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In this paper we study an oligopoly game with a differentiated prod-
uct using a dynamic evolutionary approach. Firms are allowed to choose
between quantity setting and price setting behavior. We find that, un-
der both classical interaction structures, namely ‘random mating’ and
‘playing the field’, quantity setting behavior (i.e., ‘Cournot’ behavior),
is selected as an asymptotically stable state for the dynamics. Journal
of Economic Literature Classification Numbers: C79, D43.



Bertrand Vs. Cournot: An Evolutionary Approach

1. Introduction.

A long debated problem in industrial economics is the choice of
the strategic variable by an oligopolist who could set either his quan-
tity or his price. The initial contributions by Cournot and Bertrand
have recently been followed by a number of important papers, in the
attempt to identify a criterion for the selection of one possible strategy.
For instance, Singh and Vives (1984) consider a model with substitute
goods in which firms can precommit themselves to the use of a certain
strategic variable before playing the market game, showing that Cournot
(quantity—setting) behavior prevails in equilibrium. On the other hand,
Klemperer and Meyer (1986) introduce uncertainty, showing that the
equilibrium behavior depends on the type of uncertainty observed !.

In this paper we take a different approach, in that we use the con-
cept of asymptotic dynamic stability of an evolutive game to determine
whether in the long run there is a kind of behavior which tends to pre-
vail on the other, or whether firms of both types can coexist. More
precisely, this requires assuming an initial distribution of firms, some
of which play 4 la Cournot, and some of which play 4 la Bertrand in a
market for a differentiated product. Firms tend to change their behav-
lor over time, choosing the strategy that guarantees larger profits. The
main finding of the paper, obtained in two different contexts, is that
Cournot behavior is the one that tends to be selected on evolutionary
grounds.

Our paper can be related to a new and growing stream of game-
theoretic literature, which can be synthetically labelled as the ‘evolutive’
approach, as opposed to the traditional eductive approach (Binmore,
1987). This approach to the dynamic analysis of economic phenomena
is strictly linked to, but not quite exhausted by, recent developments in
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the field of theoretical biology [see among others Selten (1983), Samuel-
son (1987), (1991), Vega Redondo (1988), Nachbar (1990), Friedman
(1991)].

The paper is organized as follows. Section 2 introduces the stan-
dard oligopoly model we adopt, which for expositional convenience is
discussed in the case of a small number of firms (i.e., under a ‘playing
the field’ interaction structure). Section 3 analyzes its dynamic proper-
ties. Section 4 goes along the same lines in the case of a large number of
firms (which defines the ‘random mating’ interaction structure). Section
5 concludes the paper.

2. The ‘playing the field’ model.

Consider a market for a differentiated product where N > 3
oligopolistic firms compete. We assume that the number of firms is
small enough that firms are able to identify all of their potential oppo-
nents . The demand function for the i~th firm (i = 1,...,N) is given

by

xiza—bpi-}—Zspj (1)
J#1
where 5 = 1,..., N and a > 0. The parameter s, 0 < s < b, denotes the
degree of substitutability. The inverse demand function corresponding
to (1) can be written as [see Vives (1984)]

pi=a—PBri—y) z; (2)
J#
where
o= a
b= (N -1)s
b
b= b2 — (N —1)%s?
_ s
TR (N C1)2s



Clearly, this requires

b> (N —1)s (3)

The cost function is linear and there are no fixed costs, that is
C; = cx;. However, it is well known that the linear structure of the
model entails no serious limitations (Singh and Vives, 1984).

