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Abstract Electric discharge drill machine (EDDM) is a

spark erosion process to produce micro-holes in con-

ductive materials. This process is widely used in aero-

space, medical, dental and automobile industries. As for

the performance evaluation of the electric discharge

drilling machine, it is very necessary to study the process

parameters of machine tool. In this research paper, a

brass rod 2 mm diameter was selected as a tool elec-

trode. The experiments generate output responses such as

tool wear rate (TWR). The best parameters such as pulse

on-time, pulse off-time and water pressure were studied

for best machining characteristics. This investigation

presents the use of Taguchi approach for better TWR in

drilling of Al-7075. A plan of experiments, based on L27

Taguchi design method, was selected for drilling of

material. Analysis of variance (ANOVA) shows the

percentage contribution of the control factor in the ma-

chining of Al-7075 in EDDM. The optimal combination

levels and the significant drilling parameters on TWR

were obtained. The optimization results showed that the

combination of maximum pulse on-time and minimum

pulse off-time gives maximum MRR.

Keywords Electric discharge drilling machining � MRR �
TWR � ANOVA � Taguchi method � Grey relational

analysis

Abbreviations

ANOVA Analysis of variance

DF Degree of freedom

EDM Electric discharge machine

EDDM Electric discharge drilling machine

GRA Grey relational analysis

GRG Grey relational grade

MRR Metal removal rate

m Overall mean S/N ratio

MS Mean square

P Percentage contribution

SEM Scanning electron microscopy

SS Sum of square

SSe Error sum of square

SSj Sum of square of individual process parameters

SST Total sum of squares

TWR Tool wear rate

Ton Pulse on-time

Toff Pulse off-time

WP Flushing pressure

ZiðkÞ Comparability sequence

Z�
0ðkÞ Reference sequence

Z�ðkÞ Sequence after the data pre-processing

ci Grey relational grade

ni(k) Grey relational coefficient

f Identification coefficient

g Signal to noise (S/N) ratio

D0i(k) Deviation sequence
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Introduction

Electrical discharge machining (EDM) drilling is becoming

the standard method for producing small, tight tolerance

holes. It is an extremely cost-effective method for pro-

ducing fast and accurate holes for hard or soft conductive

materials (Bhattacharya et al. 1996). It is the process of

machining electrically conductive materials using precisely

controlled sparks that occur between an electrode and a

workpiece in the presence of a dielectric fluid. It is based

on the erosion of material through the series of spatially

discrete high-frequency electrical discharges (sparks) be-

tween the tool and the workpiece. The spark removes

material from both the electrode and workpiece, which

increases the sparking gap (distance between the electrode

and the workpiece) at that point. This causes the next spark

to occur at the next-closest points between the electrode

and workpiece. As EDM is a thermal process, material is

removed by heat. Every discharge (or spark) melts a small

amount of material from both of the electrodes. Part of this

material is removed by the dielectric fluid and the re-

maining solidifies on the surface of the electrodes (Jain

2004).

Schematic diagram of EDM drilling is shown in Fig. 1.

Micro-EDM is a machining process capable of drilling

burr-free holes in a wide range of materials. In micro-hole

drilling, the diameter of the electrode is selected according

to the size of hole to be drilled by considering the radial

overcut of process. The de-ionized water is used to flush

away the burrs formed due to sparks between workpiece

and electrode (McGeough 1998). There are many

advantages of using fast EDM drilling versus conventional

drilling.

Some materials are too hard to drill using conventional

methods. The EDDM drills any conductive material in-

cluding carbide and hardened steel. During EDDM, there is

no direct contact between tool and workpiece, so

eliminating the tool pressure. This burr-free drilling saves a

lot of time and labour, and is essential when difficult holes

are being drilled (Simon and Grama 2011).

Literature review

The principle of EDM and EDM drilling is same except

that during drilling process the electrode rotates and re-

moves the burrs effectively with fluid pressure supplied by

the channels in the electrode. Drilling micro-holes with

conventional methods is often extremely difficult if not

impossible. After drilling micro-holes, the geometrical

accuracy was distorted and also the surface quality was not

so much effective. EDM drilling is often the only practical

method for producing such holes. As conventional drills

enter or exit, they can break if torque is not carefully

controlled. Small broken drills are often difficult to remove

from the workpiece, and time is wasted replacing broken

drills and parts may have to be scrapped. With EDM

drilling, torque does not exist since the electrode never

contacts the piece (Simon and Grama 2011). Song et al.

(2009) drilled on cobalt-bonded tungsten carbide (WC–Co)

with micro-electrical discharge machining. Researcher

utilized bipolar pulse power source to prevent electrolytic

corrosion in the machined holes.

