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Abstract 

In Binary Threshold Public Good (BTPG) games n players contribute or not to the 
production of a public good which is produced if and only if there are at least k 
contributors. The BTPG games with the highest (k=n) and the lowest (k=1) threshold are 
the Stag Hunt game and the Volunteer’s Dilemma. There is a plethora of equilibria in 
BTPG games. We experimentally investigate 16 different symmetric and asymmetric 
BTPG games with n=4 and k=1,2,3,4 and test general theoretical attributes of equilibria 
and whether equilibrium play can apply at all. As theory predicts, neither magnitude 
effects nor a negative instead of a positive frame affect behavior which is contrary to the 
bulk of the experimental literature. In the Stag Hunt game, which is often used to 
discriminate between payoff dominance and risk dominance, risk dominance as a 
description of behavior is clearly rejected and payoff dominance is moderately supported. 
We show that no theory with homogeneous players can describe behavior. 
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Highlights 

-  A public good is produced if a sufficient number of players contribute to its production. 

- Players with the same cost/benefit ratio contribute with the same frequency. 

- Negative vs. positive costs and benefits do not cause a framing effect. 

- In the Stag Hunt game, payoff dominance is a better predictor than risk dominance.  

- No theory of behavior with identical subjects can apply. 
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1. Introduction 

In order to substitute the empty toner cartridge of a publicly used printer only one 

volunteer is needed who is ready to bear the costs in terms of time lost and dirty hands. 

This is an example of the Volunteer’s Dilemma, first analyzed by Diekmann (1985). More 

severe than this example are cases where victims of criminal violence or an accident 

need help, at least by someone calling the police1. Sometimes more than one volunteer 

is necessary for the production of a public good, for example when a large conference 

has to be organized or an office party has to be prepared or when a low income friend 

needs help because he moves to another apartment. 

 It requires all members of a cartel to keep their contract secret. With plausible 

assumptions about the profitability of the cartel and incentives for Whistle Blowers, this is 

an example of the Stag Hunt game, first described by Rousseau (1997 [1776]). A class of 

examples of these games are frontlines which have to be defended by individuals or 

units. These can be military frontlines or dykes or standards of behavior. In the case of 

dykes, in former times communities (villages) were responsible to keep their section of 

the dyke in order.  

The Volunteer’s Dilemma and the Stag Hunt game are extreme cases of Binary 

Threshold Public Good (BTPG) games where players have a dichotomous choice of 

either contributing to the production of a public good or not. The public god will be 

produced if and only if a certain threshold of contributions is reached or surpassed. In this 

paper the threshold is described as “at least k of n players must contribute”. Player i 

bears costs ܿ௜ ൐ 0 if he contributes and he enjoys benefits ܩ௜ ൐ ܿ௜ if the public good is 

produced. This structure is completely different from a linear public good game with 

binary contributions which has a unique equilibrium (no one contributes) while a BTPG 

game has a plethora of pure and mixed strategy equilibria. No player contributing is one 

of the equilibria if k>1, but for k  n it is (strictly for k<n) Pareto-dominated by all other 

equilibria. If ܩ௜ ൏ 	 ܿ௜ ൏ 0, then it is individually profitable to contribute but players provide 

a “public bad” when contributions surpass the threshold. An example is CO2 emissions if 

there is a threshold below which damages are bearable and beyond which catastrophe is 

                                                            

1 An often cited example is Kitty Genovese who was stabbed to death in New York City, on 
March 13, 1964. According to the The New York Times, 37 or 38 witnesses saw or heard the attack 
and did not call the police. (https://en.wikipedia.org/wiki/Murder_of_Kitty_Genovese) 
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inevitable. Voting in parliaments and in committees as well as shareholder voting is an 

important example for BTPG games (see Bolle, 2015). In many other examples a team 

with minimal requirements concerning the number and perhaps also the complementary 

qualifications2 of the members is necessary to launch a project or solve a problem for the 

best of their community.  

Experiments. We report here about 16 BTPG experiments in four treatments. In the first 

four experiments (Treatment S+), players have different positive costs ܿ௜ and benefits ܩ௜ 

but their cost/benefit ratio is the same. In the next four experiments (Treatment S-), costs 

and benefits are negative but absolutely the same as in S+. In the other eight 

experiments, benefits are always the same but players have different costs. In four 

experiments (Treatment A), the differences in costs are small and completely mixed 

strategy equilibria exist, in four experiments (Treatment B), they are large and completely 

mixed strategy equilibria do not exist3. There are n=4 members of the experimental 

groups. In every treatment all possible thresholds k are investigated, i.e. k=1,2,3, and 4. 

Our goal is to describe behavior in these games and test game theoretic predictions and 

regularities found in other investigations.  

Results. A surprising result is the lack of framing effects. For players with the same 

cost/benefit ratio we find: 

(i) Within a game, players with the same sign of costs contribute with the same 

probability.  

(ii) Behavior in a game with a positive frame (0 ൏ ܿ௜ ൏  ௜) is, after the re-labelingܩ	

of actions, the same as in a game with a negative frame (ܩ௜ ൏ 	 ܿ௜ ൏ 0). 

Note that framing effects are regularly reported in economic experiments4. Two further 

fundamental questions concern the dependency of contribution probabilities on costs ܿ௜ 

and the threshold k. Intuitively we expect:  

                                                            
2 “Complementary qualifications” require a generalization of the threshold definition. In Bolle (2015) the threshold is 
described by sufficient subsets of players as in cooperative games with binary characteristic functions (called simple 
cooperative games or voting games). 
3 Completely mixed strategy equilibria are plausible benchmarks because all other equilibria (except no player 
contributing for k>1 and all players contributing for k=n) require tacit agreement about some players playing mixed 
and others pure strategies. 
4 In linear Public Good experiments, it has always been found that the negative frame (linear static Common Pool 
experiments) evokes significantly less cooperation than the positive frame (Andreoni, 1995, Willinger and 
Ziegelmeyer, 1999; Park, 2000; Dufwenberg et al., 2011). This difference is confirmed in the only BTPG experiment 
with a positive and a negative frame (Sonnemans et al., 1998, see below). 
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(iii) When benefits are the same then higher-costs players contribute with lower 

probability than lower-costs players. 

If we take the most efficient of the completely mixed strategy equilibria as a benchmark 

we should expect the contrary relationship; but (iii) is confirmed in experiments by 

Diekmann (1993), Franzen (1995), and Goeree (2005) for the Volunteer’s Dilemma (k=1) 

and by this investigation for all thresholds k. Explanations can be efficiency concerns 

(Przepiorka and Diekmann, 2013, and Diekmann and Przepiorka, 2015, in a Volunteer’s 

Dilemma experiment) or equilibria with role dependent social preferences as suggested 

by Bolle and Otto (2016) and Bolle (2016). 

(iv) Higher thresholds go along with higher contribution probabilities.  In the Stag 

Hunt game of the positive frame (k=n) contribution probabilities are close to 1, 

in the negative frame (k=1) they are close to 0.  

This is an intuitive consequence of payoff dominance. If risk dominance applies then 

contribution probabilities should decrease with higher k. In the positive frame, a player 

must more and more rely on other players’ contributions; for k=n contribution probabilities 

would be 0.  In the negative frame, for decreasing k, a player must more and more rely 

on the non-contributions of others. Risk dominance predicts contribution probabilities of 1 

for the case k=1. 

In S+ and S- the Harsanyi and Selten (1988) equilibrium selection (called HS) can  easily 

be applied. The selected equilibrium is characterized as the payoff dominant among the 

symmetric equilibria. Although some average contribution probabilities are close to the 

HS equilibrium the respective hypothesis will be rejected and, more than this:  

(v) Behavior cannot be described by identical players.  

Note that identical players do not mean identical play if cost/benefit ratios are different. 

