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Abstract This study presents an extension of the Gaussian process regression model
for multiple-input multiple-output forecasting. This approach allows modelling the
cross-dependencies between a given set of input variables and generating a vectorial
prediction. Making use of the existing correlations in international tourism demand
to all seventeen regions of Spain, the performance of the proposed model is assessed
in a multiple-step-ahead forecasting comparison. The results of the experiment in a
multivariate setting show that the Gaussian process regression model significantly
improves the forecasting accuracy of a multi-layer perceptron neural network used as
a benchmark. The results reveal that incorporating the connections between different
markets in the modelling process may prove very useful to refine predictions at a
regional level.
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1 Introduction

In recent years there has been a growing interest in machine learning (ML) techniques
for economic forecasting (Weron 2014; Gharleghi et al. 2014; Kock and Teräsvirta
2014; Ben Taieb et al. 2012; Crone et al. 2011; Andrawis et al. 2011; Carbonneau et al.
2008). ML is based on the construction of algorithms that learn through experience.
The main ML forecasting methods are support vector regression (SVR) and artificial
neural network (ANN) models. Plakandaras et al. (2015) propose a hybrid forecasting
methodology that combines an ensemble empirical mode decomposition algorithm
with a SVR model to forecast the US real house price index. Lin et al. (2012) also
combine an algorithm for time series decomposition with a SVR model for foreign
exchange rate forecasting. Kao et al. (2013) and Kim (2003) use different SVRmodels
for stock index forecasting. Tay and Kao (2001, 2002) apply support vector machines
in financial time series forecasting.

Stasinakis et al. (2015) use a radial basis function ANN to forecast US unem-
ployment. Feng and Zhang (2014) and Aminian et al. (2006) use ANN models in
forecasting of economic growth. Sermpinis et al. (2012) and Lisi and Schiavo (1999)
make exchange rates predictions by means of several ANNs. Sarlin and Marghescu
(2011) generate visual predictions of currency crisis bymeans of a self-organizingmap
ANN model. Adya and Collopy (1998) evaluate the effectiveness of ANN models at
forecasting and prediction. A complete summary on the use of ANNs with forecasting
purposes can be found in Zhang et al. (1998).

Whilst SVR and ANN models have been widely used in economic modelling and
forecasting, other ML techniques such as Gaussian process regression (GPR) have
been barely applied for forecasting purposes (Andrawis et al. 2011; Ahmed et al.
2010;Banerjee et al. 2008;Chapados andBengio 2007;Brahim-Belhouari andBermak
2004; Girard et al. 2003). GPR was originally devised for interpolation. The works
of Smola and Bartlett (2001), MacKay (2003), and Williams and Rasmussen (2006)
have been key in the development of GPR models. By expressing the model in a
Bayesian framework, the authors extendGPRapplications beyond spatial interpolation
to regression problems. GPR models are supervised learning methods based on a
generalized linear regression that locally estimates forecasts by the combination of
values in a kernel (Rasmussen 1996). Thus, GPR models can be regarded as a non-
parametric tool for regression in high dimensional spaces. One of the limitations of the
current methods for GPR is that the framework is inherently one dimensional, i.e. the
framework is designed for multiple inputs and a single output. GPR models present
one fundamental advantage over other ML techniques: they provide full probabilistic
predictive distributions, including estimations of the uncertainty of the predictions.
These features make GPR an ideal tool for forecasting purposes.
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This paper presents an extension of the GPR model for MIMO forecasting. This
approach allows to preserve the stochastic properties of the training series in multiple-
step ahead prediction (Ben Taieb et al. 2010). By extending conventional local
modelling approaches we are able to model the cross-dependencies between a given
set of time series, returning a vectorial forecast. The structure of the proposed model,
consists of a batch of univariate forecasting modules based on Gaussian regression,
followed by a linear regression that takes into account the cross-influences between
the different forecast.

