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Abstract Nonparametric efficiency analysis has become a widely applied tech-
nique to support industrial benchmarking as well as a variety of incentive-based
regulation policies. In practice such exercises are often plagued by incomplete
knowledge about the correct specifications of inputs and outputs. Simar and Wil-
son (2001) and Schubert and Simar (2011) propose restriction tests to support
such specification decisions for cross-section data. However, the typical oligopolized
market structure pertinent to regulation contexts often leads to low numbers of
cross-section observations, rendering reliable estimation based on these tests prac-
tically unfeasible. This small-sample problem could often be avoided with the use
of panel data, which would in any case require an extension of the cross-section
restriction tests to handle panel data. In this paper we derive these tests. We prove
the consistency of the proposed method and apply it to a sample of US natural gas
transmission companies from 2003 through 2007. We find that the total quantity
of gas delivered and gas delivered in peak periods measure essentially the same
output. Therefore only one needs to be included. We also show that the length of
mains as a measure of transportation service is non-redundant and therefore must
be included.
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1 Introduction

Nonparametric efficiency analysis has become increasingly important for sound
decision-making in a variety of economic research fields. In addition to indus-
trial benchmarking, the regulation of network industries, among them natural gas
transmission, is a considerable field of application. Regulatory decisions are of-
ten directly contingent on the results of such analyses, e.g. in Norway, Germany,
and Austria. Because the decisions have strong financial implications for both cus-
tomers and firms, it is critical that the models underlying the analyses are specified
correctly. In the context of efficiency-estimation this means that the correct inputs
and outputs are accounted for.

Restriction tests, proposed by Simar and Wilson (2001) and Schubert and
Simar (2011), allow for the testing of hypotheses regarding the inputs and outputs.
Nevertheless, the practical value of these tests is limited when the cross-section
sample size is small. This is typically the case in monopolized and oligopolized
producer markets. One way to solve this small sample problem is to observe firms
over time by using panel data. The regular cross-section tests are then, however,
no longer applicable, because of the i.i.d. assumption. Therefore an extension that
allows for correlation across the time dimension is required. These tests are de-
veloped in the course of this paper and proven to be consistent if the production
frontier is constant over time.

The paper is organized as follows: Section 2 provides an expository overview
of the role of efficiency measurement and benchmarking as a regulatory tool. We
explain some of the benefits of nonparametric techniques as well as major difficul-
ties that arise from small cross-section sample sizes, which often render reliable
estimation impossible. We argue that restriction tests for clustered data could help
solve this problem in many contexts. In Section 3 we describe the proposed test
procedures. Section 4 describes our data set and presents the results. Section 5
concludes.

2 Efficiency Measurement as a Decision-Making Tool

Data Envelopment Analysis (DEA) is a nonparametric method for efficiency anal-
ysis and is closely related to the classical models of activity analysis.1 It offers an
alternative way to evaluate the performance of production entities and is capa-
ble of expressing productive efficiency in a multiple-input-multiple-output frame-
work. In efficiency analysis, the performance of a production unit is determined
by comparing it to a group of production entities that have access to the same

1 For more details about the methodological linkages of activity and efficiency analysis see
Färe and Grosskopf (2005). Homburg (2001) gives detailed insights on how nonparametric
efficiency analysis can contribute to activity-based management.
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transformation process (technology) through which they convert the same type of
resources (inputs) into the same type of products (outputs). From the observed
input-output-combinations, a best practice (frontier) is constructed against which
each entity is individually assessed. The distance to that frontier reflects the pro-
duction unit’s ability to transform inputs into outputs, relative to what empirically
is found and therefore assumed to be feasible.

Hence, efficiency analysis provides a quantitative measure of the existing po-
tential for improvement. As pointed out by Bogetoft and Otto (2011), the scope
of application of the DEA method is rich, since conceivable production entities
include firms, organizations, divisions, industries, projects, decision-making units
(DMUs), and individuals. Empirical analysis investigates, for example, industrial
entities such as warehouses (Schefczyk, 1993) and coal mines (Thompson et al,
1995). As noted by Schefczyk (1993) industrial benchmarking serves as a tool to
generate measures by which corporate decision-making can be brought in line with
the corporate goal of operating efficiently. DEA in combination with Malmquist
indices is also commonly applied to determine technical efficiency change, techni-
cal change, and total factor productivity change, see e.g. Jamasb et al (2008), all
of which are useful tools to evaluate a particular sector and regulatory changes. In
addition, DEA is widely used in the regulation of network industries in order to
overcome disincentives and distortions related to monopolistic market structures.

2.1 Benchmarking and DEA in Regulation

It is well known that the private sector draws on comparative analyses, such as
activity analysis, to improve its performance. Starting in the 1990s, regulatory
authorities are making increasing use of benchmarking techniques in order to fa-
cilitate the incentive regulation of network utilities; see e.g., Jamasb and Pollitt
(2003). In particular, electricity and natural gas transmission and distribution util-
ities are subject to regulatory activities; see e.g., Jamasb et al (2004); Cullmann
(2012); Farsi et al (2007); Sickles and Streitwieser (1998); Hollas et al (2002). Ap-
plying benchmarking methods allows the regulator to simulate competitive market
structures (quasi-competition), thus helping to pursue and implement regulatory
objectives, e.g., reducing monopolistic power and promoting the efficient use of
resources.

To foster an efficient use of resources, regulators frequently rely on cost mod-
els that allow the determination of cost-reducing targets for each of the firms.
In the regulatory practice, the most important cost models are: total cost (TO-
TEX) benchmarking, capital cost (CAPEX) benchmarking, and operating expen-
diture (OPEX) benchmarking. The TOTEX approach includes both cost types,
i.e. CAPEX and OPEX, while the CAPEX and OPEX benchmarking models only
relate to capital costs and operating expenditures, respectively. Including capi-
tal costs in the regulatory cost model involves a significant assumption: it assumes
that capital is fully substitutable with other input factors, e.g., labor, and easily to
adjust in the short-run. Accepting this assumption is questionable when network
companies are considered.

The different models are vividly discussed in both academic literature and
regulatory practice. Strongly referring to the limited flexibility of managers to
adjust CAPEX in the short-run, e.g., Stone & Webster Consultants (2004) and
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Saal and Reid (2004) advocate the OPEX benchmarking approach. However, their
proposed models do not completely ignore capital input. Instead of treating capital
as an individual and flexible input factor, capital is introduced as an OPEX-
determining factor.

In practice, however, the choice of the cost model and, thus, the associated
selection of input and output variables, is not solely driven by economic theory.
Particularly with respect to capital costs and capital stock measures, regulators
often have limited information resulting in lack of data on capital or hardly com-
parable measures. Additionally, regulatory benchmarking is a highly politicized
process. Irrespective of the chosen cost model, regulators often apply paramet-
ric frontier models, e.g. Stochastic Frontier Analysis (SFA) and DEA in order to
establish benchmarks for target determination (Haney and Pollitt, 2009).

Due to the market structure in network industries, many regulatory bench-
marking applications rely on a small number of observations; see e.g., Jamasb
et al (2008). Larger sample sizes can generally be obtained in two ways: First,
using cross-country analysis and, second, using cross-sectional data across multi-
ple time periods. When pooling observations across countries, simple cross-section
tests can be used as long as it is reasonable to assume that all countries have ac-
cess to the same technology. However, when comparing the same individuals across
time, the additional problem emerges that a firm’s present and past observations
are generally not independent. So pure cross-section methods will lead to false
inference, even if the technology did not change over the respective time period.

2.2 A Need for Specification Analyses

As a nonparametric method, DEA has, on the one hand, appealing characteristics
(Simar and Wilson, 2008); in addition to its great flexibility and easy computabil-
ity, it requires only few assumptions on the technology set and its frontier. Partic-
ularly, it neither assumes a distribution for the inefficiency term nor does it impose
a functional form to express the production process generating the observed input-
output-combinations (Haney and Pollitt, 2009; Simar and Wilson, 2008). On the
other hand, the DEA estimator has drawbacks that are highly relevant for both
regulatory and industrial performance analysis.

