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ABSTRACT

In this paper we study the choice of competing technologies with Increasing returns
occasioned by learning-by-doing and learning-by-using phenomena. We study under what
circumstances one technology can achieve a monopoly and eventually take the whole
market by formulating a firm's optimal decision problem, when both uncertainty and
Increasing returns to adoption are present. In contrast with Arthur (1989) we allow agents
to learn: the formulation of the decision problem takes into account the revision of the
probabilities on the future states of the adoption process, according to a version of the two-

armed bandit problem.






1. INTRODUCTION

This paper explores the dynamics of allocation under increasing returns occasioned
by learning-by-doing and learning-by-using phenomena. We study the choice between

technologies competing for adoption.

This issue has been tackled by Brian Arthur and Paul David in their writings on
cumulative causation occurring in path-dependent processes. They argue that "history
matters" when Increasing returns to adoption are introduced. If one technology gets ahead
by good fortune, it gains an advantage, with the result that the adoption market may "tip"
in its favour and may end up dominated by it (Arthur, 1989). Given other circumstances,
a different technology might have been favoured early on, and it might have come to
dominate the market. Thus in competition between technologies with Increasing returns
ordinarily there are multiple equilibria. As to which actual outcome is selected from these
multiple candidate outcomes, it is argued that the prevailing outcome turns out to depend
on the path which has been imtially chosen. In particular, the resulting outcome may be

inefficient; that is, the market may be locked-in to the "wrong" technology.

‘The possibility of ending up with a "wrong" choice has also been stressed by the
literature of statistical decision theory referring to two-armed bandit problems. In the
basic model of a two-armed bandit problem (Bellman, 1956), a decision maker who follows
optimal strategies will after an initjal period of sampling settle on one arm and play it in
preference to the other. However, the arm chosen will not necessarily be the correct one.
Notice, incidentally, that the literature on two-armed bandit problems appears quite

fragmentary and has rarely been applied by economists.

The purpose of this paper 18 to provide a link between the two views. Such a link



follows from the following remark. In Arthur's paper (1989) there is a weakness: agents
behave myopically. That 18, they do not modify their expectations as the fortunes of
alternatives change during the adoption process itself. In our paper, on the contrary, we
try to bring together the two features of Increasing returns to adoption and non-myopic

behaviour.

In Arthur's model randomness is introduced by lack of knowledge of the arrival
sequence of the adopters who have natural preferences on different technologies. His model

18 developed within an equilibrium analysis.

In our paper, on the contrary, randomness enters in a homogeneous adopter-type
model because technological improvements occur in part by unpredictable breakthroughs.
We study under what circumstances one technology can achieve a monopoly and eventually
take the whole market, by formulating a firm's optimal decision problem. The formulation
of the decision problem takes into account the revision of the probabilities on the future

states of the adoption process. This yields a version of the two-armed bandit problem.

We show that by allowing agents to learn in a Bayesian way, lock-in to inferior
technologies is still possible (Section 3). An early run of bad luck with a potentially
superior technology may cause the decision-maker, perfectly rational, to abandon it. Put it
another way, escape from inferior technological paths is not guaranteed. Moreover, the
stronger the learning-by-doing, learning-by-using effects, the more likely is that a "wrong"
technology is locked-in (Section 4). That is to say, increasing returns have the role of

strengthening the probability of getting to an inefficient result.

The plan of the paper is as follows. In Section 2 the model and the main



assumptions are introduced. Qur central result is proved and discussed in Sections 3

and 4. Finally, in Section 5 some conclusions and final remarks are contained.



2. THE MODEL

We consider two unsponsored technologies, A and B, which are available for
performing the same task and are competing passively for a market!. Randomness enters in
this homogeneous adopter-type model because technological improvements occur in part by
unpredictable bréa.kthroughs. Moreover, as adoptions of A (or B) increase, learning-by-
using and learning-by-doing effects? take place and improved versions of A (or B) become
available, with correspondingly higher payoffs or returns to the adopter. We shall suppose
that the one-period returns to the two technologies A and B are described by the following

Table, where n A and ng denote the number of adoptions of A and B respectively.

TABLE 1

Returns to adoptions

A: H A(n A) with probability II A
L A(n A) with probability 1 -1 A

B: Hg(ng) with probability Iy
LB(nB) with probability 1 — HB

"Unsponsored" technologies is a term coined by Arthur (1989). Following this author, we
will say that technologies are "sponsored" if they compete strategically, that is, if they are
products that can be priced and manipulated. Technologies are "unsponsored" if they
cplzlpete passively, and adoptions of one technology displace or preclude adoptions of its
rivals.