Bursali et al. (2006) worked for the improvement of a

batch saponification process using two-level factorial and

face-centred central composite statistical experimental de-

sign. During their research study, the input process pa-

rameters were agitation rate, temperature, ethyl acetate and

initial sodium hydroxide considering fractional conversion

rate of NaOH as a response variable. Shokuhfar et al.

(2008) utilized optimization technique for reduction of

transverse deflection. Researchers developed and verified

the model for smart composite plate deflection along with

shape memory wire. This was used for the estimation of the

deflection ratio, which was a mathematical function of the

main process planning parameters. Ghasemi et al. (2013)

optimized the process parameters for fibre metal laminates

to a low velocity impact using response surface method-

ology and zero–one programming. It has been found that

layer sequences and volume fractions of Al plies play

significant role in the behaviour of fibre metal laminates.

Wang and Yan (2000) optimized the process parameters

of rotary electro-discharging machining using Taguchi

methodology while drilling of Al2O3/6061Al composite.
Fig. 1 Schematic diagram of electric discharge drilling machine

(Yilmaz et al. 2010)
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The input process parameters are polarity, peak current,

pulse duration, powder supply voltage, rotational speed of

the electrode, injection flushing pressure and response

variables are metal removal rate, electrode wear rate and

surface roughness. Research shows that the polarity or the

peak current most prominently affects the MRR, SR or

EWR amongst all of the parameters. Azad and Puri (2012)

optimized the process performances such as, metal removal

rate, tool wear rate and overcut based on Taguchi

methodology. Thus, the optimal micro-EDM process pa-

rameter settings have been found out for a set of desired

performances. The process parameters considered in the

study were pulse on-time, frequency, voltage and current

while tungsten carbide electrode was used as a tool. Maity

and Singh (2012) fabricated micro-product on micro-elec-

tro-discharge machining (micro-EDM) operation to ma-

chine any hard conducting material of different shape and

size. The micro-holes are a common feature in many mi-

cro-products. It is a challenging task to improve the surface

integrity and aspect ratio of holes. The optimization of

micro-EDM operation has been carried out for fabrication

of micro-holes using design of experiment technique using

the Taguchi method. The circularity error, the recast layer

and machining time have been analysed. The workpiece is

taken as copper and the tool is tungsten electrode.

Garna et al. (2011) investigated the effect of vibrations

on the electrical discharges in the micro-EDM process. The

electrical discharge machining of micro-bores was chosen

to represent a typical application. It was found from the

research that the micro-EDM boring process can be sub-

divided into three major parts, the start-up process, the

major boring process and the workpiece breakthrough of

the tool electrode. Bissacco et al. (2011) worked on the

applicability of real-time wear compensation in micro-

EDM milling based on discharge counting and discharge

population characterization. Experiments were performed

involving discharge counting and tool electrode wear

measurement in a wide range of process parameters set-

tings involving different current pulse shapes. Yu et al.

(2009) said that when a micro-hole is drilled deeply by

EDM, the viscous resistance in the narrow discharge gap

causes difficulty in the removal of debris and bubbles from

the working area, leading to frequent occurrences of ab-

normal discharges and resulting in extensive electrode

wear. Kao et al. (2010) optimized the parameter of the

electrical discharge machining process to Ti–6Al–4 V al-

loy considering multiple performance characteristics using

the Taguchi method and grey relational analysis is report-

ed. Performance characteristics including the electrode

wear ratio, material removal rate and surface roughness are

chosen to evaluate the machining effects. The process pa-

rameters selected in this study are discharge current, open

voltage, pulse duration and duty factor. The validation

experiments show an improved electrode wear ratio of

15 %, material removal rate of 12 % and surface roughness

of 19 % when the Taguchi method and grey relational

analysis were used.

Sánchez et al. (2011) developed an inversion model for

Electro-discharge machining (EDM). Due to its extensive

capabilities, this technique has been increasingly adapted

to new industrial applications within the field of aerospace,

medical, die and mould production, precision tooling, etc.

The inversion model was constructed from a set of ex-

periments and the equations formulated in the forward

model described in the first part of this paper. In the for-

ward model, the well-known ANOVA and regression

models were used to predict the EDM output performance

characteristics, such as MRR, EWR and SR in the EDM

process for AISI 1045 steel with respect to a set of EDM

input parameters.