In addition to its outlier sensitivity, the non-parametric nature of DEA dra-
matically reduces its asymptotic convergence rate when the dimensionality of the
production possibility set is high. The dimensionality is directly linked to the
upward bias of DEA efficiency scores occurring when the true technology is un-
known. The estimated frontier can never be better than the true frontier and is
likely to provide a less strict benchmark. Consequently, the efficiency of DMUs is
overestimated, i.e. upward-biased, which is amplified when the dimensionality of
the production possibility set increases. Apparently this is particularly problem-
atic when there are a limited number of observations and, hence, some argue that
DEA is not an ideal tool for regulatory purposes; see e.g. Shuttleworth (2005).
The critique also extends to cases where the analysis of total factor productivity
change in regulated and non-regulated sectors is of primer interest.

However, theoretical developments originating with Simar and Wilson (1998),
are overcoming the upward-bias of DEA estimates by means of bootstrapping.
These methods not only provide bias-corrected efficiency scores but also options
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for drawing statistical inference. To the best of our knowledge, in Europe only
Germany uses bootstrapping for this purpose in regulatory practice; see Bogetoft
and Agrell (2007) and Agrell et al (2008).

As an alternative to bootstrapping firm-specific efficiency scores, one may con-
sider a technology set that, by definition and economic reasoning, only includes a
minimum number of inputs and outputs. However, in most situations it is uncertain
what the correct specification of the technology set is. For example, uncertainty
may occur as a result of information asymmetries, when the analyst lacks full in-
formation about the precise production process.2 Then statistical inference about
alternative specifications is desirable in order to make sound decisions about the
reasonable choice of variables.

Simar and Wilson (2001, 2011) propose different restriction tests for nonpara-
metric efficiency analysis that would facilitate the investigation of whether cer-
tain variables can be excluded (exclusion restriction) or summed up (aggregation
restriction). Schubert and Simar (2011) extend these tests by introducing a sub-
sampling procedure (a special kind of bootstrap) that relaxes the homogeneity
assumption3 and, therefore, allows for tests in input and output directions within
the same dataset. Although the benefits of restriction tests on production process
formulations are obvious, in the applied literature they receive only scant atten-
tion. Restriction tests notably improve nonparametric benchmarking, because they
increase the confidence in the chosen representation of the production process by
providing statistical inference. The risk of overestimating the performance due to
the ’curse of dimensionality’ is reduced when variables are identified as irrelevant
and, consequently, excluded from further investigation.4 Yet the existing imple-
mentations of the proposed tests are restricted to cross-sectional data only and
are, therefore, not applicable to (unbalanced) panel data.

We aim to present a test procedure that is able to account for correlation that
is likely present when panel (respectively, clustered data) is used.5 The contri-
bution of the paper at hand is twofold: First, we further develop the theoretical
underpinnings of the restriction tests in order to enhance their applicability to
(unbalanced) panel and clustered data in general. This requires accounting for
intra-observational dependencies. Second, we demonstrate the relevance of the
proposed test procedure for benchmarking by applying the method to a data set
of US natural gas transmission companies.6 Clearly, the main benefits of the pro-

2 The information asymmetries in regulation mainly result from adverse selection and moral
hazard problems (Joskow, 2006).

3 The homogeneity assumption is comparable to the parametric homoscedasticity assump-
tion and means that the distribution of the inefficiencies does not depend on inputs or the
outputs. The problem is that it will not generally hold in both the input and the output
direction, prohibiting tests based on it in both directions.

4 Alternatively, variables could be omitted or aggregated. Omitting variables based on cor-
relations should be avoided for translation invariant DEA models (Dyson et al, 2001) and ag-
gregating variables based on principal components might be inappropriate for radial efficiency
measurement (Simar and Wilson, 2001). However, the restriction tests proposed by Simar and
Wilson (2001) and Schubert and Simar (2011) provide statistical inference procedures for the
investigation of aggregates.

5 Note, that panel data is just one example of clustered data and that, therefore, the appli-
cability of the proposed test is even more comprehensive.

6 This industry is subject to analysis concerned with total factor productivity growth and
technical change in the light of changing regulation; see e.g. Sickles and Streitwieser (1992,
1998); Jamasb et al (2008).
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posed approach are improving the efficiency estimation and overcoming lacks of
information regarding the production process. Although our demonstration relates
to the regulatory framework, it is straightforward to apply the technique to any
other setting where the aforementioned problems arise.

3 Methodology

3.1 Technology Estimation using the DEA Estimator

We start by presenting the analytical framework. It introduces the concepts nec-
essary for the later proofs of consistency for the test statistics.

Let xi ∈ R
p
+ and yi ∈ R

q
+ denote the vectors of p inputs and q outputs. The

technology set Ψ represents the feasible input-output-combinations available to
firm i, i = 1, ...n, (Bogetoft and Otto, 2011) and can be defined as

Ψ =
{
(x, y) ∈ R

p+q
+ | x canproduce y

}
. (1)

For Ψ we assume free disposability and convexity. The boundary of Ψ , denoted
by Ψδ, describes the efficient production frontier, i.e. the technology, and can be
defined as

Ψδ =
{
(x, y) ∈ Ψ |

(
γx, γ−1y

)
/∈ Ψ for any γ < 1

}
. (2)

where γ corresponds to the maximal achievable contraction of inputs or expansion
of outputs, respectively; see e.g., Simar and Wilson (2011). According to Equation
2, a firm that employs a production plan that belongs to Ψδ, is regarded as efficient
and its input-output-combination cannot be improved. Companies that operate at
points in the interior of Ψ exhibit inefficiencies (Simar and Wilson, 2001), which
can be diminished by moving toward the efficient frontier. Being able to han-
dle multi-input and multi-output settings, the Debreu-Farrell measure7 quantifies
the respective firm-individual degree of efficiency. For any particular coordinate(
x0, y0

) ∈ Ψ , the Debreu-Farrell efficiency score is determined by the radial dis-

tance from
(
x0, y0

)
to the efficient frontier Ψδ. It expresses the maximal propor-

tional contraction of all inputs x that allows for the production of output level y
for input-orientation, and the maximum proportional expansion of all outputs y

that is feasible with the given inputs x, for output-orientation, respectively.

We restrict ourselves to the input-orientated firm-specific efficiency measure,
which can formally be expressed as

θ
(
x0, y0

)
= inf

{
θ > 0 |

(
θx0, y0

)
∈ Ψ

}
. (3)

Hence, if θ
(
x0, y0

)
= 1, the company is efficient and operates along the frontier Ψδ.

If θ
(
x0, y0

)
< 1, the company can improve its performance by reducing its input

quantities proportionally. Together with the imposed assumptions, Equations 1

7 This measure is based on the work of Debreu (1951) and Farrell (1957). Alternatively, the
concept proposed by Shepard (1970) can be used.
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and 2 set up the true economic production model and characterize the data gener-
ating process P (DGP).8 However, the true technology set Ψ , and hence, the true

efficient technology Ψδ against which observations are compared to, are unknown
and both need to be estimated from the observed input-output-combinations.