We turn now to the characterization of the behavior of firms. Firms
maximize profits. To this end, they may fix either quantity (Cournot
behavior) or price (Bertrand behavior). If a firms sets its quantity, it
maximizes

;= (a0 — PBx; — Zaz]—c (4)
J#e

In a symmetric equilibrium, the profit maximizing quantity is

L0 la—clb— (N - Ds]}b+ (N — 1)s] (5)
26+ (N = 1)s

If a firm sets its price, it maximizes
T = (Pi—C)(a—bpz‘-FZSpj) (4)
J#
In a symmetric equilibrium, the profit maximizing price is given by

a+ be
’= 2b— (N — 1)s (6)

p

We want to analyze a situation in which firms of both types coexist
in the market. Assume therefore that there are n Cournot players and
N —n = k Bertrand players. Without loss of generality, we identify the
first n firms as the Cournot players, and the last k£ firms as the Bertrand
players. Unlike the pure cases in which there are players of one type only,
here the characterization of the behavior of firms may be problematic.
If we tackle the issue from an eductive point of view, we should conclude
that firms are playing different, and mutually inconsistent, games. In
fact, the very definition of an equilibrium becomes problematic when
firms are considering different strategy spaces *.
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This difficulty vanishes when we consider the issue from an evolutive
point of view. In an evolutionary game, possible behavioral types are
identified a prior: by the available strategies; therefore, strategies must
be different across behavioral types. The problem now becomes rather
that of understanding the conditions under which each player embraces
a given behavioral type, i.e., decides to play in a certain way. In our case,
we assume that two different behavioral types coexist in the market: a
Cournot type player, that sets a quantity z = 2, and a Bertrand type
player which sets his price at the level p = p?.

This characterization of behavioral types may be considered too
simplistic. In particular, we are assuming that each player keeps his
strategic variable at the equilibrium level of the pure case even when
facing players of a different type. There is no particular presumption of
rationality behind this assumption, in line with the evolutive approach,
where the specification of available strategies is somewhat exogenously
fixed. The advantage of paying less attention to individual choices is
that we can thus concentrate on the structure of the interaction among
individuals. We could of course consider more complex specifications of
the available behavioral types; in this respect, the present analysis can
be considered a first, and in our opinion relevant, step.

A first obvious consequence of the above assumptions is that the
‘equilibrium’ will be asymmetric *. Let us therefore consider each be-
havioral type separately. As to Cournot players, we must determine
the price at which they sell their fixed quantity €. We will denote
this market clearing price by p“Z. The demand function for a Cournot
player is

vf =a—0pfP+s5) pfP + skp? (7)
=2

Exploiting symmetry of Cournot players and using (5) and (6), this
expression can be solved for p“Z. Easy but lenghty calculations show
that

cp_ _ ab+t c[b* — (N — 1)%s?] N sk(a + bc)
20+ (N = 1Ds]lb—(n—=1)s] * [2b— (N = 1)s][b— (n — 1)s]

(8)




It is possible to show that, very intuitively, p¢ B decreases as the
number k of Bertrand players rises. Obviously, ‘equilibrium’ profits 7¢8
are defined as (p©¢? — ¢)x.

We consider now a Bertrand player. His demand function is

pP =a - BxPC — (k- 1)28¢ =y ) af (2))
=1

By taking account of this, we easily obtain the ‘equilibrium’ quan-
tity B¢ for the Bertrand firms as

po _ alb+ (N =1)s] [0* = (N - 1)2s2]p? + snx® 9)
T b+ (k—1)s b+ (k—1)s

where ¢ and p? are defined, respectively, in (5) and (6). It is in-
teresting to notice that the ‘equilibrium’ quantity for Bertrand firms
B¢ decreases when the number of Bertrand players rises. The reason
is that, as already noted, when k increases the ‘equilibrium’ price for
Cournot firms is reduced °.

The profit for Bertrand type firms is 78¢

=(p¥ —c)z

3. Replicator dynamics for the ‘playing the field’ model.

In the previous section we have considered a one—shot formulation
of the oligopoly game. In this section we want to analyze the changes
over time in the distribution of firms across the two behavioral types
as the relative performance of the two available strategies is observed.
In other words, we address the following question. Given an initial
distribution of firms across the two behavioral types, we want to deter-
mine whether firms maintain their initial behavior when time goes on, or
rather switch to the alternative behavioral type. In this way, we can ask
whether there is an invariant stationary distribution of behavioral types
that attracts the economy, i.e., a distribution which is an asymptotically
stable stationary point for the market dynamics. In particular, it will
be interesting to characterize such distribution(s), and to see whether
Bertrand and Cournot type firms can coexist in the market in the long
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run. If this is not the case, we shall ask whether a type tends to prevail
on the other, and which one.

