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Abstract Given a container of fixed width, infinite height

and a set of rectangular block, the 2D-strip packing prob-

lem consists of orthogonally placing all the rectangles such

that the height is minimized. The position is subject to

confinement of no overlapping of blocks. The problem is a

complex NP-hard combinatorial optimization, thus a heu-

ristic based on genetic algorithm is proposed to solve it. In

this paper, we give a hybrid approach which combined

genetic encoding and evolution scheme with the proposed

placement approach. Such a combination resulted in better

population evolution and faster solution convergence to

optimal. The approach is subjected to a comprehensive test

using benchmark instances. The computation results vali-

date the solution and the effectiveness of the approach.

Keywords Combinatorial optimization � Crossover �
Fitness � Genetic algorithm � Operation research �
Placement approach � Strip packing

Introduction

Manufacturing and production industries very often come

across the problem where a given stock material must be

cut into a smaller set of shapes. In this paper, we consider a

two-dimensional orthogonal rectangular strip packing

problem (SPP) NP-hard in nature (Garey and Johnson

1979; Bortfeldt 2013). This class of combinatorial opti-

mization finds significant relevance in different domains of

operation research. In industries like paper and pulp, wood

and textile, the problem is to determine how the arbitrary

rectangular block set would be cut from the available stock.

The problem variant like arrangement of articles, reports

and advertisement is considered in the newspaper field. In

pharmaceutical packing industry, many strip packaging

approach seems ideal for high-speed sealing of coated or

uncoated tablets, capsules or lozenges of any shape or size

in aluminum foils, polythene, cellophane, etc. It is an

interesting real-world industrial problem where the objec-

tive is to provide the best arrangement with the aim of

waste minimization. There are two broad categories of the

solution approach, namely exact and inexact. The major

bottleneck with the exact approaches are that as the prob-

lem size grow and become complex, the computation time

also grows exponentially. Thus, the researchers focus more

on the inexact approach in comparison to exact.

Industrial application

In today’s world of industrialization, mass production and

high material utilization are the crucial factors for growing

industries that necessitate the need of finding correct cut-

ting patterns which may result in a small improvement. In

the long term, it leads to huge economical saving. These

problems occur at wide scale in many industries such as

wood, textile, rubber, glass, etc., where the complexity is

determined by the shape of the item to be cut and the

number of applicable constraints. Textile and shipping

industries basically deal with irregular shaped items.

Automation in a packing system saves much economic

time and is preferred over the manual system. One case

study discussing strip cuttings in wooden industries is
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discussed in Lefrançois and Gascon (1995) for a manu-

facturer of prefabricated doors and windows. These

industries follow a daily production schedule where the

desired length which may be wood, steel, plastic, etc., are

cut to smaller length, either by automation or by manual

labor. The policy followed is basically to meet the higher

demand length first, followed by others in order of their

decreasing length. The main concern for these industries is

efficient utilization of available resources with minimum

scrap production. The shorter length stock incapable of

fulfilling any order demand is termed as scrap. The textile

industry also tackles this problem, but under a different

heading, namely Nesting and Marker making. It involves

finding the best layout for the cutting of irregular shapes,

where the shapes are allowed a rotation from 0� to 180�.
Regular and irregular shape packing are addressed in the

shipbuilding industries where it is required to investigate

how the irregular size items can be packed and transported

in huge containers. In today’s scenario of surplus demand,

an automated system is required for efficient packing

thereby reducing the transportation damage risk. The

packing problem is not limited to industries, but can also be

seen in other dimensions like in very-large-scale integra-

tion design, memory allocation during storage and in the

field of optical fiber communication.

The World Packaging Organization (http://www.world

packaging.org/i4a/doclibrary/index.cfm?category_id=4)

report presented in 2008 with global packaging market

statistics shows packaging growth is tied to the world

economy. The fast growing economy of countries in

Asia and Eastern Europe has created new opportunities

for packaging suppliers. The world packaging market

was valued at $427 billion in 2003, growing at an annual

rate of 3.5 % since 1999. The global market for indus-

trial and bulk (transport) packaging was valued at $105

billion in 2004, representing an increase of 5 % in 2003.

At $30.8 billion, North America represents the single

largest market with a 30 % share—set to fall to 27 %,

behind Asia by 2009. Overall, sales are forecast to grow

at an average rate of 2 % over the period to reach $117

billion. Such growing industry calls for the use of

intelligent automated system for quick and efficient

packing approach, particularly for real-time applications

where computation time is hard bound.

Our contribution

In this paper, we have proposed a metaheuristic algorithm,

namely genetic algorithm-based placement approach

(GPA) for solving orthogonal strip packaging problem. The

approach modifies the complex placement strategies by

proposing simple ones, whereas in the genetic algorithm

we have modified the stages of initial population

generation, crossover and mutation to achieve our objec-

tive. The paper presents a novel fitness function to evaluate

the design layout, which facilitates the selection of a best

design layout for population evolution. The evolution

process of forwarding the best individual to the next gen-

eration is maintained by the appropriate selection pressure.

In placement approach, we have considered the creation of

empty rectangular blocks to place the next rectangular

block in a sequence. As the problem grows, the number of

such blocks is likely to increase. However, this problem of

stacking of empty rectangle, i.e., it controls the growth in

number is tackled in our approach by using rectangle

merging routines. In comparison to other approaches, the

computation task of fitness evaluation for the placed rect-

angle is effectively reduced. We have designed the fitness

function for the overall layout pattern by considering two

crucial parameters, height and area utilization factor. The

algorithm finds the most optimal solution in numerous

cases and results illustrates that it compete well with the

existing heuristic and metaheuristic approaches. The

experimental result obtained confirms the applicability on

large-scale instances.

The rest of the paper is organized as follows. ‘‘Back-

ground study’’ outlines the literature review for 2D

orthogonal SPP in light of exact, heuristic and metaheu-

ristic approaches. ‘‘Proposed approach’’ presents the pro-

posed work. The work discusses the placement policies,

empty block creation, merging and various aspects of GA.

