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Abstract 

Theories about unique equilibrium selection are often rejected in experimental 
investigations. We drop the idea of selecting a single prominent equilibrium but suggest 
the coexistence of different beliefs about “appropriate” equilibrium or non-equilibrium 
play. Our main selection criterion is efficiency applied to all or only to “fair” equilibria. This 
assumption is applied to 16 Binary Threshold Public Good games where at least k of four 
homogeneous or heterogeneous players have to incur fixed costs in order to produce a 
public good. The case k=4 is the Stag Hunt game which is most often used to test 
equilibrium selection. Our finite mixture model applies with the same parameters (shares 
of populations, altruism parameters) to the four thresholds k=1,2,3,4. The estimated 
shares of populations are similar in four treatments with identical or different cost/benefit 
ratios of the players. Our results for k=4 clearly contradict selection by Risk Dominance 
and Global Games. In the two (almost) symmetric treatments the Harsanyi/Selten 
selection explains 40% of the decisions.  
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1. Introduction 

The application of game theory is often plagued by the non-uniqueness of equilibria. 

Prominent examples are coordination games like the Stag Hunt game 1 . There are 

theoretical attempts to establish a normative theory of equilibrium selection (Harsanyi 

and Selten, 1988, called HS from now on) but in experiments we rarely observe 

contribution frequencies which clearly or approximately meet the selected equilibrium or 

one of the other equilibria. In this paper we want to suggest and test the hypothesis that 

players behave according to individual beliefs about appropriate equilibria or non-

equilibrium strategy profiles, generally called modes of play. These modes of play are 

assumed to be characteristic for certain populations which mainly differ in their beliefs 

about the priority of efficiency and fairness. We successfully apply our concept to a large 

variety of Binary Threshold Public Good games which can have more than 30 separate 

equilibria.  

During the last 20 years the discussion about equilibrium selection has more and more 

turned away from HS. In many experimental investigations equilibria do not play any role 

at all or are used only as benchmarks. Otherwise, learning to play equilibria (for example, 

Berninghaus and Ehrhart, 1998) and alternative approaches to equilibrium selection, in 

particular by Global Games (Carlson and van Damme, 1993) and Quantal Response 

Equilibria (McKelvey and Palfrey, 1995) have dominated explanations of experimental 

behavior. In the field of coordination games, the discussion has been focused on the 

question whether (in games with Pareto-ranked equilibria) payoff-dominance or risk-

dominance applies and on the question whether experimental results are close to or 

converging to Global Games equilibria. Contrary to most other experimental 

investigations which are concerned with this question we do not investigate 2x2 games 

but games with four players and two strategies. In the Stag Hunt game, where the risk-

dominant and the Global Games predictions (both zero contributions) can be easily 

computed, our experimental results with about 75% cooperating players in the two 

(almost) symmetric treatments and more than 90% cooperation in the two asymmetric 

treatments clearly reject these equilibrium selection principles. HS provide a moderately 

successful selection for the (almost) symmetric treatments where, according to our 

estimation, the HS equilibrium is played by 40% of the subjects. 

                                                            
1 In the Stag Hunt game, players (hunters) can contribute a costly service (go for the stag) or not (succeed in hunting 
a hare). Hunting the stag is successful only if all players contribute. 
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Our general hypothesis is that behavior is based on three main, possibly conflicting, 

requirements2: 

(i) Consistency (best replies, equilibria) 

(ii) Efficiency (social product maximizing strategies) 

(iii) Fairness (qualitative or quantitative equality) 

The selection of appropriate modes of play (selected strategy profiles) takes place on the 

basis of individual beliefs about social norms and the behavior of others. The first 

principle distinction is whether or not people care about the consistency of their beliefs, 

i.e. whether all strategies should be best replies to the others’ strategies (Nash 

equilibria). Most of our modes of play are equilibrium strategies under certain social or 

risk preferences but a share of the population may also stick to simple heuristically based 

modes of play. Efficiency and fairness may be traded off against one another but, 

because of their simplicity, lexicographic orderings seem to be more sensible to assume3. 

There may be a population of players for which efficiency has priority and another who 

selects the most efficient among the fair equilibria. There is, however, one further 

important element of human behavior, namely  

(iv) Error. 

There are two sources of error, first, concerning the selection of a mode of play and, 

second, when applying a mode of play. The latter can be generally described by a noise 

term, in cases of binary decisions by a probability of deviation. The former is problem 

(game) specific. 

