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Abstract Our starting place is the first order seasonal autoregressive model. Its series
are shown to have canonical model-based decompositions whose finite-sample esti-
mates, filters, and error covariances have simple revealing formulas from basic linear
regression.We obtain analogous formulas for seasonal randomwalks, extending some
of the results of Maravall and Pierce (J Time Series Anal, 8:177–293, 1987). The
seasonal decomposition filters of the biannual seasonal random walk have formulas
that explicitly reveal which deterministic functions they annihilate and which they
reproduce, directly illustrating very general results of Bell (J Off Stat, 28:441–461,
2012; Center for Statistical Research and Methodology, Research Report Series, Sta-
tistics #2015-03, U.S. Census Bureau,Washington, D.C. https://www.census.gov/srd/
papers/pdf/RRS2015-03, 2015). Other formulas express phenomena heretofore lack-
ing such concrete expression, such as the much discussed negative autocorrelation at
the first seasonal lag quite often observed in differenced seasonally adjusted series. An
innovation that is also applied to airlinemodel seasonal decompositions is the effective
use of signs of lag one and first-seasonal-lag autocorrelations (after differencing) to
indicate, in a formal way, where smoothness is increased by seasonal adjustment and
where its effect is opposite.
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1 Overview

Much of this document radiates from the stationary first order seasonal autoregressive
model or SAR(1),

Zt = �Zt−q + at , −1 < � < 1, (1)

with uncorrelated (white noise or w.n.) at , whose variance Ea2t is denoted σ 2
a . The

autocovariances of Zt are

γ j = EZt+ j Zt = σ 2
a

{(
1 − �2

)−1
�k, | j | = kq, k = 0, 1, . . .

0, otherwise.
(2)

See Chapter 9 of Box and Jenkins (1976) for example. Hence the autocorrelations are

ρ j =
{

�k, | j | = qk, k = 0, 1, . . .
0, otherwise.

. (3)

Weonly consider 0 < � < 1 in order to havepositive correlation at the seasonal lags
q, 2q, . . . . For large enough�, (3) shows that Zt has the fundamental characteristics of
a strongly seasonal time series, namely a strong tendency for year-to-year movements
in the same direction, with magnitudes (relative to the underlying level, e.g. its mean
zero) that change gradually more often than not. For the monthly case q = 12, Fig. 1
shows that when � = 0.95, then even after 12 years the correlation is greater than
0.5. By contrast, when � = 0.70, after 5 years the correlation is negligible. Graphs
of such a Zt (not shown) do not clearly indicate seasonality.

Figure 3 in Sect. 3.2 shows a simulated � = 0.95 monthly SAR(1) series Zt

of length 144 displaying quite seasonal features. It also shows the residual series
N̂t = Zt − Ŝt resulting from removal of the estimate Ŝt of the unobserved signal
component St of a signal plus noise decomposition,

Zt = St + Nt , (4)

with uncorrelated components, ESt Nt− j = 0,−∞ < j < ∞. The signal St is
specified to have the smallest variance γ S

0 < γ0 compatible with having the same
nonzero-lag autocovariances as Zt , γ

S
j = γ j , j �= 0. This is equivalent to specifying

Nt as white noise with the largest variance possible for a w.n. component in an uncor-
related decomposition (4) of Zt . This variance, γ0 − γ S

0 , is the minimum value of the
spectral density (s.d.) of Zt . It has a simple formula in the SAR(1) case, as does the
s.d., see (10) and (11) in Sect. 3.2.

The graph of N̂t in Fig. 3 appears less smooth than Zt , and this will be established
in a formal way in Sect. 13.2. The signal estimate Ŝt is graphed by calendar month
in Fig. 4. The Ŝt visibly smooth each of the 12 annual calendar month series of Zt , a
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Fig. 1 The nonzero monthly (q = 12) SAR(1) autocorrelations for seasonal lags 12, 24,…, 144 and two
values of �. For � = 0.95, the autocorrelations are still greater than 0.5 at a lag of twelve years, indicative
of well defined and similar seasonal movements for a number of years, as Fig. 3 confirms. For � = 0.70,
they are negligible after 5 years, indicating substantially weaker, perhaps negligible “seasonality”

property connected to the fact that the lag 12k, k ≥ 1, autocorrelations of Ŝt are larger
than those of Zt , see Sect. 13.

For any stationary Zt with known autocovariances γ j , typically from an ARMA
model for Zt , the first step toward obtaining linear estimates of an uncorrelated
component decomposition (4) is the determination or specification of an appropriate
autocovariance decomposition, γ j = γ S

j + γ N
j , j = 0, 1, . . . . The SAR(1) estimated

decomposition is detailed in Sect. 3.2.
For a vector of observations Z = (Z1, . . . , Zn)

′ , the autocovariances at lags 0 to
n − 1 furnish a corresponding n × n autocovariance matrix decomposition,

�Z Z = �SS + �NN

[γ| j−k|] = [γ S| j−k|] + [γ N| j−k|]. (5)

This decomposition enables simplified linear regression formulas (reviewed in Sect. 4)
to yield a decomposition Z = Ŝ+ N̂ , withminimummean square error (MMSE) linear
estimates (or estimators), Ŝ = βS Z and N̂ = βN Z , of the unobserved components.
Such estimates are also called minimum variance estimates. Another standard formula
provides the variance matrix of the estimation errors. Everything is illustrated for the
two-component SAR(1) decomposition.

Our most extensive analyses are for the simplest seasonal ARIMA model, the
seasonal random walk or SRW, obtained by setting � = 1 in (1),

Zt = Zt−q + at . (6)
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14 SERIEs (2016) 7:11–52

The MMSE two-component decomposition filter formulas for such nonstationary
Zt can be obtained simply by setting � = 1 in the stationary SAR(1) formulas.
This follows from results of Bell (1984) which expand to difference-stationary series
the Wiener-Kolmogorov (W-K) filter formulas presented in Sect. 6. The original W-
K formulas provide MMSE component estimates from bi-infinite stationary data
Zt ,−∞ < t < ∞ and immediately reproduce the SAR(1) formulas of Sect. 5.1
for the intermediate times between the first and last years, q + 1 ≤ t ≤ n − q.

In Sect. 7, after formally defining the pseudo-spectral density (pseudo-s.d.) of an
ARIMAmodel,we illustrate the kinds of non-stationaryW-Kcalculations that are done
with pseudo-s.d.’s in TRAMO-SEATS (Gómez andMaravall 1996), hereafter T-S, and
in its implementations in TSW (Caporello and Maravall 2004), X-13ARIMA-SEATS
(U.S. Census Bureau 2015), hereafter X-13A-S, and JDemetra+ (Seasonal Adjustment
Centre of Competence 2015), hereafter JD+. We derive the simple formulas of all of
the filters associated with the three-component seasonal, trend, and irregular decom-
position of the q = 2 SRW. We proceed a little more directly than the tutorial article
Maravall and Pierce (1987), which develops fundamental properties of this model’s
decomposition estimates with somewhat different goals. In Sect. 7.2, we obtain the
forecast and backcast results which are required to derive the asymmetric filters for
initial and final years of a finite sample as well as the error variances of their estimates.
These illustrate in a simple way the fundamental role of Bell’s Assumption A. In Sect.
10, we provide an extended and corrected version of Maravall and Pierce’s Table 1
giving variances and autocorrelations of the stationary transforms of the estimates.

For the Box-Jenkins airline model, Sect. 12 provides graphs of the MMSE filters
determined by small, medium and large values of the seasonal moving average para-
meter �. Graphs also display the quite different visual smoothing effects of filters
from such � on the monthly International Airline Passenger totals series for which
the model is named.

This is a prelude to Sect. 13, which has the most experimental material. In a for-
mal way based on autocorrelations of the component estimates of the different types
of models considered (fully differenced in the nonstationary case), it shows where
smoothness is enhanced, and where an opposite result occurs, among the seasonal
decomposition components. Same-calendar-month subseries are the main setting and
are considered separately from the monthly series. Complete results are presented,
first for the two-component SAR(1) decomposition, next for the q = 2 SRW’s three-
component decomposition. Thereafter, smoothness results are presented for airline
model series over an illustrative set of coefficient pairs.

There are many formulas. In most cases, more useful for readers than their deriva-
tions or details will be to study how the formulas are used.

2 Some conventions and terminology

A generic primary time series Xt , stationary or not, will be assumed to have q ≥ 2
observations per year, with the j-th observation for the k -th year having the time index
t = j+(k − 1) q, 1 ≤ j ≤ q. For simplicity, the series of j-th values fromall available
years of is called the j -th calendar month subseries of Xt even when q �= 12. When
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SERIEs (2016) 7:11–52 15

q = 12, these are the series of January values, the series of February values, etc.,
12 series in all. Some seasonal adjustment properties, especially those of seasonal
component estimates, are best revealed by the calendar month subseries. When Xt is
stationary (mean EXt = 0 assumed), the lag k autocorrelation of a calendar month
subseries is the lag kq, or k-th seasonal autocorrelation, of Xt . Because some formulas
simplify when q/2 is an integer, we only consider even q. In our examples q = 2 or
12. (In practice, q = 3, 4, 6 also occur.) Some basic features of canonical ARIMA-
model-based seasonal adjustment (AMBSA for short) will be related to smoothing of
the calendarmonth subseries or detrended versions thereof, see Sect. 11. The definition
of canonical is given in Sect. 3.2.

Features of SEATS referred to are also features of the implementations of SEATS
in X-13A-S and JD+.

3 The general stationary setting

Seasonal adjustment is an important example of a time series signal extraction pro-
cedure. In the simplest setting, the observed series Zt is treated as the sum (4) of
two not directly observable components, the “signal” St of interest and an obscuring
component, the “noise” Nt . In the case of stationary Zt with known autocovariances,
γ j , j = 0,±1, . . ., typically from an ARMA model, estimates of both components
can be obtained from an autocovariance decomposition

γ j = γ S
j + γ N

j , j = 0,±1, . . . , (7)

when γ S
j and γ N

j have properties suitable for St and Nt . Effectively, the additive
decomposition (7) implies uncorrelatedness of the signal and noise,

ESt+ j Nt = 0, j = 0,±1, . . . , (8)

see Findley (2012), which we always assume. As a consequence, for a given finite
sample Zt , 1 ≤ t ≤ n, simplified linear regression formulas (21) summarized in Sect.
4 provide a decomposition Zt = Ŝt + N̂t , 1 ≤ t ≤ n with MMSE estimates.

3.1 Autocovariance and spectral density decompositions

The information in an autocovariance sequence γ j , j = 0,±1, . . . can be reexpressed,
often both compactly and revealingly, by its spectral density function (s.d.),

g (λ) =
∞∑

j=−∞
γ j e

i2π jλ = γ0 +
∞∑
j=1

γ j

(
ei2π jλ + e−i2π jλ

)

= γ0 + 2
∞∑
j=1

γ j cos 2π jλ,−1/2 ≤ λ ≤ 1/2.
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16 SERIEs (2016) 7:11–52

Fig. 2 The q = 12 SAR(1) spectral densities for � = 0.70 (darker line) and � = 0.95 with σ 2
a =(

1 − �2
)
, which results in γ0 = 1. So the area under each graph is 1/2 (in the units of the graph). The

peaks are at the trend frequency λ = 0 and at each seasonal frequency, λ = k/12 cycles per year, 1 ≤ k ≤ 6,
always with amplitude σ 2

a (1 − �)−2 = σ 2
a (1 + �) (1 − �)−1. The peaks for � = 0.70 are broader and

much lower. The minimum value σ 2
a (1 + �)−2 occurs midway between each pair of peaks

The second and third formulas arise from γ− j = γ j and cos 2π jλ = 1
2

(
ei2π jλ +

e−i2π jλ
)
. White noise is characterized by having a constant s.d. equal to its variance.

In the AMBSA paradigm of Hillmer and Tiao (1982) implemented in SEATS, spectral
densities play an essential role in specifying the canonical components, as will be
demonstrated shortly.

An s.d. is nonnegative, g (λ) ≥ 0 always, see (50) for the ARMA formula. It is an
even function, g (−λ) = g (λ), so it is graphed only for 0 ≤ λ ≤ 1/2. See the SAR(1)
example in Fig. 2. It is integrable and for any j the autocovariance γ j can be recovered
from g (λ) as

γ j =
∫ 1/2

−1/2
e−i2π jλg (λ) dλ = 2

∫ 1/2

0
cos 2π jλ g (λ) dλ, j = 0,±1,±2, . . . .

An autocovariance decomposition (7) is equivalent to the s.d. decomposition

g (λ) = gS (λ) + gN (λ) ,−1/2 ≤ λ ≤ 1/2, (9)

with gS (λ) = γ S
0 + 2

∑∞
j=1 γ S

j cos 2π jλ and gN (λ) = γ N
0 + 2

∑∞
j=1 γ N

j cos 2π jλ,
a key fact.

