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1. MODELS WITH A SEQUENCE OF

INNOVATIONS



1.1 Introduction and Taxonomy

Most of the existing literature on the relationship between market
structure and technological competition may be classified according to

the way in which the following features are modelled:

(1) type of R&D competition;
(i1) number of types of players;

(i1i) number of stages of the game,
With respect to (i) previous contributions adopted:

a) auction (for instance, Gilbert and Newbery (1982), Dasgupta
(1982), Vickers (1986) ).
b) non-cooperative game with uncertainty where the strategies are

fixed costs of RE&D (for instance, Loury (1979), Dasgupta and Stiglitz

(1980) );
¢) non-cooperative game with uncertainty where the strategies are

variable costs of RE&D (for instance, Lee and Wilde (1980), Harris and

Vickers (1986) );

d) race (for instance, Fudenberg et al. (1983), Harris and Vickers

(1985) (1986) ).
With respect to (ii) we may find models with

a) n (}2) symmetric players (Futia 1980), Loury (1979), Lee and
—_—
Wilde (1980), Dasgupta and Stiglitz (1980), Reinganum (1982) );
b) n (22) asymmetric players, i.e., one versus (n-1) symmetric
players (for instance, Gilbert and Newbery (1982), Reinganum (1985),

Vickers (1986) ).

Finally, with respect to (1iii), there are
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a) one-stage RED competitions (one-shot games) ;

b) multistage competitions (multistage games).

An excellent survey of previous contributions is Kamien and Schwartz
(1982) and I shall not attempt to duplicate their account of the litera
ture. Furthermore, in what follows I shall mainly focus on a recent
development of this branch of study - models with sequences of competi
tions. A model with a sequence of competitions must not be confused
with a multistage game (e.g. Harris and Vickers (1985) (1986) ) in
which a single innovation (prize) is won through a sequence of moves
(decisions). While both areas represent interesting extensions of earlier
works, I shall confine my attention to the case in which firms compete
for a sequence of prizes (for instance, patents) and I study the
interaction between the outcome of such a multiple competition over

time and the dynamics of market structure (1eadership).

1.2 Motivation

The purpose of modelling a sequence of innovative opportunities is
easy to explain. Most of the existing literature cited in the previous
Section has focused on one-shot games in which two or more firms strive
to win a competition for a prize (for instance, a patent improving the
technology and reducing the production cost). Strictly speaking, it is
slightly misleading to talk about interéction in these models since
decisions are taken once-and-for-all. At most, these models succeed un
provhﬁq an explanation of a single change occurring in market struc
ture; for instance, why a monopoly may become a duopoly, or why a firm
may increase its leadership.2 What these models do not explain is the
complex way in which market structure evolves over time; this task may
be carried out only in a dynamic context, where the interaction among

a sequence of events is explicitly taken into account. Then, if we aim
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at investigating the relationship between market structure and technolg
gical competition, we ought to consider models which incorporate an
explicit sequential structure. Moreover, for the sequential framework
to matter in grasping the interaction between market structure and inng
vations, it is important to capture possible asymmetries among firms
and the source of their different incentives to win (i.e., innovate).
To model some of the complexities which arise when several innovative
opportunities are in prospect is the primary purpose of next pages.

At present there exist two proper models which consider a sequence
of innovations: Reinganum (1985) and Vickers (1986). Since I shall
partly follow Vickers'model, it seems suitable to report his framework
and his main results. Reinganum's work will be briefly outlined and

discussed in Section 1.4.

1.3 Vickers'model

In Vickers'model there is a finite sequence of cost reducing innova
tions. Each innovation is protected by an infinitely long-lived patent
so that imitation is not allowed. The timing and nature of the innova-
tions are common knowledge from the outset. The innovation (prize) is
assigned to the winner of a race. Each race is modelled as a determini
stic bidding game where two firms compete for an indivisible prize
allowing the winner to become technologically leader until the next
patent is won. Firms are asymmetrically placed in so far as they have
different costs: hence, in general they bid differently because they
have different incentives to win each race. There is no discounting.
Payoffs and technology are such that the duopolistic structure persists
but the technological leadership may change. More precisely, four featu

res characterize his model:

(i) a patent race occurs at the beginning of each period;
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(ii) a patent race takes the form of a simple deterministic bidding
game;

(iii) a winner of patent race does become (or remain) technologically
superior to his rival;

(iv} a firm's current profit flow depends upon the levels of technology

represented by the two firms' most recent patents.

The main question addressed in his model is how market structure

evolves over time. More precisely, "... does one firm become increasingly

dominant by winning most or all patent races? Or is there a process of

action-reaction, in which market leadership is constantly changing

hands?" (p. 1)

Let us introduce the technical details of his model. I shall use
Vickers'notation.

The game has T (€oo) stages which we number backwards; t=T, T-1,...,2,1,
and the technology offers a cost level ct for each period. We assume

that
C1< 02< ERR N <CT+1< “Te2

where CT+1= CA is the initial cost of firm A and CT+2: CB is the initial
cost of firm B. Notice that ¢ may be thought of more generally as any
parameter of the cost function.

Each stage (period) a deterministic bidding game takes place giving
the winner the right to employ the cost level associated with that
stage. The prize is won by the higher bidder: he pays the maximum amount
that the other player would be prepared to pay to get the innovation.