To approximate Ψ , we apply the DEA estimator proposed by Banker et al
(1984), which incorporates the assumptions of free disposability, convexity and
variable returns to scales. Thus, the linear program estimating the unknown input-
oriented efficiency score θ becomes:

θ̂
(
x0, y0

)
= min

θ,λ1,...,λn
{θ > 0 | θx0 ≥ ∑n

i=1 λ
ixik; k = 1, ..., p

y0 ≤ ∑n
i=1 λ

iyil ; l = 1, ..., q∑n
i=1 λ

i = 1; λi ≥ 0 ∀ i = 1, ..., n}

(4)

where λ indicates the weights of the linear combination; the individual inputs and
outputs are indicated by the subscripts k and l, respectively. It is well known
that the rate of convergence for nonparametric estimators, such as DEA, is small
compared to parametric estimators (Simar and Wilson, 2008). The consistency
of this estimator is proven by Kneip et al (1998). But like most nonparametric
estimators it suffers from the ’curse of dimensionality,’ which implies that the rate
of convergence (i.e. the speed by which the estimation errors are reduced in sample
size) decreases as the number of inputs and outputs increases. Additionally, the
DEA estimates are upward biased. This implies that the true efficiency is lower
than the one estimated in finite samples. The precision of the estimation results
is significantly affected by the ratio of observations to the number of variables
and a considerable interest arises to test for the relevance of particular inputs and
outputs. Reducing the dimensionality of the technology set Ψ by removing possibly
irrelevant variables can offer substantial gains in estimation efficiency and decrease
finite sample biases.

3.2 Testing Restrictions

Having specified the estimation approach, we formulate the restrictions on the
technology set that we aim to test. It is our objective to test whether particular
outputs are relevant for modeling the technology set appropriately. Although we
focus on the relevance of outputs in this paper, we note that the method is broader.
Alternatively, the relevance of input variables can be considered. Further, it can
be tested whether inputs and outputs are individually relevant contributors to
production or if they can be aggregated. We extend a test procedure suggested
by Simar and Wilson (2001) to panel data while, following Schubert and Simar
(2011), using subsampling procedures. The formalism of proofs of consistency in
the appendix is independent of whether restriction is due to an exclusion or due
to an aggregation restriction.

8 To comprehensively define the DGP, assumptions on the statistical model are necessary.
Due to space limitations, we omit the discussion and refer the reader to e.g., Simar and Wilson
(2001).
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The basic idea of the original approach is to compare efficiency estimates ob-
tained from a technology set including all potential outputs with efficiency esti-
mates obtained from a restricted technology set that excludes at least one output
(or aggregates at least two outputs). For the remainder of the paper, we refer to
the model that includes all potential outputs (corresponding to an unrestricted
technology set) as the full model (FM). The model including only a subset of all
potential outputs (corresponding to a restricted technology set) is denoted as the
nested model (NM). The rationale behind assigning a particular output as possibly
irrelevant is the uncertainty regarding its relationship to the considered input(s).
An output is identified as redundant if the difference between the estimates of
both technology sets, where one is nested in the other, does not differ signifi-
cantly. Conceptually this implies that the irrelevant output is not produced by
the firm. The main benefit of this approach is twofold: First, selecting outputs
can be based on statistical tests improving the technology specification’s quality.
Second, when outputs do not need to be included, thus yielding fewer dimensions,
the estimation’s quality improves, ultimately leading to an increase in the speed
of convergence and a reduction in the finite sample upward bias.

To formalize this reasoning, we respecify the output vector y into two subsets of
outputs, i.e. y =

(
y1, y2

)
, where y1 ∈ Rq−r denotes the vector of q− r outputs that

are assumed to be relevant outputs of the production process under consideration,
and y2 ∈ Rr denotes the vector of r possibly redundant outputs. The hypothesis
then is that x influences the level of y1 but not of y2. The null and alternative
hypothesis can therefore be written as

H0:x influences the level of y1
(
y2 is redundant

)
H1:x influences the level of y1and y2

(
y2 is relevant

)
.

(5)

For any given input-output-combination (x, y) =
(
x, y1, y2

) ∈ Ψ , the corresponding
reformulated input-oriented Farrell efficiency scores in Equation 3 are:

θfull (x, y) = inf
{
θ | (x, y1, y2) ∈ Ψ

}
θnested (x, y) = inf

{
θ | (x, y1) ∈ Ψ

} (6)

where θfull and θnested represent the efficiency for the FM and the NM. If the
outputs in y2 are truly redundant, θnested equals θfull. If outputs in y2 contain
relevant outputs, then θnested would be smaller than θfull. From that we can derive
the following inequalities:

if H0 is true: 1 ≥ θfull (x, y) = θnested (x, y) , for all (x, y) ∈ Ψ

if H1 is true: 1 ≥ θfull (x, y) > θnested (x, y) , for some (x, y) ∈ Ψ
(7)

According to Equation 4, θfull and θnested can be estimated from the sample,
denoted by Xn, as follows:

θ̂full (x, y) = min
θ,λ1,...,λn

{θ > 0 | θx ≥ ∑n
i=1 λ

ixik; k = 1, ..., p

y1 ≤ ∑n
i=1 λ

iy1,il ; l = 1, ..., (q − r)

y2 ≤ ∑n
i=1 λ

iy2,il ; l = 1, ..., r∑n
i=1 λ

i = 1; λi ≥ 0 ∀ i = 1, ..., n}.

(8)



Estimating Alternative Technology Sets in Nonparametric Efficiency Analysis 9

and

θ̂nested (x, y) = min
θ,λ1,...,λn

{θ > 0 | θx ≥ ∑n
i=1 λ

ixik; k = 1, ..., p;

y1 ≤ ∑n
i=1 λ

iy1,il ; l = 1, ..., (q − r)∑n
i=1 λ

i = 1; λi ≥ 0 ∀ i = 1, ..., n}.

(9)

where the relationship 1 ≥ θ̂full (x, y) ≥ θ̂nested (x, y) holds by construction.
In order to test H0, we have to find a valid test statistic that appropriately

compares the estimated efficiencies under both technology sets. The quantity de-
pending on the generic DGP P that is proposed by the literature (Simar and
Wilson, 2001) is:

t (P) = E

(
θfull (X,Y )

θnested (X,Y )
− 1

)
. (10)

From Equation 7 we know that the ratio is equal to zero, i.e. t (P) = 0, if H0

is true, whereas it is strictly positive otherwise, i.e. t (P) > 0. Empirically, the
ratio can easily be obtained by the sample empirical mean that is a consistent
estimator (Simar and Wilson, 2001; Schubert and Simar, 2011). Therefore, the
empirical equivalent of t (P) is:

tn (Xn) =
1

n

n∑
i=1

(
θ̂full (Xi, Yi)

θ̂nested (Xi, Yi)
− 1

)
. (11)

As mentioned before, by construction tn (Xn) ≥ 0. Thus, the important ques-
tion is how big it should be to be reasonably sure that H0 is not true, i.e. y2 is
likely to be a relevant output of x. The usual approach is to use critical values
corresponding to the distribution of the term in Equation 11. However, although
this distribution can be shown to be non-degerate, it is complicated and depends
on local parameters. So far the only way to determine critical values is through
bootstrap-based simulation techniques. A particularly comfortable as well as flex-
ible way is to use the subsampling approach, as suggested by Schubert and Simar
(2011). This approach is described and extended to clustered data in the next
subsection.

To answer the question of how large the test ratio must be in order to reject
the null hypothesis, we need to compute a p-value or a critical value. This re-
quires the approximation of the unknown (asymptotic) sampling distribution of
τn (tn (Xn)− t (P)), i.e. the convergence of the test statistic tn (Xn) against the
true population parameter t (P) at rate τn, where tn is a function of the sample
size. Note that tn (Xn) is the estimate of t (P) that discriminates between the H0

and H1.
The subsampling approach is a special kind of bootstrap. It differs from the

normal procedure of generating pseudo samples of the original size n in that the
samples here are of size m < n such that m/n → 0 when n → ∞. This easy ad-
justment makes the subsampling approach robust to deviations from the assump-
tions necessary for the consistency of the bootstrap. Like the smoothed bootstrap
the subsampling approach evades the problem of inconsistency pertinent to the
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naive bootstrap. The naive bootstrap is proven to be consistent if and only if the
asymptotic distribution of the estimator is normal, which is not the case for most
efficiency estimators including DEA. The asymptotic non-normality results from
the fact that the efficiencies depend on the frontier, and thus, on the boundaries
of the support of the distribution of the production possibility sets. That is why
the inconsistency is also referred to as the frontier problem. The subsampling does
not only solve this problem. It also relaxes the homogeneity assumption by the
smoothed bootstrap that may be highly problematic in the case restriction tests.

