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Abstract 

Mechanism design with level-k types: Theory and an application to bi-
lateral trade* 
 
 
This paper studies mechanism design under the level-k solution concept. The first 
result gives a general necessary condition for a social choice rule to be level-k 
implementable. In some environments, this necessary condition is equivalent to 
Bayesian incentive compatibility, making level-k implementation more restric-
tive than Bayesian implementation. The second result shows that this is not a 
general implication. In the bilateral trade environment ex post efficient trade is 
always possible under level-k implementation. Further, ex post efficient trade is 
possible in a mechanism that is robust to different specifications of beliefs about 
the levels of reasoning of others and to any specification of beliefs about payoffs. 
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1 Introduction

Laboratory experiments frequently find that behavior deviates from Nash and Bayesian equi-
librium predictions when agents interact in novel environments. Non-equilibrium approaches,
like level-k and cognitive hierarchy models, that relax the belief consistency assumptions of
equilibrium models have been increasingly used to explain this behavior.1 This empirical
evidence prompts the need for extending the analysis of economic phenomena beyond an
equilibrium analysis to other behaviorally plausible solution concepts.

This paper contributes to that end by analyzing mechanism design under the level-k
solution concept. In the level-k model, agents anchor their beliefs in a naive model of others’
likely responses and adjust their beliefs by a finite number of iterated best responses.2 The
model is anchored in the behavior of level 0 types which is exogenously given and generally
assumed to be uniformly random. Level 1 types engage in one level of reasoning and best
respond to level 0 behavior. Level 2 types engage in two levels of reasoning and best respond
to level 1 types. And so on, with level k types playing a best response to level k≠1 types. This
yields a tractable model of strategic behavior in which agents determine their optimal actions
in only a finite number of steps. The level-k solution concept relaxes the belief consistency
assumption of equilibrium by allowing agents to hold (possibly) inaccurate beliefs about the
levels of reasoning of their opponents. Our notion of level-k implementability is identical to
the notion of Bayesian implementability, except our solution concept is the level-k solution
concept: a social choice rule is level-k implementable if for every profile of payo� types and
levels, the actions played under the level-k model are consistent with the social choice rule.

Our first main result establishes a general necessary condition for level-k implementation
(Proposition 1). The necessary condition is a set of level-k incentive constraints that are
analogous to the Bayesian incentive constraints. The level-k incentive constraints ensure
that an agent, with level of reasoning two or greater, will truthfully report his type given
that he believes everyone else is truthfully reporting their type. There is an important
distinction between the level-k incentive constraints and the Bayesian incentive constraints
(agents truthfully report their payo� types under the beliefs that others truthfully report
their payo� types). In the level-k model, a type is not equivalent to a payo� type. It is
instead, a two-dimensional object consisting of both an agent’s payo� type and her level

1For, pioneering works in the literature see Stahl & Wilson (1994; 1995), Nagel (1995), Costa-Gomes
et al. (2001), and Camerer et al. (2004). For a recent survey of this literature, see Costa-Gomes et al. (2013).

2Formally, the model in this paper most closely resembles Strzalecki (2014) which uses a type space
approach to model the level-k solution concept under complete information. This paper adapts that approach
to allow for incomplete information. However, this approach closely follows the spirit of the models of
Crawford & Iriberri (2007), Crawford et al. (2009), and Crawford (2016) which adapted the level-k models
to study auctions under incomplete information.
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of reasoning. To see why this distinction matters notice that two agents with the same
payo� type and di�erent levels of reasoning may have di�erent beliefs and hence, di�erent
incentives. Rather than focusing on mechanisms where agents truthfully report their payo�
types, we consider augmented mechanisms where agents truthfully report their their payo�
types and their levels of reasoning.3,4 As such, there is a gap between the level-k and Bayesian
incentive constraints. If the Bayesian incentive constraints hold, then the level-k incentive
constraints also hold. But, it may be possible to ensure that the level-k incentive constraints
hold without the Bayesian incentive constraints holding.

The ability to do so depends on the environment, most importantly, on the nature of the
social choice rule. If the social planner is implementing a social choice function (a single-
valued rule), it will not be possible. In this case, Bayesian implementation is a necessary
condition for level-k implementation (Corollary 1). However, if the social planner is im-
plementing a social choice correspondence (a multi-valued rule), it may be that the level-k
incentive constraints hold without the Bayesian incentive constraints holding. The rest of
the paper focuses on the case of ex post e�ciency in a bilateral trade environment, which
is an example of an environment with a multi-valued choice rule (the social planner desires
e�cient trade but does not care at which price the good is traded at). Our second main
result is that, in the bilateral trade environment, all ex post e�cient outcomes are level-
k implementable (Proposition 2). This is in obvious contrast to Bayesian implementation
where there is a conflict between ex post e�ciency and incentive compatibility.

We then ask how robust are level-k mechanisms to alternative specifications of beliefs?
We have two robustness results. Proposition 3 establishes that there exists a mechanism
that implements ex post e�ciency for any beliefs about the payo� types of others. This
first robustness result is in stark contrast to standard Bayesian implementation results,
where it is well known that the optimal mechanisms are sensitive to assumptions about
beliefs about payo� types. Finding mechanisms that are robust to relaxing these strong
common knowledge assumptions, typically known as the Wilson doctrine, can insure that a

3This mirrors the analysis in Bergemann & Morris (2005). They study implementation in incomplete
information environments without the common prior assumption. In this environment, types with the same
payo� type may hold di�erent beliefs about the payo� types of others. Thus, a type represents not just
the payo� type, but also higher-order beliefs about the payo� types of others. The authors use augmented
mechanisms where agents report their types and not just their payo� types.

4The revelation principle does not hold in the level-k environment. This is true even if we allow augmented
mechanisms where all types, with levels greater than one, truthfully report their type. This results from the
’menu e�ects’ discussed in Crawford et al. (2009) due to the incentives of level 1 players. Level 1 agents
best respond to Level 0 agents which play uniformly randomly. Thus, level 1 agents are not playing a best
response to others truthfully reporting their type, and in fact, depending on the mechanism, may place
positive weight on strategies that are never played by agents with levels greater or equal to one. There may
be a role for these additional strategies, those played only by level 0 agents, in satisfying the incentives of
level 1 agents.
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social choice correspondence will be implemented even if the designer does not know agents’
beliefs about the payo�s of others. Much of this literature is due to Bergemann & Morris
(2005), who investigate aspects of robust mechanism design (relaxing common knowledge of
payo� assumptions) while maintaining the assumption of common knowledge of rationality.
We show that ex post e�ciency can be implemented in mechanisms that relax common
knowledge of payo�s under the empirically plausible assumption of level-k reasoning.

Second, we show that allowing for di�erent beliefs about the reasoning types of others
does not a�ect implementation. The level-k model imposes very specific beliefs: a level k

type believes her opponent is a level k ≠ 1 type. However, the spirit of limited depths of
reasoning is maintained whenever a level k type has any beliefs over lower types 0,. . ., k ≠ 1.
Proposition 4 shows that we can always find a mechanism that is robust to allowing a level k

type agent to hold any beliefs over lower levels. Importantly, there exists a single mechanism
that implements ex post e�ciency that is robust to both beliefs about payo�s and beliefs
about the levels of others.

There is a growing literature that focuses on behavioral mechanism design.5 This paper
adds to this literature by studying implementation under the level-k model. Four other
papers study level-k implementation. The main contributions of the current work relative
to these four are that this paper: (i) demonstrates that level-k implementation may be a
weaker implementation concept than Bayesian implementation; (ii) studies the robustness
of level-k implementation to common knowledge of payo� and level-k assumptions; and (iii)
demonstrates the role of augmented mechanisms in level-k implementation.