In fact denoting b* the maximum amount that the other player would have
paid, for any bid lower than b* there would be active rivalry for the
prize. In other words, b* is the lowest bid to choke off that rivalry.

This seems to be a reasonable condition to impose on an ascending bid

auction. The loser does not forgo his bid.
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TT&xUB) is the profit of the firm during the period in which its cost

is Ca and its rival has cost CP . Tt is assumed that
Teep) 2 0 e, B
Tf(o(,lB) is increasing inB and decreasing in &,
Joint profits when costs are oW and ?ﬁ are defined as
cla,p) = s (Bsot) = T (A, B) + W)
There is no discoumﬁhg and firms maximize their net profits (profits

minus bid expenses) over time. Recalling that stages are numbered

backwards, if firms have costs c and ¢ (k>1), let
t+1 t+k

i

h =Q(t,t+1) - QR(t+k,t)

be the incentive of the currently high cost firm (H) to win patent t,
where§p(s,t) is the net payoff of a firm when it has cost cg and its
rival has i in the subgame beginning immediately after the last race.
Similarly, the currently low cost firm's incentive to win patent t is
€ =Q(t,t+k) - G (t+1, t)
and H wins the patent if hye. Defining
T (s,t) = y(t,s) =Q(s,t) + 5(t,s)

as the joint payoffs, hdeiff

Y (t,t+1)2  v(t,t+k)



If hé@, the winning bid of H ise and his payoff in the subgame

beginning after the race for patent t+1 is

JLOEHGE41) =TR(E+k, t41) + R0, t41) — Q= Tr(tek, te1) + T(t,t+1) — (L, trk)

whereas, if hef

92 (t+k, t+1) =W (t+k,t+1) +T2(t+k,t)

Whithin this model, Vickers proved that

(A) o (t,t+1) >o(t,t+k) , t=1,2,..., T+2,K=2,...,T+2-t
is a sufficient condition for Action-Reaction (alternating winners)

and that

(B) Tr(s+k,s) =0 , for all s and k)1
is a sufficient condition for Increasing Dominance (the low cost

firm wins the current race, for whatever couple of cost levels).

Thus, the way in which the market leadership evolves depends upon
the profit in the product market. When condition (A) holds, the higher
cost firm has a greater incentive to win the race and Action-Reaction
results, i.e., the leadership switches from one firm to the rival. In
other words, the duopolistic market structure persists, but the identity
of the leader changes after each race. Condition (A) may be shown to be
satisfied, under reasonable circumstances, if the competition on the
product market is of the Cournot type (Vickers (1986) ).

When condition (B) holds thefleadership instead is made stronger.
Intuitively, condition (B) might hold in a product market where competi
tion 3 la Bertrand takes place. Indeed, if the lower cost firm charges

the minimum between the monopolistic price (given his current cost level)



and the rival's cost level, the rival's profit will be zero,

The surprising contrast between static and dynamic efficiency is one
of the most interesting conclusions that emerge from the model. Bertrand
(i.e., intensive, in static terms) competition in the product market
seems to involve increasing dominance in dynamic terms. Cournot competi
tion in the product market is instead responsible of a more dynamic
competition, leading to Action-Reaction and to a falling price over

time.

1.4 Reinganum's model

Reinganum (1985) models a noncooperative dynamic game in which at
any time an incumbent monopolist (insider) is challenged by other firms
(outsiders). There is a finite sequence of drastic innovations (see
Section 2.1 for the implications of considering drastic innovations:
the basic idea is that a drastic innovation offers such superiority on
rivals that they cannot offer any effective competition) and each race
i1s a tournament, i.e., the winner takes all the prize and the loser(s)
get nothing. The monopolistic market structure therefore persists, but
the identity of the monopolist may change over time. Thus, the monopo-
listic power (profit) is temporary and it lasts until an innovation is
obtained by one of the rivals (outsiders). The only source of asymmetric
behaviour among the firms lies in the fact that the incumbent-monopolist
receives a profit flow, whereas the other firms do not. R&D costs are
contractual and the presence of technological uncertainty is modelled
by means of an exponential distribution function of the date of success.
Firms maximize expected profits given by the discounted payoff minus
variable and fixed costs. One of Reinganum's main results is that the
incumbent invests less tnan each rival in the current stage. The subgame
perfect Nash equilibrium, which is shown to exist - but see Vickers

(1985), ch. 4, for an assessment of the assumptions required in the
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proof of this result - is symmetric among the (n-1) challengers, while
the incumbent has less than 1/n chance of being the incumbent in the
next stage. The result that at each stage the current monopolist com-
mits fewer resources to R&D than the outsiders and therefore stands a
lower chance of winning may be explained as follows. The monopolist is
currently earning monopoly profits, whereas the other firms (outsiders)
have nothing to lose by succeeding earlier rather than later. The
interpretation of this result reveals also that the sequential structure
is not relevant to Reinganum's findings. This is because if they lose
the incumbent's and a rival's expected payoff after the current race

are identical. Thus, their relative incentives for winning the current
race cannot depend on what happens after it. There is not an effective
difference in firms' incentives to innovate. The only difference is
because the incumbent, but not the outsider, is currently receiving a
profit flow and this makes it more costly (in terms of profit forgone)
for the incumbent to innovate than it is for each challenger, just as

in the models where only an innovation is in prospect (see Reinganum
(1983)). It is this asymmetric position - jointly to the drastic nature
of the innovations - that explains why the incumbent, to quote Reinganum
(1985, p. 90), 'has relatively less incentive to shorten the length of

the current stage of incumbency''.