*The two phenomena are different qualitatively. Learning-by-doing is a phenomenon due
to which cost of production decreases with accumulated knowledge, which is usually
measured by the volume of production. Given a certain volume of production, cost of
production also decreases the more a technology is used, and the more is learned about it;
that is, the technology improves because of learning-by-using.



and the following assumptions hold:

Assumption |. Hi(') and Li(') are continuous functions and are non-decreasing

in n,i= A, B.
Assumption 2. For any Ny = ng=n we have Hy(m) > Hg(n) > Lg(m) > NG

Assumption 3. Returns to adoption increase but are bounded:

ny- o
limni_’ ® Ll(nl) = El <wm
i=A B

Assumption 1 is a central assumption. It means that there exist experience
advantages. Assumption 2 implies that technology B is less dispersed than technology AS.

Assumption 3 states that experience effects vanish, at least in infinite time.

With this formulation two aspects of technological improvement can be captured:
the "endogenous" aspect due to learning-by-doing and learning-by-using effects, such that
as adoptions increase , improved versions of the technologies become available (Table 1 and
Assumption 1); and the "exogenous" and uncertain aspect of technological change, because

of which a "high" payoff or a "low" payoff can result (Table 1 and Assumption 2).

‘The decision-maker does not know the parameters II A and IIB with certainty. He

decides which technology to adopt at each stage after consulting his prior beliefs about II A

*For simplicity, we do not consider the case where H, and Hg (and L A 8nd Lp) cross each
other: the analysis, however, could be generalized to this case as well.



and HB’ and examining the record of "high" payoffs (subscript H) and "low" payoffs
(subscript L) on the technologies so far.

2.1. PRELIMINARIES

Let us denote by nE, ng (and nk, n]g) the number of times that a "high" payoff (or
a "low" payoff) is recorded for technology A and B respectively.  Obviously,

ng + nk =n, and ng + n]% =np. We define the following statistics:

H
—_1 — _1nj L
NTmFL Mg yT i=AB

Simple rules for updating m. and I, can be derived.

If technology i is chosen, then m; becomes (mi +r)/(1+ r,) if a "high" payoff is
obtained, while it becomes mi/ (1+ ri) if a "low" payoff is obtained. The information from
the sample is contained in (m,r) = (m YL TRYY rB) belonging to a fourfold copy of the
closed interval [0, 1].

Given our assumption that the decision-maker does not know the parameters IIi
with certainty, we suppose that he possesses prior beliefs about the parameters,
summarised by a prior density function g(Ily, Ig) such that! g(I A dg) > 0 for all
(I, Op) € [0,1]°

*In order to avoid those situations where one cannot lock-in to the wrong technology, since
1t looks 8o bad at the start that it will never be tried, we assume that the supports of the
initial priors are not disjoint, so that both technologies will be used with positive
probability.



At each stage the most reliable estimate for II A’ HB 18 given by the posterior mean
of the decision-maker's beliefs about the values II A HB’ given the sample information
(m, r) and the prior density g(II A IIB). In particular, if experience gives (m, r), the prior
beliefs will be updated from g(HA, IIB) to j(HA, HB’ m, r) according to Bayes's rule.
Therefore the posterior mean of the decision-maker's belief about the value Hi’ given (m,r)

and g(]IA, HB) 18
(1) A(m, 1) = ]; ]; I (I, Og, m, r)dHAdHB, i= A, B

Notice that A, is the mean of a posterior distribution based on n, = (1—ri)/ri
observations. The function /\i(m, r) is defined and continuous for all (m, r) such that
;> 0,1=A, B. It can be extended by continuity to [0, 1]4 since hmr,' Lo Amn) = m..
This follows from the fact that as ri—oO the posterior distribution approaches a normal

distribution with mean equal to the sample mean.

2.2. THE CHOICE OF TECHNOLOGIES

The decision-maker will choose the technology that maximizes the expected
discounted value of his profits over an infinite horizon. Let 6, 0 < 6§ < 1, be the discount
factor. In order to compute the expected discounted value of the profits we will state the

problem of the decision-maker as a dynamic programming problem.