ML methods are particularly suitable to model phenomena that presents nonlinear
interactions between the input and the output. The complex nature behind the data gen-
erating process of economic variables such as tourism demand, explains the increasing
use ofMLmethods in this area. There is wide evidence in favour ofMLmethods when
compared to time series models for tourism demand forecasting (Akin 2015; Claveria
and Torra 2014; Wu et al. 2012, Hong et al. 2011; Chen and Wang 2007; Giordano
et al. 2007; Cho 2003; Law 2000 and Law andAu 1999). Tsaur and Kuo (2011) and Yu
and Schwartz (2006) use fuzzy time series models to predict tourism demand. Celotto
et al. (2012) and Goh et al. (2008) apply rough sets algorithms. Other authors combine
different ML techniques in order to refine forecasts of tourism demand (Cang 2014a;
Cang and Yu 2014b; Pai et al. 2014; Shahrabi et al. 2013). Peng et al. (2014) use a
meta-analysis to examine the relationships between the accuracy of different forecast-
ing models and the data characteristics in tourism forecasting studies. Athanasopoulos
et al. (2011) carry a thorough evaluation of various methods for forecasting tourism
data.

In spite of the desirable properties of GPR models, there is only one previous
study that uses GPR for tourism demand forecasting (Wu et al. 2012). The authors
use a sparse GPR model to predict tourism demand to Hong Kong and find that
its forecasting capability outperforms those of the autoregressive moving average
(ARMA) and SVR models. We attempt to cover this deficit, and to break new ground
by proposing an extension of the GPR model for MIMO modelling, and assessing its
forecasting performance. We make use of international tourist arrivals to all seventeen
regions of Spain.By incorporating the connections in tourismdemand to all regions,we
generate forecasts to all markets simultaneously. We finally compare the forecasting
performance of the GPR model to that of a multi-layer perceptron (MLP) ANN in
a MIMO setting. This strategy is cost-effective in computational terms, and seems
particularly indicated for regional forecasting.

Several regional studies have been published in recent years (Lehmann and
Wohlrabe 2013), but only a few regarding tourism demand forecasting. Gil-Alana
et al. (2008) use different time-series models to models international monthly arrivals
in the Canary Islands. Bermúdez et al. (2009) generate prediction intervals for hotel
occupancy in three provinces of Spain by means of a multivariate exponential smooth-
ing model. The first attempt to use ML methods for tourism demand forecasting in
Spain is that of Palmer et al. (2006), who design a MLP ANN to forecast tourism
expenditure in the Balearic Islands. Medeiros et al. (2008) develop an ANN-GARCH
model to estimate demand for international tourism also in the Balearic Islands. Clave-
ria et al. (2015) compare the forecasting performance of three ANN architectures to
forecast tourist arrivals to Catalonia.
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Themain aimof this study is to provide researcherswith a novel approach forMIMO
forecasting, and a method for modelling cross-dependencies. The proposed extension
of the GPR model to the MIMO framework allows incorporating the relationships
between the different response variables in order to generate a vector of predictions.

The study is organized as follows. The next section presents the proposed extension
of the GPRmodel to the MIMO case. In Sect. 3 we briefly describe the data. Section 4
reports the results of the multiple-step ahead forecasting comparison carried out to test
the effectiveness of the model. The last section provides a summary of the theoretical
and practical implications, and potential lines for future research.

2 Methodology: forecasting models

2.1 Gaussian process regression (GPR)

GPR was conceived as a method for multivalued interpolation, and was first devel-
oped by Matheron (1973) based on the geostatistic works of Krige (1951). The works
of MacKay (2003), Williams and Rasmussen (2006) and Smola and Bartlett (2001)
have been crucial in the development of GPR. By expressing the model in a Bayesian
framework, different statistical methods can be implemented in GPR models. There-
fore GPR applications can be extended beyond spatial interpolation to regression
problems, estimating the weights of observed values form temporal lags and spatial
points using the known covariance structures. Detailed information about GPR can be
found in Williams and Rasmussen (2006).