‘‘Experiments and results’’ gives the computation results as

the work is compared against the standard benchmark,

along with a detailed discussion of how it outperforms the

existing approaches. In ‘‘Conclusion’’, we finally conclude

our work by giving final remarks.

Background study

This subset of cutting and packaging problem is NP-hard in

nature (Garey and Johnson 1979). Dyckhoff (1990) gave

the first clear classification for cutting and packing prob-

lem. The characterization is based on the fact that many are

similar in their logical structure, but different in application

areas. There are various categories in packing which

include cutting stock problem, knapsack, bin packing and

loading problem. Cutting stock involves cutting off avail-

able raw stock to meet customer demand such that trim loss

is minimized. Knapsack is mostly considered as a sub-

problem in many cases where certain weight is associated

with the object. The objective is to pack these objects in a

fixed size larger container to maximize the overall weight.

Bin packing aims at packing items into bins. The dimen-

sions are bounded, such that the remaining space in the

used bin and the overall bin required to pack all items are
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minimized. All these problems range from single to mul-

tidimensions. Strip packing is considered in higher

dimensions like two (2D) and three (3D).

The literature reveals that rectangular strip packing is

solved using many exact and inexact approaches. Chris-

tofides and Whitlock (1977) and Beasley (1985) used tree

search methods to solve guillotine and non-guillotine

variants of SPP. Exact approaches like a branch and bound

were used by Martello et al. (2003). Lesh et al. (2004)

modified the approach by adding the pruning method with

branch and bound to solve a small subset of this problem.

Another variant of branch and bound was presented by

Kenmochi et al. (2009), where the branching scheme was

based on some placement scheme and bounding operation

was governed by dynamic and linear programming. How-

ever, a general observation follows with the exact

approach, which is: as the number of rectangles to be

packed grow in number, it is difficult to get the optimal

solution in an acceptable time as the time also grows

exponentially. This behavior of the exact motivates

researchers to focus on heuristic and metaheuristic

approaches to find optimal or near optimal solution. The

benefit of using these approaches is their ability to give

approximate solutions in a reasonable computing time. The

most popular and common approach of placement bottom

left heuristic (BL) was given by Baker et al. (1980). This

approach considered sequential placement of rectangular

blocks at the bottom left, where in the beginning each

rectangle was placed at the top right corner and then slowly

moved down to a position where it could not be further

lowered; the block was then shifted toward left ensuring

that it resulted in no rectangular overlap. The heuristic was

improved by Hopper and Turton (2001) bottom left fill

(BLF) heuristic in which the gap that existed in between

the already placed rectangle was given preference over the

placement of the new rectangle. A further improvement in

these strategies was observed by Asik and Özcan (2009),

who introduced a bidirectional best-fit (BBF) heuristic,

sequencing the placement based on height or width of the

rectangle. The method was studied by Imahori and Yagiura

(2010), considering both horizontal and vertical gaps for

the best placement location. They used the concept of

placing rectangles, taking the reference of skyline, good

searching technique to determine the placement position

for the next rectangle to be packed and also used efficient

data structure for storing the details of the remaining

rectangles. Leung and Zhang (2011) proposed fast layer-

based heuristic with the strategy of stacking rectangles. The

approach determines the reference line by first placing a

reference rectangle and then stacking some others on it.

The techniques are based on a greedy search where the

lowest available space is determined under the reference

line; the fitness of the remaining unplaced rectangle is

determined and based on the fitness value the best-fitted

rectangle is selected. Özcan et al. (2013) presented an

extension to the original BBF heuristic; rather than con-

sidering single rectangle placement, different combinations

of rectangle pair were selected. The heuristic approach also

includes brick layering (Zhang et al. 2008), which is

inspired by the process of building the wall, as it involves a

number of placement phenomena during creation of the

wall. Here, we now discuss a number of metaheuristic

approaches from literature which are also used for the

evaluation of the proposed approach. These include genetic

algorithms (Jakobs 1996; Ramesh Babu and Ramesh Babu

1999; Dowsland et al. 2006; Gonçalves 2007), simulated

annealing algorithms (Dagli and Hajakbari 1990; Lai and

Chan 1996; Martins and Tsuzuki 2010), neural network

algorithms by Dagli and Poshyanonda (1997) and some

hybrid metaheuristic algorithms by Hopper and Turton

(2001), Hifi and M’Hallah (2003), Bortfeldt (2006).

High computing time is a major concern in hybrid

neural-based model posed by Dagli and Hajakbari (1990).

The scale factor concept was given by Martins and Tsuzuki

(2010), where he used limited depth breath search and

crystallization heuristic to fit the polygon in the container.

Jakobs (1996) and Liu and Teng (1999) used GA for

evolution of sequence for packing the rectangles, where

GA was coupled with the bottom left heuristic. On the

other hand, in another metaheuristic approach, Ramesh

Babu and Ramesh Babu (1999) used deterministic heuristic

in combination with GA. Hopper and Turton (2001) in their

paper investigated a number of metaheuristic approaches

which included simulation annealing and GA by combin-

ing them with a number of existing heuristics like BL and

BLF. In addition, the non-deterministic algorithms are

time-consuming and least applicable for problem dealing

with huge enumeration of rectangle. Bortfeldt (2006) gave

a sequence algorithm titled SPGAL that did not use any

encoding and worked directly on the resolution layouts.

Burke et al. (2009) enhanced the BF rule (Burke et al.

2004) with the crossbred simulated annealing and BLF rule

of Hopper and Turton (2001). Alvarez-Valdes et al. (2009)

planned an activated greedy randomized adaptive search

procedure (GRASP) which improves for instances of

smaller size as reported in Alvarez-Valdes et al. (2008).

The main feature of this approach is its ability to fix suit-

able parameters by analysis and learning of information.