2. TECHNOLOGICAL LEADERSHIP WITH A SEQUENCE OF

INCREMENTAL INNOVATIONS
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2.1 Drastic vs incremental innovations

In Reinganum (1985) it is implicit that each innovation is drastic
in the sense that the firm innovating first gains a monopolistic posi-
tion and the loser(s) get zero profits. This hypothesis is responsible
for her main result, i. €., the incumbent (monopolist) invests less
resources to RE&D than his rivals and the market is thus always monopo-
lised.

In Vickers (1986) each innovation is such that the firm getting the
patent 'becomes industry leader in terms of technology'; this is true
irrespective of the cost distance from the rival.

In what follows I relax the above-said feature of Vickers! model,
by considering incremental innovations. An innovation is said to be
incremental with respect to a certain cost pattern of the firms when
its adoption may not imply a change of leadership. This definition
captures the idea of small innovations and introduces another aspect
of dependence on the past which is absent in Vickers' (and Reinganum's)
model. Indeed, while in Vickers' model the winner of race t switches
from his cost (whatever it is) to cost ct and becomes (or remains) the
leader, here the cost level of the winner is reduced byAct and the
follower, although winning the race, may still fail in gaining the

leadership. Formally, let

ACT,ACT

e Ao

be the finite sequence of cost reductions allowed by the T innovations
which have been numbered backwards. For sake of simplicity we normalize
cost reductions in such a way that for all iéf[l,?],l&cizl. This means
that each innovation brings about an unitary cost reduction for the
innovator. Let CA:a and oB:b be the cost levels of firm A and B, respec

tively. If A wins a race his cost becomes a-1; if B wins a race his cost
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becomes b-1.

In next pages I shall adopt Vickers' framework and I shall find
sufficient conditions on profits for there to be Increasing Dominance
(ID) and Catching Up (CU), where ID means again that the low cost firm
wins the next (and hence all) races, and CU means that the high cost
firm wins the next race (and hence approaches the rival). of course,

the follower may catch the leader up if, for some iE[i,T},

whereas, if for some ié[i,T] ,Zli)a—b we have "overtaking'" as we will
see below.

In Vickers'notation, labelling H and L the currently high cost firm
and the low cost firm, respectively, H's incentive to win an incremental

innovation race is

h=92(a-1,b) -357(a,b-1)
~and L's incentive to win is

l=92(b-1,a) -92(b,a~1)
when H's cost is a and L's cost is b. Thus, h>l iff

T(a-1,b) > Yv(a,b-1)

and H wins if this inequality holds.

2.2 Results

This Section collects the two main results of this chapter.
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Proposition 1. The following

(H1) X 2R3 TL,ef = 0
is a sufficient condition for ID.

Proof. The proof is by backwards induction. We know that L (whose

cost isJ}) wins a race if

(1) T KF-1) D (e ~1,M)

Let us consider the last race, when L has cost level, say, CL:Z and

H has CH:k for some k)2: Thus (1) reduces to
(2) T (k1) > (k-1,2)
which reduces in turn, by (H1), to
(3) T (1,k) > T(k-1,2)
which holds because of the assumptions on TI namely, because T is
decreasing in its first argument and increasing in its second argument.
Thus, L wins the last race.

Assume now that for races occurring at t=2,3,...,s-1< T, (1) holds,
i.e.

(4) T(t+k,t) >V (t+k-1,t+4) k>1

This means that L wins all races occurring at t=1,2,...,s-1.

Let us now consider the race occurring at t=s. We have to prove that

(5) T(s+k,s) > v (s+k-1,s+1) k>1
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We have
92 (s,s+k) = T (s,s+k) + 9P (s-1,s+k)
and
G2 (s+l,s+k-1) = T (s+1,s+k-1) +52(s,s+k-1)
because in both cases the cost of the bid for the winner (L) is zero.

This is because our inductive hypothesis implies that 32(xX43) =0 for

cK)d%; hence, the high cost firm bid is zero. By virtue of (H1) we can

write
(6) T (s,8+k)~ v (s+1,s+k-1) = 92 (s+1,s+k-1) - 52(;54()
= 3
DR
= Zf'ﬂ(s—t,s+k) - [, T(s+1-t,s+k-1)
£=0 £=0

which is positive because of the properties of TT. Thus, (5) holds and

L wins also race at t=s. This completes the proof.
|

Looking at the economic interpretation of this result, it supports
the intuition behind Vickers' (1986) result (B). The presence of Bertrand
competition in the product market, entailing zero profit for the high
cost firm, gives the leader a greater incentive to win each race than

tha follower.

Proposition 2. The following

(H2) & (*=1,A) > o (efi-1) L S>A,

is a sufficient condition for CU.
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Proof. This proof too proceeds by backwards induction. Consider the
last race: H has CH= k and L has, say, c = 2, for some k> 2. H wins

this race if

(7) T (k-1,2)> v (k,1)
which reduces, being this the last race, to
(8) o (k-1,2) >& (k,1)

which holds by (H2). Thus H wins race at t=1.