However, the use of subsampling, while consistent in variety of situations when
the naive bootstrap fails, also has disadvantages. Since the number of used observa-
tions is lower it does not come as a surprise that the subsampling bootstrap is less
efficient than the regular naive bootstrap. This strongly suggests that subsampling
procedures should be avoided when the naive bootstrap is applicable. Nonetheless,
our setting precisely suffers from the failure of these assumptions such that the
loss of precision implied by the subsampling bootstrap represents a necessary evil
to achieve consistency.

To derive an approximation of the sampling distribution of τntn (Xn), we follow
Schubert and Simar (2011) and use the algorithm based on subsampling proposed
by Politis et al (2001).9 According to the algorithm, a sufficiently large number
of subsets b = 1, . . . , B, denoted by X ∗

m,b, are constructed,10 each producing a test

statistic, tm,b

(X ∗
m,b

)
, as defined in Equation 11. The large number of estimated

test statistics approximate the sampling distribution for which a critical value, t̂cm,
can be derived. The critical value depends on m and the (1− α) quantile. At the
significance level α, the test rejects H0 if and only if the observed value is greater
than the critical value, i.e. τntn (Xn) ≥ t̂cm (1− α), where τn equals

√
nn2/(p+q+1);

for details see Schubert and Simar (2011).

The original procedures in Schubert and Simar (2011) are, however, pure cross-
section tests and cannot be applied directly to clustered data (such as panel data).
The main problem is that a test based on simple pooling of the observations (i.e.
treating the clustered sample as pure cross-section) would disregard the fact that
the observations within a cluster are not generally independent of each other (in
our case: firms are usually not independent of their past). If this dependence is
ignored, the most likely setting is that the significance of the tests is overestimated,
leading to rejections in cases where there should not be one. An alternative based
on cross-sectional tests only would be to run tests separately for each year. While
this is clearly consistent, there are two problems. First, we would have a test for
each year, which could lead to conflicting results when a test rejects in one year
but not in another. Second, since we effectively split the sample into cross-sectional
slices, the efficiency of such a test is likely to decline. For example, it is possible
that none of the single-year tests rejects, but the full panel-robust test does.

9 Other bootstrap methods, e.g. the homogeneous bootstrap proposed by Simar and Wilson
(1998) and further developed by Simar and Wilson (2001) or the double smooth bootstrap
proposed by Kneip et al (2008) are not applicable in our setting because we need a method
that allows for heteroscedasticity and that is valid for all data points considered simultaneously
(Schubert and Simar, 2011). The aforementioned alternatives are, therefore, excluded.
10 A large number of subsets, and hence, of subsampling replications is required in order to
reconstruct the behavior of the unknown parameter. Usually, the number of replications B is
set to 2,000; see e.g., Daraio and Simar (2007) and Simar and Wilson (2000).
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With these drawbacks of pure cross-section analyses in mind, we further de-
velop the work by Schubert and Simar (2011) in the sense that we extend the ap-
plicability of the algorithm by Politis et al (2001) to clustered data, including panel
data. The panel is allowed to be unbalanced, however year-wise missing observa-
tions are assumed to be completely random. Thus, we assume away (non-random)
panel selection, such as attrition. Let n be the total number of observations and
nPD be the number of different companies in the panel; comparably, m and mPD

are defined for the subsample case. Obviously, then nPD ≤ n. Furthermore, for a
balanced panel, L is the time length of the panel, nPD = n/L. In an unbalanced
panel, the number of observations per company is a random integer, say Zi, such
that it has support on 0, 1, ...L. To distinguish between the overall sample and the
panel data cases, we use the subscript PD whenever referring to the latter.

For company i, the test statistic in Equation 11 is then expressed as the intra-
observational sum of the company-individual yearly estimates and can be rewritten
as:11

tnPD (XnPD , Z) =
1

nPD

nPD∑
i=1

L∑
t=1

(
θ̂full,it (Xi, Yi, Zi)

θ̂nested,it (Xi, Yi, Zi)
− 1

)
. (12)

where a zero is added, if a cross-section unit is not observed in a particular year.
Equation 12 differs from Equation 11 in two respects. First, the subsampling has
to account for the dependence among the observations, because observations be-
longing to the same unit are likely to be correlated. This problem is solved by
clustering the companies across time and subsampling them block-wise as sug-
gested by Davison and Hinkley (1997). The subsampled version of Equation 12 is
then defined as

tmPD,b

(X ∗
mPD,b , Z

∗) = 1

mPD

mPD∑
i=1

L∑
t=1

(
θ̂full,it (Xi, Yi, Zi)

θ̂nested,it (Xi, Yi, Zi)
− 1

)
. (13)

Second, an additional random variable that captures the random panel response is
introduced. The consistency requirement for the subsampling is that τnPD tnPD (Xn, Z)
converges to a non-degenerated distribution (Schubert and Simar, 2011). This
proof is presented in Appendix A of this paper.

Irrespective of the cross-sectional or panel data case, the test procedure is
sensitive to the choice of mPD, which implies a trade-off between too small and
too large values. Too much information is lost if mPD is too small; if mPD is
too large, the subsample size almost corresponds to the sample size nPD inducing
additional biases due to inconsistency of the naive bootstrap (Daraio and Simar,
2007). Therefore, an intermediate level of mPD is supposed to balance the costs
of both extremes. We use the data-driven approach, by which mPD is chosen such
that the volatility of the resulting measure of interest is minimized. As volatility
index we calculate the standard deviation of the 95 percent quantile of the test
statistic on a running window frommPD−2 tomPD+2.12 Simar andWilson (2011)
show that this data-driven approach allows for tests on mPD and on desirable

11 We could also normalize the inner sum by dividing by Zi, but this will have no asymptotic
effect.
12 This corresponds to the selection rule proposed by Simar and Wilson (2008), which selects
a value of m for which the resulting sample distribution and some of its features, e.g., relevant
moments, are stable with respect to deviations from this particular value.
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power properties, e.g. rejecting H0 with high probability when H0 does not hold
(Schubert and Simar, 2011). In order to evaluate the test statistic’s volatility with
respect to the choice of mPD, a grid of values that mPD can reasonably take
is defined. These values belong to the interval

[
mPD,min,mPD,max

]
. For each of

these values t̂cmPD (1− α) can be calculated and investigated with respect to their
volatility. Therefore, a plot of the critical values t̂cmPD (1− α) against the possible
values of mPD reveals a first impression of where the interval’s region exhibiting
stable results (smallest volatilities) lies. For further details see Schubert and Simar
(2011).

4 Application to US Natural Gas Transmission Companies

4.1 Technology Specification and Variable Selection

The introduced method is applied to the sector of natural gas transmission, which
is frequently subjected to regulatory benchmarking activities. As pointed out by
Jamasb et al (2008), regulation schemes vary across countries, with the most
obvious differences between European countries and the US. Regulating natural
gas transmission traditionally relies on cost-of-service or rate-of-return in the US;
overviews of the implemented scheme are given, e.g., by Sickles and Streitwieser
(1992, 1998) and, more recently, by O’Neill (2005). In contrast, European regula-
tors are increasingly shifting toward incentive regulation, an approach discussed by
e.g. Vogelsang (2002). Incentive regulation aims to introduce a company-inherent
production cost reducing behavior by delegating pricing decisions to them, while
giving the opportunity to gain profits from additional cost reductions. For this
purpose, incentive-based regulation typically sets price or revenue caps using the
RPI-X formula (Littlechild, 1983; Beesley and Littlechild, 1989) where X is the
expected saving in efficiency. The extent of the expected efficiency saving can
be deduced from frontier analysis. As shown by Haney and Pollitt (2009), Euro-
pean regulators frequently use DEA for incentive-based regulation of the natural
gas transmission companies. Although frontier analysis is currently not used to
regulate US natural gas transmission companies, it is useful in this context to in-
vestigate, for instance, the total factor productivity change and technical change
of the industry, particularly in the context of changing regulation; see e.g. Sickles
and Streitwieser (1992); Granderson (2000); Jamasb et al (2008).