Belov et al. (2008) presented two heuristics, namely

sequential value correct (change knapsack job) [SVC

(subKP)] and bubble search (BS, bottom left–right). The

coercive rule of SVC proved to perform well in many

instances. Wei et al. (2009) gave least waste first heuristic

(LWF) based on the position evaluation which is improved

after union with the simulated annealing algorithm. LWF

outperforms many other approaches facing difficulty to
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pack rectangles. The solution approaches like SPGAL,

discernment, BF?SA, SVC and LWF, although are well-

designed algorithm based on good formulating placement

strategies and giving acceptable results in reasonable time.

However, the computation time for these algorithms is

subject to correct parameters setting. Moreover, as the

problem becomes complex when the number of rectangles

to be packed increases, the execution time for several

algorithms generally rises to find an appropriate solution.

In Leung and Zhang (2011), fast layer-based heuristic

inspired by brick packing does not depend on parameter

setting and was designed to handle large instance as by

Huang et al. (2007). However, computation time is large

for this approach. Wei et al. (2011) proposed iterative

doubling binary search (IDBS) which when combined with

tabu search outperformed many of the approaches from the

literature. A number of new and improved level-based

heuristics are reported in literature. Yang et al. (2013)

recently presented a randomized algorithm based on least

waste strategy with simplified parameter adaptation. It can

quickly find a solution, but the quality of the solution is

worth improving further. Efficiency and robustness are the

two crucial factors for any algorithm applied to any real-

world application, particularly in the logistic field.

Proposed approach

So far, the heuristic and metaheuristic approaches require a

pre-processing on the available set of rectangles to select

the best one among them which can fill the current gap

exactly. Here, we propose a simple approach where the

rectangles are placed in sequential order governed by

placement policies in an appropriate empty rectangular

block. Thus, it avoids the computational overhead of pre-

processing and selection of the best-fit rectangle. The

approach has major contributions like the rectangle

placement strategy, a modified genetic algorithm and a

novel fitness function for better convergence of optimum

results. The new approach is constructive in nature which

places each rectangular block one at a time in the container.

The role of genetic algorithm is to evolve the ordering of

the rectangle or chromosomes which represent the rectan-

gular block packing sequence.

Two-dimensional strip packaging

The two-dimensional SPP (2D-SPP) deals with a set of

rectangular blocks that must be arranged in a given con-

tainer of fixed width and infinite height with the objective

of minimizing the highest point of any rectangle in the

solution. A feasible placement is one where no rectangles

overlap one another within the container and are arranged

parallel to the container edge, i.e., orthogonally. An addi-

tional constraint like rotation of blocks by 90� is not con-

sidered in this work.

The 2D-SPP is presented as follows (similarly addressed

by Thomas and Chaudhari 2013): consider a huge rectan-

gular container of dimensions, say W � H where W stands

for fixed width and H denotes the infinite height for the

container. Consider m rectangles of smaller dimension as

compared to the container to be packed, where the ith

rectangle dimension is wi � hi. The placement is subjected

to non-guillotine cut, i.e., the rectangles are placed parallel

to the edge of the container. Furthermore, they are not

subjected to rotation by 90�. The problem can work with

both integer and real dimensions easily without any

extension or change. The placement problem is well

explained with the help of Fig. 1. The shaded rectangle

shows different arbitrary size rectangular blocks that are

packed into the given container. The optimum height

denotes the minimum possible height achieved after plac-

ing all the rectangles. The sub-problem for strip packing,

i.e., the 0–1 knapsack is indeed NP-hard in nature. This

degenerative case makes the entire problem NP-hard. The

model can be formulated by maximizing the area occu-

pancy that in turn results in minimizing the overall height

of the layout which is as follows:

max
Xm

i¼1

wihiki: ð1Þ

ki can take the value 0 or 1 indicating whether the ith

rectangle is placed or not. We designate each rectangle

bottom the left most corner coordinate of the rectangle as

ðxi; yiÞ. The governing constraints are defined as

xi þ wi �W i ¼ 1; . . .;m ð1aÞ
yi þ hi �H i ¼ 1; . . .;m ð1bÞ
xi þ wi � xj or xj þ wj � xi or

yi þ hi � yj or yj þ hj � yi
8i; j where i 6¼ j ð1cÞ

ki 2 f0; 1g ð1dÞ
xi; yi � 0: ð1eÞ

The constraints 1a, 1b and 1e ensure that the rectangles

are placed within the boundary of the designated container

H  
(Height)

Optimum
Height

Fig. 1 A view of 2D strip packing
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used for packing. Constraint 1c checks the condition that

no two rectangles overlap each other. Here, we have con-

sidered the generality that all the dimensions are integer.

Constraint 1d indicates whether a rectangle is placed or

not. The objective is to place the entire rectangle in the

given area such that the occupancy is maximized and no

constraints are violated. Thus, a design layout is feasible if

it satisfies the above constraints.

Placement approach

The idea of the placement approach is to consider the given

container to be divided into X and Y coordinates. The limit

range of X-coordinate is from 0 to width (W) and that of Y-

coordinate is from 0 to height (H) where theoretically H is

considered to be of infinite height. However, practically we

have set an upper limit for H based on the computed

optimal height values. The placement of each rectangle

results in the creation of new empty rectangular block

space. The creation of empty space for rectangle placement

is illustrated in Fig. 2. Each time a new rectangle is to be

placed, one of the best-suited empty rectangle is selected

from the available ones.

The selection of empty rectangle is governed based on

the following constraints: area of the rectangle to be placed

is less than or equal to the empty rectangle area. Among the

empty rectangle fulfilling the premier first constraint, the

one is chosen with the lowest Y-coordinate The third gov-

erning criteria in the selection are that if the first constraint

is satisfied and there exist say more than one empty rect-

angle space with the same minimum Y-coordinate. Among

all, the approach selects the one with the least X-coordinate.

Empty block creation

As the placement of the rectangle determines the empty

block creation, we in this subsection discuss all possible

cases for placement and their possible block creations.

Case 1 For Fig. 2a, the placement of initial rectangle into

the container results in a number of empty block creations.

E1 denotes the block space of height equal to the placed

rectangle height and width as W-place rectangle width.