Assume now that for races at stages t=2,3,...s—1-<T/H wins; i.e.,
(9) N{t+k-1,t+1) > v (t+k,t) k):z

Consider now race at t=s. We must show that

(10) T (s+k-1,8+1) ¥ « (s+k,s)

We have

(11) 32 (s+1,s+k-1) = M(s+1,s+k-1) + 52 (s+1,s+k—-2)
and

(12) 92 (s+k—-1,s+1) = T{s+k-1,s+1) +32(s+k-2,s+1) ﬁ?(s s+k-1) -

-2 (s+1, s+k—2{]

Notice that (12) is H's payoff in the subgame beginning immediately
after the race at t=s if H wins this race. The three terms on the right

hand side (RHS) have the following meaning:
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T (s+k-1,s+1) is H' payoff in the period after race s;

5E(s+k—2, s+1) is H's payoff in the subgame immediately after race
Yy g y

(s-1), which he wins, by assumption (9);

T2(s,s+k-1) —52(5+1,s+k—2) is the amount that H bids in race (s-1),
i.e., how much L would have been prepared to pay for patent assigned

at t=s-1,

Then, adding (11) and (12) we get

(13)  ~(s+1,s+k-1) =g (s+1,s+k-1) +Y (s+1,s+k-2) -92(s,s+k-1) +
+52(s+1,s+k—2)

Moreover,

(14) 42 (s,s+k) T(s,s+k) + 2(s,s+k=1)

I

and
(15) 52 (s+k,s) =T (s+k,s) + T(s+k-1,s) ~92(s-1,s+k) +32(s,s+k-1)
Adding (14) and (15) we get
(16)  T(s,s+k) = 0 (s,s+k) + 1 (s,s+k-1) -52(s=1,s+k) +32 (s, s+k-1)
i.e., just like (13). Subtracting (16) from (13) we obtain
(17) 7 (s+l,s+k=1) -7 (s,5+k) = [o (s+1,54k-1) - o' (s, s+k)]
+ kr(s+1 s+k-2) - (s,s+k- 1)] - R(s,s+k-1)

+52 (s+1, s+k-2) +452 (s=1,s+k) —QE(s,s+k—l)

Looking at (17), the term in the first bracket on RHS 1is positive by
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(H2). The term in the second bracket on the RHS is positive by (9). In
order to prove the proposition we might show that the remaining expres

sion on the RHS of (17) is positive, i.e., that
(18) -S5¢(s,s+k-1) + SR (s+1,s+k-2) +$2(s-1,s+k) - S2(s,s+k-1) >0

After some manipulations (shown in Appendix A) we see that (18) holds

if
(19) SU(s+k-2,5+1) ¢ (s~1,5+k)

which can be rewritten as

K-4 a?
(20) E: T(s+k-t,s+1) - éjﬂ(s,s+k—t)
t=9

K- Kl
¥ [ Ej‘n(s+1,s+k—t) —-) Ws-1,s+k-t){ { 0
6:3 E=0

Now we will use the fact that (19)~»(18)—+(10). The expression in
the second bracket of (20) is certainly non positive by the decreasing
nessc{TTin its first argument; moreover, it is also patent that the

expression in the first bracket of (20), which we can state as

- e E;i
2: T(s+k-t,s+1) - 24 (s, s+k-t) -Ti(s,s)
t-a )

is negative by the propertiesa TTIandTﬂs,s)2»O by hypothesis. Thus,

(19) holds and then (10) holds. This completes the proof.
»

Condition (H2) guarantees that the currently high cost firm wins
all races. Of course, with T races, A catches B up if, for some ieﬁ,IlZSL
=a-b, where a and b are again the two cost levels of A and B respectively,
before the first race occurs. What happens when A catches B up? At that
point both firms have cost levels b. Then, if there are other races to

be p yed, the name of the winner of the race allowing one to gain the
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cost level b-1 might be decided by chance. Let us consider first the
case when A (the previous high cost firm) wins. Then the situation after
this race is: CA = b-1, CB =b, namely, A overtakes B. What happens at

the next race? The incentives to win next race are
h =5(b-1,b-1) -5>(b,b-2)
and
£ =9(b-2,b) ~32(b-1,b-1)

and B wins if vﬁb—l,b—l) >¥ (b,b-2). If this race is the last one, the
last inequality reduces‘U)s%b—l,b—1)>cr(b,b—2), which holds by (H2).
If that race is not the last one, one can invoke the inductive argument
used in the proof of Proposition 2 and show that the high cost firm
(namely B) wins the subsequent race. Once B catches A up the same rea-
soning applies.

If B wins the race occurring when firms share the same cost level,
we have this situation: CA = b, CB = b-1. Condition (H2) allows one to
prove, again by backwards induction, that A wins the subsequent race.
Thus, when players have the same cost, whoever wins a race loses the
subsequent one. This circumstance is easily explained: since incentives
are equal, net payoffs are zero once firms are level. So, it is as if
the game is over.

If for some i,z&6>a—b, there is overtaking, i.e., the high cost firm
continues to win and becomes the low cost firm. If overtaking occurs,
say, at race s, race s+1 will be won by the other firm, and the evolution
of market leadership will be characterised by Action-Reaction as descri
bed above after CU has occurred.

