equilibrium
rate up or down, where it remains until another sequence of shocks dislodges
it". (Blanchard and Summers, 1986b, p. xxx). Such a definition of hysteresis
exactly corresponds to the view that shocks may occur infrequently with quite
persistent effects (effects which determine switches to different natural rates),
rather than frequently with weaker effects (thatis effects which only determine
fluctuations about the same natural rate).

On the statistical front, segmented trends in the form of shifting mean value
models may fit actual series much better than traditional difference stationary
processes, asit appeared for example to be the case for the U.S. series ofnominal
wages. Indeed, modeling the series according to ST processes allow for signal
extractionassociating white noise and normally distributed residuals. The cost
to be paid for such a significant improvement is just a computational cost that
we can now easily afford in the era of modern computers.