This creation of empty block is not essential because of E2

creation, but such block is required when we deal with the

general cases. Another empty block E3 is created for the

empty area above the placed rectangle. In the initial case,

its width is W and height is equal to the assumed height—

placed rectangle height.

Case 2 Figure 2b shows how the placement of the next

rectangle results in the creation of new and merging/removal

of old rectangles. The case discussed is when R2 height is

more than that of already placed R1. The creation of E1, E2

and E3 is the same as initial Case 1 and E4 is the left section

empty block created. The creation of new E1 will remove the

earlier block formed by the initial placing of R1. The diag-

onal coordinates of E4 block will be X-coordinate as (x1

coordinate of R1, y2 coordinate of R1) and the Y-coordinate

as (x1 coordinate of R2, y2 coordinate of R2).

Case 3 Figure 2c shows the third placement case where the

height of R2 is less than that of the already placed R1. In

this case the new creation will replace most of the already

existing empty rectangles.

The creation of empty block is tracked, as each iteration

results in the creation of new as well as removal of some of

the existing empty blocks. The rectangles removed are

basically for the one which are selected for rectangle

placement and for all those empty rectangle blocks that

overlap with the newly created blocks. We have used a

merge rectangle routine that merges the small rectangle

formed during placement into a larger one. This routine

keeps a check on the growing number and stacking of

empty block rectangles.

Merge rectangle routine

The merge routine deals with two major cases. Let us

consider the case where we have two empty rectangular

block spaces, say E1 and E2 with the diagonal coordinates

(x11, y11), (x12, y12) and (x21, y21), (x22, y22). The cases are

as follows.

Case 1 Combine rectangles in which the difference of x2-

coordinate of first and the x1-coordinate of the second is

E4

E1

E2

E3

E1

E2

E3

E4

R1

R1

R2

E1

E2

E3

R1

R2
E4

Fig. 2 Creation of empty rectangle
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zero, i.e., (x12–x21) or vice versa. The new empty block

formed (E1

0
) as shown in Fig. 3 will have the diagonal

coordinate as (x1*, y1*) and (x2*, y2*), where x1* = min(x11,

x21), x2* = max (x12, x22) and y1* = y12 or y21, y2*

= min(y12, y22). Here, the convergence property of X-

coordinate holds for E1 and E3.

Case 2 Combine rectangles having difference of y2-coor-

dinate of first and the y1-coordinate of the second as zero

(y12–y21) or vice versa. The new block coordinates as

shown in Fig. 4 will be (x1*, y1*) and (x2*, y2*) where

x1* = x11 or x21, x2* = min(x12, x22) and y1* = min(y11,

y21), y2* = max (y12, y22).

The merging module removes the smaller ones by

combining smaller empty space into a large one, thus

facilitating the placement of the larger rectangles at the

lower Y-coordinate. The module also helps to overcome

algorithm space limitations.

Genetic algorithm

GA is inspired by the Darwin’s principle of survival of the

fittest, where in the computing environment the stronger

individual has a higher probability to be the survivor. GA

uses a direct analogy to the biological process of evolution

as shown in Fig. 5 and also discussed in Gómez and de la

Fuente (2000). The process is based on the fact that indi-

viduals are the key elements for the potential solution to

any problem, which can be represented by some feature set.

These features are nothing, but genes corresponding to the

chromosome which can be represented using data structure

like string, binary or numeric array, tree structure or other

representation. The evaluation of any chromosome to

determine its feasibility in any population is based on its

fitness value. The fitness value is related to the objective

function.

Biased random key-based genetic algorithm: an overview

For solving sequential problem, Bean (1994) introduced

random key or also called random key generation algo-

rithm. In this approach, representation of each chromosome

is by randomly generated vectors having real values in the

range lying between [0, 1]. The values obtained are sorted

to obtain the chromosome sequence, i.e., in our case the

rectangular block placement sequence into the container.

The initial population is made up of p vector of m random

keys, where p is the number of population in each gener-

ation G and m is the number of rectangular blocks to be

placed. For each population, the fitness value of each

individual is computed. The population is partitioned into

two: elites (e) and non-elite. The elite is a small group

containing individuals with maximum fitness values. The

elite population is directly transferred from one generation

to the other. The elite group size may vary from problem to

problem. In this case we have set the group size to be 1/8

the total size of the population. We have kept this factor

small to handle the worst case scenario where the

E1

E2

E3

E4

E1’

E2

Fig. 3 Merging empty

rectangular block (X-

coordinate)

E1

E2E3

E1
’

E2

Fig. 4 Merging empty

rectangular block (Y-coordinate)

Genetic Algorithm ()
{

Initialization;
Evaluation;

While (! termination criterion reached)
{

Selection and Reproduction;
Crossover;
Mutation;
Evaluation;

}
}

Fig. 5 Overview of genetic algorithm

47 Page 6 of 16 J Ind Eng Int (2014) 10:47

123



sequential pattern evolved may not be suboptimal or opti-

mal. The elite population is carried forward to the next

generation without change and directly plays a role in

generating next population.

Thus, we keep a check so that not many chromosomes

are transferred from one generation to another. To evolve

the population for the next generation, the elite population

is copied as it is to the next generation. The remaining p–

e population is evolved from performing crossover between

elite and non-elite chromosome as discussed crossover

function section. A biased random key genetic algorithm

proposed by Gonçalves and Resende (2011) has a different

approach for selection of parents for mating. In this mating

process, one parent from the elite population and another

from a non-elite population are selected to produce the

offspring. When the number of elites is less, it indicates

that one parent can produce more than one offspring. The

operation is detailed in the crossover section.

Chromosome representation

Each chromosome in the population represents a set of

parameters to any problem that GA is trying to solve. The

initial population in the proposed approach is generated by

random strings of real numbers in the interval range of [0,

1] having the same length, where length represents the

chromosome size. The chromosome size is nothing, but the

number of strips to be packed in the given container. This

evolutionary strategy was proposed by Bean (1994) and

also used by Gonçalves (2007). The obtained random

sequence is then sorted in an increasing order to generate

the placement sequence for the strip. The placement

sequence is illustrated in Fig. 6.