As far as the interpretation of Proposition 2 is concerned, it is
worth noting that it is not the extension of Vickers' result (A) to the

e ——

increfiental innovations case, but it is a slightly different result.
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Indeed it is not correct to speak of Action-Reaction when we deal with
incremental innovations (in the sense made precise above). Action-—Rea-
ction properly occurs only once the follower has caught the leader up.
After that event, whoever wins a race loses the subsequent one and the

technological leadership continues to switch from one firm to the rival.
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Appendix A

In this Appendix we will show that (19) implies (18) above, as it
was argued in the proof of Proposition 2. Starting from (18), we add

and subtract Q(s+k-2,s+1) and.ﬂ(s,s+k—1). So we get

(21) T (s+1,s+k-2) ~7(s,s+k-1). +92(s-1,s+k) -3 s+k-2,8+1) -

-2(s,s+k-1) +R(s+k-1,s)> 0

Now, add and subtract D(s+k-1,s) and rearrange the terms

(22) E{s+1,s+k—2) —'r(s,s+k—1)] +Ef~(s+k—1,s) —1~(s,s+k—1)] +
+92 (s~1,8+k) -S2(s,s+k-1) +P(s+k-1,s) -

—§2(s+k—2,s+1) >0

The expression in the first bracket is positive by (9), and the ex-—
pression in the second bracket obviously vanishes. Let us detect the
third bracket. Adding and subtracting R(s,s+k-1) and

2(s+k~1,s) we see

that the expression in the third bracket of (22) is positive if
(23) 25 s+k~1,s) M52(s+k-2,5+1) ~32(s~-1,s+k)

Since the LHS is positive, (23) certainly holds if the RHS is negati

ve. This is precisely (19). So, (19)—=>(18).



3. A SEQUENCE OF TECHNOLOGICAI. COMPETITIONS
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3.1 The setting

In the model I am going to present I shall consider a sequence of
technological competitions. This model borrows heavily from Loury (1979)
and Vickers (1986); thus, it seems fruitful to sketch briefly the main
features of Loury's (shared also by Dasgupta and Stiglitz (1980) ) model,
whereas Vickers'model has already been discussed in previous Sections.

Loury's model is a wne-shot noncooperative game in which n symmetri
cally placed firms invest in R&D with the aim of innovating first. RE&D
costs are contractual, i.e., fixed, and the expense in RE&D is then a
lump-sum decided at the beginning of the competition. In Dasgupta (1982)
terminology, each competition is a tournament, that is the winner gets
the entire value of the innovation (the prize; for instance, a patent)
and losers get nothing.3 More precisely, losers incur negative profits
given by RE&D expense. There are no spillover effect in the innovative
activity. There are two forms of uncertainty (see Kamien and Schwartz
(1982) on this distinction): technological uncertainty and market
uncertainty. The former is captured through an exponential distribution
function of the so-called waiting time for innovation (see Appendix B
for the derivation and the main properties of this distribution function);
the latter is captured in the structure of the payoffs. There is
discounting. The firms evaluate the prize equally; then, being symmetri
cally placed, they have the same incentive to win the competition.

Furthermore, at equilibrium within Loury's model each firm is equally
likely to win the competition.

In what follows I shall combine features of both Loury's and Vickers'
models. To be more precise, I consider two firms competing in a finite
sequence of technological competitions. Each competition is modelled
like a Loury competition (contractual costs, market and technological
uncertainty), but I rule out discounting and the infinite time horizon.
Moreover, I focus on the asymmetric situation which arises when firms

have different costs each period and hence different incentives to win
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each competition. During each period between two races there is perfect
patent protection (i.e., no imitation) and there is no spillover effect

in the RED activity.

3.2 The model

There are two firms labelled A and B which invest in R&D at the be-
ginning of each competition (race). There are T (Kw) races, one each
period, which is convenient to number backwards: t= T,T-1,..... s 2,1,

The "leader" is the firm with the lowest unit cost. Let c, =2 and
Cg = b be the initial indices of cost of firms A and B, respectively
(b>Ma y»0). Let X, and A be the efforts in RE&D af A and B, respectively,
t(f[l,T]. 0f course, xt,y } 0.

t
The cost of effort is c(z), z=x,y. It is assumed that

c(z) is strictly increasing and twice differentiable;

c(0) = 0, ¢' (0) = 0, c'"NO0, lim c'(z2)—> ~a

AR
The figure below shows a cost curve which satisfies these conditions

@)
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. +
For any t, if A wmovates first then he receives a prize Vt and B

. - . . . . +
receives Wt - When B innovates first then he receives a prize Wt and A

receives V;.
Let V, and Wt be the incentives (or prize evaluations) to win race
t (t=1,2,...,T) of A and B, respectively. Using Harris and Vickers

(1986) notation we can write.

or alternatively, in Vickers (1986) notation,
V, =g2(t,b) -f(a,t)