Therefore any quantitative prediction by unique equilibria or non-equilibrium play of 

identical players is rejected. Nonetheless, behavior of a large fraction of subjects may be 

close to “plausible” equilibrium strategies which may then guide qualitative hypotheses. 

For treatments A and B it is difficult to derive the HS equilibrium. Nonetheless, completely 

mixed strategy equilibria have an intuitive appeal as benchmarks (Diekmann, 1985, 

1993; see also footnote 2). In treatment A such equilibria exist, in Treatment B they do 

not exist. We might conclude that behavior in Treatment B is less stable than behavior in 
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A, but stability is difficult to measure without a reliable theory of behavior. If we take the fit 

of a regression equation for contributions as a measure of stability then behavior in B is 

as stable as that in A. An explanation may be social preferences under which completely 

mixed strategy equilibria exist also in B. However, we do not consider this a strong result.  

Theoretical predictions are derived from completely informed and fully rational players 

who do not need to learn. Contrary to this hypothesis we find traces of dynamics in our 

games with eight repetitions in a stranger design. 

(vi) (a) There is a weak trend in S+ and S-  towards more cooperation. (b) When a 

player was “pivotal” in the previous round then his contribution probability 

increases in games with a positive and decreases in games with a negative 

frame. 

Pivotality of player i means that k-1 of i’s co-players contributed and therefore player i’s 

decision was crucial for the outcome. Related findings in the literature (see below) stem 

from experiments with sequential contributions where pivotality means that, without a 

player’s contribution, k cannot or might not be reached. The difference is that, with 

sequential contributions, players know when they are or could be pivotal while, with 

several rounds of the static game, players experience to be pivotal and seem to believe 

that, even in a stranger design, i.e. with new co-players, there is an increased probability 

of being pivotal also in the next round. 

To the best of our knowledge, (i) and (iv) have never been investigated and (ii) only in 

one experiment (see below). (iii) confirms results from the literature and the results 

concerning the Stag Hunt game contribute to the literature with 4 non-2x2 games. (v) 

may be interpreted as HS and other equilibrium selection theories (applied with players 

with identical preferences)  not really describing behavior. They may or may not provide 

us with correct qualitative predictions of behavior. Hansanyi’s (1995) later favoring of risk 

dominance over payoff dominance as in HS leads to even worse predictions. The pivot 

player result (vi b) is new and surprising because it could not be expected in repetitions 

of a simultaneous moves game with a stranger design. At last, it should be emphasized 

that our results are derived from 16 games with different frames and a large variety of 

cost/benefit ratios. Therefore, we do not think that our results are driven by a special 

selection of experimental parameters. In Section 2 we formulate hypotheses concerning 

(i) to (v), sometimes with the contrary statement which is then rejected in Section 4. 
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Additional literature. Theoretical and experimental work concerning the Volunteer’s 

Dilemma (k=1) has already been mentioned. Experimental studies of the Stag Hunt game 

(k=n) are mostly based on 2x2 games and are concentrated on the question which of the 

two pure strategy equilibria “no one contributes” (mostly selected by risk dominance) and 

“all contribute” (selected by payoff dominance) is played. Van Huyck et al. (1990) and 

Rydval und Ortmann (2005) find tendencies towards risk dominance; tendencies towards 

payoff dominance are found by Battalio et al. (2001), provided the “optimization premium” 

is high enough, and, in an experiment with chimpanzees, by Bullinger et al. (2011). 

Whiteman and Scholz (2010) find a positive influence of social capital. Al-Ubaydli et al. 

(2013) find that cognitive ability and risk aversion have no impact on successful 

coordination while patience does. Büyükboyacı (2014) shows that information about the 

risk attitude of others changes behavior which is, however, not affected by one’s own risk 

attitude. Our experiments with four-player games are difficult to compare with all of these 

two-player games. Our results strongly support payoff dominance in the Stag Hunt game 

(72% - 97% average contributions in the four treatments). Feltovich and Grossman 

(2013) investigate the influence of group size (2 to 7 players) and communication on 

contributions. Without communication, contributions are independent of group size 

(between 37% and 45%).  

Experiments with intermediate thresholds require contributions from two of three players 

up to six of ten. In all investigations only one or two different thresholds are considered. 

Goren et al. (2003) investigate a BTPG game with five players with different weights (5, 

10, 15, 20, 25) and a threshold which requires the sum of weights to be at least 30. With 

the exception of Palfrey and Rosenthal (1991) all experiments are with complete 

information about monetary payoffs. Van de Kragt et al. (1983) and Palfrey and 

Rosenthal (1991) emphasize the importance of communication for successful 

coordination. Dawes et al. (1986) and Rose et al. (2002) investigate the (positive) 

influence of refunds of insufficient contributions and Dawes et al. (1986) also the 

punishment of successful free riding. Goren et al. (2003) find that the sequential-moves 

game leads to more efficient outcomes than the simultaneous-moves game and Erev and 

Rapoport (1990) show that, in addition, the information provided to the players in the 

sequential game matters. Erev and Rapoport (1990), Chen et al. (1996), and McEvoy 

(2010) find that, in sequential decisions, the pivotality (criticality) of players increases the 

contribution frequency. Bartling et al. (2015) find that pivotality increases responsibility 

attribution.  Sonnemans et al. (1998) is, to the best of our knowledge, the only BTPG 
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experiment where players contribute under a positive and under a negative frame. In the 

course of repetitions of games they find, in the negative frame, a trend towards less 

cooperation while we find a tendency towards HS, i.e., more cooperation. The main 

difference between the experiments is that Sonnemans et al. (1998) investigate 20 

rounds with a partner design while we have eight rounds with a stranger design (i.e. a 

new random selection of groups in every round). In addition, their experiment has only 

one threshold, namely k=3 of n=5, while we investigate k=1,2,3,4 of n=4. 

There are more experimental investigations of Threshold Public Good games with non-

binary contributions and payoff functions with two steps. For an overview see 

Fischbacher et al. (2011) and Norman and Rau (2015).  

Schedule. In the next section, the theory of BTPG games is presented (as far as 

necessary for the evaluation of the experimental results) and hypotheses are formulated. 

Section 3 describes the experiment and Section 4 provides results. Section 5 concludes. 

 

2. Equilibria and equilibrium selection 

The general theory of BTPG games is developed in Bolle (2015). Here we concentrate 

on players with equal importance for passing the threshold. In the positive frame, there is 

a set of players ܰ ൌ ሼ1,… , ݊ሽ who can contribute (with costs ܿ௜ ൐ 0) or not (without costs) 

to the production of a public good. If a certain threshold k of contributions is surpassed, 

the public good is produced (the project is launched) and the players earn ܩ௜ ൐ ܿ௜. There 

are ቀ
݊
݇ቁ pure strategy equilibria with the launch of the project where exactly k players 

contribute. For ݇ ൐ 1 there is one pure strategy equilibrium without the launch of the 

project where no one contributes. Only the latter equilibria and the “all contributing” 

equilibrium of the Stag Hunt game (k=n) are symmetric pure strategy equilibria. With 

equal (different) cost/benefit ratios mixed strategy equilibria are symmetric (asymmetric). 

The symmetry case is proved in Bolle (2015). 

The case ܩ௜ ൏ 	 ܿ௜ ൏ 0 is called the negative frame. It can be transformed into the positive 

frame. 

Strategically neutral transformation: By renaming “contribution” as “non-contribution” 

(and vice versa), exchanging thresholds ݇ and ݊ െ ݇ ൅ 1, and renormalizing utilities so 
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that “non-contribution/non-launch” has a value of zero, the negative frame is transformed 

into the positive frame.   