Crossover function

The placement sequence after sorting is further modified by

the crossover operation. The evolution cycle for GA is

enhanced by two fundamental operators: crossover and

mutation. Here, we have considered biased random key

method which integrates both these operators. The

approach discussed by Gonçalves (2007), Goncalves and

Resende (2011) says that rather than performing mutation

on the entire population, certain mutants with specific

mutation rates are introduced in the non-elite section of the

population. In our case we have kept the mutation rate to be

very low as the approach is capable of dealing with the low

convergence rate problem by itself. Thus, we prefer the

existing non-elite population than mutant introduction for

crossover. As the elite parents are more feasible to be the

solution for the given GA problem, BRKGA proceeds by

selecting one random elite parent and another non-elite.

Such a selection ensures that the new generated offspring

would carry some features from the elite parent. As elite

population individuals are less as compared to non-elite,

repetition of parents is allowed. That is, one elite parent

can generate multiple offsprings.

In contrast to the original approach, we have used

maximal preservative crossover (MPX), as in Mathias and

Whitley (1992), over the parameterized uniform crossover

used by Gonçalves (2007) for the mating process of the

chromosome. MPX is preferable as it produces offspring

by directly copying a small segment from the elite parent to

the offspring. In this crossover approach, two random

crossover points are generated. These crossover points

decide the range of segment that would be copied in the

offspring from the elite parent. The remaining offspring is

generated by copying the gene from the second parent

provided that the gene does not already exist in the

offspring.

For example in Fig. 7, while copying the gene from the

second parent to the offspring, gene 7 is already present in

the offspring so it is skipped and the next gene is evaluated

and placed based on the nonexistence in the offspring. We

assume that any random key vector can be decoded into a

solution, and then the offspring resulting from mating is

always valid, i.e., it can be decoded into a solution of the

combinatorial optimization problem. When the next pop-

ulation is complete, i.e., when it has p individuals, fitness

values are computed for all of the newly created random

key vectors and the populations are partitioned into elite

and non-elite individuals to start a new generation.

Fitness evaluation

The quality of any evolved solution is judged by its

corresponding fitness value. These values help in the

selection process, i.e., to select the fitter individual to be

1 0.2785 0.1576 5

2 0.5469 0.2785 1

3 0.9575 0.5469 2

4 0.9649 0.9575 3

5 0.1576 0.9649 4

6 0.9706 0.9706 6

U
nsorted   R

ectangle 

Sequence

R
ectangle

Packing
Sequence

Fig. 6 Chromosome decoding
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the parent which can share their properties to evolve

better offsprings for future generations. The goal is to

minimize the packing height for the strip in the given

container. Thus, the fitness evaluation of any individual

is based on the height parameter. We have calculated

individual score for each placed rectangle. These indi-

vidual score for the rectangle is determined by the

minimum space left in packing between the placed

rectangles.

The overall score of the layout would be the summation

of score for each individually placed rectangle. This layout

score is considered in the evaluation of the fitness function.

The score is given by

ScoreðriÞ ¼
wihi

WH �
P

i 6¼j;j2B wjhj

� � ð2Þ

where ri is the rectangle with width wi and height hi placed

in a container. W denotes the width of the container and H

represents the height. In this problem, we assume that the

container’s height is infinite. However, to determine the

score we set an approximate height of the container to a

value slightly higher than the computed optimal height, to

tackle worst cases as the ordering is random in nature.

Here, B is the number of rectangles already placed. The

optimal/expected height is calculated as

optimal height ¼
P

i AreaðriÞ
W

: ð3Þ

The second parameter that we use for fitness evaluation

is the best height (BH). This parameter indicates the

height achieved by the layout. The fitness function must

hold on both the aspects of the score and BH. Thus,

utilization factor or score is not the only criterion for

fitness value assignment. Hence, the fitness function is

evaluated as

Fitness jð Þ ¼ scoreðjÞ
� BHðjÞ jth rectangle sequence pattern: ð4Þ

Both score and BH are crucial in governing fitness

function and are directly proportional to the fitness value of

the layout.

Improvement on existing genetic algorithm

The genetic algorithm-based approaches such as those by

Hopper and Turton (2001), Bortfeldt (2006) and Gonçalves

(2007) show that the performance of the algorithm basically

depends on the evolution of the rectangle placement

sequence. But, in comparison to other approaches, we do not

perform any pre-processing like sorting of rectangle based

on maximum area, perimeter, etc. The selected MPX

crossover as shown in Fig. 9 operation helps us to find a

different ordering sequence to determine a better solution,

and thus improve the convergence rate of the algorithm

towards optimum. Figure 8 shows the various stages in the

GPA algorithm. The algorithm has two main computation

stages, one for a number of generations which involves the

initial population, crossover and fitness evaluation and

another for the empty block creation, selection and removal.

For each population, the rectangle block placed is governed

by simple placement policy. The crossover operation helps

us to maintain the ordering sequence, and thus helps to

improve the height generation after generation. Each pop-

ulation is assigned a fitness value that helps in further pop-

ulation evolution. Another improvement shown over

existing GA algorithm is the reduced computation time to

obtain the optimal solution and the ability to handle large

instances. In the next section, we further compare our results

with the latest algorithms on benchmark dataset (Fig. 9).

Experiments and results

Parameter selection: the population size is considered as

ten with the number of generations 50. The mutation

probability is set as low as 0.3. The results from various

existing recently and published algorithms are used to

verify the performance of GPA on the benchmark dataset.

Most data instances used have known optimal solution and

zero trim loss. The details of dataset with known optimal

height used for comparison are as follows:

Jakobs (1996): two small instances J1 and J2 with the

number of rectangles to be placed being 25 and 50,

respectively.

Elite parent:

9 8 4 5 6 7 1 3 2

Crossover Points
Non elite parent:

8 7 1 2 9 3 5 4 6

Offspring:

8 1 4 5 6 7 2 9 3

Fig. 7 Maximal preservative

crossover (MPX)
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Ramesh Babu and Ramesh Babu (1999): a single

instance with 50 rectangles to be placed.