A crucial part of both regulatory benchmarking and the evaluation of total
factor productivity, etc., is to specify the technology set. Consequently, extensive
attention is usually devoted to the choice of variables. In their analysis on US
natural gas transmission companies, Jamasb et al (2008), for example, select the
relevant variables via a comprehensive econometric cost-driver analysis. In real
life applications, the conflict related to the choice of variables arises from the
uncertainty about the correct specification of the technology and, in regulatory
frameworks additionally, from the opposing interests of regulating authorities and
regulated firms: On the one hand, firms seek to increase the number of the consid-
ered variables in order to make the model as detailed as possible and, therefore,
increase the dimensions of the technology set. In the case of high dimensional-
ity, nonparametric efficiency analysis as an regulatory instrument is compromised
because no meaningful efficiency estimates can be obtained due to the ’curse of
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dimensionality’. Regulators, on the other hand, focus on only a few variables that
appropriately model the technology set. We draw on discussions in the literature
in order to establish alternative specifications of the technology set that we use to
perform the proposed restriction test.

The primary task of natural gas transmission companies is to transfer natu-
ral gas from other upstream facilities13 to city gates, storage facilities and some
large industrial customers. From the city gates on, the commodity is distributed
to all other customers via local distribution systems that do not belong to the
transmission system. To accomplish this task, natural gas transmission companies
essentially employ pipelines, compressor stations, natural gas as fuel, and person-
nel.

We first specify the variables representing the inputs involved in the production
process for natural gas transmission.14 Similar to other sectors, the commonly
considered input factors are i) labor; ii) “other inputs” such as e.g., fuel, materials,
and power (Coelli et al, 2003); and iii) capital. The expenses on labor and “other
inputs” basically constitute the operating expenses, whereas investment spending
relates to capital expenses. Since compressor stations require a notable amount
of fuel and maintenance, the relative share of “other inputs” is large in natural
gas transmission compared to other technologies. The crucial contributors to the
pipeline operating costs are, therefore, the number of compressor stations and
labor expenses (IEA, 2003). With unknown factor prices, we use operating and
maintenance expenses (O&M ) as an aggregated input measure, which sufficiently
covers expenses for labor and “other inputs”.

The aggregated input measure implies that factor prices are identical for all
firms. This is a strong assumption and must be carefully considered in each ap-
plication. Unfortunately, a lack of available data prevents an analysis including
individual input factor prices. The absence of accurate input factor prices, how-
ever, frequently occurs in regulatory practice. In addition authorities find it dif-
ficult to obtain accurate physical input quantities (Jamasb et al, 2008). Against
this background and from an analyst’s perspective, the monetary aggregate has
the advantage of overcoming information asymmetries while ensuring to account
for all employed inputs.15

We do not include capital costs since in our simple input-output-specification
this would imply the capital input to be fully substitutable with other input fac-
tors. In the context of natural gas transmission this seems to be an unreasonable
assumption. Hence, we apply an OPEX benchmarking approach explained ear-
lier in the paper in which the pipeline network does not constitute an individual
input.16

13 These mainly include gas storage facilities, gas processing and treatment plants, as well as
liquefied natural gas storage and processing plants.
14 For a general overview of commonly considered inputs and output of network industries,
the reader is referred to Coelli et al (2003); a comprehensive discussion on the variable selection
in the context of gas transmission is given by e.g., Jamasb et al (2008).
15 Note that the legitimacy of input (or output) aggregation should also be tested, e.g. by
means of restriction tests; however, this it outside the focus of the present work.
16 Alternatively an OPEX model could have been implemented, which makes capital a de-
terminant of some variable input factor as discussed previously. This would involve the specifi-
cation of an input requirement function. To our best knowledge, there is no empirical analysis
dealing with regulatory benchmarking of natural gas transmission companies applying this
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There is a broad consensus about the plurality of outputs in network industries.
The most obvious and frequently used measure to include is the natural gas deliv-
ered (deliv) (Coelli et al, 2003). Additionally, we consider the amount of natural
gas delivered during peak times (peak), since the difference across firms is partic-
ularly relevant when regional characteristics vary. The provision of infrastructure
(or the service supplied by using this infrastructure) itself can be considered a
distinct output. Unlike other studies that incorporate the length of mains (length)
as a capital measure, e.g., Jamasb et al (2008), we use it as proxy for transporta-
tion service. As consumers pay for delivered natural gas, both the gas volume
and the distance covered in delivery are meaningful dimensions. Thus length is a
potential candidate measure of output. In addition, including length improves the
comparability among the investigated pipeline companies. Typically, larger (exist-
ing) networks are associated with higher operational costs: Compressor stations,
installed to maintain the network pressure,17 determine a large part of personnel
expenditures and maintenance costs (including fuel consumption). Not consider-
ing this technical aspect leaves companies with high O&M due to large networks
at a disadvantage, per se. The network length appears to be a suitable proxy for
the number of installed compressor stations since they occur at rather regular in-
tervals of 150-200 km, corresponding to about 93-124 miles (Natgas.info, 2011).18

Another frequently considered measure is the number of customers supplied, which
accounts for the multiplicity of output. However, the number of connections seems
to be of minor importance in natural gas transmission networks. We therefore ex-
clude it from consideration. Furthermore, pollution (as a bad output) is sometimes
taken into account (Coelli et al, 2003) but it is not considered here.

Test Input Outputs H0 H1 Description

I O&M deliv, peak deliv deliv, peak peak is redundant
II O&M deliv, peak peak deliv, peak deliv is redundant
III O&M deliv, length deliv deliv, length length is redundant
IV O&M peak, length peak peak, length length is redundant

Table 1: Test strategy

The above-mentioned discussion suggests that three potential candidates for
output variables to be analyzed: deliv, peak, and length. 19 Given the input variable

specification. We leave this to further research and present our proposed method with a simple
input-output-specification.
17 The transport of natural gas is based on a pressure differential at the inlet and outlet.
18 However, we are aware of the fact that the length of mains cannot fully explain the dif-
ferences of total operational costs of the compressor station since these also depend on the
engineering characteristics. Further, length of mains likely reflects the geographical reach of
services. An alternative view of its importance might result from the notion that companies
active in rural areas naturally need greater length to deliver the same amount of gas than firms
in metropolitan areas. This is simply because the customers are more dispersed. In this inter-
pretation length would be rather a conditioning variable than an input or output. However,
if length reflects an exogenous and monotonous cost disadvantage, it can also be included as
an additional output. Our results are consistent with both qualifications of the variable length
and corroborate its importance.
19 One can see clearly that we make a priori assumptions about the partition of the technol-
ogy set into inputs and outputs. This partition is not always unambiguous. For example, one
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O&M, we develop our model in terms of a stepwise enlarging set-up as illustrated in
Table 1. A potential concern with this cascade of tests stems from the observation
that we base our decision to drop a certain variable on the non-rejection of the
Null (instead of dropping variable only if a reversed Null is rejected). From the
regulator’s point of view there is however a good argument to use our specification,
because regulated firms have a strong incentive to include as many inputs and
outputs as possible in order to reduce the effectiveness of the regulation. Indeed
this is frequently observed also in practical settings. Since this would counteract
the sense of any regulation exercise, our approach might be better suited because
it accepts new inputs/outputs only when there is strong evidence for them.