The GPR model assumes that the inputs xi have a joint multivariate Gaussian dis-
tribution characterized by an analytical model of the structure of the covariance matrix
(Rasmussen 1996). The key point of the GPR is the possibility of specifying the func-
tional form of the covariance functions, which allows to introduce prior knowledge
about the problem into the model. Note that the functional dependency between vari-
ables in the covariance function does not need to be a cross product, but can be any
function that takes into account the similarity between the input data points and also
complies with the properties of a covariance.

An important point in which GPR differs from linear regression, is that the method
assumes a probability distribution over the set of functions to be estimated, which
allows for determining families of regression functions with specific functional forms.
Formally, the training set D = {(x1, y1), (x2, y2), . . . , (xn, yn)} consists of a set of
tuples, and it is assumed to be drawn from the following process:

yi = f (xi ) + ε, with ε ∼ N (0, σ 2), (1)

being xi an input vector in an Euclidean space of dimension d, i.e. Rd ; and yi the
target, which is a scalar output in R1. This framework allows to estimate a function
from Rd → R1. For notational convenience, we aggregate the inputs and the outputs
into matrix X = [x1, x2, . . . , xn] and vector y = [y1, y2, . . . , yn] respectively.
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The joint distribution of the variables is the conditionalGaussian distribution,which
has the following form:

p(y/X) = N (0, K (X, X) + σ 2 I ), (2)

where I is the identity matrix, and K (X, X) the covariance matrix, also referred to as
the kernel matrix, with elements Ki j (xi , x j ). The kernel function k(x, x ′) is a measure
of the distance between input vectors. The kernel does not need to be strictly a matrix
of cross-products between the input vectors. Kernels may incorporate a distance, or
an exponential of a distance.

We try several kernel functions: the rational quadratic covariance function, the
gamma exponential covariance function, and a radial basis kernel. We obtain the
best performance with a radial basis function, as the other kernels allow for long
term interactions between distant points in the input space. See MacKay (2003) and
Williams and Rasmussen (2006) for a detailed analysis on kernel selection. Kernel
functions should reflect the a priori knowledge about the problem at hand. To obtain
local forecasts in the spaceof inputs,we select a covariancematrix that has a component
with the shape of a Gaussian so as to model the interactions between nearby points.
Specifically, we use an isotropic Gaussian, which is a Gaussian with a covariance
proportional to the identity. We additionally introduce a term to account for non-
stationarity in the data that corresponds to a dot product between sample points in the
covariance matrix.

Therefore, in this study we make use of a radial basis kernel with a linear trend,
which assumes a local continuity of the response variable:

Ki j = k(xi , x j ) = υ2 exp

(
− (xi − x j )T (xi − x j )

2λ2

)
+ γ xTi x j + κ, (3)

whereυ2 controls the prior variance, and λ is a parameter that controls the rate of decay
of the covariance by determining how far away xi must be from x j for fi to be unrelated
to f j . Note that the underlying operation is framed in the field of interpolation. The
hyperparameters {υ, λ, γ, κ} are estimated by maximum likelihood in:

log(p(y/x)) = −1

2
yT

[
K (X, X) + σ 2 I

]−1
y− 1

2
log

∣∣∣K (X, X) + σ 2 I
∣∣∣− n

2
log 2π.

(4)
Given the subscripts of the variables that determine the covariance matrix, f and the
predictive outputs f ∗, by making use of the Bayesian inference, the joint posterior
distribution is:

p( f, f ∗/y) = p(y/ f )p( f, f ∗)
p(y/X)

, (5)

p( f, f ∗) ∼ N

(
0,

[
K f, f K f ∗, f
K f, f ∗K f ∗, f ∗

])
, (6)

p(y/ f ) ∼ N ( f, σ 2 I ), (7)
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where K f, f is the covariance matrix of the training data, K f ∗, f a matrix that gives
the mapping of the kernel on the combinations of test and train inputs, and K f ∗, f ∗ the
kernel matrix of the test inputs.