In the BTPG games investigated in this paper at least k of n=4 players have to contribute 

a costly predetermined service in order to produce a public good. Two small populations 

are assumed not to care about consistency; one is extremely cooperative and the other 

extremely uncooperative. Players from population P1 (putative pivots, 10-20%) always 

contribute because they overestimate their own importance or because they are 

extremely altruistic. Players from population P0 (putative non-pivots, 5%) never 

contribute because of the opposite reasons. Always or never contributing are equilibria 

for some k but not for all. Most people, however, are assumed to select only equilibrium 

                                                            
2 The principles efficiency and fairness (equality orientation) are often used for the characterization of experimental 
results (for example, Engelmann and Strobel, 2004). 
3 This is in the spirit of the “Take the Best” heuristic of Behavioral Economics (Gigerenzer, 2008). 
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modes of play. Some players are assumed to erroneously select the second most 

efficient equilibrium instead of the most efficient one. Players from the population PE (10-

30%) select the most or second most efficient equilibrium; players from the largest 

population PF (50-65%) select the most or second most efficient of the “fair” equilibria. 

The reasons of deviations are discussed in more detail in section 3.2. In many games, 

there are no second best equilibria or error or fairness arguments (in the case of PE) do 

not apply in which cases no differentiations are made. Note that our definition of 

populations allows comparing behavior across games. Indeed we find similar or even 

identical shares of populations for sixteen different BTPG games (four thresholds, four 

treatments) although the efficient or fair equilibria are rather different across games and 

treatments. The comparisons of shares rest on successful estimations which means that 

predicted behavior does not significantly deviate from observed behavior in a 2-test. We 

will always present joint estimations over all four thresholds and also for two of our four 

treatments. 

One apparent objection against our attempt is the question why subjects should stick to 

“their” selection if they observe others deviating from it. There are three possible reasons 

for inertia. First, people have identified “the right thing” and stick to it even if others do 

not. In the finitely repeated Prisoner’s Dilemma game often a population P1 of “absolute 

cooperators” is observed (with a share of 12-13% in Cooper et al., 1996). The second 

reason might be that subjects observe others not playing “their” mode of play but have no 

incentive to change behavior. This may be the case for the subpopulation P0 of “absolute 

defectors”. The third argument applies to mixed strategy equilibria and states that 

deviations from such equilibria are difficult to detect, not even in games with a moderate 

number of repetitions. In spite of these arguments, in repeated games it remains an 

empirical question whether people adapt to the play of their co-players or not. If there is 

adaptation then the application of our static theory can be successful only after the 

adaptation process has faded out. The question remains why then to investigate 

repeated games at all. The most important reason is that, in one-shot games, individual 

mixtures of strategies and population mixtures of pure or mixed strategies cannot be 

separated. 

Our general principles should describe behavior in all games but have to be specified in 

every application. A first test of our theory considers a class of games with a lot of 

important applications and with a plethora of equilibria. In our experimental Binary 
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Threshold Public Good (BTPG) games players i=1,2,3,4 simultaneously contribute (with 

costs ci) or not to the production of a public good (benefit Gi) which is produced if there 

are at least k contributors. The game with k=4 is the Stag Hunt game (Rousseau, 1997, 

first edition 1762), the game with k=1 is the Volunteer’s Dilemma (Diekmann, 1985), and 

all games can be interpreted as problems with k volunteers necessary or as “Costly 

Voting games” (Bolle, 2015b, 2016). Problems are naturally framed in a positive frame 

with the production of a public good (Gi > ci >0) or in a negative frame with producing a 

public bad (Gi < ci < 0). Formally, we can transform the two frames into one another and 

should expect, after applying the transformation, identical behavior. In many other natural 

examples the question arises whether there is a clear-cut threshold (trigger, tipping point) 

for a positive or a negative event and whether contributions are binary. In these cases, 

the BTPG game is, as most 2x2 games are, an approximation which serves the need for 

simplification for the players as well as the researcher, in both cases because of bounded 

rationality. For example, Russill and Nyssa (2009) observe a “tipping point trend in 

climate change communication”. For further examples of BTPG games see Bolle (2015).  

Let us finally mention a methodological innovation for the estimation of structural models. 

In economics, practically all structural models are estimated by maximum likelihood 

which allows comparing the performance of alternative models. The comparison of the 

best performing model predictions with the data, however, is not offered at all or only 

graphically. The reason may be that a chi-square test would reject the model. This need 

not be the case if we use minimum chi-square for the estimation of our model. We will 

discuss the complementary use of maximum likelihood and minimum chi-square 

estimations in Section 6.  