Yilmaz and Okka (2010) drilled aerospace alloy (In-

conel 718 and Ti–6Al–4 V) by electrical discharge ma-

chining to investigate the effect of electrode type and

material on material removal rate, electrode wear and mi-

crohardness. Scanning electron microscopy revealed that

the multi-channel electrodes produce better surfaces than

single-channel electrodes for both aerospace alloys. Kumar

et al. (2015) and Sharma et al. (2015) also worked on

optimization of process parameters using response surface

methodology and desirability function. Some of the pre-

vious works used the Taguchi method and response surface

methodology as tools for the design of experiment in var-

ious areas including machining operations (Sharma et al.

2013a, b; Khanna and Singh 2013; Gupta et al. 2012; Garg

et al. 2012).

An extensive research has been reported on EDM, while

limited work has been reported on EDDM. So EDDM was

selected to drilling micro-holes with rotating electrode. Al

7075 had applications in aerospace and transport, due to

which precise holes are required to drill. A hole of 2 mm

diameter is difficult to drill using conventional drill. So, in

the present research, Al 7075 is processed with EDDM for

precise drilling and surface integrity at drilled surface. No

researcher has never processed (published) Al 7075 with

EDDM till now.

Experimental procedure

Experimental setup

Experiments were performed on Electronica Make ED 300

(Fig. 2) electric discharge drilling Machine. The goal was

to obtain the best machining parameters resulting in max-

imum MRR and minimum TWR. Holes were made in a

19-mm-thick plate of Al 7075 using a 2-mm-diameter
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electrode of brass. Deionised water was used as dielectric

fluid. Internal flushing with linear-shaped brass tool was

used to flush away the eroded materials from the sparking

zone. In this experiment, voltage and air pressure was kept

constant, i.e. 65 V, 3 kg/cm2. Three process parameters

were analyzed with a total number of 27 experiments

performed on EDDM.

Machining parameter selection

The machine tool (ED 300) has three process parameters

viz. pulse on-time, pulse off-time and flushing pressure

given in Table 1. Many researchers (Kumar et al. 2013;

Sharma et al. 2014) considered these parameters for opti-

mization in spark erosion non-traditional machining

methods along with other parameters. The levels of the

parameters along with the units are also shown in Table 1.

Preparation of test specimen

The material used for experimentation is Al 7075. The

chemical composition and mechanical properties of mate-

rial is shown in Tables 2 and 3. Before experimentation,

the workpiece faces were rectified to a good surface finish

using a surface grinding machine. The bottom of the

electrode rod is polished for best electric contact at every

experiment. The aluminium plate after drilling is shown in

Fig. 3.

Evaluation of response variable

The time taken for machining each hole was recorded. At

completion of each hole, the workpiece was removed from

the machine, washed, dried, and weighted. The material

removal rate was calculated using the Eq. 1. Material MRR

is expressed as the ratio of the difference of weight of the

workpiece before and after machining to the machining

time and density of the material.

MRR ¼ Volume of material removed fromworkpiece

Machining time
mm3

�
min

ð1Þ

TWR is expressed as the ratio of the difference of

weight of the tool before and after drilling to the drilling

time. This is explained in Eq. 2.

TWR ¼ Wtb �Wta

t
ð2Þ

where Wtb = Weight of the tool before drilling, Wta =

Weight of the tool after drilling, t = drilling time

Results and discussion

The controllable variables chosen for the experimentation

were peak current, pulse on-time and electrode rotation

speed. Other factors such as voltage (65 V) and air pressure

3 kg/cm2 were kept constant during the experimentation.

Table 4 shows the design of experiments (Montgomery

2001) along with the response mean values and S/N ratio.

Analysis of variance (Montgomery 2001) gives the

percentage contribution of significant process parameters.

Table 5 gives the pooled ANOVA for mean values of

MRR. The P value of all process parameters is less than

0.05 (95 % confidence level). From the Table 5, it is clear

that pulse on-time has maximum effect, i.e. 94.63 % on

MRR followed by pulse off-time (i.e. 4.55 %). Table 6

gives ANOVA of mean values for TWR. Pulse on-times

play an important role in TWR with percentage contribu-

tion of 75.27 % followed by pulse off-time of 4.25 %. The

interaction of pulse on-time and pulse off-time gives a

significant contribution in both MRR and TWR.

Fig. 2 Machine tool setup

Table 1 Machining parameters

and their level
S. no. Parameter Unit Level 1 Level 2 Level 3

1 Pulse on-time (A) ls 3 6 9

2 Pulse off-time (B) ls 3 5 7

3 Flushing pressure (C) kg/cm2 3 5 7
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Figure 4 gives the main effect plot of mean for MRR. It

is clear from the figure that with the increase of pulse on-

time the MRR increases. The main reason behind this is

that with the increase of pulse on-time, the time for which

current is on in a circuit increases. Due to which the dis-

charge energy increases and finally MRR increases. When

the pulse off-time increases the time for which current is

off in a circuit increases, due to which discharge energy

decreases and hence a declined curve for MRR is obtained.