To this end, we shall make use of a dynamic model which has
found a wide range of applications in the literature on evolutionary
games (Nachbar, 1990). This model consists of the specification of a
dynamical system, known as replicator dynamics, in which the distri-
bution of the various behavioral types tends to change according to the
relative performance of the corresponding strategies. In particular, it is
assumed that the change in the number of individuals embracing a given
behavioral type is continuously proportional to the number of individ-
uals embracing that type ¢. The factor of proportionality depends on
the performance of the corresponding strategy w.r.t. the average per-
formance. It must be emphasized that the relative performance of the
various behavioral types depends in turn on the number of individuals
embracing each type. This makes the replicator dynamics nonlinear in
the distribution of behavioral types.

In our case, the relative performance is given by the profit differ-
ential 78 — 7B The interpretation of the replicator dynamics is
therefore as follows. The number of firms which decide to play a certain
strategy increases whenever playing that strategy has yielded above av-
erage profits. More specifically, with two behavioral types, the number
of firms which adopt a certain strategy increases if and only if that
strategy guarantees larger profits. Note however that even if a strategy
yields larger profits given a certain distribution of firms across behav-
ioral types, it does not necessarily follow that this strategy keeps on
being the more rewarding as a larger and larger number of firms tends
to adopt it.

In conclusion, our replicator dynamics can be written as

- 1
k= k[xBC - —N(erB + kErBY)] (10)

Here we have assumed that the number of firms adopting each
strategy may vary continuously. In fact, n and k can take integer values
only. Following Seade (1980) we may simply interpret this procedure as
taking the value of k at the relevant points of the state space.

A simple rearrangement of (10) gives
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— 7¢PB) (11)

Looking for a stationary distribution of behavioral types means look-
ing for values of k such that £ = 0. This clearly shows that extreme
distributions of behavioral types (i.e., all firms playing either Bertrand
(k = N) or Cournot (k = 0)) are always stationary points for the repli-
cator dynamics.

In general we might have more stationary points for 0 < k& < N,
depending on the actual form of (11), i.e. of the profit differential as a
function of k.

After some tedious algebraic manipulations it can be shown that

BC_ _cB  _ SGtGk
o+ &1k + &ok?

where (o = s(N — 1)[a(4b® + 4b*s(N — 1) + bs?(N? — 1) — Ns3(N —
1)?) 4+ c(4b* +4b*s(N — 1)+ b2s2(N — 3)(N — 1) + bs*(N — 2)(N —1)% —
PN = 2)(N = 1)3)]; (1 = 28%(a + be)(N — 1)%; & = b2 + s2(N — 1);
& = s(2b— Ns); & = s2.

These coefficients are always positive. This is obvious as regards (3,
&o and &». The positivity of &; is a consequence of (3). The parameter
Co 1s positive iff the term in square brackets is positive, which is always
the case 7. It is easy to check that & + &1k + &-k? is always positive
for k > 0. The only possible interior stationary point could be at
k* = —(o/(1. Since both {y and (; are positive, k* is not admissible as
a stationary point. We have therefore proved

(12)

PROPOSITION 1. The evolutionary game described by (11) admits as its
only stationary points the distributions k = 0 (all players are Cournot)
and k = N (all players are Bertrand).

The real issue, however, is to determine whether the stationary
points are (asymptotically) stable, that is whether the market tends to
approach it as time passes. Since the dynamics (12) are defined on the
2-dimensional simplex k + n = N, in order to reconstruct the global
dynamics it is sufficient to study the local asymptotic stability of the
stationary points. In view of (12),



3 Co + 1k I ;
b o + &1k + &2k =FH) ()

One can prove

PrRoOPOSITION 2. The only asymptotically stable stationary point for
(11°) is k = 0. Therefore, in the small numbers case Cournot behavior
tends to prevail on Bertrand behavior on evolutionary grounds.