In the next section we briefly discuss the relevant literature. In Section 3, we introduce 

BTPG games, derive equilibrium conditions and compute equilibria if they are available in 

closed form. In Section 4, we specify our finite mixture model of (mainly) equilibrium play. 

Section 5 presents the experiments and provides an overview of the results in terms of 

average contribution frequencies. In Section 6, our finite mixture model of “equilibrium 

selection” is tested. Section 7 is the conclusion.  

2. Literature 

Since Harsanyi and Selten’s (1988) suggestion a lot of work has been devoted to the 

identification of a unique “appropriate” equilibrium. Hansanyi (1995) took a new stance 
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with respect to the priority of payoff-dominance or risk-dominance and Güth and Kalkofen 

(1989) suggested a related approach. Others favored dynamic concepts (Binmore and 

Samuelson, 1999) or random deviations (McKelvey and Palfrey, 1995) in order to identify 

unique equilibria. The suggestion of Carlson and van Damme (1993) to transform 

common knowledge games into games of incomplete information with private and 

correlated signals (Global games) has played a major role for equilibrium selection in 

coordination games. While incomplete information (noise) vanishes play converges, 

under certain conditions, to one of the pure strategy Nash equilibria of the original game.  

To the best of our knowledge, there are only few attempts in the literature to describe 

behavior as a finite mixture of equilibrium play or best response play concerning beliefs 

about the other players. There are models which distinguish types of players with 

different levels of reasoning (Nagel, 1995; Kübler and Weizsäcker, 2004; Crawford and 

Iriberri, 2007). Our types, however, do not believe that they are more intelligent or better 

informed than others. They are distinguished by different beliefs about the appropriate 

mode of play (mostly equilibrium) for all players. Beliefs (concerning out-of-equilibrium 

play) are decisive also in dynamic models with incomplete information (McAfee and 

Schwartz, 1994) but in this literature no attempt is made to analyze the co-existence of 

different beliefs.  

Experimental work on equilibrium selection is often concentrated on the question of 

which of the two pure strategy equilibria in Stag Hunt games (BTPG games with k=n) and 

variants of it are played: the payoff-dominant “all contributing” equilibrium or the (mostly) 

risk-dominant “no one contributing” equilibrium. All studies are with symmetric games, the 

following also with n=2. Van Huyck et al. (1990) and Rydval und Ortmann (2005) find 

tendencies towards risk dominance; tendencies towards payoff dominance are found by 

Battalio et al. (2001), provided the “optimization premium” is high enough, and, in an 

experiment with chimpanzees, by Bullinger et al. (2011). Whiteman and Scholz (2010), 

Al-Ubaydli et al. (2013) and Büyükboyacı (2014) investigate the influence of social 

capital, cognitive ability, own risk aversion, information about others’ risk attitudes, and 

patience. Spiller and Bolle (2016) investigate the case n=4 with symmetric and 

asymmetric players who have the same or different cost/benefit ratios and find strong 

evidence for payoff-dominance. Feltovich and Grossman (2013) investigate the influence 

of group size (2 to 7 players) and communication on contributions. Without 

communication, contribution frequencies are about 1/3, independent of group size. 
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Equilibrium selection is investigated in a meta-study of coordination games with Pareto-

ranked equilibria by Blume and Ortmann (2007). They find successful coordination to be 

the rule rather than the exception. According to Chen and Chen (2011), in a minimum 

effort game social identity fosters the selection of the most efficient equilibrium. In an 

experimental investigation of financial attacks (providing a Club Good instead of a Public 

Good as in BTPG games), Heinemann et al. (2004) find behavior close to the unique 

Global Game equilibrium. Cabrales et al.’s (2007) experiments show, however, frequent 

deviations from this equilibrium and emphasize the importance of learning after which 

behavior can also converge to the payoff-dominant equilibrium. Also Duffy and Ochs 

(2012) find significant deviations from the Global Game equilibrium.  

Experimental studies of BTPG games other than the Stag Hunt game k=n are not 

concerned with equilibrium selection, in spite (or because) of the tremendous number of 

equilibria in these games. Experiments with k=1, the Volunteer’s Dilemma, are conducted 

with equal cost/benefit ratios by Diekmann (1985), Franzen (1995), and Goeree et al. 