A slight increment in the slope of curve of MRR with

flushing pressure is obtained. This is due to the fact that

with increase in flushing pressure the rate at which debris

are removed increases and hence MRR. The same effects

of erosion take place in case of tool. As when MRR of

workpiece increases same time, the erosion rate of tool also

increases due to increase in discharge energy between tool

and workpiece. So TWR increases with increase in pulse

on-time and decreases with increase in pulse off-time

(Fig. 5). Flushing pressure is a non-significant process

parameter for TWR.

The optimization of process parameters for MRR and

TWR can be easily evaluated by Taguchi technique. The

main limitation of this approach is that only one response

variable can be optimized in a time. To optimize both

responses, i.e. MRR and TWR at the same time, grey re-

lational analysis is used.

Multiple quality characteristics (grey relational
analysis)

The Taguchi technique for determining the optimal setting

of process parameters concentrates only on product single

response. But in today scenario peoples’ requirements have

been changed from single response to multiple quality

characteristics. According to the requirements, the indus-

trialist is also keen to produce items and maintaining a

balance between quantity and quality with minimum pro-

duction cost to earn maximum profit. So the multiple

quality characteristics optimizations is another task. Here,

the grey relational analysis comes into play, where a

mathematical technique optimizes two or more than two

quality characteristics.

The theory of grey relational was proposed by Deng

(1982, 1989), calculates the grey relational coefficients for

all quality characteristics either they are of larger the better

or smaller the best nature types. So, the grey relational

coefficient can represent the relationship between the de-

sired and actual experimental results, and the grey rela-

tional grade is simultaneously computed by averaging all

the coefficients.

The multiple performance characteristics of EDDM can

be optimized by producing single grey relational grade

from various coefficients of performance characteristics. A

higher grey relational grade corresponds to the best optimal

setting of process parameters for multi responses. The

Taguchi method is a systematic application of planning and

analysis of experiments to improve product quality. In re-

cent years, the Taguchi method has become a powerful tool

for improving productivity during research and develop-

ment also. Antony endeavoured simultaneous optimization

of multiple quality characteristics in manufacturing pro-

cesses using Taguchi’s quality loss function. The use of

Taguchi technique with the grey relational analysis can

greatly simplify the parametric optimization for multiple

quality characteristics (Deng 1982; Patel et al. 2010).

The procedure of GRA is illustrated in Fig. 6. Therefore,

in the present work, grey relational analysis based on the

Taguchi method’s response table has been used to optimize

EDDM of Al 7075 for multiple responses namely MRR

and TWR together.

Table 2 Chemical composition

of Al 7075
Elements Si Fe Cu Mn Mg Cr Zn Ti Others Al

Wt% 0.4 0.5 1.2–2.0 0.3 2.1–2.9 0.18–0.28 5.1–6.1 0.2 0.15 Balance

Table 3 Mechanical properties of Al 7075

Parameters Values

Density (g/cm3) 2.81

Hardness (HB) 60.0

Ultimate tensile strength (MPa) 228

Tensile yield strength (MPa) 103

Elongation at break (%) 16.0

Fig. 3 Specimen after EDM drilling
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Data pre-processing

Data pre-processing is a process of transferring the original

sequence to a comparable sequence. It is required since the

range and unit in one data sequence may differ from the

others. This is also necessary when the directions of the

target in the sequence are different. For this purpose, the

experimental results were normalized in the range between

zero and one. Table 7 gives the normalized results for both

responses after data pre-processing.

Table 4 Design matrix and corresponding experimental results

S. no. Planning of experiments Response characteristics of experiments

Ton Toff WP Mean MRR (mm3/min) S/N ratio (dB) Mean TWR S/N ratio (dB)