@ max E { 52 &y, F A@; Agt)) +(1-y)Fy 1~rB§t) ]}

Y: I'B
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subject to y, € {0, 1}

and the sequential constraints that:

yp=1
rA(8) = 14 (t=1) /(1 + 1, (t-1))
rp(t) = rp(t-1)
mp(t) = mp(t—1)
[(mA(t—l) + 14 (4=1)/(1 + 14 (t-1)), if "high"
A

my (t-1)/ (1 +1,(t-1)),  if "low"

H l-rA(t) " "
(A { A i thish

FA———(—}-
TAlk L, (T Alt)
A(———(-D-)’ if "low"
A

v, =0
rg(t) = rg(t-1)/(1 + rg(t-1))
rplt) =r,(t-1)
{(mB(t—-l) + rg(t—1)/(1 + rg(t-1),  if "high"
B t) =

mp(t-1)/ (1 + mp(t-1)), if "ow"

m, (t) = m 4 (t—1)

Hy(PBY)  if mhi g
B L (l-rB(t) i "l ow!
B

where [l—ri(t)}/ri(t) is the number of adoptions of i at time t.  Obviously,



[1- ri(O)]/ri(O) =0,1i= A, B.

ATTA TA

Let hA(m, l') = (“—1—3— T————A )

A TA
Wm0 = (%, mp 175, 7B

mg t B
bpm, 1) = (mp Y- ma I"-T—_B)

m r
ln(m,r) = (m B r B )
BV T A’I+rB’A’I+rB‘
Associated with (2) there is the functional equation:

(3) W(m, 1) =

l1-r l1-r
max {) , (m,1)[H A(—,Xé) + 6W(hg ()] + (1= Ay (me))[L (= AA) + WLy (m,r))];

\g (g (- p(m)] + (1 - Ag(m,0)[L

T
which may be written as:

(4) W(m, r) = max., _ AB {Vi(m, r)}

where Vi 18 defined by:

11
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1-r. 1-r.
(5) Vi(m, 1) = [A\(mr)H (=) + (1 - A(m,n)Ly(=)] +
1 L

+ S{Ai(m,r)W(hi(m,r)) +(1- ,\i(m,r))W(Ii(m,r))}
Lemma. The functions W(m,r) and Vi(m,r) are continuous.

Proof The proof is by an inductive argument. Let:
WO(m, 1) =0
1
Wi(m, 1) = max;_y g { Vi(m)},
where Vi(m,r) = ,\i(m,r)Hi(l}i) + (1=A(m,p))L, (A8)

WT(m, r) = max, _ =A, B { VT(m 1)},
where V7 (m,r) = X (m, ), (—_t) + (1-A(m,1))L. (l‘_fi) +
52 (m, r)WT—l(h (m,1)) + (1= Ay(m, r))WT— (L(m,2))}

The Lemma can be proved through the following stepa.

STEP 1. The functions WT(m,r) and V'ir(m,r) are continuous.

Indeed, the continuity of A. (rn 1) and W(m, r) = 0 establish the property for t =

suppose that VT 1(m r) and wi- l(m r) are continuous, then also v ; (m,r) and

wi-1 (m,r) are, because, by the induction hypothesis, they are sums of continuous

functions.

STEP 2. The functions WT(m,r) and V?(m,r) are monotonic in T.

Indeed, obviously Wl(m,r) >W°(m,r). If we assume that WT—I(m,r) > w2

every (m,r), then we get:
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wT (m,r) > max{J , (m, r)HA(—-—-—) + (1= 4 (m, r))LA(—-—-—) +
A 5 (m, r)W (hA(m 1) + (1—/\A(m r))W (IA(m 1)];
(m f)H (——") + (1—/\B(m f))LB(——") +

fAg(m, r)WT (bp(m,0)) + (1=-dg(m, )W 215 (m,r))]} = W (m,0).

STEP 3. The functions W (m,r) and V' (m,z) are bounded above and converge.

Indeed, consider max{H, EA’ HB’ Lg} = HA' For 0 < § <1, it follows that HA/(l - &)
is a finite number. Obviously, W°m,;)=0<H A/(1=8). Moreover
Wimr) SHy <H,/(1-48). If we assume that Wl m,r) SH, /(1 - 8), then it

follows:

wT (m,r) < max { A

-) (mr))LA(——-)+ §H, /(1 - 6)

Ap(m,r)Hg( ;
A/(1_6)<HA+5HA/(1_6) A/ =9).

Since W1 (m,r) is monotonic in T and bounded above, then the sequences { W (m,r) } and

By+a —AB(m,r))LB(-;E—) + 60, /(1 - )} = Wm,r) +

{ vl ; (m,r) } converge.