Crawford (2016) studies level-k implementation in the continuous bilateral trade envi-
ronment. Crawford restricts the space of mechanisms to be one where the set of messages is
equivalent to the set of payo� types. Under the restricted mechanism, agents cannot signal
both their payo� type and their level by their choice of message. As a result, Crawford finds
that ex post e�ciency is level-k implementable only when it is Bayesian implementable. We
build on this work and show that under more general mechanisms ex post e�ciency is al-
ways level-k implementable. In contemporaneous work, de Clippel et al. (2016) study level-k
implementation in a general setting where the social planner aims to implement a single-
value social choice rule. In their case, since they study single-valued choice rules, Bayesian
incentive constraints are necessary for level-k implementation.6 In contrast, we provide the

5Eliaz (2002) studies mechanism design when there is a proportion of ’faulty’ agents that fail to act
optimally. Cabrales & Serrano (2011) allow agents to learn in the direction of better replies. Glazer &
Rubinstein (2012) allow the content and framing of the mechanism to play a role in behavior. de Clippel
(2014) studies mechanism design when agents are not rational. Glazer & Rubinstein (1998), Eliaz & Spiegler
(2006; 2007; 2008), Severinov & Deneckere (2006), and Wolitzky (2016) study behavioral mechanism design
in individual decision problems.

6They use a slightly stronger definition of level-k implementation than the one used here. Essentially,
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level-k incentive constraints for the case of a general choice rule and show that they collapse
to Bayesian incentive compatibility when the social choice rule is single-valued. They also
provide su�cient conditions for level-k implementation in a number of specific single-valued
choice rule environments. Crawford et al. (2009) looks at setting optimal reserve prices in
first and second price auctions when agents are level-k types. Gorelkina (2015) provides a
level-k analysis of the expected externality mechanism.

2 Example

We illustrate the main results of the paper with a simple bilateral trade example with two
types. The seller has one unit of a good to sell and the buyer wants to purchase one unit
of the good. The seller has a payo� type, c œ C = {2, 6}, which represents his cost - the
minimum value that the seller is willing to sell the good for. The buyer has a payo� type,
v œ V = {3, 7}, which represents her value - the maximum value that the buyer is willing to
pay for the good. Types are drawn from a uniform common prior, fl (i.e. fl(v, c) = 1

4 for all
v, c œ V ◊ C).

The set of outcomes is given by Y = R fi {ÿ}. The outcome ÿ indicates that the good
is not traded and the outcome p œ R indicates that the good is traded at price p. That is,
the buyer pays the seller the amount p (if p is negative that would indicate that the seller
pays the buyer). Agents have quasi-linear utility functions. If there is a trade at a price p,
then the buyer has utility v ≠ p and the seller has utility p ≠ c. If there is no trade, then the
buyer and seller have utility 0.

We are interested in mechanisms that satisfy the following three properties:

1. Ex post e�ciency: the mechanism transfers the good to the buyer if and only if the
buyer’s value is higher than the seller’s cost.

2. Budget balance: the price paid by the buyer equals the price received by the seller.

3. Ex post individual rationality: both the buyer and seller prefers to participate in the
trading institution.

In general, we are interested in the implementability of some social choice rule, in the case
of bilateral trade, it is the ex post e�cient social choice rule F ú(v, c) = {y|y œ R if v Ø
c and y = ÿ otherwise}. However, in the context of bilateral trade we are interested in the
mechanism satisfying all of the above three properties and not just e�ciency. To simplify

they require a version of strict implementation where this paper allows indi�erences. This adds an additional
strictness condition to their necessary conditions that is absent in this paper.
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discussion, when we ask whether ex post e�ciency is implementable, we do so under the
condition that budget balance and ex post individual rationality are also satisfied.

Remark 1. Ex post e�ciency is not Bayesian implementable.

We use the standard definition of Bayesian implementation. The ex post e�cient social
choice rule, F ú, is Bayesian implementable if there exists a mechanism, M = ÈM = M

b

◊
M

s

, f : M æ Y Í, such that in the game defined by that mechanism there is a Bayesian
equilibrium s = s

b

◊ s
s

, where s
b

: V æ M
b

and s
s

: C æ M
s

and the three conditions
above hold: (i) ex post e�ciency: f ((s

b

(v), s
s

(c))) µ F ú ((v, c)) for all (v, c) œ V ◊ C

where F ú((v, c)) = {y œ Y |y œ R if v Ø c and y = ÿ otherwise} is the ex post e�cient social
choice rule; (ii) budget balance (notice that budget balance is imposed automatically by
our outcome space); and (iii) ex post individual rationality: f((s

b

(v), s
s

(c))) Ø 0 for all
(v, c) œ V ◊ C.

Ex post e�ciency is not Bayesian implementable. This was shown by Matsuo (1989) who
gives su�cient conditions for ex post e�ciency in the two type bilateral trade environment.
To see the intuition, recall that the revelation principle ensures that we need only consider
mechanisms where all agents truthfully report their type. Further, the low valued buyer and
the high valued seller should make zero rents in equilibrium as they never have an incentive
to misreport. Thus any candidate mechanism must take the form as the one in Figure 1

Seller

2 6

Buyer
7 p 6

3 3 ÿ

Figure 1: Structure of a Bayesian mechanism

A high value buyer believes the low and high valued seller types are equally likely (comes
from the uniform prior assumption) and thus believes actions 2 and 6 are equally likely.
Thus, for a high valued buyer to truthfully report her payo� type the trading price must be
less than or equal to 4, i.e. p Æ 4. Similarly, a low valued seller believes the low and high
valued buyer types are equally likely and thus believes actions 7 and 3 are equally likely For
a low valued seller to truthfully report his payo� type the trading price must be greater than
or equal to 5, i.e. p Ø 5. These two conditions are incompatible. There is no mechanism
which will implement the ex post e�cient choice rule under Bayesian implementation.

Remark 2. Ex post e�ciency is level-k implementable.
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Level-k implementation is defined similarly to Bayesian implementation except Bayesian
equilibrium is replaced by the level-k solution concept.

Under the level-k model, player’s have heterogeneous levels of reasoning. Level 0 types
have zero depths of reasoning, they are non-strategic and we assume they play uniformly,
randomly over the action space. Level 1 types have one level of reasoning, they best respond
to level 0 types. Level 2 types have two levels of reasoning - they best respond to level 1
types. And, so on, with level k types having k levels of reasoning and best responding to
level k ≠ 1 types.

Suppose, for the sake of this example, that there are only level 1 and level 2 types in the
population. As such there are four di�erent types for the buyer and the seller. There is both
a high-valued and a low-valued payo� type for each of the two reasoning types. We formally
model this using a type space structure in the next section.

A level 0 type plays according to the uniform distribution. A level k type plays a best
response to her beliefs which are determined by the common prior and the actions each level
k ≠ 1 type plays. An agent’s level determines her beliefs about her opponent’s level (i.e. a
level k type believes her opponent is type level k≠1). And, an agent’s payo� type determines
her beliefs about her opponent’s payo� types (i.e. the beliefs of level k buyer with payo�
type v about the seller’s payo� type are determined by the common prior). Thus, in this
example, a level k buyer believes it is equally likely that the seller is a type with level k ≠ 1
and payo� type 2 and a type with level k ≠ 1 and payo� type 6. A level k seller believes it
is equally likely that the buyer is a type with level k ≠ 1 and payo� type 3 and a type with
level k ≠ 1 and payo� type 7.

We use the following definition of level-k implementation. The ex post e�cient social
choice rule F ú is level-k implementable if there exists a mechanism, M, such that in the
game defined by that mechanism, it must be that the strategy profile s = s

b

◊ s
s

, s
b

: V ◊
{0, 1, 2} æ M

b

and s
s

: C ◊{0, 1, 2} æ M
s

, is a level-k solution, and the following conditions
hold: ex post e�ciency: f ((s

b

(v, j), s
s

(c, l))) µ F ú ((v, c)) for all (v, c) œ V ◊ C and all
j, l œ {1, 2} , budget balance, and ex post individual rationality: f ((s

b

(v, j), s
s

(c, l))) Ø 0
for all (v, c) œ V ◊ C and all j, l œ {1, 2}.