PrROOF: F'(0) x (1&9— (p&;. On the other hand, F'(N) « (1€ — (o1 —
2C0€2 N — (15 N?, that is, F'(N) < F'(0). Moreover, from Proposition 1
and from elementary geometrical considerations, F’(0) and F'(N) must
have opposite signs. Therefore, F'(0) > 0. This completes the proof.

4. Replicator dynamics for the ‘random mating’ model.

In the previous section, we have considered the case where the num-
ber of firms in the market is small enough to justify the assumption that
firms are able to identify all of their potential opponents. In this section
we analyze the opposite polar case of the literature on evolutionary dy-
namics, known as ‘random mating’ or ‘pairwise contests’ [see Maynard
Smith (1982) and also Vega Redondo (1988)]. In this case, the mar-
ket is so large that firms are not able to identify all of their potential
opponents. In particular, we are considering a fairly large population
of firms which are assumed to match randomly two by two; firms are
drawn from an uniform distribution over the population.

A possible interpretation of this mechanism is that firms need a
public license to be able to sell, and a one shot license is given in each
instant to two firms selected at random. An alternative rationalization
could be the following. Suppose that firms can compete in a limited
number (say, one) of small, identical local markets that can accommo-
date two firms only. Each firm chooses its market without knowing the
rival’ s identity, so its choice is random. Thus, each firm meets only
one, randomly selected rival.

Clearly, given the stochastic nature of the mechanism, payoffs for
the firms are now defined on an expected (i.e. ex ante) basis. The new
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model can be obtained from that of the former section by setting N = 2.
In particular, one has

c_la—cb—s)|(b+s)

T 2b+ s <5)

and
g a+bc ,
— 6

When a Cournot player meets a Bertrand player, his price will be

cp_a+spP—z¢ a+bc  s*a—c(b—s)] (8)
B b 22— b(4b? — s2)

Not surprisingly, it is possible to check that p? < p©P < p©. On
the other hand, when a Bertrand player meets a Cournot player, the
quantity he supplies will be

_a—pP—q2¢ bla—c(b-s)]  s*la—c(b-s) :
= o] B 2b—s b(4b? — s?) (9)

T

where a, $ and «y are as in (2), setting N = 2. Once again, one gets the
rather intuitive result that 2% < 2B facing a less aggressive opponent,
the Bertrand player is able to sell a larger quantity than in the Bertrand
equilibrium.

The ex post profit level of Cournot players is 7€ = (p© — ¢)a¢
when the rival is another Cournot player and 7“8 = (p©? — ¢)2¢ when
the opponent is a Bertrand player. Analogously, we can define nf =
(pP —c)zB and 78C = (pP —¢)2BC. It is possible to prove the following:

LEMMA 1. In the ‘random mating’ model, 7¢ > 7B¢ > 7¢B > 7B,

The proof, obtained after simple algebraic manipulations, is omit-
ted. Notice, however, that profits in Lemma 1 are to be meant as ex post
ones. Therefore, these are not the relevant payoffs for our evolutionary
game.

To derive the dynamics for the ‘random mating’ model, we need
define expected profits. If we denote by p the initial proportion of the
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Bertrand players across the population, a Cournot player’ s expected
profit is given by

E(r%) = (1—p)r° + pn®? (13)

Whereas, a Bertrand player’ s expected profit is

E(n?) = px® + (1 = p)xP (14)

Our replicator dynamics can thus be written as

o= p{B(r®) — [uB(x®) + (1 - ) E(x)]} =

u(1 — w)[E(x?) - B(x)] = G(u) (15)

Of course, pr = 0 and p = 1 are stationary points of (15). We must
moreover check whether there is an internal stationary point. This
could be the case when E(r?) = E(x©), i.e. when un? + (1 —p)7B¢ =
(1 — )7 4 pun©B. This means that if the internal stationary point
exists, it is given by p* = (78 — 7€) /[(z B¢ — 7€) — (zB — 7 B)]. Asit
can be checked using Lemma 1, either u* < 0 or u* > 1, and therefore
no internal stationary point exists.