In Test I we test whether peak needs to be included in the technology set when
this already includes deliv. In Test II we also test this, vice versa, i.e. whether deliv
is redundant in the presence of peak. We find that in each of the two tests, the
additional variable is redundant, but it is difficult to tell which. This finding also
suggests that one measure of the delivered natural gas should be included, but it
is relatively unimportant (at least empirically) which one. Given deliv as output
variable, Test III analyzes whether length is an additional relevant output variable.
The same is evaluated in Test IV, except for the fact that peak is the baseline
output variable. In both latter tests we consistently reject the Null hypothesis, i.e.
we find sufficient evidence to add length to the set of relevant outputs.20

4.2 Data

We employ data on US natural gas transmission companies provided by the Federal
Energy Regulatory Commission (FERC). FERC Form No. 2 includes all natural
gas companies whose combined gas transported or stored for a fee exceed 50 mn
Dth. Given that we assume that the technologies of onshore and offshore pipelines
differ, we only consider companies operating onshore facilities. Some missing values
and data irregularities are excluded from the data set. The remaining sample
contains information on 43 natural gas transmission pipeline companies that are

can think of arguments that would suggest that length is an input rather than an output. If
this was, true the cascade of tests in Table 1 would change as well. This is a potential weak-
ness of the procedure presented here, because these assumptions remain untested. Assessing
them would require the use of some sort of goodness-of-fit criteria that are, to the best of our
knowledge, not available in non-parametric frontier models. Another point concerns a delicate
issue in terms of interpretation of the results. Using our tests we do not confirm that an input
or output dimension is redundant. Rather we show that there is no conclusive evidence that it
is not. Based on the failure to reject the Null we recommend excluding certain outputs/inputs.
What might seem unwarranted at first sight can, however, be justified by the regulation con-
text. In fact, because regulated firms have a strong incentive to include as many inputs and
outputs as possible in order to reduce the effectiveness of the regulation, from the regulator’s
point of view it seems adequate to exclude those inputs or outputs that have not proven to be
highly relevant. Otherwise the regulator would most likely be forced to use models with large
dimensionality rendering the regulation exercise utterly ineffective.
20 Additionally, we conducted the test where the Null incorporating length as the sole output
variable is tested against the two alternatives length, deliv and length, peak, respectively. Both
tests confirm the presented results. To save space, we present the detailed results in Appendix
B.
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observed with unequal frequency over a five-year time period (2003-2007).21 In
total, the unbalanced panel includes 191 observations.

Table 2 presents the characteristics of the data. All variables are related to the
companies’ transmission branch. In general, all variables exhibit high standard
deviations, indicating notable differences between the sample companies. Median
values are consistently below corresponding mean values suggesting that the sam-
ple consists of relatively more small-size firms. For O&M we use the reported sum
of transmission expenses for operation and maintenance. Other O&M items, e.g.,
related to production, storage or customer accounts, are not considered making
output measures e.g., of storage activities unnecessary. The monetary values of
O&M are inflation adjusted to 2003 dollars for comparability purposes. On av-
erage, the pipeline companies spend 42 mn USD on O&M. Deliv represents the
account for the total quantity of natural gas delivered by the respective company
and ranges from about 20 mn to 3 bn Dth. In order to ensure comparability with
peak period information, we transformed this variable into Dth per day. The cor-
responding measure of supplied quantity then has a minimum and maximum value
of 0.06 to 8.6 mn Dth a day, respectively. For peak, we use the single day account
of the amount of natural gas delivered during system peak period. This measure
also accounts for potential differences in the transmission network characteristics,
e.g., pressure stages of the pipelines, and, therefore, ensures comparability of the
analyzed companies in this respect. The sample companies report peak deliveries
between 0.1 and 7 mn Dth (per day). Length represents the total length of trans-
mission mains, which varies widely between the companies. The smallest pipeline
network has 80 miles of pipeline and the largest has over 9,000 miles.

Since the DEA estimator envelops all observed data points to construct the
frontier, it is not robust against extreme values and data errors, further referred to
as outliers; see e.g., Simar (2003); Simar and Wilson (2008). Before testing the re-
strictions on the technology set, we perform an outlier detection procedure, using
the approach suggested by Pastor et al (1999) to identify suspicious observations.
The outlier detection routine is based on a technology set that incorporates all
three potential outputs simultaneously22 and performed on a yearly base. 20 ob-
servations were identified as outliers and excluded from the original sample. The
subsequent analysis is thus conducted with a reduced sample of 171 observations.23

By using the cross-sections over multiple years, we assume that all observations
have access to the same technology, meaning that technical change is absent dur-

21 Note that we want to empirically apply our proposed method and are, therefore, not
concerned about the exact period under consideration.
22 Calculations are conducted using the statistical software R with the additional package
“FEAR” version 1.12 by Wilson (2008).
23 The outlier analysis was conducted before the restriction tests implying that the restric-
tions tests are run on the unrestricted model. This approach is consistent, because even if
an outlier is identified on the basis of an ex post redundant dimension, under the Null the
restricted and the unrestricted model converge to the same probability limit. In finite samples,
if H0 is true, this approach is less efficient, because observations may potentially be dropped
on the basis of unnecessary dimensions. To assess this, we ran an ex post outlier analysis on
the restricted set. We found that largely the same units are identified as outliers irrespective
of whether we use the unrestricted or the restricted model. Also the restriction tests were
rerun based on this sample. The decisions on the restriction tests did not change, with almost
constant numerical test statistics. Thus, we can conclude that in our application the results
are robust with respect to the order in which restriction tests and the outlier analysis are
performed.
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ing the considered time span. The assumption of a constant frontier over time is
necessary for the pooling approach to be applicable since pooling implies that the
reference set of an efficient unit may consist of observations from all years. How-
ever, if the frontier changes, evaluating an inefficient observation from one year to
an (efficient) unit from the reference set from another year yields meaningless re-
sults. This is because it would be unclear whether the inefficiency just results from
an ignored change in the frontier. Thus, it is necessary to exclude the possibility
of a shift in the frontier. This assumption can be tested using Malmquist indices
(Färe et al, 1992). More precisely, the Malmquist index is a measure of total fac-
tor productivity calculated from DEA measures. The Malmquist index itself can
be decomposed in various ways of which the three-source decomposition is most
common. The first component is change in scale efficiency occurring when units
operating under increasing or decreasing returns to scale move closer to constant
returns to scale. The second refers to change in pure efficiency, which occurs when
an inefficient unit moves closer to the frontier. Third, efficiencies can change when
the frontier changes, i.e. if there is technological change. The first two components
are uncritical for the applicability of our approach, because they do not imply a
change in the frontier. Rather, they result from changes of the positions of units
evaluated against a constant production possibility set. However, if the techno-
logical component is not equal to one, this would prevent the applicability of this
method. In Table 3 we present the upper and lower bounds for the technological
component of the Malmquist indices for the units between 2003 and 2007. For all
units, except for two, the lower confidence bound is below unity (one indicating
no technological change) while the upper is above unity. This means that except
for two out of 29 units the hypothesis that there is technological change is not
statistically supported. In fact, even in the two cases where there is an indication
of a change in the frontier, this does not seem very pervasive as the lower bound
is close to one. For efficiency estimation, pooling over time is consequently valid
in our case. Note that even though individual efficiency scores are estimated using
pooled data, the tests regarding the technology set account for the panel structure
by means of block-wise subsampling.

Variable Min Mean Median Max Std.dev.

Opex (O&M) [thsd USDa] 268 42,421 20,593 244,284 50,632

Total deliveries (deliv) [thsd Dthb] 55 1,389 994 8,597 1,381
Peak deliveries (peak) [thsd Dth] 122 1,614 1,303 7,124 1,328
Length of mains (length) [miles] 80 2,379 1,402 9,627 2,505

Source: US FERC. Notes: observations=191, n=43, years=2003-2007, onshore
pipeline companies included only. a Yearly operating and maintenance expenses

are deflated to 2003. b Per day measures derived by dividing the total amount
of natural gas delivered by 365 days.