The output given by theGPR consists of aGaussian predictive distribution p( f ∗/y)
that is characterized by mean μ and variance 	. Therefore, the GPR model specifica-
tion is given by equations:

μ = K (X∗, X)
[
K (X, X) + σ 2 I

]−1
y, (8)

	 = K (X∗, X∗) − K (X∗, X)
[
K (X, X) + σ 2 I

]−1
K (X, X∗). (9)

In this research, we use the mean value of the distribution as the predicted value of the
GPR. For a given set of inputs X∗ = [

x∗
1 , x

∗
2 , . . . , x

∗
n

]
, which optionally could consist

of a single observation, we compute the output f ∗ as μ.
In this study we propose an extension of the GRP model for MIMO modelling,

basing this extensionon an analogy to radial basis functions. In this analogy, each single
GPR gives a prediction of the value of each individual predictor, and a multivariate
linear regression combines these outputs into a new output vector. That is, we use a
set of univariate predictors followed by a matrix product that takes into account the
cross-dependencies of the outputs in order to improve the performance of each single
GPR. In this case we have a Rd → RM mapping, where M is the dimension of the
output. This extension is applied by following a two-step training:

(i) First, we train and generate supervised forecasts for each time series. That is for
each multivariate input, we compute a vector of outputs f ∗ of the trained GPR.

(ii) In the second step, we estimate a regularized linear regression (Haykin 2008)
froma training set that consists of tuples, D f = {( f1, y1), ( f2, y2), . . . , ( fn, yn)}.
The coefficients of the matrix corresponding to this regularized linear regression
will be denote as Wreg . Therefore, the predictions, which we denote as y∗, are
generated by means of the following expression:

y∗ = Wreg f ∗. (10)

This procedure will be referred to as MIMO GPR.

2.2 Multi-layer perceptron (MLP) artificial neural network (ANN)

Many different NN models have been developed since the 1980s. The most widely
used feed-forward topology in tourism demand forecasting is theMLP network (Liang
2014; Teixeira and Fernandes 2012; Lin et al. 2011; Zhang and Qi 2005). In feed-
forward networks the information runs only in one direction. MLP networks are
supervised neural networks that use a simple perceptron model as a building block.
The topology is based on layers of parallel perceptrons, with a nonlinear function at
each perceptron. The specification of a MLP network with an input layer, a hidden
layer, and an output layer is defined by:
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yt = β0 + q
	
j=1

β j g

( p∑
i=1

wi j xt−i + w0 j

)
,

{xt−i ; i = 1, . . . , p} ,{
wi j ; i = 1, . . . , p; j = 1, · · · , q

}
,{

β j ; j = 1, . . . , q
}
,

(11)

where yt is the output vector of the network at time t ; xt−i is the input value at time
t − i , where i stands for the number of lags that are used to introduce the context
of the actual observation; β j are the weights connecting the output of the neuron j
at the hidden layer with the output neuron; wi j stand for the weights of neuron j
connecting the input with the hidden layer, and g is the nonlinear function of the
neurons in the hidden layer. We denote q as the number of neurons in the hidden layer,
which determines the MLP network’s capacity to approximate a given function. We
use values from 5 to 30 with an increase proportional to the length of the forecasting
horizon.

As with the GPR model, we also apply a MIMO approach by estimating a regu-
larized linear regression (Haykin 2008), and generate the vectorial forecasts using the
set of regularized coefficients.

The estimation of the parameters is done by cross-validation (Bishop 2006). We
divide the database into three sets: training, validation and test. The validation set is
used to determine the stopping time for the training and the number of neurons in the
hidden layer. The test set is used to estimate the generalization performance of the
network, that is the performance on unseen data (Bishop 1995; Ripley 1996).

Once the topology of the model is specified, the estimation of the weights of the
networks can be done by means of different algorithms. In this study we use the
Levenberg–Marquardt (LM) algorithm. To avoid the possibility that the search for the
optimum value of the parameters finishes in a local minimum, we use a multi-starting
technique that initializes theNN several times for different initial randomvalues, trains
the network and chooses the one with the best result on the validation set.