First, notice that our notion of level-k implementability does not require the mechanism
to satisfy ex post e�ciency or ex post e�cient individual rationality if there are level 0
types. This is for two reasons. The first is theoretical, level 0 agents are non-strategic and
just play all actions randomly, hence the social planner cannot incentivize their behavior.7

7If this type of behavior is a concern we should consider an alternative form of implementability where
the goal is to perhaps minimize the deviations from the social choice correspondence . See Eliaz (2002) for
a possible way to model this form of implementability.
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The second motivation is empirical. While there is mixed support, the estimated frequency
of level 0 types is typically small (E.g. Arad & Rubinstein 2012; Costa-Gomes & Crawford
2006; Costa-Gomes et al. 2001; Brocas et al. 2014). Thus we interpret the existence of level
0 types in the model, but not in our implementability requirement, as types that exist only
in the minds of the other types.

Second, notice that the ex post e�cient social choice rule cannot be achieved with any
direct mechanism from Figure 1. The level 1 type’s beliefs are the same as the agents’
beliefs in the Bayesian equilibrium. Instead, we consider augmented mechanisms. In these
mechanisms, we allow agents with the same payo� type but di�erent levels of reasoning to
play di�erent actions.

Seller

m0 m(2,1) m(2,2) m(6,≠)

Buyer

m0 4.5 7 3 ÿ

m(7,1) 2 4.5 6 6

m(7,2) 6 3 4.5 6

m(3,≠) ÿ 3 3 ÿ

Figure 2: A level-k mechanism

The mechanism in Figure 2 level-k implements the ex post e�cient choice rule. To see
this notice that level 0 agents (regardless of their payo� type) are assumed to play each
action with equal probability. A level 1 type then believes that her opponent is playing each
action with equal probability. Therefore, playing m(3,≠) is a best response for the low valued
level 1 buyer (v = 3) and playing m(7,1) is a best response for the high valued level 1 buyer
(v = 7). Likewise, playing m(6,≠) is a best response for the high valued level 1 seller (c = 6)
and playing m(2,1) is a best response for the low valued level 1 seller (c = 2).

A level 2 buyer (of either payo� type) believes that high valued level 1 sellers play m(6,≠)

and low valued level 1 sellers play m(2,1). Since she believes high and low valued sellers
are equally likely, she expects m(6,≠) and m(2,1) to be played with equal probability. Thus,
playing m(3,≠) is the best response for a low valued level 2 buyer and playing m(7,2) is the
best response for a high valued level 2 buyer. A level 2 seller (of either payo� type) believes
that low valued level 1 buyers play m(3,≠) and high valued level 1 buyers play m(7,1). Since
he believes high and low valued buyers are equally likely, he expects m(3,≠) and m(7,1) to be
played with equal probability. Thus, playing m(6,≠) is the best response for a high valued
level 2 seller and playing m(2,2) is the best response for a low valued level 2 seller.
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Given the strategies defined by the level-k model, for any pair of level 1 or level 2 types,
the outcome will be consistent with the ex post e�cient social choice rule. In other words,
if the buyer is the low valued type and the seller is the high valued type, then regardless
of whether the buyer and sellers are L1 or L2 types, there will not be trade. For any other
payo� type profile (v, c) ”= (3, 6), regardless of whether the buyer and sellers are L1 or L2
types, there will be trade. Ex post individual rationality is satisfied for all outcomes.

There exist actions in the mechanism that level 1 and level 2 types do not play. Neither
level 1 or level 2 types play action m0. Thus, we would not expect that action to be played
by either the buyer or the seller (if there are no level 0 types in the population). However,
the mechanism includes that action because level 1 types believe that action is being played
with some positive probability by the level 0 type. Thus, these ’level 0’ actions influence the
behavior of level 1 types even though they are not played by types of higher levels.8

Next we illustrate the robustness of level-k implementation.

Remark 3. Robustness to limited depths of reasoning

The level-k model assumes a very particular form of beliefs: level k types believe there
are only level k ≠ 1 types. But, it is reasonable to think that a level k type might put
positive weight on other types as well. For example, the cognitive hierarchy model assumes
that a level k type puts positive weight on all lower types, where the weight is determined
according to the conditional Poisson distribution (Camerer et al. 2004).

The designer may believe that agents have finite depths of reasoning, but assuming he
knows the beliefs of the agents about the levels of others is a strong assumption. Importantly,
a level-k mechanism does not have to be sensitive to the specification of beliefs. The ex post
e�cient social choice rule is always implementable in a mechanism that is robust to the
specification of beliefs about levels. Figure 3 provides an example of such a mechanism.

The beliefs of level 1 agents do not change (as they may only put weight on level 0
types). Thus, a level 1 type then believes that her opponent is playing each action with
equal probability. Therefore, the low valued L1 buyer plays m(3,≠) and the high valued L1
buyer plays m(7,1). Likewise, the high valued level 1 seller plays m(6,≠) and the low valued
level 1 seller plays m(2,1).

Now, a level 2 buyer may hold any beliefs over level 0 and level 1 types but still believes
that high and low valued sellers are equally likely. Thus, for any beliefs over L0 and L1
types, playing m(3,≠) is the best response for a low valued level 2 buyer and playing either
m(7,1) or m(7,2) is the best response for a high valued L2 buyer. Similarly, a high valued level

8Strategies that are never played have been shown to still have an impact on strategic behavior in other
experiments. Cooper et al. (1990) show that introducing dominated actions into coordination games changes
behavior.
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Seller

m0 m(2,1) m(2,2) m(6,≠)

Buyer

m0 4.5 7 4.5 ÿ

m(7,1) 2 4.5 5.5 6

m(7,2) 4.5 3.5 4.5 6

m(3,≠) ÿ 3 3 ÿ

Figure 3: A mechanism that is robust to limited depths of reasoning

2 seller will want to play m(6,≠)and a low valued level 2 seller will want to play either m(2,1)

or m(2,2). Thus, each type for both the buyer and the seller still has an incentive to play
an action that identifies their payo� type regardless of their belief structure. Therefore, the
social planner does not need to know the specification of beliefs about levels of reasoning in
order to implement the social choice correspondence.

Remark 4. Robustness to beliefs about payo�s

In the first three remarks, agents’ beliefs about payo� types were determined by the
common prior. This is a strong assumption - the social planner may not have this information
when she designs the mechanism. Further, this assumption is problematic in the Bayesian
implementation setting as optimal mechanisms are typically sensitive to the common prior.
This is not true for level-k implementation. The ex post e�cient correspondence is always
implementable in a mechanism that is robust to the specification of beliefs about payo�s.
Figure 4 provides an example of such a mechanism.

Seller

m0 m(2,1) m(2,2) m(6,≠)

Buyer

m0 4.5 7 3 ÿ

m(7,1) 2 4.5 6 6

m(7,2) 6 3 4.5 6

m(3,≠) ÿ 3 3 ÿ

Figure 4: A mechanism that is robust di�erent beliefs about payo�s

Again, the behavior of level 1 agents is unchanged as the beliefs of level 1 agents do not
change (a level 0 behavior is independent of payo� types). A level 2 buyer may hold any
beliefs over payo� types but believes her opponent is a level 1 type. For any beliefs about
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the payo� types of the seller, playing m(3,≠) is the best response for a low valued level 2
buyer and playing m(7,2) is the best response for a high valued level 2 buyer. Similarly, for
any beliefs over payo� types, playing m(6,≠) is the best response for a high valued level 2
seller and playing m(2,2) is the best response for a low valued level 2 seller.

Thus, for both the buyer and the seller, all types have an incentive to play an action that
identifies their payo� type regardless of their belief structure. Therefore, the planner does
not need to know the specification of beliefs about payo� types in order to implement the
social choice correspondence.