Let us assume that the players’ contribution probabilities are ݌ ൌ ሺ݌௜ሻ௜ୀଵ,…,௡.  ܳ ൌ ܳሺ݌ሻ 

denotes the probability of success, i.e. that k or more players contribute to the production 

of the public good. ܳି௜  (ܳା௜) denote the probability of success if ݅ does not contribute 

(contributes). These probabilities dependent only on ݌௝ , ݆ ് ݅ ௜ݍ . ൌ ܳା௜ െ ܳି௜  is the 

probability that ݅‘s contribution is crucial for the production of the public good. With these 

definitions player i’s expected revenue is  

(1)                        ܴ௜ሺ݌ሻ 	ൌ ௜ܩ	 ∗ ܳሺ݌ሻ െ  ௜ܿ௜݌

                                       ൌ ௜ܩ ∗ ܳି௜ ൅	݌௜ ∗ ሾܩ௜ ∗ ௜ݍ െ ܿ௜ሿ . 

A mixed strategy equilibrium with 0 ൏ ௜݌ ൏ 1 requires that ܴ௜ is independent of ݌௜, i.e. 

(2)                               ߲ܴ௜ ⁄௜݌߲ ൌ ௜ܩ ∗ ௜ݍ െ ܿ௜ ൌ 0. 

This requirement has been derived verbally by Downs (1957, p. 244) for the binary 

decision of voting or not. If ܩ௜ ∗ ௜ݍ െ ܿ௜ ൏ ሺ൐ሻ0 then player i contributes with ݌௜ ൌ 0	ሺ1ሻ. 

Inserting ݍ௜ from (2) into (1) provides us with the equilibrium profit which i expects if she 

plays a mixed strategy. 

(3)               ܴ௜ ൌ ௜ܩ ∗ ܳି௜  

                        ൌ ௜ܩ ∗ ܳା௜ െ ܿ௜. 

Proposition 1: The following statements apply in equilibrium: 

(i) If i plays a strictly mixed strategy, then ݍ௜ ൌ ௜ݎ ൌ ܿ௜/ܩ௜. 

(ii) ݍ௜ ൐ ௜݌ ௜ impliesݎ ൌ 1 and ݍ௜ ൏ ௜݌ ௜  impliesݎ ൌ 0. 

(iii) In equilibrium, ܴ௜ ൌ ௜݌ ௜ܳି௜ applies forܩ ൏ 1 and  ܴ௜ ൌ ௜ܳା௜ܩ 	െ ܿ௜ for ݌௜ ൐ 0. 

Proof: (1), (2) and (3). 

In the positive frame, the case ࢑ ൌ ࢔  is the Stag Hunt game, first discussed by 

Rousseau (1997 [1762]). There are two symmetric pure strategy equilibria, namely ݌ ൌ

ሺ0,… 0ሻ ݌ , ൌ ሺ1,… ,1ሻ  and, possibly, a completely mixed strategy equilibrium which is 

derived from (2) and ݍ௜ ൌ ∏ ௝௝ஷ௜݌ . It follows ݌௜ ൌ ൫∏ ௝௝ݎ ൯
ଵ/ሺ௡ିଵሻ

௜ݎ/ . The condition of the 

existence of this equilibrium is ݌௜ ൏ 1 for all ݅. This condition is always fulfilled for n=2 or if 
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all ݎ௜ are identical. Smaller ݎ௜ are connected with larger ݌௜. Because of (3) and ܳି௜ ൌ 0 the 

mixed strategy equilibrium yields zero profits. There are possibly also pure/mixed 

strategy equilibria where some players contribute with probability 1 and the others play 

the mixed strategy equilibrium of a reduced Stag Hunt game. According to Proposition 1, 

those who contribute with probability 1 earn ܴ௜ ൌ ௜ܩ ∗ ܳା௜ 	െ ܿ௜ ൒ 0 (if ܴ௜ ൏ 0, this is not an 

equilibrium) and the mixed strategy players earn zero. Because of Proposition 1 (iii),  ݌ ൌ

ሺ1,… ,1ሻ is the payoff-dominant equilibrium.  

Let us, for this case and certain parameters, determine the risk dominant equilibrium 

under the definition of Harsanyi and Selten (1988). In Bolle (2016) also the Global 

Games equilibrium selection (Carlsson and van Damme, 1993) is applied to the Stag 

Hunt game. For our experiments, both principles select ݌ ൌ ሺ0,0,0,0ሻ.  

Proposition 2: In the case k=n, if ݎ௜ ൐ ∏ ௝௝ஷ௜ݎ   for all ݅ then ሺ0, … ,0ሻ risk dominates all 

other equilibria p. 

Proof:  Appendix  A. 

Corollary: In Treatments S+ and S- with identical cost/benefit ratios and in Treatments A 

and B with cost/benefit ratios (0.225, 0.25, 0.275, 0.3) and (0.1, 0.2, 0.3, 0.4), the risk 

dominant equilibrium in the game with k=4 is ݌ ൌ ሺ0,… ,0ሻ. 

In the positive frame, the case ࢑ ൌ ૚ is the Volunteer’s Dilemma, first investigated by 

Diekmann (1985, 1993). There are n pure strategy equilibria where exactly one player 

contributes. The only completely mixed strategy equilibrium is derived from (2) and ݍ௜ ൌ

∏ ሺ1 െ௝ஷ௜ ௜݌ ௝ሻ. It follows݌ ൌ 1 െ ൫∏ ௝௝ݎ ൯
ଵ/ሺ௡ିଵሻ

 ௜. Therefore this equilibrium exists underݎ/

the same conditions as that of the Stag Hunt game. Smaller ݎ௜ are connected with smaller 

௜ (regarded as counter-intuitive by Diekmann 1993). Because of Proposition 1 and ܳା௜݌ ൌ

1 , in this equilibrium players earn ܴ௜ ൌ ௜ܩ െ ܿ௜ , i.e. as much as players who always 

contribute. 

If 1<k<n, n>3, then completely mixed strategy equilibria, if they exist, can be determined 

only by numerical methods. For n=3, a quadratic equation has to be solved. If k of the n 

players are necessary for the production of the public good and if all ܿ௜ ⁄௜ܩ ൌ ௜ݎ ൌ  are ߩ

equal, then, in a completely mixed strategy equilibrium, all ݌௜ ൌ  ,are equal (see Bolle ߨ

2015) and ߨ is derived from  



11 
 

ߩ    (4) ൌ ௜ݍ ൌ ቀ݊ െ 1
݇ െ 1

ቁߨ௞ିଵሺ1 െ  .ሻ௡ି௞ߨ

For 1 ൏ ݇ ൏ ݊, the right hand side of (4) is a unimodal function of  ߨ with a maximum at  

ሺ݇ െ 1ሻ ሺ݊ െ 1ሻ⁄ . Therefore (4) has either two solutions ߨ ′′ሺ݇ሻ ൐  (ߩ for small enough) (k) ′ߨ

or one solution (border case) or no solution; i.e., completely mixed strategy equilibria do 

not necessarily exist and, if they exist, generically there are two. In the positive frame, the 

equilibrium with ߨ′′ Pareto-dominates the one with ߨ′ and vice versa in the negative frame 

(Proposition 1 (iv)). In our experimental treatments S+ and S- two completely mixed 

strategy equilibria exist. All completely mixed or symmetric pure equilibria are reported in 

Table 2. 

Threshold k 1 2 3 4 
# pure str. equ. 4 7 5 2 
# compl. mixed equ.  1  2  2  1 
# pure/mixed equ. 10  24  24  10 
     
Table 1: Number of equilibria if the threshold is “k contributions from 4 players”. 