Based on these considerations, the first 96 monthly observations (from January
1999 to December 2006) are selected as the initial training set, the next sixty (from
January 2007 to December 2011) as the validation set, and the last 15 % as the test
set. For an iterated multi-step-ahead forecasting comparison the partition between
train and test sets is done sequentially: as the prediction advances, past forecasts are
successively incorporated to the training database in a recursive way.

3 Dataset

Tang and Abosedra (2015), Pérez-Rodríguez et al. (2015) and Chou (2013) have
shown the important role of tourism in economic growth. In this study we use data on
international tourism demand to all regions of Spain provided by the Spanish Statis-
tical Office (National Statistics Institute—INE—http://www.ine.es). Data include the
monthly number of tourist arrivals at a regional level over the time period 1999:01 to
2014:03.
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Fig. 1 Frequency distribution of tourist arrivals to Spain by region (mean from 1999:01 to 2014:03)

Tourism is a key economic sector in Spain. It represents about 11 % of GDP
and 12.7 % of total employment (WTTC 2016). Low oil prices and the dollar-
euro exchange rate have had a positive impact on the inbound tourism. The country
registered a record of 64.9 million international tourist arrivals in 2014, which rep-
resented a growth of 7.1 % over the previous year. The main source markets are
the United Kingdom, France, Germany and Italy. Tourism is highly concentrated in
the summer season in most regions. Tourist arrivals are also concentrated in the main
regional destinations: Catalonia, the Balearic Islands, the Canary Islands, and Andalu-
sia.

A MIMO approach to regional economic modelling is particularly appropriate
when the desired outputs are connected (Claveria et al. 2015). In Fig. 1 we present
the frequency distribution of tourist arrivals by region during the sample period. We
can see that most tourist arrivals are concentrated in the Mediterranean coast and the
islands, being Catalonia, the Balearic Islands and Andalusia the regions that received
the higher number of tourist arrivals, which almost amounted to 60 % of total tourist
demand.

Table 1 shows a descriptive analysis of the data for the out-of-sample period
(2012:01 to 2014:03). The mean of tourist arrivals shows that the main destinations
are Catalonia, the Balearic Islands and Andalusia. The Balearic Islands and Catalonia
present the highest peaks in demand. Arrivals to the Balearic Islands show the highest
dispersion.
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Table 1 Descriptive analysis of foreign tourist arrivals (2012:01–2014:03)