Hopper and Turton (2001): test set C containing 21

instances. The instances are divided into seven categories,

with each category containing three instances with the

number of rectangles to be packed ranging from 16 to 197.

These groups are categorized on the basis of similarity in

achieving optimum height and container width.

Wang and Valenzela (2001): the dataset contains real

values of the rectangle dimension which are rounded

down to an integer by multiplying by 10. In ‘‘Compar-

ison with genetic based approach’’, while comparing

with the GA-based approach, we have considered no

rounding up odd dimensions. The dataset discusses two

different types of instances grouped into two categories

of nice and path. Nice contains data with similar

dimensions; on the other hand, path has a rectangle with

varying dimensions. The rectangle range in both the

dataset is from 25 to 1,000.

Burke et al. (2004): Burke generated test instance to test

the best-fit (BF) algorithm. The number of rectangles to be

placed is subsequently increased from as small as 10 (i.e.,

N1) to too large as 3,152 (i.e., N13).

Figure 10a, b shows the results of 50 runs of the algorithm,

all for a maximum of 75 generations, but terminating if the

fitness function attained the value 150 (which is the optimum

height) for N9 benchmark dataset. The optimum value was

attained in 22 runs of 50. The algorithm gives optimal and

suboptimal solution in most of the runs. The value above 153

is found in only one run. The number of generations taken to

attain the ‘optimum’ value appears independent of the value

of the optimum, but dependent on problem size.

Comparison of the proposed approach with the existing

heuristic and metaheuristic approach

Table 1 reports the computational results for three different

data instances. It shows a comparation table where the

Fig. 8 GPA algorithm

Fig. 9 MPX_crossover
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performance of the proposed approach is compared to the

well-known existing algorithm, like BL-DH, BLF-DH, BF

and so on, as discussed in the literature section of the paper.

In comparison to many existing heuristic approaches, GPA

is able to find the optimal solution for most of the instances

reported. On Jakobs and Ramesh Babu data instance, the

Fig. 10 a Number of generations. b Frequency of occurrence of different values of best fitness in 50 runs of the algorithm

Table 1 Computational results

for Jakobs, Ramesh Babu and

C test instance

Instance BL-DH BLF-DH BF FH BBF BBFM GPA Time (s)

m W Opt

J1 25 40 15 – – – – 16 15 15 30

J2 50 40 15 – – – – 16 15 15 25

RB 50 1,000 375 – – 400 – 400 375 375 50

C1.1 16 20 20 23 22 21 20 21 20 20 23

C1.2 17 20 20 22 22 22 20 21 21 20 18

C1.3 16 20 20 21 21 24 21 21 21 20 27

C2.1 25 40 15 17 17 16 16 16 16 15 36

C2.2 25 40 15 26 26 16 15 17 15 16 29

C2.3 25 40 15 17 17 16 15 16 16 16 34

C3.1 28 60 30 33 33 32 31 32 30 30 40

C3.2 29 60 30 33 32 34 31 33 31 30 31

C3.3 28 60 30 34 34 33 32 33 32 30 46

C4.1 49 60 60 67 66 63 61 62 62 60 56

C4.2 49 60 60 68 63 62 61 63 61 60 59

C4.3 49 60 60 64 63 62 61 62 61 61 62

C5.1 73 60 90 94 94 93 91 91 91 90 100

C5.2 73 60 90 99 95 92 90 92 91 90 89

C5.3 73 60 90 97 94 93 91 92 91 91 121

C6.1 97 80 120 130 126 123 121 123 121 120 220

C6.2 97 80 120 130 123 122 121 123 122 120 245

C6.3 97 80 120 131 128 124 121 123 121 120 231

C7.1 196 160 240 252 249 247 241 243 242 241 400

C7.2 197 160 240 264 247 244 241 242 242 240 452

C7.3 196 160 240 257 249 245 241 243 241 240 470
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approach is at par with BBFM Özcan et al. (2013), both

producing the optimum results. On C data set instance

apart from C2.2, C2.3, C4.3 and C5.3 having a slight gap of

one unit from the optimal, the results in all other remaining

instances are optimum. It is further observed that GPA

outperforms other approaches even for large-scale instan-

ces. The results marked in bold shows the distinction for

the optimum solution found.

Table 2 shows the result for the Burke dataset N. The

proposed approach is compared to 13 instances with the

well-known BF approach and other methods. The method

BF?SA is considered as the best algorithm among all the

variants of BF?metaheuristic, fast heuristic better on N large

instances, BBF and its modified version (BBFM). The table

analyzes the result on all the 13 instances with respect to the

solution found and GPA computation time. BF and BF?SA

give nearly the same performance in many instances,

whereas FH, BBF and BBFM improve the solution which is

furthermore improved by our approach. Not only for small

instances the algorithm performs comparatively better, but

also for large instances, like N12 and N13, GPA is meta-

heuristic, is able to find optimum solution and outperform

the existing approaches. Figure 11 shows the optimum

packing sequence for the N13 instance. Now we consider

non-zero waste Valenzuela et al. nice and path instances. The

result of comparing the GPA on these non-zero trim losses

over the heuristic approach is reported in Table 3.

It is observed among the 12 instances that the reported

GPA finds the optimal solution for eight instances. In the

entire 12 instances reported, the GPA finds the smallest

height and outperforms all the existing heuristic approa-

ches within reasonable time. GPA performed worse only

for one instance, i.e., Path 5. The analysis of this worst case

behavior for GPA was observed to be due to a large

number of small-scale instances and the variation in

Table 2 Computational result

for test instance by Burke
Instance BF BF?SA FH BBF BBFM Proposed

approach (GPA)

Time (s)

m W Opt

N1 10 40 40 45 40 40 40 40 40 19

N2 20 30 50 53 50 52 52 50 50 15

N3 30 40 40 52 51 51 52 52 51 29

N4 40 80 80 83 82 83 82 82 80 70

N5 50 100 100 105 103 102 103 102 101 62

N6 60 50 100 103 102 101 102 101 100 90

N7 70 80 100 107 104 102 106 105 103 124

N8 80 100 80 84 82 81 82 81 80 96

N9 100 50 150 152 152 151 152 151 150 340

N10 200 70 150 152 152 151 151 151 151 589

N11 300 70 150 152 153 151 151 150 150 545

N12 500 100 300 306 306 301 302 302 300 842

N13 3,152 640 960 964 964 960 964 960 960 1,200

Fig. 11 Optimum packing for N13 (Burke et al.)