This rest of the paper proceeds as follows. Section 3 sets up the general payo� environ-
ment and formalizes level-k implementation. Section 4 established necessary conditions for
level-k implementation in the general environment. Section 5 sets up the bilateral trade envi-
ronment and establishes the main result about ex post e�ciency and level-k implementation.
Section 6 establishes the robustness results.

3 Setup

3.1 General payo� environment

We first define level-k implementation and generate necessary conditions for a general payo�
environment. Then, in section 5, we focus on the bilateral trade environment.

There is a finite set of agents I = 1, 2, . . . , n. Agent i’s payo� type ◊
i

œ �
i

, where �
i

is a
finite set. We write ◊ œ � = �1 ◊ · · · ◊ �

N

. There is a compact set of outcomes Y . Each
agent has a continuous utility function u

i

: Y ◊ � æ R.
There is a social planner who is concerned with implementing a social choice rule F :

� æ 2Y \ÿ. The planner would like the outcome to be an element of F (◊) whenever the true
payo� type profile is ◊.

3.2 Type spaces

We use the framework of a type space in order to formally define each agent’s beliefs about
the payo� types of others. The standard way to do this is to use a Bayesian type space.
The set of payo� types along with a common prior over the set of payo� types constitute a
Bayesian type space.

Definition. An Bayesian type space B is a structure B = È�; pÍ, where fl œ —(�).

Given the common prior fl, each payo� type forms her beliefs by conditioning on the
common prior according to Bayes’ rule. The belief of an agent with value ◊≠i

about the
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costs of the seller is given by fl(◊≠i

|◊
i

) = fl(◊)q
◊≠iœ�≠i

fl(◊i,◊≠i) .
Level-k models are designed to capture the idea that agents are often capable of perform-

ing only a finite number of levels of reasoning in order to figure out their optimal behavior.
We use a type space approach to define the level-k model based on Strzalecki (2014) who
develops the framework for games of complete information. We expand the framework here
to account for games of incomplete information.

Definition. A B-based level-k type space L is a structure L = ÈB; k̄Í, where B is a
Bayesian type space B = È�; flÍ, k̄ Ø 1 œ N

Given a B-based level-k type space L, we can define a set of types for each agent, Li =
�

i

◊ {0, 1, . . . , k̄}. An agent’s type t
i

= (◊
i

, k
i

) is a 2-dimensional type representing both her
payo� type, ◊

i

, and her level, k
i

. An agent’s level represents her depth of reasoning. An
agent with a level k uses only k steps of reasoning in order to figure out her optimal behavior
in any game. The type space contains all levels of reasoning from 0 to k̄.

A agent’s beliefs about the types of others are determined both by her payo� type and
her level. The beliefs of a type t

i

= (◊
i

, k
i

) about the types of others are determined by the
function µ

i

(t≠i

|t
i

) :

µ
i

(t≠i

|t
i

) =

Y
_]

_[

fl(◊≠i

|◊
i

) if k
j

= k
i

≠ 1 ’j ”= i

0 otherwise
.

An agent with a level k puts weight only on other types that have levels exactly equal
to k ≠ 1. This captures the core assumption of the level-k model. This assumption ensures
that agents can calculate their optimal actions in a recursive fashion with a finite number of
steps given the behavior of the level 0 types.

An agent’s beliefs about the payo� types of other agents are determined by the common
prior fl. An agent with payo� type ◊

i

and level k
i

believes that the payo� types of other
agents are determined by fl(◊≠i

|◊
i

) and that others have level k
i

≠ 1.
We formally call this type space a Bayesian-based level-k type space because the beliefs

about the payo� types of other agents are derived from a common prior. We drop this
formalism throughout the rest of this paper and refer to these type spaces as simply level-k
type spaces.

3.3 Solution concepts

A mechanism specifies an action set for each agent and a mapping between action profiles
and outcomes.

11



Definition. A mechanism ÈM, fÍ consists of a set of actions M = M1 ◊ · · · ◊ M
N

and a
function f : M æ Y .

Given the payo� environment and (Bayesian or level-k) type space, a mechanism de-
fines a N -agent incomplete information game with action set M

i

and payo�s defined by
ui(f(m

i

, m≠i

), ◊) for agent i.
For a given level-k type space, we can define the level-k solution concept. The level-k

solution concept imposes that all types are rational (that is, they play a best response given
their beliefs about the actions of other agents) and for beliefs about those actions to be
consistent with what other types are actually doing in equilibrium. Level 0 types are not
required to be rational.9 Level 0 types are assumed to play uniformly randomly.

Definition. For a given game defined by a mechanism ÈM, fÍ and type space L, a strategy
profile s : L æ M is the level-k solution if and only if:

(i) q

t≠iœL

≠i
µ

i

(t≠i

|t
i

) · ui(f(si(t
i

), s≠i(t≠i

)), ◊) Ø q

t≠iœL

≠i
µ

i

(t≠i

|t
i

) · ui(f(m, s≠i(t≠i

)), ◊) for all

t
i

œ Li with k
i

> 0, for all m œ M i, and for all i œ I.
(ii) s

i

((◊
i

, 0))(m) = 1
|Mi| for all m œ M

i

for all ◊
i

œ �
i

, for all i œ I.

The level-k solution can be calculated recursively given the behavior of level 0 types.
Level 1’s actions are a best response to level 0’s actions. Level 2’s actions are a best response
to level 1’s actions, and so on.

We will be interested in comparing our level-k implementation results with the solution
concept of Bayesian implementation. The two solution concepts di�er in that the level-k
equilibrium relaxes the belief consistency assumption imposed under Bayesian equilibrium
by not requiring the incentive constraints to hold for level 0 types. We define Bayesian
equilibrium for completeness.

Definition. For a given game defined by a mechanism ÈM, fÍ and type space B, a strategy
profile s : � æ M is a Bayesian equilibrium if and only if:

q

◊≠iœ�≠i

fl(◊≠i

|◊
i

) · ui(f(si(◊
i

), s≠i(◊≠i

)), ◊) Ø q

◊≠iœ�≠i

fl(◊≠i

|◊
i

) · ui(f(m, s≠i(◊≠i

)), ◊) for all

◊
i

œ �
i

, for all m œ M i, and for all i œ I.

3.4 Implementation

A social choice correspondence, F , is level-k implementable on L if there exists a mechanism
and a level-k solution that achieves F for every type profile in L with levels greater than 0.

9The behavior of level 0 types is specified outside of the model. Thus, level 0 types do not have to play
a best response to their beliefs (and may play actions that are not a best response to any beliefs i.e. play
dominated actions). In fact, there are no restrictions on a level 0’s beliefs in a level-k type space and we do
not formally define them.
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Definition. A mechanism ÈM, fÍ and a message profile m : L æ M achieves F on L if
for all ◊ ◊ k œ � ◊ fi◊iœI

{1, . . . , k̄}

f(m(◊ ◊ k)) œ F (◊)

Note that for a mechanism to achieve F , we only require the messages sent by types with
levels at least one (k Ø 1) be consistent with the social choice correspondence.

Definition. A social correspondence is level-k implementable on L if there exists a
mechanism ÈM, fÍ and a message profile m : L æ M , such that m is the level-k solution and
m achieves F on L.

Notice that our notion of level-k implementation does not require knowledge of the actual
distribution of types (and hence levels). This is because implementation requires that the
outcome be consistent with the social choice correspondence for all type profiles and hence
does not depend upon the distribution of types.10

For completeness, we give the definition of Bayesian implementation below.

Definition. A mechanism ÈM, fÍ and a message profile m : V ◊ C æ M achieves F on B
if for all ◊ œ �

f(m(◊)) œ F (◊)

The definition of level-k and Bayesian implementation di�er only in that the former
requires a level-k solution and the latter requires a Bayesian equilibrium that achieves the
social choice correspondence.