STEP 4. The functions WT(m,r) and V'ir(m,r) converge uniformly to W(m,r) and V.(m,r).
Indeed, the following inequality clearly holds:

W(m,r) <Wlimr) + 61 H A/(L = & and therefore [W(mz)— W(mur)| <
§TH, /(1 5). Since this inequality is independent of (mr), then uniform convergence is

established. An immediate consequence is that W(m,r) and V.(m,r) are continuous. n

Let Zg = {(m, )€ (0, 1)4; Vg(m, 1) > Vi(m, 1)} Since Va(m, r) and Vg(m, 1)

are continuous, then ZB 13 an open set.
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3. WHEN DOES TECHNOLOGY B ACHIEVE A MONOPOLY ?

The following result establishes up to which point the choice of technology A is not

convenient,

PROPOSITIONI. For every I} such that IIg > II§ > 0 there exist € > 0, 3> 0 such
that Vp(m, r) > V , (m, r) whenever my +1, <E,
mBZHB"Hé>O’ and 0 < § < 0.

Proof The proof consists of two steps.

STEP 1. Consider K = {(m,r) € (0,1)4; my =1, =0, mpg2IMg—1g >0}, which
18 a compact set. Consider Zg ={(mr) € (0,1)4; Vg(mr) > VA(m,r)}.

We want to show the conditions under which it happens that K C ZB' Consider:

1- 1-
Vg(0, mg, 0, rg) = Ag(0, mg, 0, rB)HB( rfB) + (1 - Ag(0, mp, 0, rB))LB( r;B) +
B

+ 6{Ap(0, mp, 0, rg)W(h(mp)) + (1_= Ag(0, mp, 0, rg))W(l(mp))} > Ly(* " B)
B

The last inequality holds under Assumption 2.

Suppose now that VB(O, mp, 0, rB) < VA(O, mp, 0, rB). In this case
Ww(o, mg, 0, rB) = VA(O, mg, 0, rB) = TJA + §W(0, mg, 0, rB) because
AA(O, mg, 0, rB) =my =0if ry 0; that is, VA(O, mg, 0, 1g) = EA/(I — §), which is a

contradiction if LB(l';rB) >L,/(1—-¢), thatisif §< 3= 1-L, /Lyl l;rB). Therefore,
B B

SNotice that 3> 0 if Ig 18 sufficiently small, say, if rg < ;B' By assumptions 2 and 3,
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if § <9, then VB(O, mg, 0, rB) > VA(O, mg, 0, rB).

STEP 2. Since ZBis open, then for each (0, mg, 0, rB) € K there 13 a suitable ball
(in the max norm) centered at (0, mp, 0,rg) which is contained in Zg. Since K is
compact, we can find a finite collection of such balls covering K, i.e. K C ng Bj' where J is

a finite set. Let £ be the minmimum radius of the Bj's with j € J. Then consider:
4
Ke{(m,r)E(O, 1) ymy +ry < e,mBZHB-—Hé>O}

Notice that every (m,r)é€ K belongs to some Bj for a suitable j€J. Hence
max{|m, |, ]mB—mle, lral, IrB—rle} Sej, for any (m, 1) € K% where € is the
radius of BJ. Thus we get K& ¢ ZB' n]

In Proposition 1 the expressions:
(5) mA+1'A<€, &deBZHB—Hé>O

give an exact specification of what is meant by "sufficiently bad" experience on technology
A and "sufficiently good" experience on technology B.

Then Proposition 1 can be interpreted as follows. If the decision-maker observes
that after a certain number of sequences on A and B, experience on technology A is
sufficiently poor, while it is sufficiently good on B, then, for appropriate values of the

discount factor §, it is more profitable to choose B rather than A. To complete the proof,

there exists EB' 0< ;B < 1. Obviously, we will take rg a8 small as necessary for § to be

positive.
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we need to show that it is possible that experience on technology B is not so erratic that
the decision-maker will never choose technology A again. Actually we can prove the

following:

PROPOSITION 2. A decision-maker who follows an optimal strategy will with positive
probability choose technology B infinitely often and A only a finite

number of times.

Proof. A proof can be given which follows the argument in Rothschild (1974a),
p. 197-8. o
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4. LOCK-IN TO THE "WRONG" TECENOLOGY

The results we have obtained in the previous Section make no use of the relation
between the true probabilities II A and IIB. In particular, nothing in Proposition 1 and
Proposition 2 guarantees that technology B is the more efficient one — that is, the
technology the decision-maker would have chosen had he known the exact sequence of
“high" and "low" payoffs. As a consequence, the market may be locked-in to the "wrong"

technology.