Treat. Type Equ. k=1 k=2 k=3 k=4 

S+ Compl.Mix+  .26  0.46  .78  1 

 ComplMix ‐  ‐  .22  .54  .74 

 0  ‐  0  0  0 

S- Compl.Mix+  0  .22      .54      .74 

 ComplMix ‐  .26  .46      0.78  ‐ 

 1  1  1  1  ‐ 

A Compl.Mix+  (.26,.33,.39,.44) (.52,.59,.66,.74)  (.83,.87,.91,.96)  1 

 ComplMix ‐  ‐  (.17,.13,.09,.04)  (.48,.41,.34,.26)  (.74,.67,.61,.56) 

 0  ‐  0  0  0 

B Compl.Mix+  ‐  ‐  ‐  1 

 ComplMix ‐  ‐  ‐  ‐  ‐ 

 0  ‐  0  0  0 

            

Table 2: All Symmetric or completely mixed strategy equilibria.  

Explanatory note: For symmetric equilibria only the identical contribution probability is reported,  

in asymmetric cases the vector of contribution probabilities for (player 1, player 2, player 3, player 

4). Bold type means: selected by HS. For S+, A, and B ComplMix+ indicates, for k=1, the (if 
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existent) unique completely mixed strategy equilibrium , for k=2 and 3 the Pareto-superior of the 

(if existent)  two completely mixed strategy equilibria and, for k=4, always contributing. ComplMix- 

does not exist for k=1; for k=2 and 3, it indicates the Pareto-inferior of the (if existent)  two 

completely mixed strategy equilibria and, for k=4, the (if existent) unique completely mixed 

strategy equilibrium. In the negative frame S- vice versa. 

In symmetric games, Harsanyi and Selten (1988) restrict their selection to the set of 

symmetric equilibria. These can generically be ordered according to Pareto-dominance. 

Although S+ and S- have only “essentially symmetric” players (different ܿ௜  and ܩ௜  but 

identical ܿ௜/ܩ௜) we jnvestigate this selection criterion. Then, in S+, the unique completely 

mixed strategy of the Volunteer’s dilemma is played for k=1, ߨ ′′ሺ݇ሻ for k=2 and 3, and 

௜݌ ൌ 1 for k=4. In S-, HS selects ݌௜ ൌ 0 for k=1, ߨ ′ሺ݇ሻ 	ൌ 1 െ ߨ ′′ሺ݊ െ ݇ ൅ 1ሻ for k=2 and 3 

and the unique completely mixed strategy of the Stag Hunt game for k=4. 

Also in our experimental treatments A with moderately different ܿ௜ ⁄௜ܩ ൌ ௜ݎ  we find two 

completely mixed strategy equilibria. For the largely different ݎ௜  in Treatment B no 

completely mixed strategy equilibria exist. In all cases, there are many more pure/mixed 

strategy equilibria (see Table 1). In the case k=4, with parameters from treatments S+, S- 

or A, there are two pure strategy equilibria (all or no one contributes), there is one 

completely mixed strategy equilibrium, there are four equilibria where one player 

contributes with certainty and the others according to case k=n with n=3, and there are 

six equilibria where two players contribute with certainty and the other two according to 

case k=n with n=2. In Treatment B several of these equilibria do not exist. 

Hypotheses. Every player plays games with eight repetitions in a stranger design and is 

characterized by his individual contribution frequency ܨܥܫ, a number between 0 and 8. 

Aggregate behavior of player types in a game with threshold k can be characterized by 

frequency distributions ௜݂ሺܨܥܫ, ݇ሻ of player types i or, more aggregated, by the average 

contribution probabilities ܥܣ ௜ܲሺ݇ሻ . The following hypotheses give (i) to (v) from the 

introduction an exact meaning. The hypothesis concerning (vi) is necessarily vague. 

(H1) In Treatments S+ and S-, large and small players have the same ܥܣ ௜ܲሺ݇ሻ   and 

௜݂ሺܨܥܫ, ݇ሻ. 

(H2) If ܥܣ ௜ܲሺ݇ሻ  and ௜݂ (ICF) apply for S+ and ܥܣ ௜ܲ′ሺ݇ሻ  and ௜݂ ′ (ICF) for S- then (a) 

ܥܣ ௜ܲ′ሺ݇ሻ 		ൌ 1 െ ܥܣ ௜ܲሺ݊ െ ݇ ൅ 1ሻ  and  (b) ݂′௜ሺICFሻ ൌ 8 െ ௜݂ሺܨܥܫ, ݊ െ ݇ ൅ 1ሻ. 
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(H1) is motivated by Proposition 1 and (H2) by the Strategically Neutral Transformation 

(see above). Let us now ask whether at least properties of the HS equilibrium in S+ and 

S- and properties of the Pareto-superior of the two completely mixed strategy equilibria in 

Treatment A generally apply. 

(H3) If, in Treatments A and B, ܿ௜ ൏ ௝ܿ then  ܥܣ ௜ܲሺ݇ሻ ൏ ܥܣ	 ௝ܲሺ݇ሻ. 

(H4) (a) In all treatments, ܥܣ ௜ܲሺ݇ሻ increases with k. (b) In all treatments, in the Stag Hunt 

game (k=n) the payoff dominant equilibrium is selected. 

H3 and H4 are inspired by the numerical result of Treatment A in Table 2. Diekmann 

(1993) has derived H35 for the Volunteer’s dilemma, but found opposite relations in an 

experiment. The Pareto-inferior of the two completely mixed strategy equilibria show 

such an order of equilibrium probabilities (see Table 2) but they will turn out to be much 

lower than the empirical contribution probabilities.  

We do not only want to test the hypothesis that behavior in S+ and S- can be described 

by the equilibrium selected by HS, but, more general, the hypothesis that behavior of all 

subjects of the same type (defined by cost/benefit ratio and sign of costs and benefits) is 

the same.  

(H5) In each game the behavior of subjects with the same player type is the same. 

Under this hypothesis we should find, for every player type, a binomial distribution of 

individual contribution frequencies. The basis for this requirement is the implicit 

assumption that also in finitely repeated games behavior is the same in every round. 

Therefore we introduce the following hypothesis with an admittedly vague part (b). 

(H6) (a) There is no trend in the decisions. (b) There are no other dynamic effects. 

 

3. Experiments 

All our experimental games had n=4. If at least k players contributed, then every player 

received a benefit of ܩ௜ Lab Dollars. In Treatment 1 (positive frame), players 1 and 2 with 

ሺܿ௜, ௜ሻܩ ൌ ሺ4,10ሻ are called small players; players 3 and 4 with ሺܿ௜, ௜ሻܩ ൌ ሺ8,20ሻ are called 

                                                            
5 Diekmann (1993) calls this property paradoxical. Bolle (2015) discusses the relations between costs and equilibrium 
probabilities in more detail and derives connections between orders of both and strategies being strategic 
complements and substitutes. 
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large players. All four players had the same ݎ௜ ൌ ܿ௜ ⁄௜ܩ ൌ 0.4.  In Treatment 2 (negative 

frame), ܩ௜ and ܿ௜ have the same absolute values as in Treatment 1 but are both negative. 

In Treatments 3 and 4, every player received a benefit of ܩ௜ ൌ 20  Lab Dollars. In 

Treatment 3, contribution costs (ci) are (4.5, 5, 5.5, 6) Lab-Dollars and players thus have 

cost/benefit ratios (ri)=(0.225, 0.25, 0.275, 0.3); in Treatment B costs are (2, 4, 6, 8) Lab-

Dollars and cost/benefit ratios (0.1, 0.2, 0.3, 0.4). The (cost, benefit) combination of a 

player defined his type. A player kept his type during the whole experiment. Every subject 

participated in only one treatment but in four experiments with k=1,2,3,4. 

We conducted a computerized laboratory experiment (implemented in a z-tree program 

design, Fischbacher, 2007) with 8 subjects per session who were randomly assigned to a 

player type. In Treatments 1 and 2, in every session there were four small and four large 

players. In Treatments 3 and 4, in every session there were two players of each type. 