Definition. A social choice correspondence F is Bayesian implementable on B if there
exists a mechanism ÈM, fÍ and a message profile m : V ◊C æ M , such that m is a Bayesian
equilibrium and m achieves F on B.

4 Necessary Conditions for Level-k Implementation

The following proposition gives a set of necessary conditions for level-k implementation in the
form of level-k incentive constraints that are related to the Bayesian incentive constraints.

10This is not true for all mechanism design objectives. For example, it would not be true if the goal of the
designer was to maximize expected revenue. If di�erent levels (and payo� types) play di�erent actions with
di�erent revenue consequences, then expected revenue will depend upon the actual distribution of types.
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Proposition 1. (Necessary Conditions) Let F be a social choice correspondence. Let B be a
Bayesian type space and let L be a (B-based) level-k type space. If F is level-k implementable,
then there exists functions f i : � æ Y , for all i œ I, such that the following conditions hold:

(i) f i(◊) œ F (◊) ’◊ œ �, ’i œ I

(ii) q

◊≠iœ�≠i

fl(◊≠i

|◊
i

) · ui(f i(◊), ◊) Ø q

◊≠iœ�≠i

fl(◊≠i

|◊
i

) · ui(f i(◊Õ, ◊≠i

), ◊) ’◊Õ œ �
i

,’◊ œ �,

’i œ I

Proof:

Suppose that the social choice correspondence F is level-k implementable.

Then there exists some mechanism ÈM, gÍ and a function l
i

: Li æ M
i

such that l =
l1 ◊ · · · ◊ l

N

is a level-k solution and achieves F .

Consider the behavior of an agent i with type t
i

= (◊
i

, 2):
ÿ

◊≠iœ�≠i

fl(◊≠i

|◊
i

) · ui(g(l
i

(◊
i

, 2), l≠i

(◊≠i

, 1)), ◊)

Ø
ÿ

◊≠iœ�≠i

fl(◊≠i

|◊
i

) · ui(mÕ, l≠i

(◊≠i

, 1)), ◊) ’mÕ œ M
i

Define f i(◊) = g(l
i

(◊
i

, 2), l≠i

(◊≠i

, 1))

Thus, condition (ii) holds since playing (◊≠i

, 2) was optimal in the original mechanism
means it is at least as good as playing m

i

(◊Õ, 2) for any ◊Õ œ �
i

.

Condition (i) holds by definition of l achieving F .

⇤
The di�erence between the level-k incentive constraints and the Bayesian incentive con-

straints is that the level-k incentive constraints can be satisfied with a di�erent function,
f i, for each agent, whereas the Bayesian incentive constraints must hold using the same
function, f , for all agents. The relaxation of the cross-player restriction (f 1 = · · · = fn)
arises because of the relaxation of consistent beliefs under the level-k model. A level 3 agent
believes she is facing level 2 agents while a level 2 agent believes she is facing level 1 agents.
Thus, all agents’ incentive constraints can be satisfied by di�erent f functions: a level 3
agent for player i with payo� type ◊

i

thinks she will receive f i(◊) when playing against level
2 agents with payo� types’ ◊≠i

, while a level 2 agent for player j with payo� type ◊
j

thinks
she will receive f j(◊) when playing against level 1 agents with payo� types’ ◊≠j

.
Whether the cross-player restriction imposed under Bayesian implementation has bite

depends on the environment. The following corollary shows that whenever the social plan-
ner wants to implement a social choice function (a single-valued choice rule), the level-k
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incentive constraints collapse down to the Bayesian incentive constraints. In this case, the
social planner cannot improve upon the set of outcomes under level-k implementation. If a
social choice correspondence is level-k implementable then it is also Bayesian implementable.
(Notice that the level-k incentive constraints are only necessary conditions and in reality it
may be harder to implement a social choice correspondence under level-k implementation
than under Bayesian implementation.) In the next section, we show that this result does
not extend to situations with social choice correspondences (such as in the bilateral trade
environment). We show that the social planner can always implement the ex post e�cient
social choice correspondence under level-k implementation. The same cannot be said for
Bayesian implementation.

Corollary 1. Let F be a social choice function. If F is level-k implementable, then it is
Bayesian implementable.

Proof:

From Proposition 1, it holds that there exists functions f i : � æ Y , for all i œ I such
that conditions (i) and (ii) hold. Since F is a social choice function, it must be that
f 1(◊) = · · · = fn(◊) = F (◊) for all ◊ œ �. Therefore, it follows by definition that F is
Bayesian implementable using the mechanism È�, F Í.

⇤
The level-k incentive constraints are not su�cient conditions for level-k implementation

because agents with only one level of reasoning must be incentivized di�erently. Level 1
agent’s believe everyone else is a level 0, but a level 0’s behavior is determined outside of
the model and, as we assume throughout this paper, assumed to be uniformly random. This
feature of level-k implementation is also the cause of the failure of the revelation principle.
Level 1 types believe that others are placing some weight on all strategies. Thus, level 1 beliefs
depend on the mechanism and, without pinning down further details of the environment,
incentive constraints for level 1 implementation cannot be established. Because of this, we
do not provide general su�cient conditions for level-k implementation. In the next section,
we focus on a specific application - bilateral trade - where we can then say more about level-k
implementation.
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5 Bilateral Trade

5.1 Bilateral Trade Environment

The remainder of this paper focuses on the bilateral trade environment. There are two
agents: a buyer and a seller. There is a set of outcomes Y = R fi {ÿ}. The outcome y

indicates whether trade has occurred (y œ R) or if there is no trade (y = ÿ). If there is trade,
y represents the price of trade (y œ R is the price paid by the buyer to the seller).

Agents have quasi-linear utility functions. Buyer’s values are represented by v œ V where
V is some finite set, V = {v, . . . , v̄}. Seller’s values are represented by c œ C where C is
some finite set, C = {c, . . . , c̄}. For any outcome y, the utility of a buyer with a valuation v

is

ub(y = p, v) =

Y
_]

_[

p ≠ v if p œ R

0 otherwise

and the utility of a seller with a cost c is

us(y = p, c) =

Y
_]

_[

c ≠ p if p œ R

0 otherwise
.

We make three assumptions on the payo� space. The first two assumptions ensure a non-
triviality to the decision environment. The third assumption imposes a uniformity condition
on the environment, simplifying the analysis.

A1: c Æ v < c̄

A2: For any v, vÕ œ V with vÕ < v, there exists a c œ C such that vÕ < c Æ v. And, for any
c, cÕ œ C with c < cÕ, there exists a v œ V such that c < v Æ cÕ.

A3: There exists a d œ R++ such that for any v œ V or c œ C there exists an n, m œ Z+

such that v = v + nd and c = c + md.

The social planner is concerned with finding a mechanism that implements the following
three conditions:

1. Ex post e�ciency: the mechanism transfers the good to the buyer if and only if the
buyer’s valuation of the good is higher than the seller’s. In other words, the social plan-
ner is concerned with implementing the ex post e�cient social choice correspondence
F ú : � æ 2Y \ÿ:
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F ú(◊) = {y œ Y |y ”= ÿ if v Ø c} .

2. Budget balance: the price paid by the buyer equals the price received by the seller.
This requirement is satisfied automatically by our restriction of the outcome space Y .

3. Ex post individual rationality: each trader always prefers to participate in the trading
institution, rather than not participate.

Our main focus is on whether the social planner can implement ex post e�ciency under
level-k implementation (condition 1). However, conditions 2 and 3 are sensible to impose in
the bilateral trade environment and are easily satisfied here.

5.2 Ex Post E�ciency

This section contains the main result.
We first show (Lemma 1) that the necessary conditions set out in Proposition 1 are

satisfied in this environment. Proposition 2 then gives the main result: the ex post e�cient
correspondence is level-k implementable. The proof is constructive, and uses the necessary
conditions for level-k implementation to build an appropriate mechanism.