Table 3 Computational results for nice and path test instance

(Valenzuela et al.)

Instance BF BBF BBFM GPA

approach
m W Opt

Nice1 25 1,000 1,000 1,074 1,083 1,069 1,070

Nice2 50 1,000 1,000 1,085 1,079 1,068 1,000

Nice3 100 1,000 1,000 1,070 1,067 1,063 1,040

Nice4 200 1,000 1,000 1,053 1,053 1,038 1,039

Nice5 500 1,000 1,000 1,035 1,033 1,024 1,000

Nice6 1,000 1,000 1,000 1,037 1,037 1,012 1,006

Path1 25 1,000 1,000 1,101 1,091 1,091 1,091

Path2 50 1,000 1,000 1,138 1,074 1,074 1,074

Path3 100 1,000 1,000 1,073 1,073 1,073 1,070

Path4 200 1,000 1,000 1,041 1,053 1,053 1,030

Path5 500 1,000 1,000 1,037 1,032 1,031 1,031

Path6 1,000 1,000 1,000 1,028 1,028 1,026 1,008

J Ind Eng Int (2014) 10:47 Page 11 of 16 47

123



dimension was quite less. However, on large instances the

approach gives an optimal solution. Consider the large non-

zero trim loss dataset with real dimensions. Table 4 shows

the computational results on NiceL1–NiceL3 and PathL1–

PathL3 for FH, GRASP and SVC. As reported, GPA effi-

ciently solves and gives an acceptable performance.

Table 5 makes a comparison against existing approa-

ches in terms of % gap where it is defined as the ratio of

(obtained solution - optimal height)/optimal height mul-

tiplied by 100. The results are reported for the Hooper and

Turner data instance from the literature along with the total

number of optimal solutions found. Further, these calcu-

lations are used for the statistical analysis of the approach.

The % gap is computed for well-known techniques from

the literature. % gap is computed against different approaches

where BF is used coupled with other techniques. BF?SA is

one of the most used heuristic approaches that gave compa-

rable results than BS?GA, BS?TS. A nonsystematic search

technique like squeaky wheel optimization by Burke et al.

(2011), iteratively single constructive heuristic SVC (subKP),

reactive GRASP, stochastic approach like intelligent search

algorithm (ISA), and IDBS combined with tabu search is also

used for the comparison. IDBS is till now state of the art,

outperforming the entire algorithm. Our approach finds the

optimal solution in 16 out of 21 cases and is far better than

existing approaches and at par with IDBS in most of the cases.

In instances like C4, C5, C6 (all instances), C7.2, C7.3, the

GPA is able to find the optimum height where other heuristic

approaches fail. In other cases, the solution is near to optimal

and misses only by a single unit. GPA stands second in finding

the number of optimal solutions (i.e., 19) after IDBS which

finds the optimal result for all the data instances. Our meta-

heuristic approach is reported based on the average number of

runs to find the optimal solution.

Statistical analysis for the heuristic approach

To validate the results, an ANOVA is applied to check if

the observed differences between the algorithms are sta-

tistically significant. This will help to identify which

algorithm and scenarios perform the best. ANOVA works

by comparing the variation between groups to the variation

Table 4 Computational results for large test instances

Instance GRASP SVC FH GPA

m W Opt

NiceL1 1,000 100 100.1 102.2 101.5 100.9 100.3

NiceL2 2,000 100 100.1 101.5 100.7 100.5 100.2

NiceL3 5,000 100 100.1 101 100.4 100.2 100.0

PathL1 1,000 100 100.1 101.9 101.2 100.7 100.6

PathL2 2,000 100 100.1 101.5 101 100.2 100.0

PathL3 5,000 100 99.9 101 100.2 100 100.0

Table 5 Performance in terms

of % gap and optimum result

found

Instance BF BBF BF-SA FH BBFM SWP SVC GRASP ISA IDBS GPA

C1.1 5.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C1.2 10.00 5.00 0.00 0.00 5.00 5.00 5.00 0.00 0.00 0.00 0.00

C1.3 20.00 5.00 0.00 5.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00

C2.1 6.67 6.67 6.67 6.67 6.67 6.67 0.00 0.00 0.00 0.00 0.00

C2.2 6.67 13.33 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.67

C2.3 6.67 6.67 6.67 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00

C3.1 6.67 6.67 3.33 3.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C3.2 13.33 10.00 3.33 3.33 3.33 3.33 3.33 3.33 3.33 0.00 0.00

C3.3 10.00 10.00 3.33 6.67 6.67 0.00 0.00 0.00 0.00 0.00 0.00

C4.1 5.00 3.33 1.67 1.67 3.33 1.67 1.67 1.67 1.67 0.00 0.00

C4.2 3.33 5.00 1.67 1.67 1.67 1.67 1.67 1.67 1.67 0.00 0.00

C4.3 3.33 3.33 1.67 1.67 1.67 1.67 1.67 1.67 1.67 0.00 0.00

C5.1 3.33 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 0.00 0.00

C5.2 2.22 2.22 1.11 0.00 1.11 1.11 1.11 1.11 1.11 0.00 0.00

C5.3 3.33 2.22 2.22 1.11 1.11 1.11 1.11 1.11 1.11 0.00 0.00

C6.1 2.50 2.50 1.67 0.83 0.83 1.67 0.83 1.67 0.83 0.00 0.00

C6.2 1.67 2.50 0.83 0.83 1.67 0.83 0.83 1.67 0.83 0.00 0.00

C6.3 3.33 2.50 1.67 0.83 0.83 1.67 0.83 1.67 0.83 0.00 0.00

C7.1 2.92 1.25 1.67 0.42 0.83 1.25 0.83 1.67 0.83 0.00 0.42

C7.2 1.67 0.83 1.67 0.42 0.83 0.83 0.83 1.25 0.42 0.00 0.00

C7.3 2.08 1.25 2.08 0.42 0.83 1.25 0.83 1.25 0.83 0.00 0.00

# of optimum 0 0 3 5 3 6 7 8 8 21 19
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within groups. Tukey’s multiple comparison test is one of

several tests that can be used to determine which means

among a set of means differ from the rest. Tukey’s multiple

comparison test is also called Tukey’s honestly significant

difference test or Tukey’s HSD.