3.2 The SAR(1) canonical signal + white noise decomposition

Conceptually attractive and unique decompositions result from the following restric-
tion, introduced by Tiao and Hillmer (1978). An s.d. decomposition with two or more
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SERIEs (2016) 7:11–52 17

component s.d.’s is called canonical if at most one of the components, usually a con-
stant (white noise) s.d., has a non-zerominimum. A nonconstant s.d. (or pseudo-s.d. as
defined in Sect. 7) is called canonical if its minimumvalue is zero. The two-component
SAR(1) case provides the simplest seasonal example.

By calculation from (2) or from the general ARMA formula (50) below, for a
series Zt with model (1), the s.d. g (λ) = σ 2

a

(
1 − �2

)−1∑∞
j=−∞ �| j |ei2π jqλ has the

formula

g (λ) = σ 2
a

∣∣∣1 − �ei2πqλ
∣∣∣−2 = σ 2

a

(
1 + �2 − 2� cos 2πqλ

)−1
,−1/2 ≤ λ ≤ 1/2.

(10)

For q = 12, Fig. 2 shows an overlay plot of g (λ) for the cases � = 0.70 and
0.95, each with σ 2

a = (
1 − �2

)
, which results in γ0 = 1 for both SAR(1) processes,

showing their prominent peaks at the seasonal frequencies λ = k/12, 1 ≤ k ≤ 6
cycles per year.

A canonical two-component s.d. decomposition of (10) is achieved by separating
g (λ) from its minimum value,

min−1/2≤λ≤1/2
g (λ) = σ 2

a (1 + �)−2 , (11)

which occurs at frequencies in −1/2 ≤ λ ≤ 1/2 where ei2πqλ = cos 2πqλ = −1,
such as λ = ± (2q)−1.

The resulting decomposition

g (λ) =
(
g (λ) − σ 2

a (1 + �)−2
)

+ σ 2
a (1 + �)−2 = gS (λ) + gN (λ) (12)

prescribes a matrix decomposition (5) for any sample size n ≥ 1: With �Z Z =(
1 − �2

)−1
σ 2
a

[
�| j−k|]

j,k=1,...,n and I the identity matrix of order n,

�Z Z =
(
�Z Z − σ 2

a (1 + �)−2 I
)

+ σ 2
a (1 + �)−2 I

= �SS + �NN , (13)

where�SS and�NN have the formulas indicated. Substitution into the regression for-
mulas (21) yields estimated signal factors Ŝt and noise factors N̂t that are exemplified
in Figs. 3 and 4 for the simulated SAR(1) Z1, . . . , Z144 shown.

The function gS (λ) = g (λ) − σ 2
a (1 + �)−2, being nonnegative, even and inte-

grable, is the s.d. of a stationary process St , a SARMA(1,1)q as a more informative
formula (19) will reveal. Since gS (λ) differs from g (λ) by a constant, it too has a peak
at λ = 0. This is the trend frequency, the lower limit of the long-term cycle frequen-
cies. This peak is identical in shape, and therefore contributes as much to the integral
of gS (λ) over [0, 1/2], as one-half of each seasonal peak at λ = k/12, 1 ≤ k ≤ 6 and
the same as the seasonal peak at λ = 1/2. Hence St has a trend component that is not
negligible compared to its seasonal component. So St is not the seasonal component
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18 SERIEs (2016) 7:11–52

Fig. 3 A length 144 simulated monthly � = 0.95 SAR(1) series and its estimated noise component N̂t
(darker line) from (21). The series Zt shows the consistent prominent variations by calendar month seen
with quite seasonal time series. The oscillations of N̂t are considerably smaller yet N̂t can be considered
somewhat less smooth than Zt also after the difference of scale is taken into account, see Sect. 13.2

Fig. 4 The 12 calendar month subseries of Fig. 3 overlaid with their estimated signal component Ŝt values
(darker line) from Sect. 5. For each month, the horizontal line shows the calendar month average of the Ŝt .
The Ŝt closely follow all but the most rapid movements of the series, but with fewer changes of direction
over the 12 years. Autocorrelation properties help to explain why they evolve somewhat more smoothly
than the Zt subseries. Their slightly reduced standard deviation explains why they have slightly reduced
extremes, see Sect. 13.3

of Zt . The decomposition we will obtain from (13) can be regarded as a smooth-
nonsmooth decomposition, see Sect. 13. (SEATS and its implementations calculate
an algebraically more complex canonical seasonal, trend, and irregular decomposi-
tion for an SAR(1) model to estimate its seasonal and nonseasonal components, see
Findley et al. 2015 for the derivation.)

Further insight into the properties of St come from a formula for gS (λ) that displays
the autocovariances of St explicitly:
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gS (λ) = g (λ) − σ 2
a (1 + �)−2

= σ 2
a

{(
1 − �2

)−1 − (1 + �)−2
}

+ 2
∞∑
j=1

γ j cos 2π jλ

= σ 2
a

{
2�
(
1 − �2

)−1
(1 + �)−1

}
+ 2

(
1 − �2

)−1
σ 2
a

∞∑
j=1

�k cos 2π jλ.

(14)

Thus

γ S
j = �

(
1 − �2

)−1
σ 2
a

⎧⎨
⎩
2 (1 + �)−1 , j = 0
�k−1, | j | = kq, k ≥ 1
0, | j | �= 0, kq.

, (15)

Key features of St with s.d. gS (λ) are that γ S
0 < γ0 and γ S

j = γ j , j �= 0. Hence St
has autocorrelations γ S

kq/γ
S
0 proportionately greater than those of Zt at all seasonal

lags,

ρS
j =

{ 1
2 (1 + �)�k−1, | j | = kq, k ≥ 1
0, | j | �= 0, kq.

(16)

This St has the smallest variance compatible with these properties. Because the s.d.
of Nt is constant,

gN (λ) = σ 2
N = (1 + �)−2 σ 2

a , (17)

Nt is specified as white noise with autocovariances and autocovariance matrix

γ N
j =

{
σ 2
N , j = 0

0, | j | > 0,
, �NN = (1 + �)−2 σ 2

a I. (18)

The s.d.’s gS (λ) and gN (λ) from (12) prescribe a signal+noise decomposition of
g (λ). Because gS (λ) has minimum value zero, St is said to be white noise free. Nt

has the largest variance possible for a white noise component. This white noise free
plus white noise decomposition has filter formulas for the MMSE linear estimates of
St and Nt that are especially simple and revealing, as will be seen in Sect. 5.1.

Figure 3 shows the graph of a series Zt of length 144 simulated from (1) with
q = 12 and � = 0.95, along with its noise component estimate N̂t from Sect. 5.
(All SAR(1) simulations use σ 2

a = (
1 − �2

)
). The earliest values are assigned the

date January, 2002. Now we derive a compact formula for gS (λ) to show a type of
calculation that is regularly needed for nonconstant canonical spectral densities. It will
be used to identify the component’s ARMA model.

gS (λ) =
{∣∣∣1 − �ei2πqλ

∣∣∣−2 − (1 + �)−2
}

σ 2
a
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20 SERIEs (2016) 7:11–52

= σ 2
a
1 − (1 + �)−2

∣∣1 − �ei2πqλ
∣∣2∣∣1 − �ei2πqλ

∣∣2

= (1 + �)−2 σ 2
a

(1 + �)2 − ∣∣1 − �ei2πqλ
∣∣2∣∣1 − �ei2πqλ

∣∣2

= �(1 + �)−2 σ 2
a

∣∣1 + ei2πqλ
∣∣2∣∣1 − �ei2πqλ
∣∣2 . (19)

It follows from (50) below that St has a noninvertible SARMA(1,1)q model
(1 − �Bq) St = (1 + Bq) bt whose white noise bt has variance σ 2

b =�(1+�)−2 σ 2
a .

4 Regression formulas for two-component decompositions

Given a column vector of data Z = (Z1, . . . , Zn)
′, where ′ denotes transpose, let

S = (S1, . . . , Sn)′ and N = (N1, . . . , Nn)
′ denote the unobserved uncorrelated com-

ponents of a decomposition Z = S + N . From a specified decomposition of the
covariance matrix �Z Z = EZ Z ′,

�Z Z = �SS + �NN , (20)

standard linear regression formulas provide MMSE linear estimates Ŝ of S and N̂ of
N .

4.1 The estimated decomposition

Because �SN = 0, with 0 denoting the zero matrix of order n, we have �SZ =
ESZ ′ = �SS . Similarly�N Z = �NN . Thus the usual regression coefficient formulas
βS = �SZ�−1

Z Z (with �SZ = ESZ ′) and βN = �N Z�−1
Z Z simplify. We have

Ŝ = βS Z , βS = �SS�
−1
Z Z , N̂ = βN Z , βN = �NN�−1

Z Z , βS + βN = I. (21)

It is also easy to directly verify that the coefficient formulas result in (22), the fun-
damental linear MMSE property, i.e., the uncorrelatedness of the errors with the data
regressor Z , see Wikipedia 2013.

E
(
S − Ŝ

)
Z ′ = E

(
N − N̂

)
Z ′ = 0. (22)

The final formula in (21) shows that the estimates yield a decomposition,

Z = Ŝ + N̂ . (23)

For 1 ≤ t ≤ n, the t-th row of βS provides the filter coefficients for the estimate Ŝt
and correspondingly with βN for N̂t , as will be illustrated in Sect. 5.
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In summary, regression based on (20) provides an observable decomposition of Z
in terms of MMSE linear estimates. Such a decomposition, with Nt specified as white
noise, exists for any stationary Zt whose s.d. has a positive minimum.

4.2 Variance and error variance matrix formulas

We have S + N = Z = Ŝ + N̂ , so if we define ε = S − Ŝ, then

N − N̂ = −ε. (24)

Thus both estimates have the same error covariance matrix,

�εε = E
(
S − Ŝ

) (
S − Ŝ

)′ = E
(
N − N̂

) (
N − N̂

)′
, (25)

(assuming no specification or estimation error in the model for Zt ). There are the usual
variance decompositions,

�SS = �Ŝ Ŝ + �εε, �NN = �N̂ N̂ + �εε, (26)

the first following from the decomposition S = Ŝ +
(
S − Ŝ

)
, whose components are

uncorrelated by (22), and analogously for the second. In some regression literature
�SS is called the total variance of S, �Ŝ Ŝ the variance of S explained by Z , and �εε

is the residual variance. Similarly for N with the same residual variance, from (26),
which shows that

�SS − �Ŝ Ŝ = �εε = �NN − �N̂ N̂ , (27)

where, from (21),

�Ŝ Ŝ = �SS�
−1
Z Z�SS, �N̂ N̂ = �NN�−1

Z Z�NN , (28)

�εε = �Ŝ N̂ = �SS�
−1
Z Z�NN = �NN�−1

Z Z�SS = �N̂ Ŝ . (29)

Being ARMA autocovariance matrices, �Z Z , �SS and �NN are invertible. It follows
that all matrices in (28) and (29) are positive definite. In particular, for each t, Ŝt
and N̂t are positively correlated E Ŝt N̂t > 0 (a property that is not generally true of
differenced estimates in the ARIMA case as we will show). From (27), the estimates
are less variable than their components, precisely due to estimation error.

Seasonal economic indicator series Zt are generally modeled with nonstationary
models, e.g., ARIMAmodels rather than ARMAmodels. Then AMBSA uses pseudo-
spectral density decompositions, discussed in Sect. 7. For finite-sample estimates
in the ARIMA case, McElroy (2008) provides matrix formulas for Ŝ, N̂ and �εε

which involve matrices implementing differencings and autocovariance matrices of
the differenced S and N . We will be able to easily convert the SAR(1) formulas
developed next to obtain the same finite-sample results as McElroy’s formulas for the
two-component decomposition of the ARIMA SRW model (6).
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5 SAR(1) Decomposition estimation formulas

For the SAR(1) model, the entries of the inverse matrix �−1
Z Z have known, relatively

simple formulas, see Wise (1955) and Zinde-Walsh (1988). For example, with q =
2, n = 7,

�−1
Z Z = σ−2

a

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1−�2 0 �

1−�2 0 �2

1−�2 0 �3

1−�2

0 1
1−�2 0 �

1−�2 0 �2

1−�2 0
�

1−�2 0 1
1−�2 0 �

1−�2 0 �2

1−�2

0 �
1−�2 0 1

1−�2 0 �
1−�2 0

�2

1−�2 0 �
1−�2 0 1

1−�2 0 �
1−�2

0 �2

1−�2 0 �
1−�2 0 1

1−�2 0
�3

1−�2 0 �2

1−�2 0 �
1−�2 0 1

1−�2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

= σ−2
a

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −� 0 0 0 0
0 1 0 −� 0 0 0

−� 0 1 + �2 0 −� 0 0
0 −� 0 1 + �2 0 −� 0
0 0 −� 0 1 + �2 0 −�

0 0 0 −� 0 1 0
0 0 0 0 −� 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

For all q ≥ 2 and n ≥ q, as (30) indicates, �−1
Z Z has a tridiagonal symmetric form,

with nonzero values only on themain diagonal and the q-th diagonals above and below
it. The sub- and superdiagonals have the entries −�σ−2

a . The first and last q entries
of the main diagonal are σ−2

a and the rest are σ−2
a

(
1 + �2

)
.