1 3 3 3 0.0170 -35.391 0.14730 16.6359

2 3 3 5 0.0173 -35.2391 0.15490 16.1990

3 3 3 7 0.0177 -35.0405 0.14590 16.7189

4 3 5 3 0.0161 -35.8635 0.15740 16.0599

5 3 5 5 0.0165 -35.6503 0.16200 15.8097

6 3 5 7 0.0167 -35.5457 0.16500 15.6503

7 3 7 3 0.0148 -36.5948 0.16520 15.6398

8 3 7 5 0.0149 -36.5363 0.16560 15.6188

9 3 7 7 0.0153 -36.3062 0.17010 15.3859

10 6 3 3 0.0254 -31.9033 0.17270 15.2542

11 6 3 5 0.0256 -31.8352 0.17270 15.2542

12 6 3 7 0.0259 -31.734 0.17780 15.0014

13 6 5 3 0.0248 -32.111 0.19050 14.4021

14 6 5 5 0.0249 -32.076 0.20320 13.8415

15 6 5 7 0.0252 -31.972 0.20800 13.6387

16 6 7 3 0.0223 -33.0339 0.16520 15.6398

17 6 7 5 0.0227 -32.8795 0.16560 15.6188

18 6 7 7 0.0229 -32.8033 0.16500 15.6503

19 9 3 3 0.0352 -29.0691 0.24890 12.0795

20 9 3 5 0.0354 -29.0199 0.25900 11.7340

21 9 3 7 0.0359 -28.8981 0.25200 11.9720

22 9 5 3 0.0330 -29.6297 0.22350 13.0144

23 9 5 5 0.0336 -29.4732 0.22300 13.0339

24 9 5 7 0.0343 -29.2941 0.20820 13.6304

25 9 7 3 0.0297 -30.5449 0.20800 13.6387

26 9 7 5 0.0300 -30.4576 0.20320 13.8415

27 9 7 7 0.0303 -30.3711 0.20300 13.8501

Avg. – – – 0.0245 -32.5657 0.18825 14.6227

Max. – – – 0.0359 -28.8981 0.25900 16.7189

Min. – – – 0.0148 -36.5948 0.14590 11.7340

Table 5 Analysis of variance

for means (MRR)
Source DF SS MS F P P

Ton 2 0.001269 0.000634 32015.01 0.0001 94.63

Toff 2 0.000061 0.000031 1546.90 0.0002 4.55

WP 2 0.000002 0.000001 49.03 0.000 0.15

Ton 9 Toff 4 0.000009 0.000002 111.41 0.0000 6.7

Residual error 16 0.000002 0.000001 0.15

Total 26 0.001341
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Depending on the response of data sequence, i.e. either it

is of larger the better or smaller the best nature type, there

are various methodologies of data pre-processing suggested

by researchers for the grey relational analysis (Deng 1982,

1989). For the ‘‘larger-the-better’’ characteristic such as

MRR, the sequence can be normalized as per Eq. 3.

Z�
i ðkÞ ¼

ZiðkÞ �minZiðkÞ
max ZiðkÞ �min ZiðkÞ

ð3Þ

Table 6 Analysis of variance for means (TWR)

Source DF SS MS F P P (%)

Ton 2 0.020597 0.010299 376.19 0.000 75.27

Toff 2 0.001164 0.000582 21.27 0.000 4.25

Ton 9 Toff 4 0.005107 0.001277 46.64 0.000 18.6

Residual error 18 0.000493 0.000027 1.80

Total 26 0.027361
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where Z�
i ðkÞ is the sequence after data pre-processing,

Zi(k) is the original sequence of mean value of MRR.

where k = 1 for MRR; i = 1, 2, 3…, 27 for experiment

numbers 1–27.

Table 3 reports the data after pre-processing for AA7075.

Optimal drilling performance for TWR, i.e. the ‘‘smaller-

the-better’’ quality characteristic Eq. 4 has been used. The

original sequence can be normalized by this equation:

Z�
i ðkÞ ¼

maxZiðkÞ � ZiðkÞ
max ZiðkÞ � min ZiðkÞ

ð4Þ

where Z�
i ðkÞ and Zi(k) are the sequences after the data

pre-processing and original sequence of mean values,

k = 2 for TWR; i = 1, 2, 3…, 27 for experiment numbers

1–27. Z�
0ðkÞ is the reference sequence whose value is equal

to 1 as given in Table 7.

All the sequences after data pre-processing are listed in

Table 7. After the data pre-processing, all values of the

response come out in the range of 0 and 1.

Calculating the grey relational coefficient and grey

relational grade

After the normalization, the deviational sequence is the

next step in this grey theory. Now, D0i(k) is the deviation

sequence of the reference sequence Z�
0ðkÞ and the compa-

rability sequence Z�
i ðkÞ is shown in Table 8. The de-

viational sequence is computed as from Eq. 5.