Players participated in 32 games played in 32 periods. In every period, the eight subjects 

were randomly allocated to two groups with the restriction that the groups consisted of 

two small and two large players (Treatments 1 and 2) of exactly one player of each type 

(Treatments 3 and 4). Always after eight games the threshold k changed.  During 32 

periods all thresholds were adopted in different orders but with the restriction that, across 

the sessions, each k was played about the same times first, second, third, and fourth. 

Subjects were not informed about the order of the thresholds in the beginning, but only 

when the threshold was changed. As described above we used a stranger design, i.e. the 

composition of the groups was changed after each round and the co-players could not be 

identified. Subjects were informed about how many players contributed to the public good 

but not who contributed. Hence, players were unable to build a reputation. Most 

experiments took place in the laboratory of the university Viadrina in Frankffurt (Oder), 

but 18 of the 56 sessions were carried out in the laboratory of Technische Universität 

Berlin. (See Table 3.) We find a small subject pool effect. 

Before subjects played the BTPG games, they were given printed instructions and had 

the possibility to ask questions. Instructions contained general information, the 

description of the threshold public good game and two example calculations (see 

Appendix C). Furthermore, they had to answer five on-screen comprehension questions 

to make sure that everyone understood the game. The experiment did not start before all 

subjects had answered the questions correctly. In cases of problems, personal advice 

was given. In every period, the subjects were reminded of the actual threshold and, every 
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8th period, the changing of the threshold was announced. In each period subjects were 

informed in the decision screen that the group composition had been changed and they 

were required to decide whether or not to contribute. In the profit display screen they 

were informed about the number of contributing players and whether the threshold was 

reached. They further received information about their payoff in the current period. 

Treat‐

ment 

Endow‐ 

ment 

costs 

ci 

Benefits 

Gi 

 

ci/Gi 

 #sessions 

(at V, at TU)

S+  8  (4,4,8,8)  (10,10,20,20)  0.4  (10,  ‐) 

S‐  20  (‐4,‐4,‐8,‐8)  (‐10,‐10,‐20,‐20)  0.4  (10,  ‐) 

A  8  (4.5, 5, 5.5, 6)  20  (0.225, 0.25, 0.275, 0.3)  (6,  12) 

B  8  (2, 4, 6, 8)  20  (0.1, 0.2, 0.3, 0.4)  (10,  6) 

Table 3: Game parameters (in lab dollars) in the four treatments for players i=1,2,3,4 and 

number of sessions with eight subjects either at TU (Technische Universität Berlin) or V 

(Europa-Universität Viadrina Frankfurt (Oder)). 

Table 3 shows the parameters of all player types in all treatments. For each lab dollar 

earned, subjects were paid 4 Eurocents. After the experiment, subjects were presented 

three incentivized questions testing their understanding of probability calculus. For each 

correctly answered question (on average two), the subject was paid one additional Euro. 

Participants earned between 14 and 33 Euros with an average of 23.29 Euros. Sessions 

lasted roughly 45 minutes. 

4.  Results 

4.1  Average contribution probabilities 

In Table 3, 4, and 5, average contribution frequencies ACPs are reported. Tests are 

carried out with respect to our hypotheses.  

Result 1 (small vs. large players): In Treatments S+ and S-, small and large players 

show similar ACPs except for k=4. (H1) is rejected for k=4 in both treatments; it is not 

rejected for other thresholds. 

Result 2 (positive vs. negative frame): In Treatments S+ and S-, ACPs in the positive 

and the negative frame are mirrored, i.e. ܥܣ ௜ܲ′ሺ݇ሻ 		ൌ 1 െ ܥܣ ௜ܲሺ݊ െ ݇ ൅ 1ሻ. (H2) (a) is not 

rejected in any of the eight comparisons. 
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k S+ S- 

 SmPl  LaPl HS SmPl  LaPl   HS 

1   0.35* 0.37*   0.26 0.30 0.26    0 

2   0.49* 0.56   0.46  0.43* 0.39*   0.22 

3   0.61* 0.63*   0.78 0.57* 0.49*   0.54 

4   0.74§ 0.81   1 0.75§ 0.59   0.74 

Table 3: Average contribution probabilities (ACPs) in Treatments S+ (positive frame) and 

S- (negative frame) and theoretical contribution probabilities according to Harsanyi and 

Selten (HS).  Small player type SmPl with (GS,cS)=(10,4) and large player type LaPl with 

(GL,cL)=(20,8). k= threshold. 

Explanatory note: § Significant (5% level) two-sided Wilcoxon matched pairs-tests for small vs. 

large players. * Significant (5% level) one-sided Wilcoxon matched-pairs test of non-increasing 

ACPs for k (position of *)  vs. k+1. No significant results in two-sided Mann-Whitney tests 

between ܲܥܣሺ݇, ܿ௜, ௜ሻ and 1ܩ െ ሺ5ܲܥܣ െ ݇,െܿ௜, െܩ௜ሻ.  All tests are based on averages in 10 

sessions and p<0.05. 

ci/Gi 

k 
0.225 0.25 0.275 0.3 

1  0.389 0.497* 0.333* 0.250* 
2  0.622 0.625 0.483* 0.483* 
3  0.733 0.792 0.733*§ 0.559*§ 
4  0.997 0.948 0.931 0.944* 
     
Table 4: Average contribution frequencies of the four player types in Exp A  (ATU + AV).  

Explanatory note:  There are four significant differences (bold types) between V and TU 
subjects in two-sided Wilcoxon tests on the 5% level, in three cases higher probabilities in TU, in 
one case in V. All differences between threshold k and threshold k+1 are significant in two-sided 
Wilcoxon matched-pairs tests (except k=2, ci/Gi =0.25 and k=4, ci/Gi =0.25) on the 5% level. * (§) 
Significant differences between player types compared to type ci/Gi =0.225 (0.25) in a two-sided 
Wilcoxon test on the 5% level. 

ci/Gi    
k 

0.1 0.2 0.3 0.4 

1  0.676 0.344* 0.227* 0.277* 
2 0.781 0.613 0.398* 0.418* 
3 0.930 0.840 0.688*§ 0.637*§ 
4 0.984 0.945 0.918 0.883* 
     
Table 5: Average contribution frequencies of the four player types in Exp B  (BTU + BV)    

Explanatory note:  There are no significant differences between V and TU subjects in two-sided 
Wilcoxon tests on the 5% level. All differences between threshold k and threshold k+1 are 
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significant in two-sided Wilcoxon matched-pairs tests (except k=1, ci/Gi =0.1) on the 5% level. * 
(§) Significant differences between player types, compared to type ci/Gi =0.1 (0.2) in a two-sided 
Wilcoxon test on the 5% level. 

Results 1 and 2 are remarkable because they show that, in BTPG games contrary to 

linear public good games, framing does not play an important role. In particular Result 2 

challenges the numerous examples where a negative frame reduces the cooperativeness 

of players. 

Result 3 (Efficiency): In treatments A and B, players with lower costs contribute 

significantly (in 10 of 24 comparisons) more, i.e., the alternative to Hypothesis 3 is 

rejected. 

It is remarkable that we find the same pattern of significant differences in A and B. The 

smaller k is, the higher is the significance level. The contribution probabilities of the least-

costs player type are always significantly higher than those of the highest-costs player 

type. 

Result 4 (Threshold): In all treatments ACPs increase with the threshold k. For the 

transition from k to k+1, the alternative to H4a, namely decreasing or constant ACPs, is 

rejected in 9 of 12 tests in S+ and S- and in all cases in treatments A and B. H4b is 

rejected but its prediction is far better than the prediction of risk dominance. 