For βN = σ 2
N�−1

Z Z = (1 + �)−2 σ 2
a �−1

Z Z , one has, when q = 2, n = 7,

βN = (1 + �)−2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −� 0 0 0 0
0 1 0 −� 0 0 0

−� 0 1 + �2 0 −� 0 0
0 −� 0 1 + �2 0 −� 0
0 0 −� 0 1 + �2 0 −�

0 0 0 −� 0 1 0
0 0 0 0 −� 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (31)

Further, from βS = I − βN ,
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βS = �(1 + �)−2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(2 + �) 0 1 0 0 0 0
0 (2 + �) 0 1 0 0 0
1 0 2 0 1 0 0
0 1 0 2 0 1 0
0 0 1 0 2 0 1
0 0 0 1 0 (2 + �) 0
0 0 0 0 1 0 (2 + �)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (32)

5.1 The general filter formulas

For general q and n ≥ 2q + 1, the �−1
Z Z formula of Wise (1955) yields the filter

formulas for N̂ and Ŝ = Z − N̂ shown in (33)–(37) and (38)–(40), generalizing from
the special cases (31) and (32). For the intermediate times q + 1 ≤ t ≤ n − q, the
noise component estimate N̂t is given by the symmetric filter

N̂t = 1

(1 + �)2

{
−�Zt−q +

(
1 + �2

)
Zt − �Zt+q

}
. (33)

The filters for the initial and final years are asymmetric. For the initial year 1 ≤ t ≤ q,

N̂t = 1

(1 + �)2

{
Zt − �Zt+q

}
(34)

= 1

(1 + �)2

{
−�(�Zt ) +

(
1 + �2

)
Zt − �Zt+q

}
. (35)

The filter for the final year n − q + 1 ≤ t ≤ n is the time-reverse of the initial year
filter,

N̂t = (1 + �)−2 {−�Zt−q + Zt
}

(36)

= 1

(1 + �)2

{
−�Zt−q +

(
1 + �2

)
Zt − �(�Zt )

}
. (37)

In comparison with (33), the value (�Zt ) in the re-expression (35) appears as the
MMSE SAR(1) backcast of the missing Zt−q and, in (37), as the MMSE SAR(1)
forecast of the missing Zt+q .

For the signal component estimates Ŝt = Zt − N̂t , at intermediate times q + 1 ≤
t ≤ n − q, the filter formula is again symmetric,

Ŝt = �

(1 + �)2

{
Zt−q + 2Zt + Zt+q

}

= 4�

(1 + �)2

{
1

4
Zt−q + 1

2
Zt + 1

4
Zt+q

}
, (38)

a downweighted 2 × 2 seasonal moving average, with weight 4�(1 + �)−2 tending
to 1 when � does.
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As with N̂t , for the initial and final years, the Ŝt filters1 are asymmetric. For 1 ≤
t ≤ q,

Ŝt = �

(1 + �)2

{
(� + 2) Zt + Zt+q

}

= 4�

(1 + �)2

{
1

4
(�Zt ) + 1

2
Zt + 1

4
Zt+q

}
, (39)

and for n − q + 1 ≤ t ≤ n, the time reverse of the initial year filter,

Ŝt = �

(1 + �)2

{
Zt−q + (� + 2) Zt

}

= 4�

(1 + �)2

{
1

4
Zt−q + 1

2
Zt + 1

4
(�Zt )

}
. (40)

The role of (�Zt ) in (39) and (40) is as in (35) and (37). Because the coefficients in
(38)–(40) are positive, as are also the autocovariances of Zt at lags that are multiples
of q, it follows that Ŝt and Ŝt±kq are positively correlated, more strongly than Zt and
Zt±kq it will be shown.

5.1.1 Filter re-expressions and filter terminology

The coefficient sets in the formulas above all apply for more than one value of t when
n ≥ 2q + 2 (Recall that q ≥ 2). To reveal this better, let B denote the backshift or lag
operator defined as usual: for any time series Xt and integer j ≥ 0, B j Xt = Xt− j

and B− j Xt = Xt+ j (a forward shift if j �= 0). Since B0Xt = Xt , one sets B0 = 1. A
constant-coefficient sum � j c j B j is a (linear, time-invariant) filter, a symmetric filter
if the same filter results when B is replaced by B−1, as with the intermediate time
filters (33) and (38). Their backshift operator formulas reveal factorizations like others
that will be useful:

N̂t = (1 + �)−2
{
−�Bq +

(
1 + �2

)
− �B−q

}
Zt

= (1 + �)−2 {(1 − �Bq) (1 − �B−q)} Zt . (41)

Ŝt = �(1 + �)−2 {Bq + 2 + B−q} Zt

= {(
1 + Bq) (1 + B−q)} Zt . (42)

These formulas apply for all t such that q + 1 ≤ t ≤ n − q and to all t when the
conceptually important case of bi-infinite data Zτ ,−∞ < τ < ∞ is considered.

The one-sided filter that produces the MMSE estimate for final time t = n is
called the concurrent filter. In our finite-sample context, the concurrent N̂t and Ŝt

1 A more general perspective, applicable to any finite sample estimate, is that there is just one filter, a
filter whose coefficients change with t . The coefficients of Ŝt = c1 (t) Zt−q + c2 (t) Zt + c3 (t) Zt+q are
piecewise constant, fixed at different values in the first year, last year, and the interval between.
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filters, (1 + �)−2 {−�Bq + 1} and �(1 + �)−2 {Bq + (� + 2)} respectively, could
be applied to all Zt after the first year, q + 1 ≤ t ≤ n, but are only MMSE in the final
year.

5.2 The error covariances of the SAR(1) estimates

For the SAR(1) model, the formulas (27), (18) and (21) yield

�εε = �NN − �N̂ N̂

= σ 2
N

(
I − σ 2

N�−1
Z Z

)
= σ 2

N (I − βN ) = σ 2
NβS . (43)

Hence, for q = 2 and n = 7, from (18) and (32),

�εε = σ 2
a

�

(1 + �)4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 + � 0 � 0 0 0 0
0 2 + � 0 � 0 0 0
� 0 2 0 � 0 0
0 � 0 2 0 � 0
0 0 � 0 2 0 �

0 0 0 � 0 2 + � 0
0 0 0 0 � 0 2 + �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (44)

which reveals the general pattern. The error variances of the initial and final years are
larger than the error variance 2σ 2

a (1 + �)−4 � at intermediate times by the amount
σ 2
a �2 (1 + �)−4. This is the mean square error2 of using�(1 + �)−2 {�Zt } to back-

cast/forecast �(1 + �)−2 Zt±q in (34) and (37), since from (2) we have

E
(
Zt±q − �Zt

)2 =
(
1 + �2

)
γ0 − 2�γq =

(
1 − �2

)
γ0 = σ 2

a . (45)

The intermediate-time mean square error is γ ε
0 = E

(
St − Ŝt

)2 = E
(
Nt − N̂t

)2
= 2σ 2

N�(1 + �)−2 = 2�(1 + �)−4 σ 2
a . On the scale of the variance σ 2

N of Nt , this is
γ ε
0 /σ 2

N = 2�(1 + �)−2, which is approximately 0.4997 for � = 0.95 and therefore
quite substantial. By contrast, for St we have γ ε

0 /γ S
0 = (1 − �) (1 + �)−2 from (15).

This is approximately 0.013 for � = 0.95. The fact that the intermediate-time mean
square error has the same positive value for all n ≥ 5 reminds us that the error does
not become negligible with large n.

The two-component SAR(1) decomposition derived above has exceptional peda-
gogical value because of the simplicity of its filter and error variance formulas derived
above. With the aid of results of Bell (1984), a rederivation of the filter formulas via
the Wiener-Kolmogorov formulas, presented next, makes possible a quick transition

2 With more general models for Zt , more forecasts and backcasts are needed, and their error covariances
at nonzero leads and lags occur in the more complex mean square error formulas.
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to the nonstationary SRWmodel (6) and its canonical MMSE two-component decom-
position filter and error autocovariance formulas, all obtained by setting � = 1 in the
SAR(1) formulas above.

6 Wiener–Kolmogorov formulas applied to SAR(1) and SRW models

Initially for the two-component case (4) with bi-infinite data, we consider a fundamen-
tal and relatively simple approach to obtainingMMSEdecomposition estimates. It also
applies to the ARIMA case under a productive assumption of Bell (1984) discussed
and applied in Sect. 7.

6.1 Filter transfer functions and the input–output spectral density formula

Not only finite filter formulas but also general bi-infinite filter formulas Yt =∑∞
j=−∞ β j Xt− j are usefully reexpressed as Yt = β (B) Xt with filter β (B) =∑∞
j=−∞ β j B j . The s.d. of the filter output series Yt is related to the input series

s.d. gX (λ) by the fundamental formula

gY (λ) =
∣∣∣β (ei2πλ

)∣∣∣2 gX (λ) , (46)

see (4.4.3) of Brockwell andDavis (1991). The function β
(
ei2πλ

)
is called the transfer

function of the filter β (B) and
∣∣β (ei2πλ

)∣∣2 is its squared gain. When a filter’s transfer
function β

(
ei2πλ

)
is known, then the filter coefficients can be obtained from it, in

general by integration

β j =
∫ 1/2

−1/2
e−i2π jλβ

(
ei2πλ

)
dλ, j = 0,±1, . . . ,

but in practice, forARMAorARIMArelated transfer functions, by algebraic/numerical
algorithms such as those encoded in SEATS.

For example, the transfer function of Ŝt in (42) is

βS

(
ei2πλ

)
= �(1 + �)−2

(
ei2πqλ + 2 + e−i2πλ

)

= �(1 + �)−2
∣∣∣1 + ei2πqλ

∣∣∣2 .

Hence from (46), the spectral density of Ŝt is

gŜ (λ) = �2 (1 + �)−4
∣∣∣1 + ei2πqλ

∣∣∣4 g (λ)

= �2 (1 + �)−4 σ 2
a

∣∣1 + ei2πqλ
∣∣4∣∣1 − �ei2πqλ
∣∣2 . (47)
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A stationary ARMA series Zt has a representation

ϕ (B) Zt = ϑ (B) at , (48)

with AR andMA polynomials ϕ (B) = 1−φ1B−· · ·−φr Br and ϑ (B) = 1−θ1B−
· · · − θmBm satisfying

ϑ (0) = ϕ (0) = 1, ϕ (z) �= 0 for |z| ≤ 1, ϑ (z) �= 0 for |z| < 1, (49)

where at is white noise with variance denoted σ 2
a . (ϑ is script θ, ϕ is script φ.) The

general ARMA s.d. formula,

g (λ) = σ 2
a

∣∣ϑ (ei2πλ
)∣∣2∣∣ϕ (ei2πλ
)∣∣2 , (50)

follows from two applications of (46) as in Brockwell and Davis (1991, p. 123).
Conversely, if (50) and (49) hold, then so does (48) for some w.n. process at with
variance σ 2

a .
This fact can be used to identify ARMA models for bi-infinite data component

estimates. For example, from (47) and (50), Ŝt has the noninvertible SARMA(1,2)q
model

(
1 − �Bq) Ŝt = (

1 + Bq)2 bt , σ 2
b = �2 (1 + �)−4 σ 2

a . (51)

Note from (50) that an ARMA model is noninvertible, i.e. ϑ
(
ei2πλ

) = 0 for some λ,
if and only if its spectral density is zero at some λ.

6.2 The W–K formulas

For a stationary series Zt with a spectral density decomposition (9) specifying a
two-uncorrelated-component decomposition Zt = St + Nt , Kolmogorov (1939) and
Wiener (1949) independently derived the formulas

βS

(
ei2πλ

)
= gS (λ)

g (λ)
, βN

(
ei2πλ

)
= gN (λ)

g (λ)
, (52)

of the transfer functions of each component’s MMSE linear estimate

Ŝt =
∞∑

j=−∞
βS
j Zt− j =

⎛
⎝ ∞∑

j=−∞
βS
j B

j

⎞
⎠ Zt ,

N̂t =
∞∑

j=−∞
βN
j Zt− j =

⎛
⎝ ∞∑

j=−∞
βN
j B

j

⎞
⎠ Zt , (53)
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from bi-infinite data, Zτ ,−∞ < τ < ∞. For decompositions with more components,
the same ratio form applies: each component estimate’s transfer function is the ratio
of its spectral density to g (λ). The filters are finite only when Zt has an AR model
but at most one component also does. The W–K formulas are implemented in SEATS
using an algorithm of Tunnicliffe Wilson, presented in Burman (1980), which yields
finite-sample MMSE estimates. From a moderate number of forecasts and backcasts,
the algorithm efficiently calculates the result of using backcasts and forecasts for the
infinitely many missing past and future ARMA or ARIMA data. This has led to all
finite-sample MMSE component estimates being confusingly called Y–K estimates in
some of the literature.