D0iðkÞ ¼ Z�
0ðkÞ � Z�

i ðkÞ
�� �� ð5Þ

For experiment number 1, i.e. D01(1) = 1 - 0.104265

= 0.895735

For experiment number 2, i.e. D02(1) = 1 - 0.118483

= 0.881517

This is the deviational sequence values of experiment 1

and 2 (i = 1 and 2) for MRR (i.e. k = 1). All the 27 values

of experiment are tabulated in Table 8. Similarly, the

values of TWR are computed as

For experiment number 1, i.e. D01(2) = 1 - 0.987622

= 0.012378

For experiment number 2, i.e. D02(2) = 1 - 0.920424

= 0.079576

Calculate the mean value and S/N ratio of experimental results 
obtained from Taguchi’s orthogonal array by Minitab 16 software

Data pre-processing the experimental results of metal removal rate 
and tool wear rate

Calculate the Grey relational coefficient for each performance 
characteristics

Calculating the Grey relational grade by averaging the Grey 
relational coefficients

Performing statistical analysis of variance (ANOVA) on the Grey 
relational grade

Selecting the optimal levels of significant process parameters 
affecting the process

Estimating Optimum Response Characteristics

Conducting confirmation experiments to verify the optimal setting

Fig. 6 Procedure for grey relational analysis

Table 7 Data pre-processing of

mean values of experimental

result for each performance

characteristics

Exp No MRR TWR Exp No MRR TWR

Reference sequence 1.00 1.00 Reference sequence 1.00 1.00

1 0.104265 0.987622 15 0.492891 0.450928

2 0.118483 0.920424 16 0.35545 0.829355

3 0.137441 1 17 0.374408 0.825818

4 0.061611 0.89832 18 0.383886 0.831123

5 0.080569 0.857648 19 0.966825 0.089302

6 0.090047 0.831123 20 0.976303 0

7 0 0.829355 21 1 0.061892

8 0.004739 0.825818 22 0.862559 0.313882

9 0.023697 0.78603 23 0.890995 0.318302

10 0.50237 0.763042 24 0.924171 0.44916

11 0.511848 0.763042 25 0.706161 0.450928

12 0.526066 0.717949 26 0.720379 0.493369

13 0.473934 0.605659 27 0.734597 0.495137

14 0.478673 0.493369
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Other values of TWR are calculated by Eq. 5 keeping

value of k equal to 2. The grey relational coefficient is

calculated to display the relationship between the optimal

(best) and actual normalized results. According to the data

of Table 8, the absolute difference of array D0i(k) and grey

relational coefficient ni(k) is obtained, respectively, from

the analysis model of grey theory. The average value of the

grey relational coefficient ni(k) is the grey relational grade

c for all performance characteristics. The grey relational

coefficient is calculated as from Eq. 6 (Deng 1989; Caydaş

and Hasçalık 2008).

niðkÞ ¼
Dmin þ f � Dmax

D0iðkÞ þ f � Dmax

ð6Þ

where D0i(k) is the deviation sequence of the reference

sequence Z�
0ðkÞ and the comparability sequence Z�

i ðkÞ, f is
distinguishing or identification coefficient. If both the pa-

rameters are given equal preference, f is taken as 0.5.

After obtaining the grey relational coefficient, the grey

relational grade (c) is computed by averaging the grey re-

lational coefficient corresponding to each performance

characteristic (Eq. 7). The overall evaluation of the mul-

tiple performance characteristics is based on the grey re-

lational grade:

ci ¼
1

n

Xn

k¼1

niðkÞ ð7Þ

where ci is the grey relational grade for the ith ex-

periment and n is the number of performance characteris-

tics. Table 9 gives the grey relational grade for each

experiment using L27 orthogonal array. The higher grey

relational grade represents that the corresponding ex-

perimental result is closer to the ideally normalized value.

The grey relational coefficients obtained from performance

characteristics (i.e. MRR and TWR) are given in Table 9

and further GRG is computed according to Eq. 7. Third

trial gives the largest (bold) value of grade (i.e. 0.683478),

which corresponds to the optimal results of the

experiments.

Analysis of variance (ANOVA) for grey relational

grade

ANOVA is a statistical technique to interpret the ex-

perimental results for the analysis of experimental data. It

is widely used to identify the performance of process pa-

rameters under investigation. The purpose of ANOVA is to

investigate the significant process parameters along with

percentage contribution of significant process parameters

on the performance characteristics. Table 10 gives the

ANOVA for all 27 values of grade corresponding to the

DOE given in Table 4. As level of process parameters is 3

so DF for individual process parameters is computed ac-

cording to Eq. 8. During the interaction of two process

parameters, the DF of both parameters is multiplied. Total

DF for the ANOVA is calculated as Eq. 9. The total sum of

square is computed from Eq. 10.

DF ¼ ðNo: of level� 1Þ ð8Þ
Total DF ¼ ðNo: of experiments� 1Þ ð9Þ

SST ¼
Xn

i¼1

ðgj � mÞ2 ð10Þ

where m is overall mean S/N ratio. The SST is sum of

square of individual process parameter and sum of square

of error as given in Eq. 11.