We find that ACPs increase from k to k+1, i.e., the alternative to (H5 a), non-increasing 

ACPs, is significantly rejected in 9 of 12 one-sided Wilcoxon matched pairs tests in S+ 

and S- and in all cases in A and B. In the positive frame, this means an attempt to meet 

the increasing threshold, which is apparently stronger than the fear to waste one’s 

contribution if others do not cooperate. In S-, lower k make the players more reluctant to 

contribute and enjoy the negative costs. In the positive frame with k=1 a player can 

secure the benefit ܩ௜ by contributing; for larger k he has to rely on the cooperativeness 

when k increases. For k=4 (k=1 in S-), neither the predictions of payoff dominance (HS) 

nor those of risk dominance (RD) apply, but at least the empirical probabilities are closer 

to HS than to RD, i.e. to 1 (0 in S-) than to 0 (1 in S-).  

Result S (Subject pool): In Treatment B, no significant differences between V and TU 

subjects are found when comparing the ACPs of a certain player type in a game with a 

certain threshold, i.e. in 16 two-sided Wilcoxon tests on the 5% level. In Exp A four 

significant differences are found. 
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4.2 The distribution of individual contribution frequencies  

Every decision situation occurs 8 times so that every subject can contribute to the public 

good (for every threshold) between 0 and 8 times. We call this number the individual 

contribution frequency (ICF). The distributions of these ICFs are provided in the appendix 

for every player type and, for S+ and S-, for the cases that a game had been one of the 

first two games (periods 1-16) or one of the last two games (periods 17-32). They are 

only used for second tests of (H1) and (H2) and for the question of whether theories with 

unique equilibrium selection can apply. In Figures 1 and 2 aggregations over player types 

and periods are presented. The question of whether there is a trend in the decisions is 

investigated in a regression analysis below. The individuals with 0 or 8 contributions can 

be assumed to play a pure strategy or to use mixture probabilities close to 0 or 1. 

According to this criterion, 40% of our subjects possibly play pure strategies in single 

games, 14.3% with zero contributions and 25.8% with full contributions.  

Result6 1’: Players in the same frame with the same cost/benefit ratio show the same 

distribution of ICFs. (H1) (b) is not rejected.  

We test (H1) (b) by comparing the ICFs of small and large players (from all periods) in a 

chi-square test, i.e., we compare the frequencies of ICF=0,1,…,8 for k=1,2,3,4. In the 

positive frame we get 2 = 31.8 (df=317, p=0.42), in the negative frame 2 = 34.3 (df=32, 

p=0.36). 

Result 2’: Behavior in the negative frame is equal to the “mirrored” behavior in the 

positive frame. (H2) (b) is not rejected. 

At first glance we notice that the frequency of ICF=8 in Treatment 1 with the threshold 

k=4 meets that of ICF=0 in Treatment 2 with the threshold k=1. If behaviors in 

Treatments 1 and 2 are completely mirrored, we should find these similarities also for 

other ICFs. A chi-square test (2 = 34.4, df=32, p=0.35) of this hypothesis, based on the 

frequencies in Figures 1 and 2, does not indicate significant differences. 

 

                                                            
6 Results from chi‐square tests based on individual contribution frequencies ICF are indicated with one stroke as 1’. 
Results from regression analyses in the next subsection are indicated with two strokes. 
7 There is one class (k=1, ICF=6) with zero contributions which is united with a neighboring class. 
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Figure 1: Frequency distribution of individual contribution frequencies (ICFs) of small and 

large players and for decisions in periods 17 – 32 in Treatment S+. k= threshold. For 

every k, 8 decisions by 40 individuals. 

Figure 2: Frequency distribution of individual contribution frequencies (ICFs) of small and 

large players and for decisions in periods 17 – 32 in Treatment S-. k= threshold. For 

every k, 8 decisions by 40 individuals. 

Result 5’: For every player type and every threshold (except k=4, in some cases) the 

hypothesis of a binomial distribution of ICFs is significantly rejected. 

The distributions in Figures 1 and 2 are certainly not Binomial distributions except, 

perhaps, k=4 in Figure 1 and k=1 in Figure 2. The former is not significantly different from 

a binomial distribution (prob=0.044; 2 = 6.1, df=7, p=0.53) but the latter is (prob=0.925; 

2 = 16.2, df=7, p=0.02). For all other distributions in Figures 1 and 2 the hypothesis of a 

binomial distribution is rejected with extremely small p-values. We get similar results for 

all the other distributions of ICFs recorded in the appendix. Any single equilibrium and 

every other hypothesis of identical behavior of the same types of players, however, 
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predicts a binomial distribution of contributions if we assume identical social preferences 

and beliefs and, possibly, an additional constant error probability. 

Result 6’: In Treatments S+ and S-, there is a moderate tendency towards more 

cooperation from the first two to the second two experiments in a session. In chi-square 

tests for every threshold k, however, the distributions of ICFs are significantly different 

with p<0.05 only for k=4 in S+ (p=0.0002) and k=1 in S- (p=10-7). 

We compare, for treatments S+ and S- and for the aggregation of small and large player 

behavior, the ICFs in periods 1-16 and in periods 17-32 with a chi-square test, i.e., we 

ask whether a game with a threshold k is played differently when it was one of the first 

two games or whether it was one of the second two games. In Treatments A and B with 

their four different player types, there would have been only 10 players distributed to nine 

classes which would have made a chi-square test rather dubious. Also in the tests for 

Treatments S+ and S- some classes have zero entries in periods 1-16 as well as in 

periods 17-32. In such cases neighboring classes are aggregated. 

So, learning takes place above all in the Stag Hunt game. The question of dynamic 

behavior will be posed anew in the next subsection. 

4.3  Regression analysis 

Table 6 shows the results of a regression analysis for treatments S+ and S- with 

clustered standard errors on the subject level. Table 7 shows the results for treatments A 

and B. We introduce the dummy variable PivotPlayer (=1 if k-1 of the other players 

contributed in the previous round) because Erev and Rapoport (1990), Chen et al. 

(1996), and McEvoy (2010) found that, in sequential decisions, the pivotality (criticality) of 

players increases the contribution frequency.  Because of Result 6’ we introduce 

variables Period x StH and PivotPl x StH, where StH (=StagHunt) is 1 if k=1 in S- and 

k=4 in the other treatments. Otherwise StH is 0. Stylized results of our regression 

analysis are, first, confirmations of previous results, namely: 

Result 1’’: The dummy for the large player is insignificant. 

Result 2’’: The “mirror image” character of Treatments 1 and 2 is supported because 
absolute coefficients of PivotPlayer, and Threshold k are quite similar. 



21 
 

Result 3”: In treatments A and B, the higher the costs the less frequent are 
contributions. In Treatment B with its larger spread of costs the significance levels are 
higher. 

Result 4’’: The higher the threshold, the more frequent are contributions. 

The subject pool effect which we found in 4.1 for Treatment B indicated no unidirectional 
differences and, thus, it is not confirmed as a significant dummy in the regression. The 
regression analysis, however, provides new insights concerning dynamic behavior. There 
is a significant trend only in treatments S- ; but PivotPlayer is significant in all treatments. 
The introduction of the interaction terms lead to lowest BIC values if only PivotPl x StH 
was introduced. It showed that having been a Pivot Player in the previous period had a 
stronger effect in the Stag Hunt game than in the other games. 

Result 6’’: Cooperation increases in the course of a session only in Treatments S-. 
Contributing is more (less in S-) probable if a player has been pivotal in the last 
period.This effect is particularly strong in the Stag Hunt game. 