Notice that this form of the incentives assumes that the winner gets

a technological lead (as in Vickers'model). Analogously, for firm B

or
W, =532(t,a) -52Ab,t)

where t (<a) is the cost level reached by the winner of the t-th
competition. |

It can be shown (see Appendix B) that the probability that A wins
race t (i.etg innovates first in the t-th competition) is X, /(Xt+yt)
and B winszggkplementary probability A /(xt+yt). The payoff of A when

indices of cost are a and b and firms are going to compete for an

innovation allowing the winner to get cost t is

52 (a,b) =Tr(a,b) + xtVZ vy, - elxy)
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which can be rewritten as

sz(a,b) = T(a,b) + V; + XV, - C(Xt)

Analogously for B we have

a3 =" -—
J‘B(b’a) T(b,a) + ytwt + XtWt c(yt)

X X _+y

£t ¢

=T (b,a) + W + tht - C(yt)

t
X 4y,
s
ItLassumed that
+ - + - S S )
v, N Vt » W > Wt gt QL;,TJ, i.e., both players (firms) prefer
to be first;

Tis strictly increasing in its second argument and strictly decrea
sing in its first argument. This means that the profit of each firm

increases with the rival's cost and decreases with its own cost.

Deleting subscripts, first order conditions are

Bfi/B X = yV/(x+y)2 -c'(x) =0
28/ %y = W/ (xay)? = et (y) = 0

Second order conditions for a maximum are satisfied;

2 3
YW/ % = =2yV/(x+y) T = (%) L0
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(¢

5 2 3
¥R/y = —2xW/ (x+y) - c"(y) {0

Moreover,éfﬂ%/} X > 0 at x=0 provided that y}0, and}3§%/é y>0 at
y=0 provided that x>0. Therefore, the first order conditions describe
global maxima. Hence in equilibrium we have

x* = (vyr/cr (xx) )72y

and

1/2
y* = (Wx*/c' (y*) ) /2 x*
where x* and y* denote the equilibrium values of the effort rates.
Under the above assumptions on V, W, c and T, it is possible to show
that an equilibrium exists in which x* and y* are both strictly positive.
The argument follows the same strategy of Harris and Vickers (1986) in

their existence theorem which they prove in the non-contractual case.

The equilibrium in our context.displays the following important feature
Property 1: At equilibrium

+ - - +
X¥ 3 y*ed VIWedV + W > V + W

Proof. From the two first order conditions we have

V/W = x¥c' (x¥%)/y*c! (y*)
L
This means that the firm with the greater incentive invests more
and then has a greater probability of innovating first.
In what follows I shall find a sufficient condition for a property
analogous to what Vickers (1986) has called Increasing Dominance.
However, given the stochastic framework above, I must redefine such a

pattern of market evolution. I define
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PID (Probabilistic Increasing Dominance): the firm with the lowest
cost has a greater probability'qﬂvduh% race t than the rival; i.e., if

a<b,

\}te[l,'r] DX v
Given Property 1, this is equivalent to

Vt&[lT Vo=V V. 3W -wW =w
)7t t t t t t

As a first step I shall confine myself to the two-period version of
the model, i.e., T=2 and t=2,1. However, once one tries to solve the
model, i.e., comparing V1 with W1 and V2 with W2, one notices that V1
and W1 have relatively simple algebraic espressions, but this is not
unforfunately the case for V2 and W2. Since the comparison between V2
and W2 turns out to be puzzling without any further specification of
the ingredients of V2 and W2 (i.e., of ¢ and TT), I shall prove my main

results using simple functional forms for the cost and the profit func

tions. To be more precise, I use the following functions

cl(z) = 22/2 (z=x,y) and

TT«x,E) :}3~0(+ 5

where O = max [B - |

a(,)g
It is easy to ascertain that this form of c(z) satisfies the properties
we required to the cost function. Concerning the profit function, first
of all it is noteworthy that with this specification each competition

. 3 . 5
among firms is a constant-sum noncooperative game. Indeed,

T p +”H/<;3,o<> _ 26
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Thus, § does not depend on"(andBand it may be thought of as an index of
market profitability (the extent of the ''cake"). Since the caseh :[?
is ruled out by the twofold circumstance that firms have different
initial costs and the innovations are such that the winner gains (or
mantains) the leadership (no catching up),&is strictly positive.
Furthermore, this specification of the profit function satisfies both

properties we assumed above, i.e., profit is
(i) non-negative;
(ii) strictly increasing in its second argument and strictly decreg
sing in its first argumemt,
3.3 Results

The first result is the following

Proposition 3. The following

(H3 )o«>}3::>’1T(x,p):o

is a sufficient conditon for PID.
Proof. Before the beginning of the competition allowing the winner
to get c=2, firms have cost levels CA = 3 and CB = k for some k> 3.
The tree of the game is djqiﬁt/ed in Figure 1.
(Figure 1 here)

In order to distinguish the efforts in R&D for the last race in the

two intermediate nodes (2,k) and {3,2) -~ i.e., when (cA = CI:Z,CB:CH:K)
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and (cA:cH :3,cB =c. =2) - I have denoted il,yl the efforts of A and B,
respectively, once A has won the previous race (t=2) and xl,y1 their
efforts once B has won the previous race. Corresponding to the nodes
other than the initial one, I have specified in Figure 1 the payoffs
of the winner and the loser. According to {H3), the loser of a race
gets nothing (at least) until next race.