Table 8 Deviational sequence
Deviation sequence D0i(1) D0i(2) Deviation sequence D0i(1) D0i(2)

1 0.895735 0.012378 15 0.507109 0.549072

2 0.881517 0.079576 16 0.64455 0.170645

3 0.862559 0 17 0.625592 0.174182

4 0.938389 0.10168 18 0.616114 0.168877

5 0.919431 0.142352 19 0.033175 0.910698

6 0.909953 0.168877 20 0.023697 1

7 1 0.170645 21 0 0.938108

8 0.995261 0.174182 22 0.137441 0.686118

9 0.976303 0.21397 23 0.109005 0.681698

10 0.49763 0.236958 24 0.075829 0.55084

11 0.488152 0.236958 25 0.293839 0.549072

12 0.473934 0.282051 26 0.279621 0.506631

13 0.526066 0.394341 27 0.265403 0.504863

14 0.521327 0.506631
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SST ¼
Xnp

j¼1

ðSSj þ SSeÞ ð11Þ

SSj ¼
Xl

i¼1

ðgji � mÞ2 ð12Þ

SSj (Eq. 12) is the sum of square of individual process

parameter.

MS =
SS

DF
ð13Þ

The mean square is simply calculated by the division of

SS to the corresponding DF (Eq. 13). Error mean of square

follows the same procedure. Response table for grey rela-

tion grade is given in Table 11. Higher grade will be better

for a process. So from this table the grade corresponding to

optimal level is bold. The predicted optimal setting given

from this table is A3B1C3. Percentage contributions for

each term affecting grey relational grade are given in

Fig. 7. The figure clearly shows that pulse on-time, pulse

off-time and interaction of pulse on-time and off-time are

the three foremost process parameters that affect grey re-

lational grade and hence contributes in improving MRR

with minimum TWR.

Table 9 Grey relational

coefficient and grey relational

grade for 27 comparability

sequences

S. no. Grade relational coefficient Grey relational grade

MRR [ni(1)] TWR [ni(2)] c ¼ nið1Þþnið2Þ½ �
2

Comparability sequence 1.000 1.000

1 0.358234 0.975841 0.667038

2 0.361921 0.8627 0.612311

3 0.366957 1 0.683478

4 0.347611 0.831007 0.589309

5 0.352254 0.77839 0.565322

6 0.354622 0.747521 0.551072

7 0.333333 0.74555 0.539442

8 0.33439 0.741639 0.538015

9 0.338684 0.70031 0.519497

10 0.501188 0.678464 0.589826

11 0.505995 0.678464 0.59223

12 0.513382 0.639344 0.576363

13 0.487298 0.559071 0.523184

14 0.489559 0.496706 0.493133

15 0.496471 0.476612 0.486541

16 0.436853 0.74555 0.591202

17 0.444211 0.741639 0.592925

18 0.447983 0.747521 0.597752

19 0.937778 0.354434 0.646106

20 0.954751 0.333333 0.644042

21 1 0.347679 0.67384

22 0.784387 0.421543 0.602965

23 0.821012 0.42312 0.622066

24 0.868313 0.47581 0.672061

25 0.629851 0.476612 0.553231

26 0.641337 0.496706 0.569022

27 0.653251 0.49758 0.575416

Table 10 Analysis of variance for grey relational grade

Source DF SS MS F P (%)

Ton 2 0.014862 0.007431 17.99 19.76

Toff 2 0.026197 0.013099 31.72 34.83

WP 2 0.000664 0.000332 0.80 0.88

Ton 9 Toff 4 0.026102 0.006525 15.80 34.70

Ton 9 WP 4 0.003246 0.000811 1.96 4.32

Toff 9 WP 4 0.000851 0.000213 0.51 1.13

Residual error 8 0.003304 0.000413 4.39

Total 26 0.075225
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Figure 8 gives the variation of grade with the variation

of process parameters. A higher GRG is obtained at a high

value of pulse on-time. The probable reason for this is the

higher spark between the tool and workpiece. Pulse on-

time is the time for which current is on in a circuit. At

larger value of Ton, larger current flows between the tool

and workpiece, which increases the discharge energy be-

tween the spark gap and hence larger erosion rate finally

increases grade value. Similarly, with increasing pulse off-

time, the erosion rate decreases and GRG also decreases.

This is due to the fact that the discharge energy between

the tool and workpiece decreases and ultimately lowers the

grade value. With the increase of flushing pressure, a little

bit increase in grade value is observed.

The interaction plays an important role in this analysis.

The interaction plot of mean value for GRG is shown in

Fig. 8. It can easily be found from Fig. 9 that there is a

strong interaction between Ton and Toff. The same can also

be explained from ANOVA (Table 11) where the per-

centage contribution of Ton and Toff interaction is 34.7 %.