Table 2: Descriptive statistics for US natural gas transmission companies
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DMU lower confidence interval (0.005) upper (0.995)

1 0.6550 1.6710
2 0.9822 2.5057
3 0.7420 2.2977
4 0.2455 1.5239
5 0.3020 1.1728
6 0.5599 1.6946
7 0.6807 1.6229
8 0.4123 1.5637
9 0.5457 1.4202

10 0.2830 1.1000
11 0.2976 1.2316
12 0.4371 1.3456
13 0.5085 1.5655
14 0.4437 1.5074
15 1.0445 3.7676
16 0.9564 1.4677
17 0.4564 1.7341
18 0.4452 1.9881
19 0.6022 1.5135
20 0.6457 2.7563
21 0.5801 2.4130
22 0.6879 1.8920
23 0.4990 2.6042
24 0.5788 2.0197
25 0.5191 2.8096
26 0.7962 2.7978
27 0.5661 2.8805
28 0.7519 3.1450
29 1.0867 3.6763

Table 3: Lower and upper bounds for technological component of Malmquist in-
dices

4.3 Results

4.3.1 Restriction Tests

Turning to the main interest of this paper, Figure 1 illustrates the results of the re-
striction test for our sample based on subsampling for clustered data. The horizon-
tal dashed lines represent the respective, actually observed values of tnPD (XnPD , Z)
obtained from Equation 12. The observed test statistic is 0.3707 in Test I, 0.1907
in Test II, 2.3491 in Test III, and 2.0337 in Test IV. We reject the respective H0

if this statistic exceeds the determined critical value.

To derive the empirical approximations of the sampling distributions and the
corresponding critical values t̂cmPD (1− α), we calculate 2,000 replications of the
test statistic tmPD,b

(X ∗
m,b, Z

∗), for each of the four tests, using the proposed sub-
sampling procedure. Since the critical values depend on the respective subsample
sizes, the replications of the four test statistics are calculated for different values
of mPD. The solid lines in the graphs illustrate the obtained corresponding critical
values at the preferred level of significance (α =5 percent), as a function of the
subsample size mPD.

The vertical dashed lines indicate the respective optimal subsample size de-
termined by the smallest measured volatility index. This corresponds to a region
where the test statistic graphically appears to remain stable when slightly deviat-
ing from the identified optimal value of mPD. Note that in our applied approach
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(a) Test I: Output redundancy of peak
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(b) Test II: Output redundancy of deliv
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(c) Test III: Output redundancy of length
given deliv
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(d) Test IV: Output redundancy of length
given peak

Fig. 1: Results of restriction tests

of subsampling for clustered data, mPD, refers to the number of cross-section cov-
ered by the subsample, not to the total number of observations. As shown by the
respective panels of Figure 1, the optimal subsample sizes for our tests correspond
to 39 (panel a), 36 (panel b), and 34 (panel c and d); they are the reference points
where the observed values of the test statistic are compared to the critical values
in order to reach a test decision.

As evident from panel (a) in Figure 1, the critical value clearly exceeds the
observed value of the test statistic obtained from Test I at the subsample size of
39. Therefore, we do not reject the Null hypothesis meaning that we do not find
sufficient evidence to include the variable peak to the technology set, given that
deliv is an output variable. The corresponding p-value (not depicted in the graph)
of this test is 46 percent, which is obviously larger than our preferred significance
level of 5 percent.

Likewise there is not enough empirical evidence to reject H0, if we run the test
the other way around (Test II). At the subsample size of 36, panel (b) of Figure
1 shows that the critical value is again larger than the observed test statistic.
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Test Optimal Test statistic p-value Test statistic p-value
subsample size (panel) (pooling)

I 39 0.3707 46 % 0.4049 2%
II 36 0.1907 40 % 0.2128 11%
III 34 2.3491 4% 2.5271 0%
IV 34 2.0337 7% 2.2247 0%

Table 4: Test statistics for Tests I to IV

Thus, given the output variable peak, the variable deliv is redundant to define the
technology set under consideration. The p-value of Test II is slightly smaller (0.40),
but roughly of the same magnitude. The results of Tests I and II indicate that we
can drop either peak or deliv, if we control for the respective other one. However,
the comparable significance levels show that it is relatively unimportant which is
dropped. For Test III, we proceed with deliv, for Test IV with peak as the baseline
output variable.

Test III compares the technology set deliv (H0) against deliv and length (H1).
Indicated by panel (c) in Figure 1, we can indeed reject the Null hypothesis at the
significance level of 5 percent level. In Test IV the relevance of length is marginally
less pronounced at the 5 percent level. However, with a calculated p-value of 7
percent (not visible in the graph) we can reject the Null hypothesis of Test IV at
the 10 percent significance level, thus favoring the alternative. Therefore, length
represents a further, relevant output for the purpose of modeling the technology
set of the considered companies.

Table 4 summarizes the presented results of the tests, i.e. the optimal sub-
sample sizes, the test statistic obtained by subsampling for panel data, and the
p-values. In addition, the last two columns of the table show an interesting point of
comparison, i.e. the test statistics and the p-values we obtained for the presented
tests, if we falsely assume that each observation is independent of each other. In
this case we ignore the panel structure of the data and run the subsampling proce-
dure without taking it into account. Technically, dependence leads to a duplication
of information, because one observation already provides information about any
other dependent observation. Consequently, ignoring dependence should generally
overestimate the informational content of a sample leading to underestimated p-
values. Indeed this is what we observe. Three out of the four tests (Tests I, III
and IV) would now reject the Null hypothesis and the only one that does not is
very close to rejection, with a p-value of 11 percent. If we based our decision on
these tests, we should include any of the variables, eventually sticking with the full
model of deliv, peak and length. Note, that our results depend on the sample and
do not provide general evidence for the sector. With the reduced set of outputs,
we improve the efficiency estimation by reducing the dimensionality and hence,
the risk of overestimating the performance.

4.3.2 Differences in the Efficiency Estimates

In practical regulation settings, the estimated efficiencies have important financial
implications for the companies. Each decrease in estimated efficiency will poten-
tially cost the companies large amounts of money. Therefore, it is interesting to
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Test Difference between Min Mean Median Max Std.dev.
specifications

I θ̂H1
− θ̂H0

0.0000 0.0575 0.0154 0.4405 0.0921

II θ̂H1
− θ̂H0

0.0000 0.0271 0.0000 0.2744 0.0531

III θ̂H1
− θ̂H0

0.0000 0.2417 0.1247 0.9469 0.2766

IV θ̂H1
− θ̂H0

0.0000 0.2180 0.1286 0.9642 0.2493

Table 5: Differences of efficiency estimates

know which effects the proposed restrictions actually have on the companies’ effi-
ciency estimates.

Table 5 shows for each of the four tests how the company-individual efficiency
scores respond to the differences in the technology set specification. We estimate
the performance of each company using Equations 8 and 9 and calculate the differ-
ences of the achieved efficiency scores. The full models, i.e. the efficiency estimation
using the technology sets under H1, by definition provide performance measures
that are equal or greater than their corresponding nested models. For Tests I and
II the technology set under H1 is the same, i.e. involves both outputs deliv and
peak. Whereas the technology set under H0 incorporates only deliv in Test I and
peak in Test II. The minimum differences of zero in both tests can be explained
by the fact that there are some observations for which the efficiency score is only
determined by the variable that is not excluded in the alternative technology set.
Hence, excluding the other output measure does not change their performance
measure. However, for some of the companies, the efficiency score changes consid-
erably, with the exclusion of output peak yield, for example, a maximum difference
of 44 percentage points in Test I. The maximum difference in Test II is, with 27
percentage points, lower. The table further shows that not including the output
peak has, on average, greater impact than not including the output deliv, i.e. the
mean of the difference is 0.0575 compared to 0.0271. Given that the tests results
allow for the exclusion of either deliv or peak, from the regulator’s perspective
this provides a strong argument for using peak instead of deliv. In either case,
discriminatory power is increased.