Region Minimum Maximum Mean Standard deviation Skewness Kurtosis

Andalusia 237,744 770,987 496,549.3 192,639.5 −0.13 −1.70

Aragon 14,792 59,194 31,359.3 12,915.7 0.46 −0.97

Asturias 3,347 33,714 14,092.4 9,597.3 0.56 −1.11

Balearic Islands 23,446 1,387,491 551,636.0 545,838.5 0.44 −1.63

Canary Islands 385,225 619,311 499,375.4 56,536.1 0.07 −0.35

Cantabria 3,577 32,070 14,870.8 10,503.4 0.42 −1.49

Castilla-Leon 23,317 134,683 67,108.0 36,092.0 0.25 −1.51

Castilla-La Mancha 13,209 36,444 24,822.6 8,266.0 −0.16 −1.65

Catalonia 336,275 1,442,017 801,443.7 369,301.5 0.28 −1.42

Valencia 103,522 322,857 207,634.5 67,098.1 −0.10 −1.40

Extremadura 6,797 24,817 14,115.8 5,045.3 0.15 −1.00

Galicia 15,890 126,066 60,342.3 40,727.1 0.30 −1.63

Madrid 240,349 432,430 342,618.9 62,420.2 −0.17 −1.47

Murcia 8,607 22,480 15,126.3 3,763.6 0.11 −0.90

Navarra 4,416 35,152 16,346.1 10,355.8 0.49 −1.27

Basque Country 31,597 142,644 70,214.0 34,130.0 0.59 −0.83

La Rioja 2,157 15,404 6,824.1 4,190.2 0.58 −0.78

Total 1,583,237 5,283,691 3,234,479 1,337,386 0.17 −1.69

4 Results of the experiment

In a recent and comprehensive comparison on the M3 dataset for the major ML mod-
els for time series forecasting, Ahmed et al. (2010) find that MLP ANN and GPR
models present the best results. Therefore, to assess the forecasting performance of
the proposed extension of the GPR model, we compare it to that of a MLP ANN in a
MIMO setting. First, we estimate the models and generate forecasts for different fore-
cast horizons (h = 1, 2, 3 and 6 months). Multiple-step ahead forecasts are generated
by means of a rolling scheme.

Second, by means of several forecast accuracy measures, we summarize the results
for the out-of-sample period. First, we compute the relative mean absolute percentage
error (rMAPE) statistic (Table 2), that ponders theMAPEof themodel under evaluation
against the MAPE of the benchmark model. Next, we run the Diebold and Mariano
(DM) test (Diebold and Mariano 1995) using a Newey–West type estimator, and a
modified DM (M-DM) test (Harvey et al. 1997) to analyse whether the reductions in
MAPE are statistically significant (Table 2). The null hypothesis of the test is that the
difference between the two competing series is non-significant. A negative sign of the
statistic implies that the MLP ANN model has bigger forecasting errors.

Table 2 shows the overall performance of the compared forecasting models on all
regions. There are only two regions in which the ANN model presents lower MAPE
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Table 2 Forecast accuracy: MIMO GPR vs. MIMO ANN model (2013:01–2014:01)

Region Statistic Forecast horizon

h = 1 h = 2 h = 3 h = 6

Andalusia rMAE 0.803 0.724 0.821 0.977

DM −3.828 −5.386 −4.619 −2.113

M-DM −15.312 −22.948 −20.894 −11.242

Aragon rMAE 0.805 0.781 0.825 1.219

DM −0.376 −2.204 −2.294 2.192

M-DM −1.504 −9.391 −10.377 11.663

Asturias rMAE 0.683 0.742 0.889 0.845

DM −1.301 −2.823 −2.517 0.660

M-DM −5.204 −12.028 −11.386 3.512

Balearic Islands rMAE 1.074 0.54 0.562 1.586

DM −1.102 −3.404 −3.553 −0.239

M-DM −4.408 −14.504 −16.072 −1.272

Canary Islands rMAE 1.132 1.073 1.01 0.967

DM 2.768 0.891 0.256 −0.898

M-DM 11.072 3.796 1.158 −4.778

Cantabria rMAE 0.785 0.852 0.689 0.769

DM −2.499 −3.326 −3.798 0.058

M-DM −9.996 −14.171 −17.180 0.309

Castilla-Leon rMAE 0.751 0.632 0.601 0.934

DM −1.948 −4.885 −3.15 1.040

M-DM −7.792 −20.814 −14.249 5.533

Castilla-La Mancha rMAE 0.623 0.432 0.47 0.669

DM −2.987 −4.548 −3.781 −2.239

M-DM −11.948 −19.378 −17.103 −11.913

Catalonia rMAE 0.756 0.71 0.857 1.145

DM −1.635 −2.107 −1.683 2.405

M-DM −6.540 −8.977 −7.613 12.796

Valencia rMAE 0.902 0.942 0.835 0.981

DM −1.341 −2.429 −3.153 −2.744

M-DM −5.364 −10.349 −14.262 −14.599

Extremadura rMAE 0.915 0.919 0.954 0.861

DM −0.685 −1.863 −2.259 −1.933

M-DM −2.740 −7.938 −10.218 −10.285

Galicia rMAE 0.812 0.761 0.862 0.775

DM −1.536 −3.409 −2.314 −0.4

M-DM −6.144 −14.525 −10.467 −2.128

Madrid rMAE 1.182 0.986 1.078 1.014

DM 0.361 0.325 0.950 0.962

M-DM 1.444 1.385 4.297 5.118
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Table 2 continued