While interaction between Ton and WP is also observed, the

interaction between Toff and WP is not so much significant

as other two.

Table 12 gives the predicted grade value at the optimal

machining condition provided by response table

(Table 11). At the optimal setting, the confirmation ex-

periments are performed to get the MRR and TWR. The

grade value at optimal setting is compared to first and third

trial of OA. An improvement of 0.001642 in grade value

has been observed, which signifies good results repro-

ducibility. The optimal conditions suggested by GRG

produce the comparable MRR and TWR in accordance

with predicted results.

Table 11 Response table for

grey relational grade
Machining parameters Units Grey relational grade Main effect

Level 1 Level 2 Level 3

Pulse on-time ls 0.5851 0.5604 0.6177 0.0573

Pulse off-time ls 0.6317 0.5673 0.5641 0.0676

Flushing pressure kg/cm2 0.5891 0.5810 0.5929 0.0119

Fig. 7 Percentage contribution of each parameter in GRG
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Fig. 8 Main effects plot for

means (GRG)
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Some micro-cracks along with white layer have been

found with the help of scanning electron microscopy

(SEM) micrograph (Fig. 10). Cracks were produce due to

the development of thermal stresses beyond the fracture

strength, as well as with plastic deformation. The formation

of micro-cracks is not only prejudiced by the setting of

process parameters but also depended on mechanical

properties of materials such as tensile strength, Young’s

modulus, thermal conductivity and coefficient of thermal

expansion. Each time the spark is generated between tool

and workpiece, the material vaporizes and at the same time

de-ionized water removes the debris. So the vaporized

metal gets solidified when it comes in contact with water.

In this way, a white layer is formed on the drilled surface.

This layer is also known as recast layer and is also shown

in Fig. 10a. Craters can also be seen from Fig. 10b due to

the discharge produced.

Concluding points

In the present research work, the response variables (i.e.

material removal rate and tool wear rate) correlate the

machining parameters: pulse on-time, pulse off-time, and

water pressure, in the EDM drilling process of AL-7075.

An experimental plan of the L27 based on the Taguchi

Method has been applied to perform the experimentation

work. The machinability evaluation in the EDM drilling

process has been analysed according to the ANOVA to

obtain the following conclusions:

1. The material removal rate obtained ranged between

0.0148 and 0.0359 mm3/min. The percentage contri-

bution of input factors is given by pulse on-time,

94.6 %; pulse off-time, 4.6 %; water pressure, 0.14;

and error, 0.67 %. The maximum material removal
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Fig. 9 Interaction plot of mean for GRG

Table 12 Predicted and confirmation experiments results of multi response optimization at optimal setting

Response First trial of OA Third trial of OA Optimal machining conditions % Error ¼ Exp:�Predicted

Exp: � 100

Predicted Experimental

Setting level A1B1C1 A1B1C3 A3B1C3 A3B1C3

MRR (mg/min) 0.0170 0.0177 0.03511 0.0359 2.2

TWR (mg/min) 0.14730 0.14590 0.2296 0.252 8.88

GRG 0.667038 0.683478 0.685120
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rate was obtained when the parameters were set at

pulse on-time = 9 ls, pulse off-time = 3 ls and wa-

ter pressure = 7 kg/cm2. The optimal setting for metal

removal rate is A3B1C3. The predicted value for metal

removal rate is 0.03501 mm3/min. While at the

optimal setting after confirmation experiments the

actual value of MRR reported to be 0.0359 mm3/min.

2. Tool wear rate obtained ranged from 0.14590 to

0.25900 g/s. Tool wear rate was most significantly

affected by pulse on-time, pulse off-time. The percent-

age contribution of input parameters is given by pulse

on-time, 75.27 %; pulse off-time, 4.54 %; and error,

0.85. The minimum tool wear rate was obtained when

the parameters are set at pulse on-time = 3 ls, pulse
off-time = 3 ls, water pressure = 7 kg/cm2. Tool

wear rate of the confirmation experiment is found to

be 0.1549 g/s at the optimal setting of A1B3C1.

3. Multi-quality characteristics for the same material

considering MRR and TWR are given as under by

Taguchi Grey relational analysis (TGRA). The optimal

setting by grey relational grade (GRG) is found to be

A12B2C1. The predicted value of GRG is 0.685120.

The experimental value at the optimal setting is

observed to be 0.0359 mm3/min and 0.252 g/s for

MRR and TWR, respectively. The percentage error

between predicted and observed values of response

variables exists in the range of 2.2 and 8.88 %, which

represents excellent result reproducibility.

4. Micro-structure analysis shows the micro-cracks,

craters and white layer produced on the drilled surface

of Al 7075.
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