We must show that the low cost firm has a greater probability of
winning each race than the high cost firm. The proof preceeds by
backwards induction. Let us consider the last race; i.e., t=1. Firms

have cost levels CA =2 and CB =k or some ky»2. Then, the incentives in

the last race are
v, =TLK) >T(L,2) = W,

because of the assumption thatTis strictly increasing with respect to
its second argument. Thus A, the low cost firm, has a greater probability

of winning the last race because
V1> Wlé-——>x1> y1<~>xi/(x1 +y1) > yl/(X1+y1‘)

Let us consider now t=2, the first (or last but one) race. Firms
have cost levels CA:3 and cBi k for some k}3.

We have
v2=52(2,k> -92(3,2)

=T(2,k) + 32111'(1,10 - c(’>21> - xl‘!r(l,.z) + c(xl)

X +y X+
1 yl 1 yl

W,=$2(2,3) - 52k, 2)

FaS

X + +
1 yl 1 Y

=T(2,3) + y, (1,3 —ely,) —'&111’(1,2) + c(§1>
z

1
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Remembering our choice of Mand c, deleting subscript 1, we can write
A A A ~2 2
V2= (k—2+b)+x(k—l+b)/(x+y)—x /2-x(1+9)/(x+y)+x /2
2 ~ A Ay A2
W = (1+b)+y(2+%) / (x+y) -y /2—y(b+1)/(x+y)+y /2

2

Defining

Z =
£ = k—-1+ 6
e —— ——
2 _\ 5 + 2
N 6+ 1

from the first order conditions of page 1% we may calculate the equili

. o ~
brium values of %, x, §, y:

** = \, £2/(1+2) ; J* = 2 \/'é’z‘/(l+i)
x* = v/(b+1)z/(1+z) ;oy* = z\/ (6+1)z/(1+2)
the

and(corresponding probabilities are

2/(1+2)

L/ (R+§) = 1/(1+4%2) ; 3/ (R+%)

x/(x+y) = 1/(1+2) ; v/ (x+y) z/(1+z)

Hence we can write

V2= (k—2+$)+(k—1+3)/(1+2)—§§/2(1+3)2—(1+6)/(1+z)+z(&—1)/2(z+1)2

A 3 ~
W o= (1+S)+z(2+8)/(1+z)—23(5 —1)/2(7,+1)2—’z‘(1+5)/(1+:£)+s§‘/2(1+z)2

2
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Lengﬂv and tedious calculations show that V2> w2. This means that
A, the low cost firm, has a greater probability of winning also race

t=2, and it completes the proof.
|

Our next result is contained in Proposition 4. It gives a sufficient
condition in the two period case for what I label PNID (Probabilistic
Non-Increasing Dominance). PNID means that the high cost firm at each
stage has a probability of winning at least as great as the probability
of the low cost firm. PNID is a weaker result than AR (Action-Reaction).

I shall confine again myself to the two-period case.

Proposition 4. The following

(H4) o(t,t+1) 2 olt, t+k) k>1

is a sufficient condition for PNID.

Proof. Considering again the extensive form of the game we have
(Figure 2 here)
where the notation has the same meaning as in the proof of Proposition
. W h that W \ dw V..
3. We show tha 12 , an 2) 5

Let us consider the last race; i.e., t=1. Firms have cost levels

CA:2 and CB:k for some k> 2. The incentives to win the last race are
Vlz.n’(lyk) _“(2)1)
WIZW(I)Z) _N(kyl)

and le V1 by (H4). Thus the high cost firm (B) has a probability at

least as great as firm Aoﬁwﬁmﬁjthe last race because
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WV, e ylz'xl & yi/(X1+y1) 2 Xl/(X1+y1)
Let us consider now t=2. Firms have costs CA:3 and chik for some k»3.

Deleting subscript 1, the incentives to win this race are

V=T(2,k) + RW(L,K)/(RA) + §1(2,1)/(R4F) - (D)

- M(3,2) - xMW(1,2)/(x+y) - yW(3,1)/(x+y) + c(x)
for the low cost firm (A), and

W2:'W(2,3) + ym(1,3)/(x+y) + xM(2,1)/(x+y) - c(y)

- Mk,2) - FW1,2)/(R9) - &mk,1)/(G+y) + ()
for the high cost firm (B).

Since A and B have the same chance of winning the last race (because

they have the same incentive, i.e., Vlzwl), we see that W2> V2 if

[u,m + 1 u,sﬁ-zc> GzJQ + 1 u,k%-ze
2 2

where c= c(gﬁ = c(xg and € = c(§l) = C(§£).

Since the expression in square bracket on the LHS is greater than
the expression in square bracket on the RHS by (H4), the above inequality
holds if 06'6. This turns out to be the case, as one can easily check
using the usual first order conditions of page 2t and the chosen functio
nal forms of the profit and the cost functions. More precisely, €> ¢
and then W2 is strictly grater than V2. Thus, B has a greater probability
of winning the first race than A, and this completes the proof.

L}

It is worth noting that this result is weaker than that contained in

Proposition 3. In fact, we have proved that the high cost firm has
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always a probability at least as great as the low cost firm ag winh&wz the
competition. More precisely, B has the same probability as A OL winh(m%'thg

last race and a greater probabilitycé wﬁﬂﬁn% the first race.

3.4 Concluding remarks and further extensions

The main conclusions which can be drawn from this worK can be

summarized as follows.