Lemma 1. Let B be a Bayesian type space and let L be a (B-based) level-k type space. Then
there exists functions f b : V ◊ C æ Y and f s : V ◊ C æ Y that satisfy the conditions of
Proposition 1 for F = F ú.

Proof:

Define

f b(v, c) =

Y
_]

_[

c if c Æ v

ÿ otherwise

Define

f s(v, c) =

Y
_]

_[

v if c Æ v

ÿ otherwise

First, it is easy to see that condition (i) holds for both f b and f s as both assign the
outcome ÿ when v < c.
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Now consider the utility of the buyer under f b with value v when seller reports costs c.
There are two cases to consider:

(i) v < c: In this case utility of buyer is 0 when reporting v and reporting any other value
vÕ either has no e�ect (if vÕ < c) or achieves trade (if vÕ Ø c) with a utility of v ≠ c < 0
since vÕ Ø c > v.

(ii)c Æ v: In this case utility of buyer is v ≠ c Ø 0 when reporting v and reporting any
other value vÕeither has no e�ect (if vÕ > c) or achieves outcome ≠1 and utility 0.

Thus, the buyer has (weakly) higher utility when reporting v than reporting any other
value vÕregardless of the beliefs of the buyer about the reports c. In other words, condition
(ii) is satisfied for the buyer.

Now consider the utility of the seller under f s with cost c when the buyer reports value
v. There are two cases to consider:

(i) v < c: In this case utility of seller is 0 when reporting c and reporting any other cost
cÕ either has no e�ect (if cÕ > v) or achieves trade (if cÕ Æ v) with utility v ≠ c < 0 since
cÕ Æ v < c.

(ii)c Æ v: In this case utility of seller is v ≠ c Ø 0 when reporting c and reporting any
other cost cÕeither has no e�ect (if cÕ Æ v) or achieves outcome ≠1 and utility 0 (if cÕ > v).

Thus, the seller has (weakly) higher utility when reporting c than reporting any other
cost cÕ regardless of the beliefs of the seller about the reports v. In other words, condition
(ii) is satisfied for the seller.

⇤
Now we state our main result.

Proposition 2. Let B be a Bayesian type space and let L be a (B-based) level-k type space.
The ex post e�cient correspondence, F ú, is level-k implementable on L, under a mechanism
that satisfies budget balance and ex post individual rationality.

Proof:

This proof is constructive. We will build a mechanism where each type has an incentive to
truthfully reveal both their payo� type (value or cost) and their level. A key behavioral
di�erence between level-k and Bayesian implementation will be that level 1 types do
not believe others are truthfully revealing their type (value or cost and level), rather
they best respond to a uniform distribution over all actions. Besides f b and f s which
will be used to ensure that level k types, with k > 1 truthfully report their type, we
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need some additional components of the mechanism to ensure that level 1 will want to
truthfully report their type. To do this we need to define functions f bú and f súwhich
help incentivize level 1 types.

Since type sets are finite, we can order V = {v0 = v, v1, . . . , v
N

= v̄} and V = {c0 =
c, c1, . . . , c

N

= c̄} where v
n

= v + nd and c
n

= c + nd.

Define

f bú(v
i

, c
j

) =

Y
_]

_[

c
j

≠ (k̄ ≠ 1
2)jd if v

i

Ø c
j

ÿ otherwise

and

f sú(v
i

, c
j

) =

Y
_]

_[

v
i

+ (k̄ ≠ 1
2)id if v

i

Ø c
j

ÿ otherwise
.

For the purpose of this proof, it is only necessary for there to be one level 0 action for
each type i.e. V ◊ {0} which would reward level 1 buyers and sellers with f búor f sú

respectively. However, in following section we show that there is one mechanism that
is robust to di�erent belief specifications. We build those features into the mechanism
now, using multiple level 0 actions: V ◊ {01}, . . . , V ◊ {0

k̄

}.

To fill in the ’gaps’ in the mechanism, we use the function, fm, which compromises
between the buyer’s and seller’s interests. And, a function, f ÿ, which never trades
regardless of the messages sent.

Define

fm(v, c) =

Y
_]

_[

v+c

2 if v Ø c

ÿ otherwise

and

f ÿ(v, c) = ÿ.

Now construct the mechanism, ÈM, gÍ, in the following way:
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Define

g((v, 0
j

)(c, 0
k

)) = f ÿ(v, c) ’(v, c) œ V ◊ C, ’j, k œ {1, . . . , k̄}

g((v, k)(c, 0
k

)) = f bú(v, c) ’(v, c) œ V ◊ C, ’k œ {1, . . . , k̄}

g((v, k)(c, 0
j

)) = f s(v, c) ’(v, c) œ V ◊ C, ’j, k œ {1, . . . , k̄} with j < k

g((v, k)(c, 0
j

)) = f s(v, c) ’(v, c) œ V ◊ C, ’j, k œ {1, . . . , k̄} with j > k

g((v, 0
k

)(c, k)) = f sú(v, c)
g((v, 0

j

)(c, k)) = f b(v, c) ’(v, c) œ V ◊ C, ’j, k œ {1, . . . , k̄} with j < k

g((v, 0
j

)(c, k)) = f s(v, c) ’(v, c) œ V ◊ C, ’j, k œ {1, . . . , k̄} with j > k

g((v, k)(c, k)) = fm(v, c) ’(v, c) œ V ◊ C

g((v, k)(c, j)) = f b(v, c) ’(v, c) œ V ◊ C ’j, k œ {1, . . . , k̄} with j < k

g((v, j)(c, k)) = f s(v, c) ’(v, c) œ V ◊ C ’j, k œ {1, . . . , k̄} with j > k

For example, if k̄ = 3, the mechanism would take the following shape:

C ◊ {01} C ◊ {02} C ◊ {03} C ◊ {1} C ◊ {2} C ◊ {3}

V ◊ {01} f ÿ f ÿ f ÿ f sú f b f b

V ◊ {02} f ÿ f ÿ f ÿ f s f sú f b

V ◊ {03} f ÿ f ÿ f ÿ f s f s f sú

V ◊ {1} f bú f b f b fm f s f s

V ◊ {2} f s f bú f b f b fm f s

V ◊ {3} f s f s f bú f b f b fm

We need to check that l defined by l
b

(v, k) = (v, k) for all k Ø 1 and l
s

(c, k) = (c, k)
for all k Ø 1 forms a level-k solution. We do so by induction on the statement: If
l
b

(v, k≠1) = (v, k≠1) and l
s

(c, k≠1) = (c, k≠1), then l
b

(v, k) = (v, k) and l
s

(c, k) = (c, k)
for all k œ {2, . . . , k̄}

First we start by check the incentives for a buyer with value v and level k œ {2, . . . , k̄}
and assume l

b

(v, k ≠ 1) = (v, k ≠ 1). From the proof of Lemma 1 we know that

u
b

(f b((v, c)), v) Ø u
b

(f b(vÕ, c), v) ’vÕ œ V, ’(v, c) œ V ◊ C

20



So, we simply need to show the following three conditions:

(1) ub(f b((c, v)), v) Ø ub(f s(vÕ, c), v) ’vÕ œ V, ’(v, c) œ V ◊ C

(2) ub(f b((c, v)), v) Ø ub(fm(vÕ, c), v) ’vÕ œ V, ’(v, c) œ V ◊ C

(3) ub(f b((c, v)), v) Ø ub(f sú(vÕ, c), v) ’vÕ œ V, ’(v, c) œ V ◊ C

For condition (1) there are two cases to consider:

(i) v < c: In this case utility of buyer is 0 when reporting v under f b and under f s

reporting value vÕ gives utility 0 (if vÕ < c) or achieves trade (if vÕ Ø c) but at a price
vÕ Ø c giving utility of v ≠ vÕ < 0.