The bi-infinite error processes εt = St − Ŝt and −εt = Nt − N̂t are stationary with
spectral density

gε (λ) = gS (λ) gN (λ)

g (λ)
, (54)

see Whittle (1963) or Appendix A of the research report Findley et al. (2015) for
derivations of (52) and (54). The formulas (52) and (54) are analogues of the matrix
formulas of (21) and (29). Finite-samplemean square errors variances and covariances
cannot be obtained from gε (λ). In their place, the measures of uncertainty output by
SEATS for its finite-sample estimates are measures for semi-infinite data estimates,
used as approximations. JD+ obtains exact finite-sample measures from state space
algorithms.

6.3 SAR(1) intermediate-time filters again and an alternate model form

As a simpleW-Kapplication, for the SAR(1), from (10) and (17), the intermediate-time
N̂t filter has the transfer function

βN

(
ei2πλ

)
= gN (λ)

g (λ)
= σ 2

N

σ 2
a

∣∣∣1 − �ei2πqλ
∣∣∣2

= (1 + �)−2
{
−�ei2πqλ +

(
1 + �2

)
− �e−i2πqλ

}
. (55)

Substituting B j for ei2π jλ and B− j for e−i2π jλ yields (41), and (42) follows similarly
using βS (B) = 1 − βN (B).

We enter new territory by substituting Zt = (1 − �Bq)−1 at into (41). This yields
the model formula

N̂t = (1 + �)−2 (1 − �B−q) at = (1 + �)−2 {at − �at+2} , (56)

the forward-time form of a seasonal MA(1). This form is used by SEATS for revision
variance calculations illustrated in Maravall and Pierce (1987). It will also be the form
provided by the most direct derivations of seasonal random walk component models
in later sections.
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Remark A formula of the usual backward-time form, N̂t = (1 + �)−2 (ct −�ct−2),
can be obtained for (56) with ct = (

1 − �B2
)−1 (

1 − �B−2
)
at . Complex conjuga-

tion preserves magnitude, so
∣∣1 − �ei2π2λ

∣∣−2 ∣∣1 − �e−i2π2λ
∣∣2 = 1 for all λ. Thus,

from (46), the spectral densities satisfy gc (λ) = ga (λ) = σ 2
a showing that ct is white

noise with variance σ 2
a . The expanded formula ct = (

1 − �B−2
)∑∞

j=0 � j at−2 j ,
shows that ct is a function of future and past at , specifically of at+2−2 j , 0 ≤ j < ∞.
Analogues of these results hold for all forward-time moving average models derived
below.

6.4 Going nonstationary with the seasonal random walk

The ARIMA W-K formula generalization of Bell (1984), discussed in detail in the
next section, shows that setting � = 1 in (41)–(42) yields the MMSE estimates of the
two-component decomposition Zt = Ŝt + N̂t of the SRW model (6) with

Ŝt = 1

4

{(
1 + Bq) (1 + B−q)} Zt , N̂t = 1

4

{(
1 − Bq) (1 − B−q)} Zt . (57)

This is the result obtained with � = 1 in (42) and (41). From (57), the forecasting and
backcasting results of Sect. 7.2 will yield that the initial year and final year estimates
of N̂t and Ŝt are obtained by setting � = 1 in (34) and (36) and in (39) and (40),
respectively. Also, error variances and covariances of the estimates are obtained by
setting � = 1 in (44) and in the general matrix result described below (44).

The formulas (57) start from the directly verifiable decomposition of

g (λ) = σ 2
a∣∣1 − ei2πqλ

∣∣2 , (58)

given by

g (λ) = 1

4
σ 2
a

∣∣1 + ei2πqλ
∣∣2∣∣1 − ei2πqλ
∣∣2 + 1

4
σ 2
a = gS (λ) + gN (λ) , (59)

which also follows from setting� = 1 in the formulas associated with the component
s.d.’s of (12). The functions g (λ) and gS (λ) are pseudo-spectral densities, see (61),
of the model (6) and the SARIMA (1,1)q model of ŝt obtained by setting � = 1 in
(51).

In Sect. 8, we will detail the seasonal, trend, irregular decompositions of (58) and
the SRW with q = 2.

7 ARIMA component filters from pseudo-spectral density
decompositions

For an ARIMA Zt with degree d ≥ 1 differencing operator δ (B) = 1− δ1B − · · · −
δd Bd and model
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ϕ (B) δ (B) Zt = ϑ (B) at , (60)

the pseudo-spectral density (pseudo-s.d.) is defined by

g (λ) = σ 2
a

∣∣ϑ (ei2πλ
)∣∣2∣∣δ (ei2πλ

)
ϕ
(
ei2πλ

)∣∣2 = σ 2
a

∣∣ϑ (ei2πλ
)∣∣2∣∣δ (ei2πλ

)∣∣2 ∣∣ϕ (ei2πλ
)∣∣2 . (61)

Its integral is infinite because of the λ at which δ
(
ei2πλ

) = 0.
In the nonstationary signal plus nonstationary noise case of interest, δ (B) =

δS (B) δN (B), and δS
(
ei2πλ

)
and δN

(
ei2πλ

)
have no common zero. In the sea-

sonal plus nonseasonal case, δS
(
ei2πλ

)
has zeroes only at seasonal frequencies

λ = k/q, k = ±1, . . . , q/2, and δN
(
ei2πλ

) = 0 only for λ = 0, as with
δS (B) = 1+ B + · · · + Bq−1 and δN (B) = (1 − B)2 for δ (B) = (1 − B) (1 − Bq)

of the airline model. The pseudo-s.d. g (λ)must be decomposed into a sum of seasonal
and nonseasonal pseudo-s.d.’s associated with δS (B) and δN (B), respectively.

Under mild assumptions described below, Bell (1984) established the MMSE opti-
mality of the pseudo-spectral generalization of theW-K transfer function formulas for
ARIMA component signal extraction. Tiao and Hillmer (1978), Burman (1980), and
Hillmer and Tiao (1982) developed the canonical approach used with extensions and
refinements in SEATS and its implementations. The last reference provides a number
of examples of canonical seasonal, trend and irregular pseudo-s.d. decompositions

g (λ) = gs (λ) + gp (λ) + gu (λ) , (62)

as well as examples of ARIMA models whose pseudo-s.d. does not admit such a
decomposition (e.g. airline models with certain parameter values), the inadmissible
case. Stationary components in addition to the irregular occur with s.d.’s for cyclical
or other “transitory” components, see Gómez and Maravall (1996) and Kaiser and
Maravall (2001). SEATS has options for several.

Generalizing the stationary case definition, a pseudo-s.d. decomposition is canon-
ical if, with at most one exception, its component pseudo- s.d.’s and s.d.’s have
minimum value zero, as in (59).

7.1 Bell’s assumptions

In addition to the requirements on δS (B) and δN (B), Bell (1984) also requires that the
series δS (B) St and δN (B) Nt be uncorrelated. This can be obtained “automatically”
from the implied s.d. decomposition gδ(B)Z (λ) = gδ(B)S (λ)+gδ(B)N (λ), see Findley
(2012). From here, Bell’s Assumption A provides MMSE optimality for finite-sample
component estimates from the matrix formulas of McElroy (2008), for bi-infinite data
estimates from pseudo-spectral W-K formulas, and for semi-infinite data estimates
like those considered in Bell and Martin (2004).

Bell’s Assumption A: For δ(B) of degree d, the d initial values, say Z1, . . . , Zd ,
are uncorrelated with the bi-infinite ARMA series wt = δ (B) Zt ,−∞ < t < ∞,
which generates the bi-infinite Zt via
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Zt = wt + δ1Zt−1 + · · · + δd Zt−d , t > d,

Zt−d = δ−1
d (wt + δd−1Zt−d+1 + · · · + δ1Zt ) , t < 1. (63)

An assumption is necessary. Inference about the initial values is impossible because
they are nonstationary and there is one observation of each. Assumption A provides
both signal extraction optimality and, as we demonstrate next, a more fundamental
MMSE optimality, that of ARIMA forecasts as commonly produced.

7.2 Assumption A yields MMSE forecasts and backcasts

Forecasts of ARIMA Zt are traditionally obtained as in Box and Jenkins (1976, Ch.
5), namely by generating future Zt , t > d from initial Z1, . . . , Zd and subsequent
wt = δ (B) Zt , t > d , replacing unobserved wt by their MMSE ARMA forecasts
to obtain desired forecasts of Zt . The MMSE optimality of such forecasts follows
somewhat straightforwardly from the forecasting results obtained under Assumption
A in the third text paragraph on p. 652 of Bell (1984). For backcasts the reverse
recursion in (63) is used.

We illustrate this procedure by deriving results we require for Zt from the biannual
SRW model,

(
1 − B2

)
Zt = at , (64)

which is analyzed in detail in the next section. The white noise variates at are all
uncorrelated with one another and, under Assumption A, also with the initial values
Z1,Z2 of any n ≥ 2 observations Z1, . . . , Zn . For t > 2, repeated application of the
recursion Zt = Zt−2 + at yields all Zt , t ≥ 3 from the left hand formulas of (65) and
(66) below: odd “months” Z2(m+k)−1 and even “months” Z2(m+k)m ≥ 1, k ≥ 1 are
generated independently. The right most white noise sum in (65) shows the forecast
error when Z2m−1 is the forecast of Z2(m+k)−1 from data Z1, Z2, . . . , Z2m−1 or from
Z1, Z2, . . . , Z2m−1, Z2m . The right most white noise sum in (66) shows the error of
the forecast Z2m of Z2(m+k), k ≥ 1 from Z1, Z2, . . . , Z2m−1, Z2m :

Z2(m+k)−1 = Z1 +
m+k∑
i=1

a2i−1 = Z2m−1 +
m+k∑

i=m+1

a2i−1, (65)

Z2(m+k) = Z2 +
m+k∑
j=1

a2 j = Z2m +
m+k∑

i=m+1

a2i . (66)

For any k ≥ 1, Z2m−1 is the MMSE forecast of Z2(m+k)−1 because each term of the
error

∑m+k
i=m+1 a2i−1 is uncorrelatedwith the data, as explained above. Similarly Z2m is

theMMSE forecast of Z2(m+k), k ≥ 1, because its error
∑m+k

i=m+1 a2i−1 is uncorrelated
with Z1, Z2, . . . , Z2m−1, Z2m . In both cases the mean square error is kσ 2

a .
For backcasts the result that, for all k ≥ 1, Z1 and Z2 are the MMSE optimal

backcasts of Z−1−2(k−1) and Z−2(k−1) respectively, follows from Assumption A and
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the analogues of (65) and (66) yielded by the backward form Zt−2 = Zt − at of the
recursion used above.

8 The 3-component q = 2 SRW decomposition

For (64), paralleling what the software does with more complex models, the differenc-
ing operator δ (B) = (

1 − B2
)
is factored into the product of the seasonal sumoperator

δs (B) = 1+ B and the differencing operator for the trend δp (B) = 1− B. The next
step is a partial fraction calculation (see Wikipedia (2011)) to decompose the pseudo-

s.d. g (λ) of Zt into a sum of two ratio functions, one with
∣∣δs (ei2πλ

)∣∣2 = ∣∣1 + ei2πλ
∣∣2

as the denominator and the other with δp
(
ei2πλ

) = ∣∣1 − ei2πλ
∣∣2 as denominator. For

σ−2
a g (λ) = 1∣∣1 − ei2π2λ

∣∣2 = 1∣∣1 + ei2πλ
∣∣2 ∣∣1 − ei2πλ

∣∣2 ,

we seek α1, α2 such that for all λ,

α1∣∣1 + ei2πλ
∣∣2 + α2∣∣1 − ei2πλ

∣∣2 = α1
∣∣1 − ei2πλ

∣∣2 + α2
∣∣1 + ei2πλ

∣∣2∣∣1 + ei2πλ
∣∣2 ∣∣1 − ei2πλ

∣∣2
= 1∣∣1 − ei2π2λ

∣∣2 .