Region Statistic Forecast horizon

h = 1 h = 2 h = 3 h = 6

Murcia rMAE 1.019 0.845 0.959 0.967

DM −0.007 −3.069 −4.365 −3.397

M-DM −0.028 −13.076 −19.745 −18.074

Navarra rMAE 0.735 0.643 0.925 1.205

DM −1.395 −3.052 −2.534 2.11

M-DM −5.580 −13.004 −11.462 11.226

Basque Country rMAE 0.838 0.801 0.808 1.074

DM −2.142 −1.76 −1.416 1.008

M-DM −8.568 −7.499 −6.405 5.363

La Rioja rMAE 0.951 0.653 0.6 0.908

DM −0.533 −3.585 −3.221 −0.046

M-DM −2.132 −15.275 −14.570 −0.245

The rMAPE ponders the MAPE of the model under evaluation against the MAPE of the benchmark model.
We use a MIMO MLP ANN model as a benchmark. The 5 % level critical value for the Diebold–Mariano
(DM) loss-differential test statistic for predictive accuracy is 2.028. M-DM refers to the modified DM test
statistic

values: the Canary Islands and Madrid, but the differences between both methods are
not significant in three out of the four forecasting horizons.

In most regions, the best forecasting performance is obtained with the MIMO
GPR model. Nevertheless, we find differences across regions. While in the Balearic
Islands, Castilla-Leon, Catalonia, Extremadura, the Basque Country and La Rioja,
GPRs outperform the ANNs, this improvement is not significant for all forecast hori-
zons, especially for h = 1 and h = 3. As a result, we find that the improvement
in forecast accuracy of the MIMO GPR with respect to the MIMO ANN forecasts
becomes more prominent for intermediate forecasting horizons (2 and 3 months).

In general, we obtain the most accurate predictions for longer forecast horizons
(h = 6). This can be attributed to the fact that ML methods use nonlinear functions
that can account for saturation effects. The structure of thesemodels can be empirically
estimated, so the interactions between input variables can be learned from the data.

In Fig. 2 we compare the rMAPE results for one- and three-month ahead forecasts
(h = 1 and h = 3). The graph indicates that there are only four regions in which the
rMAPE is higher than one for h = 1, that is the ANN outperforms the GPR model for
one-month ahead forecasts: the Balearic and the Canary Islands, Madrid and Murcia.
Of these four regions, just two (the Canary Islands and Madrid) still obtain a rMAPE
higher than one for h = 3. The fact that these two regions do not present seasonal
patterns, suggests that GPR are more suitable for seasonal forecasting than ANN
models.

Finally, in Table 3 we present the results of the percentage of periods with lower
absolute error (PLAE) statistic proposed by Claveria et al. (2015). The PLAE can be
regarded as a variation of the ‘percent better’ measure used to compare the forecast
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Fig. 2 Dispersion graph between rMAPFE for h = 1 and h = 3

Table 3 Forecast accuracy:
PLAE: GPR with respect to
MLP ANN model
(2013:01–2014:01)

Percentage of PLAE values. The
PLAE ratio measures the
number of out-of-sample periods
with lower absolute errors than
the benchmark model (MLP
ANN)