(2005). An important result is that, contrary to the theoretical prediction from the unique 

completely mixed strategy equilibrium, the probability of success does not decrease with 

group size. Diekmann (1993) rejects the theoretical prediction that players with higher 

cost/benefit ratios use mixed strategies with higher mixture probabilities. In Public Good 

experiments with a punishment option (Fehr and Gächter, 2002), punishment can 

constitute a Volunteer’s Dilemma if a punisher causes a predetermined loss for the 

punished player and further punishers do not increase the loss. Przepiorka and 

Diekmann (2013) and Diekmann and Przepiorka (2015a, b) investigate such situations 

with different costs of the players and find an (incomplete) coordination on the lowest 

cost player as a volunteer, i.e. there is a tendency towards the asymmetric efficient 

equilibrium. We will test whether these results can be replicated and extended to higher 

thresholds. Below, we estimate the share of efficient play in almost symmetric games 

where coordination on efficient play is difficult and in asymmetric games where it should 

be easy.  

BTPG experiments with intermediate thresholds (in our investigation k=2 or 3 of n=4) 

have been conducted with k from 2 to 6 and n from 3 to 10, all with at most two different 

k. For an overview see Spiller and Bolle (2016). Erev and Rapoport (1990), Chen et al. 

(1996), and McEvoy (2010) find that in sequential decisions the pivotality (criticality) of 
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players increases the contribution frequency. Bartling et al. (2015) find that pivotality 

increases responsibility attribution.  

Spiller and Bolle (2016) investigate the same data set as this paper, however without an 

attempt to estimate a finite mixture model of equilibrium selection. Their results from non-

parametric tests and regression analyses are briefly reported in Section 5. 

3. Equilibria  of BTPG games and their properties 

The general theory of BTPG games is developed in Bolle (2015b). Here we concentrate 

on results we need for the discussion of our experimental games. In particular we 

assume players with equal importance for passing the threshold. In the positive frame, 

there is a set of ݊ players ܰ ൌ ሼ1,… , ݊ሽ who can contribute (with costs ܿ  0) or not 

(without costs) to the production of a public good. If a certain threshold k of contributions 

is surpassed, the public good is produced and the players earn ܩ  ܿ. If a player does 

not contribute and the project is not launched his revenue is 0. There are ቀ
݊
݇ቁ pure 

strategy equilibria with the launch of the project where exactly k players contribute. For 

݇  1 there is one pure strategy equilibrium without the launch of the project where no 

one contributes. Only the latter equilibria and the “all contributing” equilibrium of the Stag 

Hunt game (k=n) are symmetric. With different cost/benefit ratios also mixed strategy 

equilibria are asymmetric but they may be viewed as “less asymmetric” and “more fair” 

than asymmetric pure strategy equilibria. 

The case ܩ ൏ 	 ܿ ൏ 0 is called the negative frame. In the following sense, it is the “mirror 

image” of the positive frame.  

Strategically neutral transformation: By renaming “contribution” as “non-contribution” 

(and vice versa), exchanging thresholds ݇ and ݊ െ ݇  1, and renormalizing utilities so 

that “non-contribution/non-launch” has a value of zero, the negative frame is transformed 

into the positive frame.   

Let us assume that the players’ contribution probabilities are  ൌ ሺሻୀଵ,…,.  ܳ ൌ ܳሺሻ 

denotes the probability of success, i.e. that k or more players contribute to the production 

of the public good. ܳି  (ܳା) denote the probability of success if ݅ does not contribute 

(contributes). These probabilities depend only on  , ݆ ് ݅ ݍ . ൌ ܳା െ ܳି  is the 

probability that ݅ ‘s contribution is decisive for the production of the public good. With 

these definitions player i’s expected revenue is  
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(1)                        ܴሺሻ 	ൌ ܩ	 ∗ ܳሺሻ െ  ܿ

                                       ൌ ܩ ∗ ܳି 	 ∗ ሾܩ ∗ ݍ െ ܿሿ . 

A mixed strategy equilibrium with 0 ൏  ൏ 1 requires that ܴ is independent of , i.e. 

(2)                               ߲ܴ ⁄߲ ൌ ܩ ∗ ݍ െ ܿ ൌ 0. 

This requirement has been derived verbally by Downs (1957, p. 244) for the binary 

decision of voting or not. If ܩ ∗ ݍ െ ܿ ൏ ሺሻ0 then player i contributes with  ൌ 0	ሺ1ሻ. 

Inserting ݍ from (2) into (1) provides us with the equilibrium profit which i expects if he 

plays a mixed strategy. 

(3)               ܴ ൌ ܩ ∗ ܳି  ൌ ܩ ∗ ܳା െ ܿ. 