This requires

α1

∣∣∣1 − ei2πλ
∣∣∣2 + α2

∣∣∣1 + ei2πλ
∣∣∣2 = α1

{
2 − e−i2πλ − ei2πλ

}

+α2

{
2 + e−i2πλ + ei2πλ

}
= 1,

for all λ, which is equivalent to 2 (α1 + α2) = 1,−α1+α2 = 0, whose unique solution
is α1 = α2 = 1/4. Thus we have an initial decomposition,

σ−2
a g (λ) = 1

4

∣∣∣1 + ei2πλ
∣∣∣−2 + 1

4

∣∣∣1 − ei2πλ
∣∣∣−2

.

Both pseudo-s.d.’s on the right have a nonzero minimum value of 1/16. So the canon-
ical 3-component pseudo-s.d. decomposition is

g (λ) = gs (λ) + gp (λ) + gu (λ) , (67)

with σ−2
a gs (λ) = 1

4

∣∣1 + ei2πλ
∣∣−2 − 1/16, σ−2

a gp (λ) = 1
4

∣∣1 − ei2πλ
∣∣−2 − 1/16,

and σ−2
a gu (λ) = 1/8. (Note our use of lower case letters, e.g. s instead of S, for

components of three-component decompositions.) It is easily verified that
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gs (λ) = σ 2
a

16

∣∣1 − ei2πλ
∣∣2∣∣1 + ei2πλ
∣∣2 , gp (λ) = σ 2

a

16

∣∣1 + ei2πλ
∣∣2∣∣1 − ei2πλ
∣∣2 , gu (λ) = σ 2

a

8
. (68)

Thus st and pt are nonstationary, with differencing polynomials δs (B) = 1 + B and
δn (B) = 1− B, with δn (B) also the differencing polynomial of sat = pt +ut . Using
theW-K formulas as before, e.g. βs

(
ei2πλ

) = gs (λ) /g (λ), one obtains from (68) the
decomposition’s transfer functions

βs

(
ei2πλ

)
= 1

16

∣∣∣1 − ei2πλ
∣∣∣4 , βp

(
ei2πλ

)
= 1

16

∣∣∣1 + ei2πλ
∣∣∣4 ,

βu

(
ei2πλ

)
= 1

8

∣∣∣1 − ei2π2λ
∣∣∣2 . (69)

For the seasonal adjustment filter, we have βsa
(
ei2πλ

) = 1 − βs
(
ei2πλ

)
. These pro-

vide the estimates ŝt = βs (B) Zt , p̂t = βp (B) Zt , ût = βu (B) Zt and ŝat =
(1 − βs (B)) Zt from bi-infinite data, and also for intermediate times 3 ≤ t ≤ n − 2
from n ≥ 3 observations.

8.1 The estimates’ symmetric filters and ARIMA models

For translations from squared gains
∣∣� jα j ei2πqλ

∣∣2 to filters, we adopt a useful con-
vention of Maravall and Pierce (1987) which uses replacement of e±i2π jλ by B± j to
obtain the symmetric filter formula,

∣∣∣� jα j B
j
∣∣∣2 =

(
� jα j B

j
) (

� jα j B
− j
)
. (70)

For example, |1 + B|2 = (1 + B)
(
1 + B−1

) = B + 2+ B−1, so from (69), the trend
filter is

βp (B) = 1

16
|1 + B|4 = 1

16
(1 + B)2

(
1 + B−1

)2

= 1

16

(
B2 + 4B + 6 + 4B−1 + B−2

)
.

To obtain the (forward-time) moving average polynomial of each estimates’
model, we use the result that if β (B) = δ (B) β̃ (B), then the substitution
Zt = δ (B)−1 at is allowed in β (B) Zt and results in β (B) Zt = β̃ (B) at , see
Theorem 4.10.1 of Brockwell and Davis (1991). Applying this to (1 − B) p̂t =
1
16 (1 − B) (1 + B)2

(
1 + B−1

)2
Zt = 1

16

(
1 − B2

) {
(1 + B)

(
1 + B−1

)2}
Zt , we

have

(1 − B) p̂t = 1

16
(1 + B)

(
1 + B−1

)2
at = 1

16

(
B + 3 + 3B−1 + B−2

)
at .
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So p̂t has an ARIMA (0,1,3) model, noninvertible due to the factors (1 + B) and(
1 + B−1

)2 = B−2 (1 + B)2.
Similar calculations from (69) provide the symmetric filters and ARIMA or ARMA

models of the other estimates of three-component q = 2 SRW decomposition shown
below. The factored filter formulas reveal the differencing factor(s) latent in each filter,
causing eachmodel to be noninvertible. Further consequences are described in Sect. 9.
Also,we difference each estimate appropriately to obtain itsmodel’s stationarymoving
average component, for calculation of autocorrelations of its stationary transform for
tables in later sections. The MA order is noted after each model.

βs (B) = 1

16
(1 − B)2

(
1 − B−1

)2

= 1

16

(
B2 − 4B + 6 − 4B−1 + B−2

)
, (71)

(1 + B) ŝt = 1

16

(
1 − B2

) (
1 − B−1

)2
at

= 1

16
{−at−1 + 3at − 3at+1 + at+2} MA(3) (72)

βsa (B) = 1 − βs (B) = 1

16

(
−B2 + 4B + 10 + 4B−1 − B−2

)

= 1

16

(
−1 + 6B−1 − B−2

)
(1 + B)2

(1 − B) ŝat = 1

16

(
−1 + 6B−1 − B−2

)
(1 + B) at

= 1

16
{−at−1 + 5at + 5at+1 − at+2} MA(3) (73)

βu (B) = 1

8

(
1 − B2

) (
1 − B−2

)
= 1

8

(
−B2 + 2 − B−2

)
(74)

ût = 1

8

(
1 − B2

) (
1 − B−2

) (
1 − B2

)−1
at

= 1

8

(
1 − B−2

)
at MA(2) (75)

Apart from the seasonal adjustment formulas, the preceding formulas are equivalent
to canonical filter and model formulas in Maravall and Pierce (1987), who in addition
consider non-canonical MMSE estimates. Maravall (1994, p. 169ff) shows how the
forward-time form of the MA polynomials can facilitate economic analyses.

8.2 The estimates’ asymmetric filter formulas

As in Sect. 5.1, we can use MMSE forecasts and backcasts, now from Sect. 7.2, to
obtain the filters for theMMSE estimates from the initial and final years.We give final-
year examples for a series of odd length n = 2m + 1. (Their time reverses provide
the initial year filters). The factored formulas reveal the differencing operator factor,
often of lower degree than in the symmetric filter. Starting with the concurrent filters,
the asymmetric seasonal and seasonal adjustment filters for the last year are:
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ŝ2m+1 = 1

16

{
Z2m−1 − 4Z2m + 6Z2m+1 − 4Ẑ2m+2 + Ẑ2m+3

}

= 1

16
{Z2m−1 − 8Z2m + 7Z2m+1} = 1

16
(7 − B) (1 − B) Z2m+1,

ŝ2m = 1

16

{
Z2m−2 − 4Z2m−1 + 6Z2m − 4Z2m+1 + Ẑ2m+2

}

= 1

16

{
B2 − 4B + 7 − 4B−1

}
Z2m

= 1

16

(
−B + 3 − 4B−1

)
(1 − B) Z2m,

ŝa2m+1 = Z2m+1 − ŝ2m+1 = 1

16
{−B2 + 8B + 9}Z2m+1

= 1

16
(9 − B) (1 + B) Z2m+1

ŝa2m = Z2m − ŝ2m = 1

16

{
−B2 + 4B + 9 + 4B−1

}
Z2m

= 1

16

(
−B + 5 + 4B−1

)
(1 + B) Z2m .

Those for trend and irregular component estimates are

p̂2m+1 = 1

16

{
B2 + 8B + 7

}
Z2m+1

= 1

16
(7 + B) (1 + B) Z2m+1,

p̂2m = 1

16

{
B2 + 4B + 7 + 4B−1

}
Z2m

= 1

16

(
B + 3 + 4B−1

)
(1 + B) Z2m,

û2m+1 = 1

8

{
−Z2m−1 + 2Z2m+1 − Ẑ2m+3

}

= 1

8
{−Z2m−1 + Z2m+1} = 1

8
(1 − B) (1 + B) Z2m+1 ,

û2m = 1

8

{
−Z2m−2 + 2Z2m − Ẑ2m+2

}
= 1

8
{−Z2m−2 + Z2m}

= 1

8
(1 − B) (1 + B) Z2m .

Without deriving the forecasts needed for MMSE concurrent estimates of the
q = 2 SRW, Maravall and Pierce (1987) derive formulas for the mean square revi-
sions of the concurrent trend and seasonal estimates, p̂2m+1 and ŝ2m+1, from when
Z2m+2 and Z2m+3 become available to replace the forecasts, also for non-canonical
estimates.
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Fig. 5 Symmetric central and one-sided concurrent seasonal adjustment filters for a monthly (q = 12)
seasonal random walk series of length n = 97. As with the q = 2 formulas (76) and (77), the coefficients
are largest at the estimation time t , staying positive until a year’s remove, when the final nonzero value is
negative and substantial. Short filters like this smooth heavily and can result in large revisions

8.3 Symmetric and concurrent SWP filter coefficient features

Consider the coefficients of the symmetric midpoint (also intermediate time) and the
one-sided concurrent seasonal adjustment filters of a span of length 2m + 1. The
mid-point adjustment is given by

ŝam+1 = − 1

16
Zm−1 + 4

16
Zm + 10

16
Zm+1 + 4

16
Zm+2 − 1

16
Zm+3, (76)

and the concurrent adjustment by

ŝa2m+1 = − 1

16
Z2m−1 + 8

16
Z2m + 9

16
Z2m+1. (77)

Figure 5 shows the similar but more elaborate coefficient patterns of the midpoint
filter and the concurrent seasonal adjustment filter of themonthly random walk model
Zt = Zt−12 + at . All of these filters are very localized, ignoring data more than a
year way from the time point of the estimate, which gets the largest weight, always
positive, contrasting with the next largest coefficients, negative for the closest same-
calendar-month data. They are therefore very adaptive in a way that is appropriate for
series with such erratic trend and seasonal movements.

9 What seasonal decomposition filters annihilate or preserve

The occurrence of the trend and seasonal differencing factors of δ (B) and δ
(
B−1

)
,

sometimes squared, in the filter formulas of the Sect. 8.1 reveal which fixed sea-
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sonal or trend components the filters annihilate and which their complementary
filters preserve. Regarding symmetric filters, βs (B) contains δs (B) δs

(
B−1

) =
(1 − B)2

(
1 − B−1

)2 = B−2 (1 − B)4. Differencing lowers the degree of a poly-
nomial by one, e.g., (1 − B) t3 = t3− (t − 1)3 = 3t2−3t +1. Hence this βs (B)will
annihilate a cubic component at3 and the seasonal adjustment filter βsa (B) = 1 −
βs (B)will reproduce it.βsa (B) has (1 + B)2 as a factor.Aq = 2 stable seasonal com-
ponent a (−1)t has the property that (1 + B) a (−1)t = a

{
(−1)t − (−1)t−1} = 0.

Hence βu (B) and βsa (B) annihilate such a component (and also an unrealistic lin-
early increasing at (−1)t ) and βs (B) preserves it. This is also true for their concurrent
filters. The reader can further observe that βp (B) a (−1)t = 0 and that the irregular
filter βu (B) = − 1

8 B
−2 (1 + B)2 (1 − B)2 will eliminate both a linear trend and a

stable seasonal component.
These are quite general results, applying to AMBSA filters, finite or infinite, sym-

metric or asymmetric, from any ARIMA model whose differencing operator has
1 − Bq = (1 − B)U (B) , q ≥ 2, with
U (B) = 1 + B + · · · Bq−1 as a factor. The tables of Bell (2012) cover more general
differencing operators and also several generations of symmetric and asymmetric X-
11 filters. In many cases, linear functions in t , and in exceptional cases, such as (71)
and others covered in Bell (2015), even higher degree polynomials in t are eliminated
by βs (B) and preserved by βsa (B).

10 Auto- and cross-correlations of stationary transforms of q = 2 SRW
components

We continue the exploration of properties of estimated components, including how
they differ from properties of the unobserved components, now for the ARIMA case,
using the q = 2 SRW 3-component decomposition. We examine the most accessible
properties, those of autocorrelations and cross-correlations of the minimally differ-
enced components estimates, with numerical results in Table 1. These can be used as
diagnostics. We begin with an important difference between the ARIMA case and the
stationary case after setting the scene.

Consider an ARIMA Zt whose pseudo-s.d. has a 3-component decomposi-
tion associated with a seasonal-nonseasonal differencing polynomial factorization
δ (B) = δs (B) δn (B). We reexpress the MMSE decomposition δ (B) Zt = δ (B) ŝt +
δ (B) p̂t + δ (B) ût (see Sect. 13.1) as

δ (B) Zt = δn (B) δs (B) ŝt + δs (B) δn (B) p̂t + δ (B) ût . (78)

This makes clear how each estimate is being overdifferenced: δs (B) ŝt , δn (B) p̂t , δn
(B) ŝat and ût are already stationary. In SEATS’ output, each of these correctly (min-
imally) differenced estimates is called the stationary transformation of its estimate,
and the same term is used with unobserved unobserved components. The right hand
sides of the Sect. 8.1 model formulas provide examples we will use.