(a) The two regimes labelled Increasing Dominance (ID) and Action-—
Reaction (AR) may be derived from the same conditions (hypotheses)
irrespective of the nature of the innovations. Namely, either the in-
novations are drastic or incremental. In this sense, Propositions 1 and
2 may complement the results of Vickers (1986), although it is not

really AR in the context of my Proposition 2.

(b) Relaxing the bidding game-like form of the patent race and
adopting a Loury-like competition, it is still possible - see Proposition
3 — to show that the stochastic version of ID (PID) derives from the
same assumption (sufficient condition) as in the bidding game case. A
result similar to (but weaker than) AR, christened PNID (Probabilistic

Non-Increasing Dominance), has been proved in Proposition 4.
It seems worth exploring the relationship between market structure
and technological competition in presence of a sequence of innovative

opportunities in other directions. In particular:

(1) Adopting a Lee and Wilde form of competition, i.e., non-contractual

R&ED costs.
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(ii) Considering a sequence of Loury and/or Lee and Wilde competitions

for incremental innovations.

(iii) Allowing for an infinite time horizon; i.e., an infinite se-—

quence of innovations (T=«). This extension could be pursued in the
simple context of the last model, where the specific functional form of
the profit function converted the original game in a constant-sum game.
On this topic - the value of a constant-—sum two person game with an in-
finite number of stages - I shall try to apply the approach of Zamir
(1973), whereas the infinite horizon version in a less restrictive
perspective (i.e., non constant games) could be explored along the

lines of Fudenberg and Levine (1983) and Harris (1985).

(iv) Considering a sequence of product-innovations. This case has

been scrutinized by Beath et al. (1985), but it seems worth looking more
closely at the relationship between product — and process—innovations
with respect to the market leadership when a sequence of innovations

are in prospect.

I hope to tackle these extensions in further research.
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3.5 Appendix B

In this Appendix the derivation and the main properties of the expo-
nential distribution function are shown and commented.

Suppose that F is the distribution function of the waiting time to
the occurrence of an innovation. As the waiting time must be positive,

let we assume
F{0)=0
Furthermore suppose that
F(t)<1 Yt and

(*) (1—F(t1,t2))/(1—F(t1)) =1 - F(tz) t., t 20

The RHS of (*) is the probability that the waiting time exceeds t2; by
the definition of conditional probability, the LHS is the probability
that the waiting time exceeds (t1+t2), given that it exceeds tl. In
other words, (*) captures the lack of memory (or Markov property or
aftereffect) of the waiting time mechanism.

If after a time interval of t1 the innovation has not yet occurred,
the waiting time still remaining is conditionally distributed Jjust as
the entire waiting time from the beginning. The condition (*) completely
determines the form of F. Let us substitute the distribution function

of t with its tail:
U(t) =1 - F(t)

Then (*) is now
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U(t1 + tz) = U(tl)U(tz)

which is a form of Cauchy's equation. Since U is bounded it may be

proved (e.g., Billingsley (1979), p. 168) that
U(t) = exp (-ait) far some o
Furthermore, since

lim U{t) =0
tE oo

of must be positive. Thus condition (*) implies that F has the following

exponential form
F(t) = 0 if t<0; F(t) =1 - exp (—dt) if t>o0

It is worth noting that the lack of memory (*) above carries over
to the exponential distribution (which can be derived as the limit of
geometric distributions) and to no other distributions.

The exponential distribution has mean

o0
E(t) =J/(1 - F(t) dt = 1/«

[+]

which is interpreted as expected waiting time for the innovation.
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NOTES

1) Reinganum (1982) model belongs to this group although in her
game firms do not choose a number but a time-dipendent path of R&D

expenditure.

2) Of course, this is not to say that models with a single race do
not capture any form of interaction; for instance, Harris and Vickers
(1985) (1986) models are about a single race, but they are games of

real interaction.

3) See Stewart (1983) for a generalization of Loury (1979) and Lee
and Wilde (1980) models according to which there is a '"'share parameter"
describing the manner in which profits are shared among rivals once one

firm innovates.

4) Indeed we have

"~

’ilﬂ(l,k) y,w2,1)
V=R(2,k) -Q(3,2) =r(2,k) + .3 M-S c(®))
1 1 1 1
X11T(1,2) y1 T(3,1)
'“(3)2) - - + C(Xl)
Xl * yl Xl * yl
le[(l,B) xl-W(z,1)
W :52(2)3) —R(k,Z) :“(2)3) + + - C(y >
2 X +y X +y 1
1 1 1 1
§, M,2) R Wik, 1)
—Tr(k)z) - 3{\ N ~ - § + ~ + C(S;l)'
1 yl 1 yl

where the key symbols have been defined in the proof of Proposition 3.

5) Being this a constant-sum game, any equilibrium (which we have
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seen to exist) is Pareto efficient. Moreover, if the game were reformg
lated in a proper and more rigorous way, one could check that the

noncooperative equilibrium which emerges is also a perfect equilibrium.

6) Notice that (H3) might seem inconsistent with the assumption on
TT, i.e., strict increasingness in the first aurgument. Indeed, under
(H3), if L wins reducing furtherly his cost level, H's profit should
become negative, violating the assumed non-negativity ofgn.. Actually,
there is not any inconsistency because H would choose to not produce.
This amounts to interpreting players in the race like active as well as

potential firms.
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