This proves

PROPOSITION 3. The evolutionary game described by (15) admits as its
only stationary points the distributions 1 = 0 (all players are Cournot)
and p =1 (all players are Bertrand).

Notice that this finding hinges only upon the fact that #? < 7¢B,
which is quite a general result.

Proceeding as before, now we have to determine the global dynam-
ics of (15). It turns out that

PROPOSITION 4. The only asymptotically stable stationary point for
(15) is o = 0. Therefore, in the large numbers case Cournot behavior
still tends to prevail on Bertrand behavior on evolutionary grounds.

PROOF: G'(p) = (1 = 2p)[pr? + (1 — p)rP — (1 — p)7© — pm©P] +
(1= p) (7B — 7B 4 7€ —72CB). G'(0) = 7PC — x€, which is negative
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from Lemma 1. On the other hand, G'(1) = —(7n? — #¢8), which is
positive from Lemma 1. This completes the proof.

Note that, from Lemma 1, when two players of different types meet,
the Bertrand player is the one that makes larger (ex post) profits. On
the other hand, if the evolution is driven by average (expected) profits,
it 1s the Cournot strategy that attracts the whole population of firms.
The intuition is the following. When two different players meet, the
Cournot type player would not gain by changing his behavior, given
the opponent’s behavioral type, because 72 < 7. On the other
hand, a Bertrand type player, although his profit is larger than his
rival’s, would be better off by choosing a different strategy, given that
his opponent remains a Cournot player (7€ > 78¢). Notice that just
these inequalities are needed to determine the signs of G’(0) and G’(1),
and thus the result in Proposition 4.

REMARK. The asymptotic stability of Cournot behavior could also have
been proved by noting that, from Lemma 1, one has that p = 0 is
an evolutionarily stable state for the ‘random mating’ model (whereas
p = 1 Is not) and by invoking the standard result that when payoffs
are linear w.r.t. the distribution of behavioral types every ESS is an

asymptotically stable state of the replicator dynamics [see e.g. Hofbauer
and Sygmund (1988)].

5. Conclusions.

It is interesting to stress that under both the ‘playing the field’ and
the ‘random mating’ interaction structures, our analysis leads to the
same result, i.e., that, Cournot behavior is always selected by our evo-
lutionary dynamics. Obviously, our analysis is just a preliminary step.
A generalized model of a population of firms including more sophisti-
cated behavioral types could give further insights.
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FOOTNOTES

! Kreps and Scheinkman (1983) present an interesting attempt to
reconcile the two kinds of behavior. Another relevant analysis is Del-
bono and Mariotti (1990).

2 This amounts to postulate a ‘playing the field’ interaction struc-
ture. See Maynard Smith (1982) and also Schelling (1978) for a pio-
neering contribution.

% Friedman (1988) analyzes the case where firms can choose quan-
tity and price, stressing how the existence of equilibria is extremely
problematic in this instance.

* As behavioral types are exogenously given, the word ‘equilibrium’
here simply means a situation of market clearing.

® Furthermore, it can be shown that the total quantity sold by
Bertrand firms kz?¢ increases with k.

% This rules out the possibility that at any given moment there is
a massive shift of the population towards the most rewarding strategy.

" This term can be rewritten as: 4(a+bc)[b® +b2s(N —1)]+as?(N —
D[B(N+1) = sN(N = 1)]+cs*(N = D){b*(N - 3) + s(N = 1)(N - 2)[b—
(N —1)s]}. The first term is obviously positive. The second and the
third term are both positive from (3).
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