The important difference from the stationary case: From (72) and (73),
in contrast to E Ŝt N̂t > 0 for stationary SAR(1) decompositions, we have
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Table 1 Autocorrelations of stationary transforms of the unobserved and estimated components

Transforms γ0/σ
2
a ρ1 ρ2 ρ3

(1 + B) st 1/8 = 0.125 −0.50 0 0

(1 + B) ŝt 20/162
.= 0.078 −0.75 0.30 −0.05

(1 − B) pt 1/8 = 0.125 0.50 0 0

(1 − B) p̂t 20/162
.= 0.078 0.75 0.30 0.05

ut 1/8 = 0.125 0 0 0

ût 1/32
.= 0.031 0 −0.50 0

(1 − B) sat 3/8 = 0.375 −1/6
.= −0.167 0 0

(1 − B) ŝat 52/162
.= 0.203 15/52

.= 0.288 −10/52
.= −0.192 1/52

.= 0.019

E
({

(1 + B) ŝt
} {(1 − B) ŝat }

) = 0. This result might suggest that estimates have
the uncorrelatedness property, required of unobserved components from Sect. 7.1,
the property that all stationary transforms with different differencing operators must
be uncorrelated, requiring in particular E

({(1 + B) st }
{
(1 − B) sat− j

}) = 0 for
all j . However, E(

{
(1 + B) ŝt

} {(1 − B) ŝat−1} = 13σ 2
a /162 and E

({
(1 + B) ŝt

}
{(1 − B) ŝat−2}) = −8σ 2

a /162 show otherwise.
SEATS has diagnostics, illustrated in Maravall (2003) and Maravall and Pérez

(2012), to detect when sample-moment correlation and cross-correlation estimates,
calculated from the stationary transform series of the estimates, differ significantly
from the correlations and cross-correlations expected from the MA models of the
stationary transforms. SEATS does not yet provide theoretical model-based cross-
correlations between the stationary transforms of ŝt and ŝat . Its method for calculating
cross-correlations is shown in the Appendix ofMaravall (1994). For components other
than sat , Table I ofMaravall and Pierce (1987) provides lag 1–3 autocorrelation results
for the stationary transforms of the components and estimates of the q = 2 SRWmodel
(64). It has typographical errors (no minus signs). Table 1 is a corrected table extended
with autocorrelations of the stationary transforms of sat and ŝat , all calculated from
the MA formulas in Sect. 8.1 and Appendix 2.

11 Reciprocal smoothing properties of seasonal and trend estimates

Consider a finite detrended series, Z − p̂ = ŝ + û in vector notation. In the X-11
method, ŝ is estimated from the detrended series, see Ladiray and Quenneville (2001).
With AMBSA estimates, Theorem 1 and Remark 4 of McElroy and Sutcliffe (2006)
for ARIMA Zt show that, in addition to being theMMSE linear estimate of s from Z , ŝ
is also the MMSE linear function of Z − p̂ for estimating s. Further, reciprocally, the
estimated trend p̂ is theMMSE linear estimate of p from the seasonally adjusted series
Z − ŝ (a parallel to how the “final” X-11 trend is estimated). Under correct model
assumptions, their paper also provides convergence results to the MMSE estimates
of trend and seasonal for iterations starting with a non-MMSE estimate of trend (or
seasonal).
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Fig. 6 The seasonal factors ŝt (darker lines) are the MMSE estimates of the detrended series Zt − p̂t
(lighter lines) from the simulated airline series Zt with θ = � = 0.6. The horizontal lines are the calendar
month averages of the ŝt

For the canonical seasonal, trend and irregular decomposition of a series simulated
from the Box-Jenkins airline model,

(1 − B)
(
1 − Bq) Zt = (1 − θB)

(
1 − �Bq) at

= at − θat−1 − �at−q + θ�at−q−1 (79)

with θ = � = 0.6, Fig. 6 shows how the ŝt visually smooth the detrended calendar
month subseries.

12 Airline model results: the role of �

We continue with (79) and special cases thereof to demonstrate important aspects
of AMBSA. Hillmer and Tiao (1982) show that, when � ≥ 0, the airline model is
admissible (i.e., has a pseudo-s.d. decomposition) for all −1 ≤ θ < 1. (Admissible
decompositions exist for negative � ≥ −0.3 for a � -dependent interval of θ values.)
We display the influence of� ≥ 0 on the effective length of the filter through the rate of
decay of its largest coefficients away from the time point of estimation. In general, for
the estimate at time t , the observation Zt gets the largest coefficient. The coefficients
of the same-calendar-month values Zt±12k in the observation interval 1 ≤ t ≤ n,
decrease effectively exponentially in k. The dominating effect of � is most clearly
observed with the concurrent seasonal adjustment filters.

Decay rate differences lead to a frequently observed feature of seasonal adjustment
filters of all seasonal ARIMA models with a seasonal moving average factor: The
greater the value of � is, the less localized and adaptive but more stable the estimate
will be. When � is small, the filters are quite localized and adaptive but more likely
to have large revisions when future data at next future times n + 12, n + 24, etc. are
first adjusted.
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Fig. 7 With θ = 0.6 and � = 0.0, the coefficients become negligible after 1 year, with largest-magnitude
values at lag 0 and the seasonal lag. Hence the filter is very adaptive, but large SA revisions are possible
with a year of future data

Fig. 8 With θ = 0.9,� = 0.6, the effective length of the filter is c. 3 years or so longer than in Fig. 7,
which could reduce revisions from Zn+12k , k = 1, 2, 3

12.1 Seasonal filters from various θ,� and their seasonal factors
for the international airline passenger series

Figures 7, 8, 9 show the concurrent seasonal adjustment filter coefficients for n = 97
from airline models with (θ,�) = (0.6, 0.0), (0.9, 0.6), (0.9, 0.9). Same-calendar-
month values Zn−12k, k = 0, 1, . . . have the larger coefficients, with greatest positive
weight for the latest month n.

Since βs (B) = 1−βsa (B), at non-zero lags the magnitude effect of� on seasonal
filter coefficients is the same. Figures 7, 8, 9 show the calendar month seasonal factor
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Fig. 9 When θ = 0.9 and � = 0.9, the effective length of the filter is the length of the data span (also for
somewhat larger n > 97 ). The filter resists domination by rapid changes of Zt values. However, revisions
from Zn+12 , Z n+24, . . . need not diminish in size over time and could cumulatively be large

Fig. 10 Having � = 0.0 results in erratic movements in the seasonal factors estimated from the Airline
Passenger series data due to close tracking of detrended series movements by a filter similar to Fig. 7. This
leads to strong smoothing, see Fig. 12, and a potential for large revisions

estimates for the International Airline Passenger data from the filters determined by
small, intermediate and large values of�, always with θ = 0.6. The coefficient values
were specified as fixed in X-13ARIMA-SEATS and thus are not data-dependent. (For

the Airline Passenger series the estimates are
(
θ̂ , �̂

)
= (0.4, 0.6)). The factors from

� = 0.0 change rapidly, resulting in excessive smoothing of the seasonal adjustment,
see Fig. 12, and in large revisions (not shown). For � = 0.9 the seasonal factors
are effectively fixed and not locally adaptive. They thus have small revisions (whose
cumulative effect over time can be large).
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Fig. 11 With � = 0.9, the calendar month seasonal factor estimates from the Airline Passenger series are
almost fixed across the 12 years, as in Fig. 9. For a series with changing seasonality, such factors can leave
residual seasonality, see Fig. 12

Fig. 12 Two extremes. The very smooth, trend-like seasonal adjustment of the Airline Passenger series
shown is obtained from division by the volatile � = 0.0 seasonal factors of Fig. 10, whose text explains
why revisions from future data are likely to be large. By contrast, the nearly stable � = 0.9 same-calendar-
month factors of Fig. 11 produce a much less smooth adjustment, with residual seasonality visible in the
later years against the background of the original series

13 Smoothness properties of the models’ estimates

13.1 Simplistic autocorrelation comparison criteria for smoothness
and nonsmoothness

We begin our autocorrelation-based consideration of the smoothing properties of esti-
mates. The simplistic definitions used will support a systematic analysis that provides
insight regarding seasonal decompositions.
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Given two stationary series Xt and Yt , we say that Xt is smooth if ρX
1 > 0. If

also ρX
1 > ρY

1 , then Xt is smoother than Yt . If ρY
1 < 0, the series Yt is nonsmooth.

A smooth series is therefore smoother than all white noise series and all nonsmooth
series. If Yt is nonsmooth and ρY

1 < ρX
1 holds, then Yt is more nonsmooth than Xt . A

nonsmooth series is thus more nonsmooth than all white noise series and all smooth
series. To examine if visual impressions of smoothness or nonsmoothness align with
the conclusions of these formal criteria, differences of scale must be accounted for,
see Sect. 13.2 and 13.3 and associated figures for illustrations.

We make smoothness/nonsmoothness comparisons between the series Zt and
its intermediate-time/bi-infinite-data component estimates. This is done for the two
SAR(1) component estimates in Sect. 13.2 and 13.3. In the nonstationary cases, the
comparisons are made for the stationary decompositions

δ (B) Zt = δ (B) ŝt + δ (B) p̂t + δ (B) ût = δ (B) ŝt + δ (B) ŝat . (80)

These represent MMSE optimal three- and two-component decompositions of
δ (B) Zt . For example, the MMSE property of ŝt , that ŝt − st is uncorrelated with Zτ

for all t and τ , immediately yields that δ (B)
(
ŝt − st

)
is uncorrelated with δ (B) Zτ

for all t and τ .
When a series considered is a calendar month subseries, the autocorrelations con-

sidered are the seasonal autocorrelations in the time scale of the original Zt . We
sometimes say that the conclusion of smoother is strengthened if the relevant auto-
correlation at lag 2 (and perhaps consecutive higher lags) is also positive. This calls
attention to the stronger smoothness properties of monthly trends and calendar month
seasonal factors or their stationary transforms. Other intensifiers are only suggestive
and will not be formally defined.

13.2 SAR(1): increased nonsmoothness of N̂t

By direct calculation from (33) or from its seasonal MA(1) model (56), the autocor-
relations of intermediate-time N̂t are

ρ N̂
j =

{−�
(
1 + �2

)−1
, j = q,

0 j �= q.
(81)

Whereas calendar month series of Zt are smooth because ρq = � > 0, ρ N̂
q < 0

so N̂t has more nonsmooth calendar month series than Zt . Of course, the calendar
month subseries of N̂t are less variable than those of Zt in the sense that, from (56),
γ N̂
0 = (1 + �)−4 (1 + �2

)
σ 2
a = (1 − �)

(
1 + �2

)
(1 + �)−3 γ0 is less than γ0.

Consequently, the scale of the N̂t is related to that of the Zt through

√
γ N̂
0 =

√
(1 − �)

(
1 + �2

)
(1 + �)−3√γ0. (82)
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Fig. 13 Calendar month plots of the SAR(1) intermediate-time white noise factor estimates N̂t (darker
line) and the rescaled Zt , downscaled to have the same standard deviation as the N̂t for � = 0.95. The
horizontal lines are the calendar month averages of the rescaled Zt . The N̂t calendar month subseries are
visually less smooth than the rescaled Zt , in alignment with result of the lag 12 autocorrelation analysis

The scale reduction factor
√

(1 − �)
(
1 + �2

)
(1 + �)−3 is approximately 0.113 for

� = 0.95. This factor quantifies the diminished scale of oscillations about the level
value 0 seen for the intermediate years inFig. 3. Figure 13 shows calendarmonthgraphs
of the nonsmooth component N̂t and the scale-reduced Zt , the latter downscaled to
have N̂t ’s standard error. N̂t is visibly less smooth, in alignment with the formal
conclusion.