As a reference point we also present the results for Tests III and IV. However,
we note that H0 is rejected in both cases. Therefore, any potentials in higher
discriminatory power are based on the fact that we would falsely restrict the
technology set.

5 Conclusions

Industrial and regulatory benchmarking are commonly applied to all kinds of in-
dustries in order to improve company performance. Conducting such analyses re-
quires the modeling the technology of the companies under investigation, which
in practice is often a mere guess. This paper develops an approach to support the
model specification of technology sets in nonparametric efficiency analysis based
on statistical inference for clustered data.

To reach a decision on alternative model specifications, we propose approxi-
mating the sampling distribution of the test statistic of interest, i.e. the ratio of
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the efficiency estimates obtained from alternative technology sets, using a block-
wise subsampling procedure. This approach ensures that the dependency between
observations is properly accounted for. The corresponding critical value of the
sampling distribution can subsequently be used as the decision criteria. Due to
the block-wise subsampling, the applicability of restriction tests, previously only
proposed for the cross-sectional case, is extended to (unbalanced and balanced)
panel data structures and any other kind of dependent observations.

Panel data is, for example, particularly interesting when the relative perfor-
mance is measured for a small number of units. Due to monopolistic market struc-
tures, this is the case with regulatory benchmarking of network industries. Observ-
ing the units over multiple time periods can sufficiently enlarge the sample size
to obtain meaningful efficiency measures and to apply restriction tests. In addi-
tion, regulatory benchmarking involves the issue of uncertainty about the correct
specification of the technology, which requires objective modeling.

Therefore, we apply and demonstrate the proposed restriction test in a regula-
tory framework, considering the natural gas transmission sector. Our consecutive
analysis involves four alternative technology sets for this sector, where the vari-
able selection is based on the respective literature and regulatory practice. All
technology sets in question contain operating and maintenance expenditures as
input, while they differ in the output measures. The analysis is undertaken using
an unbalanced panel data set of US natural gas transmission pipelines between
2003 and 2007.

First, we test whether the amount of natural gas delivered during peak times
is a redundant output measure, if the technology set already included the total
amount of natural gas delivered as an output. The second test deals with the
reverse case, i.e. it tests whether the total amount of natural gas delivered is
redundant, if the amount of natural gas delivered during peak times is defined as
output. The test results suggest that in each case the respective additional output
variable is dispensable, meaning that the technology set is sufficiently determined
by one of the output variables. Although, the test is not designed to answer the
question which of the alternative output variables is the correct one to choose,
further analyses on discriminatory power provide some tentative indication that
peak deliverables rather than total deliverables should be included. The efficiency
estimates are more sensitive toward omitting the peak amount of natural gas
delivered than omitting the total amount of natural gas delivered.

Based on the first two tests, the subsequent two tests both suggest including the
length of mains as an output from the technology set if the initial output variable
was either given by the total amount of natural gas delivered or the amount of
natural gas delivered during peak times, respectively. Deleting the length of mains
affects the efficiency estimates strongest indicating its importance for modeling
the technology set.

For our sample, the test provides an objective tool to reduce the number of
variables, which prevents overestimating the performance of the companies by
including redundant variables in the specification. In general, the proposed test is
a sound and reproducible method that helps remove the information asymmetry
between the analyst and the production entity delivering the data that is possibly
subject to regulatory benchmarking.
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Appendix A: Proof of Consistency

A robust approach to obtain corrected standard errors with clustered data is to sub-
sample block-wise (Davison and Hinkley, 1997). This allows for arbitrary dependence between
the observations belonging to the same cross-section unit.

We show that this procedure meets the essential consistency requirements set out in Politis
et al (2001). Let sample size nPD be defined by the number of different cross-section observa-
tions. Although we used the more easily interpretable Farrel-Debreu measure so far, for actual
calculations it is preferable to use the inverse λ = 1/θ because it is truncated only once.

Proposition: Let n (Z) =
∑nPD

i=1 Zi where iid random variables Zi give the number of
time observations per cross-section unit with distribution function FZ defined on the support
SZ = 1, . . . , L and expectation e ∈ [1, L], then for the test-statistic tnPD (X,Y, Z) the asymp-

totic distribution of
√
nPDn

2/(p+q+1)
PD tnPD (X,Y, Z) is non-degenerate with expectation zero.

Proof: If we reformulate the time subscripts to take only consecutive integers, we can use
the following definition:

ti (X,Y |Z = z) =
∑zi

t=1

(
λ̂fullit

(Xi,Yi, |Zi=zi)

λ̂nestedit
(Xi,Yi, |Zi=zi)

− 1

)
.

It follows from the results of Kneip et al (2008) that

n2/(p+q+1)

(
λ̂fullit

(Xi,Yi, |Zi=zi)

λ̂nestedit
(Xi,Yi, |Zi=zi)

− 1

)
d→ Hn

for any fixed zi, where Hn is a random variable with an asymptotic distribution function
Q that is non-degenerate and has mean 0 under H0. Furthermore we can rewrite n = nPDe ,
where e is the expectation of Z. Replacing and rearranging yields

n
2/(p+q+1)
PD

(
λ̂fullit

(Xi,Yi, |Zi=zi)

λ̂nestedit
(Xi,Yi, |Zi=zi)

− 1

)
d→ 1

e2/(p+q+1) Hn.

Since the right-hand-side is a scaled version of Hn, also

n
2/(p+q+1)
PD

(
λ̂fullit

(Xi,Yi, |Zi=z)

λ̂nestedit
(Xi,Yi, |Zi=z)

− 1

)

has a non-degenerate distribution. This implies that the conditional distribution of

n
2/(p+q+1)
PD ti (X,Y |Z = z) is non-degenerate. Call this distribution D(z).

Furthermore, we obtain the distribution of ti (X,Y, Z) by marginalizing out Z: D(·) =∫
z∈SZ

D(z)dFZ . Obviously, if D(z) is non-degenerate with a given scaling factor, then D(·)
must be non-degenerate with the same scaling factor. In order to complete the proof, since
tnPD (X,Y, Z) is an empirical mean of the ti (X,Y, Z), it follows by using the redefinition

n = nPDc that τnPD tnPD(X,Y,Z) with τnPD =
√
nPDn

2/(p+q+1)
PD is non-degenerate and ad-

ditionally has an asymptotic expectation equal to zero under H0, because the mean associated
with the asymptotic distribution Q is zero. As a consequence of this result, the subsampling
methods proposed by Politis et al (2001) are consistent, when subsampling is conducted block-
wise along the cross-section dimension. The sub-sampling size mPD is as usually defined as
the integer part of nk

PD for 0 < k < 1. It should be noted that these results include the case
of ordinary cross-section data and a balanced panel setting. In the former case zi = 1 and
n = nPD yielding just the formulae in Schubert and Simar (2011). In the latter case zi = L
implying that zi cannot affect the asymptotic distribution because it is non-random.
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Appendix B: Additional Test Results

In this appendix we report the additional tests performed for length as single output
variable. Panel (a) of 2 presents the visual analysis in which length is tested against the
alternative technology set with length and deliv. At the optimal subsample size of 21 the
observed test statistic of 0.468 is very close to the critical value. The corresponding p-value of
this test is 8 percent when the panel structure is accounted for and 1 percent otherwise. Panel
(b) of this figure shows the visual results for testing length against length and peak. In this
case the observed test statistic takes the value 0.593 and clearly exceeds the critical value at
the subsample size of 23. The p-value is 3 percent (0 percent) when the subsampling accounts
(ignores) the panel structure of the data.

Consequently, we find empirical evidence that the technology set should include either
deliv or peak if length is chosen as inital output variable. Therefore, these tests support the
previous findings reported in 1. Also they show that the test procedure does not depend on
the order of variable selection.

FIG5.pdf

(a) Test I: Output relevance of deliv

FIG6.pdf

(b) Test II: Output relevance of peak

Fig. 2: Results of restriction tests for length as initial output variable
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