In our model we can identify two distinct forces driving the system to lock in to one
technology. The first is the reduction of uncertainty. When the adoption process begins,
the merits of neither technology are well-known. An important aspect of early use of the
technologies is simply the reduction of this uncertainty. This reduction will, by itself,

cause lock-in to occur, and is the sole cause of it in the simple two-armed bandit.

The possibly inferior technology result can be a result of the initial priors, or from
bad luck with the first implementations of the superior technology. The inferior technology
can then be used. If it does not have very bad luck it will continue to be used , and
because the other is not being used, it has no way to demonstrate its superiority and

therefore the market is locked in to the former.

In our model, however, there is a second mechanism driving lock-in, that is, the
presence of increasing returns. This is the driving force behind Arthur's (1989) results. In
our model the presence of increasing returns has an effect on the probability of locking in to
an inferior technology. In particular, the lock—in result occurs more quickly, the stronger

the increasing returns to adoption are. The following result holds:
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PROPOSITION 8. The stronger the learning-by-doing, learning-by-using effects, the

more likely is that the "wrong" technology is locked-in.

Proof. Following Gittins (1979) we can construct a Dynamic Allocation Index (known as
Gittins index) for each technology 1,1 = A, B. The index is defined as follows. Consider a
modification of the above bandit process, which allows the additional option of choosing a
known technology, for which the probability of getting a payoff of value 1 is p, and (1 - p)
i8 the probability of getting 0 (standard bandit process). Let M = Ztmo &t p =p/(1 - §).
Now offer the decision-maker the choice between choosing the known technology forever, or
choosing technology i, i= A, B, at least once, possibly more times, with the option of
switching at some future time to the known one, which must then be chosen forever. The
value of p for which the decision-maker is indifferent between these two options is the value
of the Gittins index for technology i. The Gittins index policy consists in choosing each
period the technology which has the highest index value.
Let o = max [ M, L., ], where:

Ligi(m,r) = Ay(m, 0B, (L0 4 (1-X(m )L +
+ 6 {/\i(m,r)goi(hi(m,r)) + (l—/\i(m,r))gai(li(m,r))}

that is, ¢; is the maximal expected reward for the modified process we have described
above. The Gittins index is defined by M = ¢i(m,r), that is, the options between
continuation with technology i or retirement with reward M must be indifferent. This
implies M = Lipi(m,r). Because of the presence of increasing returns to adoption we get
Lipi 2M, and therefore continuation is always optimal. It follows that
M= Etmo tﬁf'[x\i(m(t),r(t))]‘]i(l;f'tt ) + (l—)\i(m(t:),r(t;)))Li(l;-li."tt )] and therefore we get
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the following Dynamic Allocation Index for technology i:

©) =095 FDmE) sOEEEHED + (-3 (m(), ) L)

From (6) it follows that p increases with the degree of increasing returns to adoption
because the expression within square brackets increases. As a result, suppose that the
inferior technology was used until it had a large lead in learning. The stronger are the
increasing returns, the larger p, the easier it is to gain this lead. Even if the estimates of
the better technology are accurate, an erroneously high estimate of the inferior technology
will allow it to be used, and increasing returns will allow it to continue being used. That is
to say, strong increasing returns have the role of strengthening the probability of getting to

an inferior technology. a]
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5. CONCLUSION

This paper has studied the choice of competing technologies with increasing returns
to adoption. It has been shown that Increasing returns can cause the economy gradually to
lock itself into an outcome not necessarily superior to alternatives, even though the

decision-maker is allowed to learn in a Bayesian way.

This ﬁnding 18 important for policy implications too. Where a central authority
with full information on future returns to alternative adoption paths knows which
technology has superior long~run potential, it can attempt to make the market adopt this
technology. When there are Increasing returns to adoption, in Paul David's phrase (1987),
there are only "narrow windows" in time, during which effective public policy interventions
can be made at moderate resourse costs. But if it is not clear in advance which
technologies have most potential promse, then the central authority intervention is even
more problematic. As it is shown in this paper, an early run of bad luck with a potentially
superior technology may cause the central authority, perfectly rational, to abandon it.

Even with central control, escape from "wrong" technologies is not guaranteed.
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