13.3 SAR(1): greater calendar month smoothness of Ŝt

Directly calculating the seasonal lag autocovariances of Zt−q + 2Zt + Zt+q and (3),

we obtain from (38) that the variance and the nonzero autocovariances γ Ŝ
kq , k ≥ 1 of

intermediate-time Ŝt are

γ Ŝ
0 = E Ŝ2t =

{
γ0

�2

(1 + �)4

}
2 (� + 3) (1 + �)

γ Ŝ
q = E Ŝt Ŝt+q =

{
γ0

�2

(1 + �)4

}(
4 + 3� + �2

)
(1 + �)

γ Ŝ
2q = E Ŝt Ŝt+2q =

{
γ0

�2

(1 + �)4

}
(1 + �)4

γ Ŝ
kq = �k−2γ Ŝ

2q , k ≥ 3. (83)

Division by γ Ŝ
0 yields the intermediate-time autocorrelations (84).
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Table 2 Autocorrelations of fully differenced estimates

Estimate γ0/σ
2
a ρ1 ρ2 ρ3 ρ4

(
1 − B2

)
ŝt 70/162 −0.80 0.40 − 4

35
.= −0.114 1

70
.= 0.014(

1 − B2
)
p̂t 70/162 0.80 0.40 4

35
.= 0.114 1

70
.= 0.014(

1 − B2
)
ŝat 134/162 72

134
.= 0.537 − 2

67
.= −.030 0 1

134
.= 0.007(

1 − B2
)
ût 24/162 0 − 2

3
.= −.667 0 1

6
.= 0.167

ρ Ŝ
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 (4 + �(3 + �)) (� + 3)−1 , | j | = q
1
2 (1 + �)3 (� + 3)−1 | j | = 2q,

�k−2ρ Ŝ
2q , | j | = kq, k ≥ 3,

0, | j | �= 0, kq.

(84)

Using (3 + �)−1 > 1/4 and 1
2 (1 + �) > � for 0 < � < 1, one readily obtains

from (84), (16) and (3) that the intermediate-time calendar month autocorrelations of
Ŝt dominate those of Zt ,

ρ Ŝ
kq > ρS

kq > �k > 0, k ≥ 1. (85)

By calendar month, Ŝt is smoother than Zt in alignment with the visual impression
from Fig. 4. (The scale of Ŝt is only slightly smaller than the scale of Zt : From (83),

we have
√

γ Ŝ
0 /γ0

.= 0.981 for � = 0.95).

13.4 Smoothness properties of q = 2 SRW component estimates

For q = 2 SRW smoothness results, we require autocorrelations of the fully differ-
enced components of (80):

(
1 − B2

)
ŝt = 1

16
B−2 (1 − B)4 at = 1

16
{at−2 − 4at−1 + 6at − 4at+1 + at+2}

(
1 − B2

)
p̂t = 1

16
B−2 (1 + B)4 at = 1

16
{at−2 + 4at−1 + 6at + 4at+1 + at+2}

(
1 − B2

)
ût = 2

16
B−2

(
1 − B2

)2
at =

{
−2B2 + 4 − 2B−2

}
at

= 1

16
{−2at−2 + 4at − 2at+2}

(
1 − B2

)
ŝat = 1

16
{−at−2 + 4at−1 + 10at + 4at+1 − at+2}

These formulas yield the autocorrelations of Table 2.
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δ (B) Zt = at is white noise, so ρ
δ(B)Z
j = 0, j > 0. Thus in Table 2, ρ2 > 0

indicates a differenced estimate with smoother calendar month series than δ (B) Zt ,
whereas ρ1 < 0 indicates a differenced estimate whose monthly series is more non-
smooth than monthly δ (B) Zt , etc. Regarding the monthly series: as determined by
ρ1, δ (B) ŝat and δ (B) p̂t are smoother than δ (B) Zt with strengthened smoothness.
The seasonal’s δ (B) ŝt is more nonsmooth than δ (B) Zt . Regarding calendar month
series, the seasonal adjustment’s, δ (B) ŝat and especially the irregular’s δ (B) ût ’ s
are more nonsmooth than δ (B) Zt . The seasonal’s δ (B) ŝt and the trend’s δ (B) p̂t
are smoother than δ (B) Zt , with strengthened smoothness.

13.5 Airline model component estimates: autocorrelations after full differencing

13.5.1 Empirical lag 12 autocorrelation results of McElroy (2012) for seasonal
adjustments

With a set of 88 U.S. Census Bureau economic indicator series for which the airline
model was selected over alternatives, McElroy (2012) found that all but one had
negative lag 12 sample autocorrelation in the fully differenced seasonally adjusted
series, δ (B) ŝat in our notation. This negative autocorrelation is statistically significant
at the 0.05 level for 46 of the series. From the perspective of detrended calendar month
series, which seem always to be visually smoothed by seasonal factor estimates (in
logs when appropriate for AMBSA), this should not a be surprising result–removal of
a smooth component causes loss of smoothness, which negative autocorrelation can
formally identify.

13.5.2 Correct model results for various θ,� and component estimates

For monthly series from (79), with δ (B) = (1 − B)
(
1 − B12

)
, we examine the

estimates in the corresponding version of (80). The autocorrelations of δ (B) Zt =
at − θat−1 − �at−12 + θ�at−13 of interest are

ρ
δ(B)Z
1 (�, θ) = −θ

(
1 + θ2

)−1
, ρ

δ(B)Z
12 (�, θ) = −�

(
1 + �2

)−1
. (86)

For any choices of −1 < θ < 1 and 0 ≤ � < 1, SEATS outputs the coefficients
of the ARIMA or ARMA models of ŝt , ŝat = Zt − ŝt , p̂t , and ût , with innovation
variances given in units of σ 2

a (so σ 2
a = 1). With this information, W-K formulas can

be used to obtain models for δ (B) ŝt , δ (B) p̂t and δ (B) ût . From these models, the
autocorrelations needed for smoothness analysis like those presented below can be
calculated. The simplest differenced estimate’s model, that of δ (B) ût , is derived in
Appendix 1 as an illustration, after that of ût . We start with the calendar month series.

13.5.3 Seasonal autocorrelations and calendar month smoothness

Results are presented in the Tables 4, 5, 6, 7, 8 for comparison with the autocorrela-
tions of δ (B) Zt in Table 3 from (86). Our formal relative smoothness criterion only
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Table 3 Lag 12 autocorrelations ρ
δ(B)Z
12 (�, θ) = −�

(
1 + �2

)−1
of δ (B) Z

�\θ −0.3 0.0 0.3 0.6 0.9

0.0 0 0 0 0 0

0.3 −0.275 −0.275 −0.275 −0.275 −0.275

0.6 −0.442 −0.442 −0.442 −0.442 −0.442

0.9 −0.497 −0.497 −0.497 −0.497 −0.497

From (86), ρδ(B)Z
12 < 0 for � > 0, so δ (B) Zt will have nonsmooth calendar month subseries

Table 4 Lag 12 Autocorrelations of δ (B) ŝ

�\θ −0.3 0.0 0.3 0.6 0.9

0.0 0.347 0.467 0.589 0.622 0.222

0.3 0.568 0.644 0.714 0.731 0.481

0.6 0.763 0.803 0.836 0.844 0.715

0.9 0.943 0.952 0.959 0.960 0.931

ρ
δ(B)ŝ
12 >

∣∣∣ρδ(B)Z
12

∣∣∣ = −ρ
δ(B)Z
12 always.

δ (B) ŝt has substantially smoother calendar month subseries than δ (B) Z

Table 5 Lag 24 Autocorrelations of δ (B) ŝ

�\θ −0.3 0.0 0.3 0.6 0.9

0.0 0.035 0.072 0.121 0.131 0.013

0.3 0.197 0.244 0.294 0.305 0.154

0.6 0.474 0.510 0.545 0.552 0.435

0.9 0.852 0.864 0.873 0.875 0.840

ρ
δ(B)ŝ
24 > 0 = ρ

δ(B)Z
24 . The calendar month. smoothing indicated in Table 4 is reinforced, moderately to

strongly at 2 years remove

involves first seasonal lag autocorrelations. Some higher lag results are presented for a
broader perspective. Here is a summary of the tabled seasonal lag results. Tables 4, 5,6
show that, in contrast to δ (B) Zt from Table 3, the series δ (B) ŝt from the seasonal
estimates ŝt is positively correlated at all seasonal lags considered, 12, 24 and 36,
often strongly, indicating that the calendar month subseries of δ (B) ŝt will often be
substantially smoother than δ (B) Zt . Table 7 shows that the opposite holds for the
seasonally adjusted series δ (B) ŝat = δ (B) Zt − δ (B) ŝt , and Table 8’s results for
δ (B) ût are similar. Both have more negative autocorrelations at lag 12 than δ (B) Zt

and positive autocorrelations at lag 24 (and negligible autocorrelations at lag 36–not
shown), increasing the tendency for more changes of direction than δ (B) Zt .
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Table 6 Lag 36 Autocorrelations of δ (B) ŝ

�\θ -0.3 0.0 0.3 0.6 0.9

0.0
.= 0

.= 0
.= 0

.= 0
.= 0

0.3 0.059 0.073 0.088 0.092 0.046

0.6 0.284 0.306 0.327 0.331 0.261

0.9 0.767 0.777 0.786 0.788 0.756

ρ
δ(B)ŝ
36 > 0 = ρ

δ(B)Z
36 for � ≥ 0.3

Calendar month smoothing is further reinforced at 3 years remove, not as strongly at as two

Table 7 Lag 12 autocorrelations of δ (B) ŝa

�\θ -0.3 0.0 0.3 0.6 0.9

0.0 −0.297 −0.465 −0.590 −0.646 −0.659

0.3 −0.520 −0.548 −0.573 −0.586 −0.590

0.6 −0.520 −0.525 −0.529 −0.532 −0.533

0.9 −0.502 −0.502 −0.502 −0.502 −0.502

All ρδ(B)ŝa
12 < ρ

δ(B)Z
12 < 0.δ (B) ŝat is more nonsmooth than δ (B) Z

Table 8 Lag 12 autocorrelations of δ (B) û

�\θ −0.3 0.0 0.3 0.6 0.9

0.0 −0.667 −0.667 −0.667 −0.667 −0.667

0.3 −0.591 −0.591 −0.591 −0.591 −0.591

0.6 −0.533 −0.533 −0.533 −0.533 −0.533

0.9 −0.502 −0.502 −0.502 −0.502 −0.502

ρ
δ(B)û
12 is more negative than ρ

δ(B)Z
12 . The calendar month subseries of δ (B) ût are more nonsmooth

13.5.4 Lag 1 autocorrelation and monthly smoothness results

Familiarly, an estimated trend visually smooths a seasonally adjusted monthly series.
We examined the lag 1–12 autocorrelations (not shown) of the differenced trend esti-
mates, δ (B) p̂t for the �, θ under consideration. At lags 1–6 all are positive. At lags
7–11, some or all can have either sign. Thus δ (B) p̂t will have at least a half-year
of resistance to oscillation. At lag 12, all are negative. This is in strong contrast to
δ (B) Zt , which, among lags 1–6, has a non-zero autocorrelation only at lag one, with
a negative value indicating nonsmoothness (except when θ < 0), see (86).

For the differenced irregular component δ (B) ût , Tables 9 and 10 below show that
δ (B) ût is more nonsmooth than the nonsmooth δ (B) Zt .
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Table 9 Lag 1 autocorrelations ρ
δ(B)Z
1 (�, θ) = −θ

(
1 + θ2

)−1
of δ (B) Z

�\θ −0.3 0.0 0.3 0.6 0.9

all� 0.275 0.0 −0.275 −0.441 −0.497

Monthly δ (B) Zt are nonsmooth for θ > 0, smooth for θ < 0

Table 10 Lag 1 Autocorrelations of δ (B) û

�\θ −0.3 0.0 0.3 0.6 0.9

all � −0.756 -2/3 −0.591 −0.533 −0.502

ρ
δ(B)û
1 < min

(
0, ρδ(B)Z

1

)
. δ (B) û is always more nonsmooth than δ (B) Z and û

14 Concluding remarks

The simple seasonal models considered have provided very informative formulas for
two- and three-component decompositions of seasonal time series. The factored formu-
las for the seasonal randomwalk simply display the full range of differencing operators
(in biannual form) of ARIMA model-based seasonal decomposition filters identified
in Bell (2012, 2015). The formulas for the estimates’ auto- and cross-correlation for-
mulas have led to new insights and results. For example, the finding of negative sample
autocorrelations at the seasonal lag of the differenced seasonally adjusted series now
appears as an inevitable result of removing a seasonal component whose calendar
month subseries are smooth. It is not a defect of the seasonal adjustment procedure,
contrary to a view expressed in some of the literature motivating McElroy (2012).

For the irregular component, there are the common empirical findings, with airline
and similar models, of negative sample autocorrelations, often at the first lag (see
Table 11 in Appendix 1) and at the first seasonal lag of the estimated irregular com-
ponent û or differenced û as in Tables 1 and 10. These can now be anticipated from
the knowledge that û can be regarded both as the detrended version of the seasonally
adjusted series Z − ŝ, and also as the deseasonalized version of the detrended series
Z − p̂, in both cases resulting from removal of a smooth component.