(ii)c Æ v: In this case utility of buyer is v ≠ c Ø 0 when reporting v under f band under
f s reporting value vÕ either gives a utility of 0 (if vÕ < c), or a utility of v ≠ vÕ Æ v ≠ c

(if c Æ vÕ)

For condition (2) there are two cases to consider:

(i) v < c: In this case utility of buyer is 0 when reporting v under f b and under fm

reporting any other value vÕ either gives a utility of 0 (if vÕ < c) or achieves trade (if
vÕ Ø c) at a price (vÕ + c) /2 > v giving utility of v ≠ (vÕ + c) /2 < 0.

(ii)c Æ v: In this case utility of buyer is v ≠ c Ø 0 when reporting v under f band
under f sreporting any value vÕ either gives a utility of 0 (if vÕ < c) or a utility of
v ≠ (vÕ + c) /2 Æ v ≠ c (if vÕ Ø c)

For condition (3) there are two cases to consider:

(i) v < c: In this case utility of buyer is 0 when reporting v under f b and under f sú

reporting any other value v
m

either gives a utility of 0 (if v
m

< c) or achieves trade (if
v

m

Ø c) at a price v
m

+ (k̄ ≠ 1
2)md > v giving utility of v ≠ v

m

≠ (k̄ ≠ 1
2)md < 0.

(ii)c Æ v: In this case utility of buyer is v ≠ c Ø 0 when reporting v under f b and
under f sú reporting any value v

m

either gives a utility of 0 (if v
m

< c) or a utility of
v ≠ v

m

≠ (k̄ ≠ 1
2)md Æ v ≠ c (if v

m

Ø c)

Therefore, for any buyer with type (v, k) where k > 1, playing (v, k) is a best response to
(c, k ≠ 1) for any c œ C. Therefore, l

b

(v, k) = (v, k) is consistent with the requirements
of a level-k solution for all (v, k) œ V ◊ {2, . . . , k̄}. The same holds for the seller by an
analogous argument. Thus, the result follows by induction.

Now, it must be shown that l
b

(v, 1) = (v, 1) is consistent with the requirements of a
level-k solution for all v œ V . That is, it must be shown that for a buyer with a value of
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v playing against a seller with a cost c, playing (v, 1) is a best response to the strategy:
l
s0(m) = l

s

((c, 0))(m) = 1
|Ms| = 1

2k̄|C| for all m œ M
s

.

If type (v
n

, 1) reports (v
m

, k), k Ø 1, her payo� is

ub(((vm, k), ls0), vn) = 1
2k̄ · |C|

ÿ

cÆvm

5
(vn ≠ c + bc) + (k̄ ≠ 1)(vn ≠ c) + (k̄ ≠ 1)(vn ≠ vm) +

3
vn ≠ 1

2(vm + c)
46

= 1
2k̄ · |C|

ÿ

cÆvm

5
bc + (k̄ + 1

2) (vn ≠ c) + (k̄ ≠ 1
2) (vn ≠ vm)

6

where b
c=cj = (k̄ ≠ 1

2)jd.

Let h(v
m

, k) = 2k̄ · |C| (u
b

(((v
n

, 1), l
s0), v

n

) ≠ u
b

(((v
m

, k), l
s0), v

n

)).

Reporting (v
n

, 1) is better than over-reporting (v
m

, k) (m > n), k Ø 1 :

h(vm, k) =
ÿ

cÆvn

5
bc + (k̄ + 1

2) (vn ≠ c)
6

≠
ÿ

cÆvm

5
bc + (k̄ + 1

2) (vn ≠ c) + (k̄ ≠ 1
2) (vn ≠ vm)

6

= ≠
ÿ

cÆvm

5
(k̄ ≠ 1

2)(vn ≠ vm)
6

≠
ÿ

vn<cÆvm

5
bc + (k̄ + 1

2)(vn ≠ c)
6

Ø (m + 1)(k̄ ≠ 1
2)(m ≠ n)d ≠

S

U
ÿ

0=jÆm

j ≠
ÿ

0=jÆn

j

T

V (k̄ ≠ 1
2)d

= (m + 1)(k̄ ≠ 1
2)(m ≠ n)d ≠ 1

2 [(m + 1)m ≠ (n + 1)n] (k̄ ≠ 1
2)d

= (k̄ ≠ 1
2)d

5
(n + l + 1)l ≠ 1

2 ((n + l + 1)(n + l) ≠ (n + 1)n)
6

, since m = n + l for some l Ø 1

= (k̄ ≠ 1
2)d

5
nl + l2 + l ≠ 1

2n2 ≠ 1
2nl ≠ 1

2nl ≠ 1
2 l2 ≠ 1

2n ≠ 1
2 l + 1

2n2 + 1
2n

6

= 1
2(k̄ ≠ 1

2)dl [l + 1]

Ø 0

Reporting (v
n

, 1) is better than under-reporting (v
m

, k) (m Æ n) , k Ø 1:
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h(vm, k) =
ÿ

cÆvn

5
bc + (k̄ + 1

2) (vn ≠ c)
6

≠
ÿ

cÆvm

5
bc + (k̄ + 1

2) (vn ≠ c) + (k̄ ≠ 1
2) (vn ≠ vm)

6

=
ÿ

vm<cÆvn

5
bc + (k̄ + 1

2) (vn ≠ c)
6

≠
ÿ

cÆvm

(k̄ ≠ 1
2) (vn ≠ vm)

Ø
ÿ

0=iÆn

5
i(k̄ ≠ 1

2)d
6

≠
ÿ

0=jÆm

5
i(k̄ ≠ 1

2)d
6

≠ (m + 1)(n ≠ m)(k̄ ≠ 1
2)d

= 1
2 [n(n + 1) ≠ m(m + 1)] (k̄ ≠ 1

2)d ≠ (m + 1)(n ≠ m)(k̄ ≠ 1
2)d

= 1
2 [n(n + 1) ≠ (n ≠ l)(n ≠ l + 1)] (k̄ ≠ 1

2)d ≠ (n ≠ l + 1)l(k̄ ≠ 1
2)d since m = n ≠ l for some l Ø 1

= (k̄ ≠ 1
2)d

5
1
2n2 + 1

2n ≠ 1
2n2 + 1

2nl ≠ 1
2n + 1

2nl ≠ 1
2 l2 + 1

2 l ≠ nl + l2 ≠ l

6

(k̄ ≠ 1
2)d

5
1
2 l2 ≠ 1

2 l

6

= 1
2(k̄ ≠ 1

2)dl [l ≠ 1]

Ø 0

It is left to show that reporting (v
n

, 1) is better than reporting (v
m

, 0
k

) for all v
m

œ V

and k œ {1, . . . , k̄}.

There is no incentive to over-report (v
m

, 0
k

) (m > n).

Reporting (v
n

, 1) is better than under-reporting (v
m

, 0
k

) (m Æ n):

h(vm, 0k) =
ÿ

cÆvn

5
bc + (k̄ + 1

2) (vn ≠ c)
6

≠
ÿ

cÆvm

#
k(vn ≠ vm) + (k̄ ≠ k)(vn ≠ c) ≠ svm

$

=
ÿ

cÆvn

5
bc + (k̄ + 1

2) (vn ≠ c)
6

+
ÿ

cÆvm

svm ≠
ÿ

cÆvm

#
k(vn ≠ vm) + (k̄ ≠ k)(vn ≠ c)

$

Ø 1
2n(n + 1)(k̄ ≠ 1

2)d + 1
2n(n + 1)(k̄ + 1

2)d + m(m + 1)(k̄ ≠ 1
2)d

≠(m + 1)(n ≠ m)kd ≠ (m + 1)(n + 1)(k̄ ≠ k)d + 1
2m(m + 1)(k̄ ≠ k)d

= 1
2n(n + 1)k̄d ≠ 1

4n(n + 1)d + 1
2n(n + 1)k̄d + 1

4n(n + 1)d + m(m + 1)k̄d ≠ 1
2m(m + 1)d

≠(m + 1)(n ≠ m)kd ≠ (m + 1)(n + 1)k̄d + (m + 1)(n + 1)kd + 1
2m(m + 1)k̄d ≠ 1

2m(m + 1)kd

=
5
n(n + 1) ≠ n(m + 1) + 3

2m(m + 1) ≠ (m + 1)
6

k̄d

+1
2m(m + 1)kd ≠ 1

2m(m + 1)d + (m + 1)kd

Ø 0
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Budget balance is imposed by the our definition of the mechanism. Ex post individual
rationality is guaranteed by our choice of f b, f s, and fm. All agent’s are ensured a
weakly positive payo� under any outcome. Negative payo�s are possible under f bú and
f sú but no types (with k > 0) ever play actions that lead to f bú and f sú. Lastly, notice
that the level-k solution l achieves F ú. This is easy to see because f bú, f sú, f b, f s, and
fm all ensure trade when v Ø c and no trade when v < c and all level-k types (with the
exception when k = 0) truthfully report their payo� types.