Figure 12 shows the mean plot and Tukey CI for the

evaluated algorithm where the mean values are encircled a

and line is used for showing the respective confidence

interval. Statistical analysis reveals that the proposed

approach significantly differs from almost all the approa-

ches except ISA and IDBS. The computational results and

statistical analysis show the acceptable performance of the

proposed GPA algorithm.

Comparison with genetic-based approach

The approach being metaheuristic is also compared to

similar genetic-based approach based on the relative dif-

ference from the optimal solution and a statistical analysis

is carried to justify the performance of GPA in the next

section. Hopper and Turton (2001) investigated simulated

annealing, naı̈ve evolution and GAs metaheuristics

approach in combination with the placement strategies of

BL and BLF such as GA?BLF, SA?BLF, NE?BLF.

Table 6 reports the comparison against such algorithm

along with SPGAL, Iori et al. and the Goncalves approach.

SPGAL is better and clearly dominates the comparison

against the other earlier approaches with the % gap of just

1. HPA gives a better performance, but the result reported

is the average result on the basis of the number of runs for

each instance. The performance of GPA is best without

averaging the number of runs.

Statistical analysis

Figure 13 shows the statistical analysis of different meta-

heuristic approaches. GPA shows a vast deviation from the

mentioned approaches as it is able to find the optimal result

in most of the cases. The plotting also shows that HPA and

GPA are statistically not much different.

Algorithm complexity

The analysis of algorithms is considered for both space and

time. Linear storage space is required for storing the

parameters corresponding to the rectangle being packed

Fig. 12 Means plot and Tukey

confidence intervals (CI) for the

evaluated algorithms

Table 6 Comparison of % gap

for genetic based approaches for

Hooper and Turton test instance

Class Hooper and Turton (2001) Iori et al.

(2002)

Bortfeldt

(2006)

Gonçalves

(2007)

GPA

GA?BLF NE?BLF SA?BLF HPA

C1 4.0 5.0 4.0 1.59 1.7 0 0

C2 7.0 7.0 6.0 2.08 0.9 0 0

C3 5.0 4.0 5.0 2.15 2.2 0.53 2.2

C4 3.0 4.0 3.0 4.75 1.4 0.70 0

C5 4.0 4.0 3.0 3.92 0.0 0.33 0

C6 4.0 4.0 3.0 4.0 0.7 0.42 0

C7 5.0 5.0 4.0 – 0.5 0.66 0.14

Average 4.6 4.7 4.0 3.08 1.0 0.38 0.33
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and current status of the designed layout. The algorithm is

analyzed for all the cases. In the best case, the initial

placement sequence generated is the required one, thus the

complexity of the algorithm is O(1). The algorithm does

not use level-oriented packing. The average and worst case

behavior where the population is evolved to find the opti-

mal pattern sequence is O(n2).

Conclusion

In this paper, a metaheuristic solution is proposed for the

2D-SPP. The approach couples GA approach with a

proposed placement strategy to obtain the optimum

solution. To our knowledge this is a first GA-based paper

that provides optimal solution for such large instances of

dataset. The proposed strategy is simple without inclu-

sion of problem-specific operations. MPX crossover is

used to preserve the mutual relation between rectangles

and provides sufficient flexibility to search. The perfor-

mance of metaheuristic is often governed by the selection

of initial parameters. However, in this case the selection

parameters are not crucial; only the crossover and eval-

uation of fitness function play an important role in the

evolution. On the basis of exhaustive computation carried

out on a benchmark dataset from literature, we conclude

that the performance is far better in comparison to many

known heuristic and metaheuristic approaches discussed

in the paper. Our metaheuristic gives high-quality solu-

tions in a reasonable computational time. GPA proves its

dominance even in the larger instances. Obtained results

motivate the use of these techniques in industries for

more economical saving.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

Appendix 1

The phases of GPA are discussed below:

Initial population: based on the random values gener-

ated, the initial population would be generated. This initial

population is used to form the layout design and the fitness

value is computed.

See Table 7; Fig. 14.

Fig. 13 Means plot and Tukey

confidence intervals (CI) for the

metaheuristic algorithms

Table 7 Initial population

1 2 3 4 5 6 7 8 … 50

14 4 2 38 15 48 11 13 … 12

3 7 28 40 27 23 38 21 … 50

16 7 42 33 40 48 17 30 … 13

47 22 19 21 5 33 40 1 … 10

13 1 24 7 44 19 39 5 … 16

32 10 19 48 45 16 4 21 … 14

28 50 25 14 39 38 2 10 … 1

5 43 11 15 25 41 49 3 … 19

Fig. 14 Initial plot for Burke N5
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Fitness function

The fitness value for each generation is evaluated taking

into consideration all the populations. Few of the fitness

values computed for the initial population is shown in the

table below:

116.6326 122.8424 125.3914 130.4357 135.4801 150.98 177.86 194.6

In our case, the layout design with the lowest fitness

value is fittest.

Crossover

In crossover one of the elite parent will be from 2, 5

because of their fitness values.

16 22 1 38 15 48 ……… 9

Final evolution

See Fig. 15.

Fig. 15 Optimum results for Burke N5, Burke N6 and Burke N7
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