The capacity to provide illuminating precise answers to many questions is a very
valuable feature of ARIMA-model-based seasonal adjustment, as is its conceptual
simplicity relative to nonparametric procedures, at least for adjusters with sufficient
modeling background and experience. (The challenge is always to find an adequate
model for the data span to be adjusted, if one exists.) Also valuable are the error
variance and autocovariance measures (not accounting for sampling or model error)
that AMBSA easily provides (only) for additive direct seasonal adjustments and their
period-to-period changes. The latter, with log-additive/multiplicative adjustments, the
most commonkind, yield approximate uncertainty intervals for growth rates, quantities
of special interest for real-time economic analysis.
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15 Appendix 1: Derivation of the SARMA models of ût and δ (B) ût
for the airline model

The W–K estimate ût of the canonical airline model decomposition’s irregular com-
ponent ut has the pseudo-s.d.

gû (λ) = g2u (λ)

g (λ)
= σ 4

u

σ 2
a

∣∣δ (ei2πλ
)∣∣2∣∣ϑ (ei2πλ
)∣∣2 ,

with gu (λ) = σ 2
u . Thus, from (79 ), ût has the stationary noninvertible seasonal

ARMA(1,1)(1,1)12 model

(
1 − θB − �B12 + θ�B13

)
ût =

(
1 − B − B12 + B13

)
ct , (87)

for white noise ct with variance σ 4
u /σ 2

a , leading to
Similarly, from (46), Ĵt = δ (B) ût , the fully differenced ût has s.d.

gĴ (λ) =
∣∣∣δ (ei2πλ

)∣∣∣2 gû (λ) = σ 4
u

σ 2
a

∣∣δ (ei2πλ
)∣∣4∣∣ϑ (ei2πλ
)∣∣2 .

So its model is the noninvertible seasonal ARMA(1,2)(1,2)12 model
(1 − θB) (1 − �Bq) Ĵt = (1 − B)2

(
1 − B12

)2
ct . Multiplied out, this model is

(
1 − θB − �B12 + θ�B13

)
Ĵt

=
(
1 − 2B + B2 − 2B12 + 4B13 − 2B14 + B24 − 2B25 + B26

)
ct . (88)

Expanded model formulas like (87) and (88) are what the algorithms for calculating
autocovariances of Sect. 13.5.2 require and what SEATS outputs for Tables 1 and 10.
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Table 11 Lag 1 Autocorrelations of ût

�\θ −0.3 0.0 0.3 0.6 0.9

0.0 −0.650 −0.500 −0.350 −0.200 −0.034

0.3 −0.650 −0.500 −0.350 −0.200 −0.040

0.6 −0.650 −0.500 −0.350 −0.200 −0.042

0.9 −0.650 −0.500 −0.350 −0.200 −0.048

ρû1 < 0 always: Monthly ût are nonsmooth
(The nonconstant θ = 0.9 results differ slightly from other software’s)

16 Appendix 2: Correlations of stationary transforms of SRW
components

The component models below from (68) include an IMA(1,1) for sat = Zt − st =
pt + ut ,

(1 + B) st = ãt − ãt−1, (1 − B) pt = b̃t + b̃t−1, (1 − B) sat
= (1 − B) (pt + ut ) = b̃t + b̃t−1 + ut − ut−1. (89)

Themutually uncorrelatedwhite noise series ãt , b̃t and ut have the respective variances
σ 2
a /16, σ 2

a /16 and 2σ 2
a /16. For Table 1, we calculate the nonzero autocovariances and

autocorrelations of the MA(1) series on the right hand sides in (89),

γ
(1+B)s
0 = 2σ 2

ã = 2σ 2
b̃

= γ
(1−B)p
0 = σ 2

a

8
, ρ

(1+B)s
1 = −1

2
, ρ

(1−B)p
1 = 1

2
,(90)

γ
(1−B)sa
0 = 2σ 2

b̃
+ 2σ 2

u = 3σ 2
a

8
, γ

(1−B)sa
1 = σ 2

b̃
− σ 2

u = −σ 2
a

16
,

ρsa
1 = γ

(1−B)sa
1 /γ

(1−B)sa
0 = −1

6
. (91)

References

Bell WR (1984) Signal extraction for nonstationary time series. Ann Stat 12:646–664
BellWR (2012) Unit root properties of seasonal adjustment and related filters. J Off Stat 28:441–461 (http://

www.census.gov/srd/papers/pdf/rrs2010-08)
Bell WR (2015) Unit root properties of seasonal adjustment and related filters: special cases. Center for

Statistical Research and Methodology,- Research Report Series, Statistics #2015-03, Washington,
D.C.: US Census Bureau, https://www.census.gov/srd/papers/pdf/RRS2015-03

Bell WR, Martin DEK (2004) Computation of asymmetric signal extraction filters and mean squared error
for ARIMA signal component models. J Time Series Anal 25:603–625

Box GEP, Jenkins GM (1976) Time Series Anal Forecast Control, Revised edn. Holden-Day, San Francisco
Brockwell PJ, Davis RA (1991) Time Series Theory Methods, 2nd edn. Springer Verlag, New York
Burman JP (1980) Seasonal adjustment by signal extraction. J Royal Stat Soc 143:321–337
Caporello G, Maravall A (2004) Program TSW: revised manual. Documentos Ocasionales 0408, Bank of

Spain
Census Bureau US (2015) X-13-ARIMA-SEATS Reference Manual, Version 1.1. http://www.census.gov/

ts/x13as/docX13AS

123

http://www.census.gov/srd/papers/pdf/rrs2010-08
http://www.census.gov/srd/papers/pdf/rrs2010-08
https://www.census.gov/srd/papers/pdf/RRS2015-03
http://www.census.gov/ts/x13as/docX13AS
http://www.census.gov/ts/x13as/docX13AS


52 SERIEs (2016) 7:11–52

Findley DF (2012) Uncorrelatedness and other correlation options for differenced seasonal decomposition
components of ARIMA model decompositions. Center for Statistical Research and Methodology,-
Research Report Series, Statistics #2012-06, Washington, D.C.: U.S. Census Bureau, http://www.
census.gov/ts/papers/rrs2012-06

Findley DF, Lytras DP, Maravall A (2015) Illuminating model-based seasonal adjustment with the first
order seasonal autoregressive and airline models. Center for Statistical Research and Methodology,-
Research Report Series, Statistics #2015-02, Washington, D.C.: U.S. Census Bureau, http://www.
census.gov/srd/papers/pdf/RRS2015-02

Gómez V, Maravall A (1996) Programs TRAMO and SEATS : Instructions for the User (beta version: June
1997). Banco de España, Servicio de Estudios, DT 9628. Updates and additional documentation at
http://www.bde.es/webbde/es/secciones/servicio/software/econom.html

Hillmer SC, Tiao GC (1982) An ARIMA-model-based approach to seasonal adjustment. J Am Stat Assoc
77:63–70

Kaiser R, Maravall A (2001) Measuring business cycles in economic time series. Springer, New York
Kolmogorov AN (1939) Sur l’Interpolation et l’Extrapolation des Suites Stationnaires. C R Acad Sci Paris

208:2043–2045
Ladiray D, Quenneville B (2001) Seasonal adjustment with the X-11 method. Lecture Notes in Statistics

Vol. 158, Springer Verlag, New York
Maravall A (1994) Use and misuse of unobserved components in economic forecasting. J Forecast 13:157–

178
Maravall A (2003) A class of diagnostics in the ARIMA-model-based decomposition of a time series. In:

Manna M, Peronaci R (eds) Seasonal adjustment. European Central Bank, Frankfurt am Main, pp
23–36

Maravall A, Pérez D (2012) Applying and interpreting model-based seasonal adjustment–The Euro-Area
Industrial Production Series, Ch. 12. In: Bell WR, Holan SH,McElroy TS (eds) Economic time series:
modeling and seasonality. CRC Press, Boca Raton

Maravall A, Pierce DA (1987) A prototypical seasonal adjustment model. J Time Series Anal 8:177–293
McElroy TS (2008) Matrix formulas for nonstationary ARIMA signal extraction. Econometric Theory, 28:

988–1009. Preprint available at http://www.census.gov/ts/papers/matform3
McElroy TS (2012) An alternative model-based seasonal adjustment that reduces residual seasonal auto-

correlation. Taiwan Econ Forecast Policy 43:33–70. http://www.econ.sinica.edu.tw/academia-02.php
McElroy TS, Sutcliffe A (2006) An iterated parametric approach to nonstationary signal extraction. Comput

Stat Data Anal 50:2206–2231. http://www.census.gov/ts/papers/rrs2004-05
Seasonal Adjustment Centre of Competence (2015) http://www.cros-portal.eu/content/seasonal-adjustm

ent-centre-competence
Tiao GC, Hillmer SC (1978) Some consideration of decomposition of a time series. Biometrika 65:496–502
Whittle P (1963) Prediction and regulation. Van Nostrand, Princeton
Wiener N (1949) The extrapolation, interpolation and smoothing of stationary time series with engineering

applications. Wiley, New York
Wikipedia Contributors (2011) Partial Fraction. Wikipedia, The Free Encyclopedia, http://en.wikipedia.

org/wiki/Partial_fraction. Accessed 21 Oct 2011
Wikipedia Contributors (2013) Minimum mean square error. Wikipedia, The Free Encyclopedia, http://en.

wikipedia.org/wiki/Minimum_mean_square_error. Accessed 7 Feb 2013
Wise J (1955) The autocorrelation function and the spectral density function. Biometrika 42:151–160
Zinde-Walsh V (1988) Some Exact Formulae for Autoregressive-Moving Average Processes. Econometric

Theory 4:384–402 (Errata. Econometric Theory 6:293)

123

http://www.census.gov/ts/papers/rrs2012-06
http://www.census.gov/ts/papers/rrs2012-06
http://www.census.gov/srd/papers/pdf/RRS2015-02
http://www.census.gov/srd/papers/pdf/RRS2015-02
http://www.bde.es/webbde/es/secciones/servicio/software/econom.html
http://www.census.gov/ts/papers/matform3
http://www.econ.sinica.edu.tw/academia-02.php
http://www.census.gov/ts/papers/rrs2004-05
http://www.cros-portal.eu/content/seasonal-adjustment-centre-competence
http://www.cros-portal.eu/content/seasonal-adjustment-centre-competence
http://en.wikipedia.org/wiki/Partial_fraction
http://en.wikipedia.org/wiki/Partial_fraction
http://en.wikipedia.org/wiki/Minimum_mean_square_error
http://en.wikipedia.org/wiki/Minimum_mean_square_error

	Illuminating ARIMA model-based seasonal adjustment with three fundamental seasonal models
	Abstract
	1 Overview
	2 Some conventions and terminology
	3 The general stationary setting
	3.1 Autocovariance and spectral density decompositions
	3.2 The SAR(1) canonical signal + white noise decomposition

	4 Regression formulas for two-component decompositions
	4.1 The estimated decomposition
	4.2 Variance and error variance matrix formulas

	5 SAR(1) Decomposition estimation formulas
	5.1 The general filter formulas
	5.1.1 Filter re-expressions and filter terminology

	5.2 The error covariances of the SAR(1) estimates

	6 Wiener--Kolmogorov formulas applied to SAR(1) and SRW models
	6.1 Filter transfer functions and the input--output spectral density formula
	6.2 The W--K formulas
	6.3 SAR(1) intermediate-time filters again and an alternate model form
	6.4 Going nonstationary with the seasonal random walk

	7 ARIMA component filters from pseudo-spectral density decompositions
	7.1 Bell's assumptions
	7.2 Assumption A yields MMSE forecasts and backcasts

	8 The 3-component q=2 SRW decomposition
	8.1 The estimates' symmetric filters and ARIMA models
	8.2 The estimates' asymmetric filter formulas
	8.3 Symmetric and concurrent SWP filter coefficient features

	9 What seasonal decomposition filters annihilate or preserve
	10 Auto- and cross-correlations of stationary transforms of q=2 SRW components
	11 Reciprocal smoothing properties of seasonal and trend estimates
	12 Airline model results: the role of Θ
	12.1 Seasonal filters from various θ,Θ and their seasonal factors  for the international airline passenger series

	13 Smoothness properties of the models' estimates
	13.1 Simplistic autocorrelation comparison criteria for smoothness  and nonsmoothness
	13.2 SAR(1): increased nonsmoothness of t
	13.3 SAR(1): greater calendar month smoothness of t
	13.4 Smoothness properties of q=2 SRW component estimates
	13.5 Airline model component estimates: autocorrelations after full differencing
	13.5.1 Empirical lag 12 autocorrelation results of  for seasonal adjustments
	13.5.2 Correct model results for various θ,Θ and component estimates
	13.5.3 Seasonal autocorrelations and calendar month smoothness
	13.5.4 Lag 1 autocorrelation and monthly smoothness results


	14 Concluding remarks
	Acknowledgments
	15 Appendix 1: Derivation of the SARMA models of t and  δ( B) t  for the airline model
	16 Appendix 2: Correlations of stationary transforms of SRW components
	References