Region Forecast horizon

h = 1 h = 2 h = 3 h = 6

Andalusia 69.2 53.8 61.5 61.5

Aragon 38.5 53.8 69.2 15.4

Asturias 61.5 76.9 53.8 23.1

Balearic Islands 76.9 69.2 76.9 61.5

Canary Islands 30.8 23.1 46.2 53.8

Cantabria 76.9 69.2 76.9 46.2

Castilla-Leon 69.2 69.2 76.9 46.2

Castilla-La Mancha 76.9 61.5 76.9 69.2

Catalonia 38.5 69.2 53.8 7.7

Valencia 38.5 46.2 53.8 53.8

Extremadura 53.8 53.8 61.5 69.2

Galicia 69.2 76.9 53.8 53.8

Madrid 23.1 38.5 30.8 23.1

Murcia 30.8 61.5 53.8 61.5

Navarra 76.9 76.9 69.2 15.4

Basque Country 53.8 61.5 53.8 30.8

La Rioja 69.2 76.9 61.5 38.5

accuracy of the models to a random walk (Makridakis and Hibon 2000). See Makri-
dakis et al. (1998) and Witt and Witt (1992) for an appraisal of different forecasting
accuracy measures. The PLAE is a dimensionless measure based on the CJ statistic
for testing market efficiency (Cowles and Jones 1937). In this study we use the MLP
ANN model as a benchmark.
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The PLAE allows us to compare the forecasting performance between two com-
peting models. This accuracy measure consists of a ratio that gives the proportion of
periods in which the model under evaluation obtains a lower absolute forecasting error
than the benchmark model. Let us denote yt as actual value and ŷt as forecast at period
t = 1, . . . , n. Forecast errors can then be defined as et = yt − ŷt . Given two compet-
ing models A and B, where A refers to the forecasting model under evaluation and B
stands for benchmark model, we can then obtain the proposed statistic as follows:

PLAE =
∑n

t=1 λt

n
, where λt =

{
1 if

∣∣et,A∣∣ <
∣∣et,B ∣∣ ,

0 otherwise.
(12)

Table 3 shows that the MIMO GPR outperforms the MIMO MLP ANN model in
most cases, especially for 2- and 3-month-ahead forecasts. Special mention should be
made of the Canary Islands and the Community of Madrid, where the ANN forecasts
provide lower PLAE values. This result can be explained by the fact that they are the
only regions that do not show seasonal patterns.

To summarize, we find that the overall forecasting performance improves for longer
forecast horizons. This evidence confirms previous research by Teräsvirta et al. (2005),
who obtain more accurate forecasts with ANN models at long forecast horizons. This
result is indicative that ML techniques are particularly suitable for medium and long
term forecasting.

Regarding the different methods, we obtain better predictions with the GPR model
than with the ANN. This improvement is more generalized for intermediate forecast
horizons. Despite being the first study to apply aMIMOapproach for GPR forecasting,
our results are in line with those obtained by Wu et al. (2012), who find evidence that
a sparse GPR model yields better forecasting results than ARMA and SVR models.

5 Concluding remarks and future work

As more accurate predictions become crucial for effective management and policy
planning, new forecasting methods provide room for improvement. Machine learning
techniques are playing a pivotal role in the refinement of economic predictions. With
this objective, we propose an extension of the Gaussian process regression model
for multiple-input multiple-output forecasting. This approach allows modelling the
cross-dependencies between a given set of input variables and generating a vector
prediction.

The main theoretical contribution of this study to the economic literature is the
development of a new approach to improve the forecasting accuracy of computational
intelligence techniques based on machine learning. The increasing economic impor-
tance of the tourism industryworldwide has led to a growing interest in newapproaches
to tourism modelling and forecasting. Making use of the interdependencies in inter-
national tourism demand to all seventeen regions of Spain, we design a multiple-input
multiple-output framework that incorporates the existing cross-correlations in tourist
arrivals to all markets, and allows to estimate tourism demand to all destinations
simultaneously.
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We evaluate the performance of the newmethod by comparing it to a standard neural
network in an iterative multiple-step-ahead forecasting comparison. We find that the
proposed extension of the Gaussian process regression outperforms the benchmark
model in most regions, especially for intermediate forecast horizons.

We obtain the best forecasting results for the longest forecast horizons, suggesting
the suitability of machine learning techniques for mid and long term forecasting. As
a result, our research reveals the suitability of a multiple-output Gaussian process
regression model for regional economic forecasting, and highlights the importance
of taking into account the connections between different markets when modelling
regional variables with machine learning techniques. The assessment of alternative
kernel functions on the forecasting accuracy is a question to be addressed in further
research.
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