Variable S+ S- S+ S- S+ S- S+ S- 
Intercept -1.72*** -0.45 -1.33*** -0.17 -1.42*** -0.05 -1.31*** -0.25 
 (0.28) (0.26) (0.29) (0.27) (0.29) (0.25) (0.29) (0.27) 

PivotPlayer  0.97*** -1.06*** 0.93*** -1.01*** 0.77*** -0.71*** 0.81*** -0.67*** 
 (0.12) (0.10) (0.12) (0.12) (0.13) (0.12) (0.13) (0.12) 

LargePlayer  0.23 -0.28 0.22 -0.28 0.23 -0.31 0.22 -0.31 
 (0.21) (0.20) (0.22) (0.20) (0.22) (0.21) (0.22) (0.21) 

Threshold k  0.51***  0.50*** 0.36*** 0.38*** 0.41*** 0.31*** 0.36*** 0.38*** 
 (0.07) (0.07) (0.08) (0.08) (0.07) (0.07) (0.08) (0.08) 

Period  0.01 -0.02** 0.01 -0.014* 0.01 -0.014 0.01 -0.015* 
 (0.01) (0.007) (0.01) (0.007) (0.01) (0.007) (0.01) (0.007) 

Period x StH - - 0.04*** -0.03* - - 0.02 -0.03 
   (0.01) (0.01)   (0.01) (0.02) 

PivotPl x StH - . - - 1.16*** -2.03*** 0.85* -2.44*** 
     (0.29) (0.31) (0.33) (0.40) 

Observations 2240 2240 2240 2240 2240 2240 2240 2240 
-logL 1369.4 1370.1 1359.3 1364.9 1356.6 1333.9 1354.7 1331.5 
BIC 2777.9 2778.5 2764.9 2776.1 2759.5 2714.1 2763.4 2717.0 

Table 3: Logit-Regression of contribution decisions with standard errors (clustered with 
respect to subjects) in parentheses.  

Explanatory notes: *(**,***) - significant at 5%(1%,0.1%)-level. In S+ (S-). StH is 1 for k=4 (k=1) 
and 0 otherwise. PivotPlayer is 1 if k-1 contributions by other players in previous period and 0 
otherwise. Periods=2-8, 10-16, 18-24, 26-32.  
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  ATU+AV  BTU+BV  ATU+AV  BTU+BV  ATU+AV  BTU+BV  ATU+AV  BTU+BV 

Intercept  ‐1.38***  ‐0.46  ‐1.09***  ‐0.31  ‐1.01***  ‐0.30  ‐1.03***  ‐0.29 

  (0.30)  (0.34)  (0.28)  (0.32)  (0,29)  (0.32)  (0.28)  (0.32) 

PivotPlayer  0.88***  0.88***  0.81***  0.85***  0.66***  0.77***  0.66***  0.77*** 

  (0.10)  (0.11)  (0.10)  (0.11)  (0.10)  (0.12)  (0.10)  (0.12) 

Player2  0.17  ‐1.08***  0.17  ‐1.07***  0.16  ‐1.07***  0.16  ‐1.07*** 

  (0.30)  (0.30)  (0.29)  (0.30)  (0.29)  (0.29)  (0.29)  (0.29) 

Player3  ‐0.38  ‐1.73***  ‐0.38  ‐1.72***  ‐0.38  ‐1.78***  ‐0.38  ‐1.73*** 

  (0.27)  (0.31)  (0.27)  (0.30)  (0.27)  (0.31)  (0.27)  (0.30) 

Player4  ‐0.69*  ‐1.77***  ‐0.69*  ‐1.76***  ‐0.70**  ‐1.73***  ‐0.70**  ‐1.77*** 

  (0.27)  (0.31)  (0.27)  (0.31)  (0.27)  (0.31)  (0.27)  (0.31) 

Threshold k  0.87***  0.92***  0.75***  0.85***  0.68***  0.84***  0.69***  0.84*** 

  (0.07)  (0.08)  (0.07)  (0.08)  (0.08)  (0.08)  (0.08)  (0.08) 

Period  ‐0.01  ‐0.00  ‐0.01  ‐0.00  ‐0.0  ‐0.00  ‐0.00  ‐0.00 

  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

Period x StH  ‐  ‐  0.04*  0.02  ‐  ‐  ‐0.00  0.00 

      (0.02)  (0.01)      (0.02)  (0.01) 

PivotPl xStH  ‐  ‐      1.87***  0.73*  1.94***  0.67* 

          (0.35)  (0.29)  (0.35)  (0.32) 

Pool V  ‐0.28  ‐0.16  ‐0.31  ‐0.14  ‐0.26  ‐0.16  ‐0.26  ‐0.15 

  (0.18)  (0.22)  (0.18)  (0.22)  (0.18)  (0.22)  (0.18)  (0.32) 

Observations  4032  3584  4032  3584  4032  3584  4032  3584 

‐logL  2085.5  1731.5  2072.3  1728.2  2047.1  1725.5  2047.0  1725.5 

‐logL/observ  0.517  0.483  0.514  0.482  0.508  0.481  0.508  0.481 

BIC  4237.4  3528.5  4219.3  3530.0  4168.9  3524.6  4177  3532.8 

Table 7: Logit-Regression of contribution decisions with standard errors (clustered with 
respect to subjects) in parentheses. 

Explanatory notes: *(**,***) - significant at 5%(1%,0.1%)-level. In S+ (S-). StH is 1 for k=4 (k=1) 
and 0 otherwise. PivotPlayer is 1 if k-1 contributions by other players in previous period and 0 
otherwise. Periods=2-8, 10-16, 18-24, 26-32.  

Moreover, we conducted several alternative regressions to control for various influences. 

We used sex and field of study and answers to incentivized questions about probability 

calculus as controls and we used the rounds (from 1 to 8) within a threshold level. We 

alternatively also conducted all regressions with an autoregressive term. None of these 

variations change the outcome of the analysis.  

 

5. Conclusion 

We have investigated BTPG games in four treatments with 16 different games. Our 

results cover framing effects and qualitative and quantitative equilibrium predictions. 
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A surprising result is the lack of framing effects concerning (i) magnitude effects and (ii) 

positive vs. negative frames. Results8 1, 1’, and 1’’ show that players with the same sign 

of costs and benefits and the same cost/benefit ratio contribute with the same probability. 

After substituting thresholds k by n-k+1 and contribution probabilities q by 1-q in the 

negative frame (mirroring), players contribute with the same probability as players in the 

positive frame with the same cost/benefit ratio. Note that this is a bit surprising because 

framing effects are not exceptions but the rule in economic experiments.  

Contribution probabilities (iii) decrease with costs and (iv) increase with the threshold k 

(Results 3, 3’’, 4, 4’’). If we take the Pareto-superior of the completely mixed strategy 

equilibria as a benchmark then (iii) contradicts theory and (iv) follows theory. For 1<k<n 

there is often more than one completely mixed strategy equilibrium (or no one) and in 

every case there are other equilibria so that the benchmark heavily depends on 

equilibrium selection. The Pareto-superior of the completely mixed strategy equilibria is 

the HS selection for treatments S+ and S-.  Neither in treatments S+ and S- nor in 

treatments A and B is it a quantitative predictor of behavior. Even more general, (v) no 

theory with homogeneous players can describe behavior. (Result 5’).  

The question of whether in the Stag Hunt game the payoff dominant or the risk dominant 

equilibrium applies is investigated in number of experiments, usually with 2x2 games. In 

our investigation with 4x2 games, payoff dominance performs considerably better than 

risk dominance, but 77%, 72%, 97%, and 93% contributions in treatments S+, S-, A, and 

B are less than the predicted 100%. 

Deviations from (vi) static behavior are small in our finitely repeated games experiment 

with a stranger design; but in addition to a significant trend towards more cooperation in 

treatment S- an unexpected effect is observed in all treatments. When a player was 

“pivotal” in the previous period then his contribution probability increases in the positive 

and decreases in the negative frame. Pivotality of player i means that k-1 of i’s co-players 

had contributed.  