⇤

6 Robustness of level-k mechanisms

6.1 Relaxing beliefs about payo�s

This subsection shows that we can design a level-k mechanism that is robust to relaxing the
assumption that beliefs about payo�s are determined by a specific common prior. Proposition
3 shows that the level-k mechanism that implements ex post e�cient choice correspondence
is robust to di�erent beliefs about payo� types. It is possible to design a mechanism such
that each payo� type wants to truthfully report her payo� type regardless of her beliefs
about the payo� types of others.

Proposition 3. There exists a mechanism ÈM, fÍ that level-k implements the ex post e�cient
correspondence, F ú, for any B-based level-k type space L = ÈB, k̄Í .

Proof

Use the same mechanism as in proof of Proposition 2. The behavior of any level 1
type is una�ected because level 1 beliefs about opponent’s behavior (that level 0 types
randomize across action set) - is independent of beliefs about payo� types. Behavior of
all higher types is also unchanged as a buyer with a type (v, k) would want to truthfully
report even if he knew the cost of the seller holds for any realization of (v, c) and hence
holds for any beliefs fl (shown in proof of Proposition 2).

⇤
There exists a single mechanism that level-k implements the social choice correspondence

regardless of the common prior. In other words, there is a mechanism that implements
the ex post e�cient social choice correspondence under level-k implementation for any B-
based level-k type space C = ÈB, k̄Í, where B = È�1, . . . , �

n

, flÍ. We refer to this type
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of implementation, that does not depend on the underlying common prior assumption, as
payo� robust level-k implementation.

The example in Section 2 illustrated an example which was payo� robust level-k imple-
mentable but not Bayesian implementable.

6.2 Relaxing beliefs about levels

The analysis up to this point has been based on the level-k model. This is a type of limited
depth of reasoning model where agents have particular beliefs about the levels of others.
Specifically, if an agent is of level k, he believes that others have levels exactly equal to k ≠1.
In general, we might allow a agent with level k to hold beliefs over all lower levels.11 The
following definition of limited depth of reasoning models generalize the level-k type space in
exactly that way.

Definition. A (Bayesian based) limited depth of reasoning type space (LDoR type

space) is a type space LLDoR = ÈB, k̄, ⁄1, . . . , ⁄k̄Í with ⁄k œ —({0, . . . , k ≠ 1}).

As in the level-k type space, an agent’s beliefs about the cognitive types of others are
determined both by her payo� type and her level. The beliefs of a type t

i

= (◊
i

, k
i

) about
the types of others, c≠i

= (◊≠i

, v≠i

), is determined by the function b
i

(c≠i

|c
i

) :

b
i

(c≠i

|c
i

) =
1
⁄k

v1 ◊ · · · ◊ ⁄k

vI≠1

2
p(◊≠i

|◊
i

)

where the notation ◊ ◊ v represents a payo� type-level profile (◊1, v1) ◊ · · · ◊ (◊
I

, v
I

), where
v œ {0, . . . , k̄}I .

A agent with a level k puts weight only on other types that have a level less than or equal
to k≠1. This captures the core assumption of the limited depth of reasoning literature which
is that a agent of level k believes that other agents have levels strictly less than k. This
assumption ensures that agents can calculate their optimal actions in a recursive fashion
with a finite number of steps given the behavior of level 0 types. As in the level-k model, a
agent’s beliefs about the payo� types of others are determined by the common prior fl.

Given the definition of an LDoR type space, we can apply the level-k solution concept
and level-k implementation to this generalized type space, by simply using the belief function
b

i

(c≠i

|c
i

) defined for the LDoR type space in the definition of a level-k solution. We refer to
this as LDoR implementation.

11Cognitive hierarchy models relax the level-k belief structure in this way. In the cognitive hierarchy
model, a level k type has beliefs over all lower levels determined by a conditional Poisson distribution. See
Camerer et al. (2004) for specifics.
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Given that the LDoR type space generalizes level-k type spaces it could be more di�cult
to implement a particular social choice correspondence under this generalization. But, this
is actually not the case. In the example from Section 2, the social choice correspondence
can be implemented under LDoR. Further, this can be done in a robust way. There exists
a single mechanism that can implement the social choice correspondence under any LDoR
type space.

This can be done more generally in the bilateral trade environment. This result is for-
malized in the following proposition.

Proposition 4. There exists a mechanism that LDoR implements the ex post e�cient social
choice correspondence, F ú, in any (B-based) LDoR type space CLDoR = ÈB, k̄, ⁄1, . . . , ⁄k̄Í.

Proof

Use the same mechanism as in proof of Proposition 2.

The proof follows by induction on the statement: If types (v, i) and (c, j) report (v, i)
and (c, j) respectively for all (v, i) œ V ◊ {1, . . . , k ≠ 1} and (c, j) œ C ◊ {1, . . . , k ≠ 1},

then type (v, k) type will report (v, k) for all v œ V and (c, k) type will report (c, k) for
all C œ C.

The behavior of any level 1 type is unchanged, thus the result holds for k = 1.

Now assume the (c, j) type reports (c, j) for all C œ C and j œ {1, . . . , k ≠ 1}.

Consider the behavior of a buyer with type (v
n

, k). Suppose she is aware that she is
playing against a seller with a cost c. Then, she believes the seller is playing some
mixture, ‡, over {(c, 1), (c, 2), . . . , (c, k ≠ 1)} with probability 1 ≠ ⁄k

0 and the strategy l0s

with probability ⁄k

0.

Suppose ⁄k

0 = 1. It is easy to see that the strategy (v
n

, k) gives the same payo� as (v
n

, 1)
and since (v

n

, 1) is a best response to l0s

, (v
n

, k) must be as well.

Now, suppose that ⁄k

0 = 0.

Reporting (v
n

, k) gives utility

ub((vn, k), ‡), vn) = (vn ≠ c)

Ø µ1(vn ≠ c) + 1
2µ2(vn ≠ c) + 1

2µ2(vn ≠ vm) + µ3(vn ≠ vm) + (1 ≠ µ1 ≠ µ2 ≠ µ3)(vn ≠ vm)

≠(1 ≠ µ1 ≠ µ2 ≠ µ3)(k̄ ≠ 1
2)md for any µ1, µ2, µ3 œ [0, 1], with µ1 + µ2 + µ3 = 1, vm Ø c

= ub((vm, kÕ), ‡), vn) for vm Ø c, kÕ Ø 0 and some µ1, µ2, µ3 œ [0, 1] with µ1 + µ2 + µ3 = 1

Ø ub((vm, kÕ), ‡), vn) for vm < c, kÕ Ø 0
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Therefore, reporting (v
n

, k) is the best response when both ⁄k

0 = 0 and when ⁄k

0 = 1,
thus it must be the best response when ⁄k

0 œ [0, 1].

Therefore, l
b

(v, k) = (v, k) is a level-k solution. The analogous argument can be made
to show that the seller truthfully reports his type, i.e. l

s

(c, k) = (c, k)

⇤
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