BTPG is an important class of games with many applications, such as forming teams for 

producing a public good or preventing a public bad. The most severe obstacle for the 

application of theory is the plethora of equilibria and the question of their relative and 

                                                            
8 Rmember that results without stroke are from non‐parametric tests comparing the average contribution 
frequencies ACF in different sessions. Results with one stroke are from chi‐square tests based on individual 
contribution frequencies ICF. Results with two strokes are from regression analyses.  
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absolute importance. Concerning equilibrium play our most important message is (v) that 

no single equilibrium (nor any other constant behavior) with subjects having identical 

preferences and beliefs can describe behavior. The conclusion is that, necessarily, we 

must introduce individual differences. In a game theoretic approach we can assume a 

distribution of preferences or beliefs or a combination of both. With the same data set as 

this paper, Bolle (2016) investigates a model with identical preferences for each player 

type (role dependent preferences, Bolle and Otto, 2015) but different beliefs about the 

appropriate equilibrium. 

All our results mean progress for our understanding of how BTPG games are played and 

provide also lessons beyond BTPG games. To the best of our knowledge, (i) and (iv) 

have never been investigated and (ii) only in one paper. (v) is fundamentally important. 

(vi) is new and surprising because it could not be expected in repetitions of a 

simultaneous moves game with a stranger design.  

Our results are derived from 16 games with different frames and a large variety of 

cost/benefit ratios. Therefore we do not think that they are driven by a special selection of 

experimental parameters. The largest challenge for BTPG games is a general theory 

which meets the reported qualitative and quantitative results. 
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Appendix 

A. Proof of Proposition 4 

Risk domination according to HS: For the question whether a mixed or pure strategy 

equilibrium p risk dominates another equilibrium p’ first the bicentric prior of p and p’ is 

derived. For BTPG games we have to determine, for every 0 ൑ ݐ ൑ 1, whether ܽ௜ ൌ 1 or 

ܽ௜ ൌ 0 is a best response of player i to the other players contributing with probabilities ݐ ∗

௜ି݌ ൅ ሺ1 െ ሻݐ ∗ ௜. The shares of t with ܽ௜ି′݌ ൌ 1 constitute a vector x of prior probabilities. 

With these priors the tracing procedure is carried out where for every 0 ൑ ′ݐ ൑ 1 equilibria 

are determined in a game where player i assumes that, with probability t’, the BTPG 

game is played and with 1-t’ the other players decide according to the prior probability. If 

there is a continuous path of equilibria from t’=0 to t’=1 then the corresponding 

equilibrium for t’= 1 is selected. 

Proposition 4: In the case k=n, if ݎ௜ ൐ ∏ ௝௝ஷ௜ݎ   for all ݅ then ሺ0, … ,0ሻ risk dominates all 

other equilibria p. 

Proof:  The bicentric priors of the equilibria ሺ1, … ,1ሻ and ሺ0, … ,0ሻ are ሺݔ௜
∗ሻ ൌ ሺݎ௜ ) and are 

at least as large as the bicentric priors of any strategy profile p and ሺ0, … ,0ሻ. Because of 

௜ݍ ൌ ∏ ௝௝ஷ௜ݎ  the best response to these priors is ݌௜ ൌ 0 (Proposition 1 (ii)). Then there is a 

constant path of equilibria ሺ0, … ,0ሻ for all t which constitutes the generically unique risk 

dominant equilibrium. (Lemma 4.17.7 in Harsanyi and Selten, 1988). 

 

 

B. Data 

  Periods 1- 16  Periods 17 - 32 

k ICF 0 1 2 3 4 5 6 7 8  0 1 2 3 4 5 6 7 8 

1  5 4 2 3 1 0 2 1 2  6 5 0  2 3 0 0 0  4 

2  2 1 3 1 2 2 1 1 3  3 2 4 1 2 3 4 1 4 

3  1 1 1 3 5 4 3 1  5  3 1 1 4 1 1 0 0 5 

4  2 1 3 0 4 0 3  4  3  0 0 0 0 0 2 2 3 13

Table A1: Frequency distribution of ICFs (individual contribution frequencies) in 

Treatment S+, small player. k= threshold. For every k, 8 decisions by 40 individuals. 
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  Periods 1 - 16  Periods 17 - 32 

k ICF 0 1 2 3 4 5 6 7 8  0 1 2 3 4 5 6 7 8 

1  5 2 2 3 4 0 1 2  1  2 6 4 3 1 0  0  1 3 

2  0 2  3 2 2 2 2 0  3  4 2 2 0 4 2 4 0 6 

3  1 0 0 6 3 5 3  1  5  0 0 1 0 1 3 5 2 4 

4  0 0 1 4 0 6  2  4 3  0 0 0 0 0 1 3 2 14

Table A2: Frequency distribution of ICFs (individual contribution frequencies) in 

Treatment 1, large player. k= threshold. For every k, 8 decisions by 40 individuals. 

 

  Periods 1 - 16  Periods 17 - 32 

k     ICF 0 1 2 3 4 5 6 7 8  0 1 2 3 4 5 6 7 8 

1  3 1 0 3 3  4  1 4  1  16 3 1 0 0 0 0 0 0 

2  2 4 2 2 3 4 1  1 1  3 2 4 3 1 4 1 1 1 

3  1 1 4  2 5  1 1 3 2  0 2 2 3 5 3 0 1 4 

4  0 0  0 0 5 4 7 4  0  2 1 0 0 0 4 5 2 6 

Table A3: Frequency distribution of ICFs (individual contribution frequencies) in 

Treatment 2, small player. k= threshold. For every k, 8 decisions by 40 individuals. 

 

  Periods 1 – 16  Periods 17 - 32 

k ICF 0 1 2 3 4 5 6 7 8  0 1 2 3 4 5 6 7 8 

1  3 1 1 3 5 1 1 2  3  14 4 1 1 0 0 0 0 0 

2  4  2  3 2 1 4 1 1 2  4 3 3 2 1 2 3 1 1 

3  3 0 3 2 1 2 5  2 2  4 2 1 2 1 3 1 3 3 

4  2 1 1 1 3  2 4 1 5  3 0 2 1 0 2 1 5 6 

Table A4: Frequency distribution of ICFs (individual contribution frequencies) in 

Treatment 2, large player. k= threshold. For every k, 8 decisions by 40 individuals. 
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C. Instructions 

Welcome 

You are participating in an economic experiment. You will receive your payoff personally 

and directly after the experiment. The payoff depends on your own decisions and the 

decisions of your co-players. 

Please, turn off your cellphone and similar devices. The entire experiment is conducted 
on the computer. During the course of the experiment, please do not speak and do not 
communicate with other participants in any other way. 

Below you will find an explanation of the experiment. Please read it carefully. If you have 
questions notify the experimenter. The experimenter will then answer them. After reading 
these instructions you will answer several test questions. If you have problems answering 
these questions, please also notify the experimenter. 

Instructions for Treatment 1 

 In this experiment you have to make decisions in several periods. 
 In each period groups of 4 players are built. You are always player 1 in your 

group. [In other instructions: Player 2, 3, or 4] 
 Each period each player is endowed with 8 points. 
 Each player can either choose A or B. 
 For now choosing B has no impact on your points. 
 Choosing A costs 

o you and player 2  4 points each 
o player 3 and 4  8 points each 

 If a threshold of players choosing A is reached then 
o you and player 2  get 10 points each 
o player 3 and 4  get 20 points each 

 The level of this threshold is changed every 8th round. It is displayed on the 
screen. 

 Each 25 points pays you 1 Euro. 

Example 

At the beginning of the period you get 8 points. The threshold is 1. Your 3 co-players 
choose B. 

In case you choose A: 

 you player 2 player 3 player 4 

points at the beginning of the period 8 8 8 8 
costs for choosing A -4 0 0 0 
profit for reaching the threshold +10 +10 +20 +20 

period payoff 14 18 28 28 
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In case you choose B: 

 you player 2 player 3 player 4 

points at the beginning of the period 8 8 8 8 
costs for choosing A 0 0 0 0 
profit for reaching the threshold 0 0 0 0 

period payoff 8 8 8 8 
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