Proposition 1: The following statements apply in equilibrium: 

(i) If i plays a strictly mixed strategy, then ݍ ൌ ݎ ൌ ܿ/ܩ. 

(ii) ݍ    impliesݎ ൌ 1 and ݍ ൏    impliesݎ ൌ 0. 

(iii)  ܴ ൌ  ܳି applies forܩ ൏ 1 and  ܴ ൌ ܳାܩ 	െ ܿ for   0. 

Proof: (1), (2) and (3).  

The case  ൌ   

This case is called the Stag Hunt game, first discussed by Rousseau (1997, first edition 

1762). There are two symmetric pure strategy equilibria, namely  ൌ ሺ0,… 0ሻ,  ൌ ሺ1,… ,1ሻ 

and, possibly, a completely mixed strategy equilibrium which is derived from (2) and ݍ ൌ

∏ ஷ . It follows  ൌ ൫∏ ݎ ൯
ଵ/ሺିଵሻ

 . The condition of the existence of this equilibriumݎ/

is   1 for all ݅. This condition is always fulfilled for n=2 or if all ݎ are identical. Smaller 

. Because of (3) and ܳି  are connected with largerݎ ൌ 0 the mixed strategy equilibrium 

yields zero revenues. There are possibly also pure/mixed strategy equilibria where some 

players contribute with probability 1 and the others play the mixed strategy equilibrium of 

a reduced Stag Hunt game. According to Proposition 1, those who contribute with 

probability 1 earn ܴ ൌ ܩ ∗ ܳା 	െ ܿ  0 (if ܴ ൏ 0, this isn’t an equilibrium) and the mixed 

strategy players earn zero. Because of Proposition 1 (iii),   ൌ ሺ1,… ,1ሻ is the payoff-

dominant equilibrium.  

Let us, for this case and certain parameters, determine also the Global Game equilibrium 

and the risk dominant equilibrium under the definition of Harsanyi and Selten (1988). 
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Unfortunately, the application of Global Games is hindered by the possible dependency 

of the resulting (in many cases unique) equilibrium on the distribution of “noise” (Frankel 

et al, 2003) and by a lack of methods to compute the equilibrium in cases of asymmetric 

games with more than 2 players. Therefore, based on results by Frankel et al. (2003) we 

determine the global game equilibrium only for k=4 (Stag Hunt game) which, for our 

experimental games, coincides with the Risk Dominant equilibrium according to the 

definition of Harsanyi and Selten (1988).  

Proposition 2: ܽ∗ ൌ ሺ0,… ,0ሻ is the unique global game equilibrium of a BTPG game with 

k=n. 

Proof: Appendix A1. 

Frankel et al. (2003) require actions to be strategic complements. This requirement is not 

fulfilled in cases k<n. Others increasing their contribution (in our case from 0 to 1) can 

make it advantageous for i to reduce his contribution (from 1 to 0). On the first glance this 

is a bit surprising because Frankel et al.’s (2003) theory can be applied to the quite 

similar case of financial attacks against a currency (Heinemann et al., 2004). If the model 

assumes binary choices and if the attack is successful when at least k<n players join the 

attack then this is not a BTPG game. Because only players joining the attack can profit 

the players provide a Club Good and not a Public Good. For Club Goods actions are 

strategic complements. 

Let us now turn to Risk Dominance as defined by Harsanyi and Selten (1988). 

Proposition 3: In the case k=n, if ݎ  ∏ ஷݎ   for all ݅ then ሺ0, … ,0ሻ risk dominates all 

other equilibria. 

Proof:  Appendix A1. 

Corollary: In our four experimental treatments with cost/benefit ratios of ri=0.4 in the two 

almost symmetric treatments and (0.225, 0.25, 0.275, 0.3) and (0.1, 0.2, 0.3, 0.4) in the 

asymmetric treatments, the risk dominant equilibrium in the games with k=4 is ሺ0, … ,0ሻ. 

The case  ൌ   

This case is called the Volunteer’s Dilemma, first investigated by Diekmann (1985, 

1993). There are n pure strategy equilibria where exactly one player contributes. The 
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only completely mixed strategy equilibrium is derived from (2) and ݍ ൌ ∏ ሺ1 െஷ  ሻ. It

follows  ൌ 1 െ ൫∏ ݎ ൯
ଵ/ሺିଵሻ

ݎ/ . Therefore this equilibrium exists under the same 

conditions as that of the Stag Hunt game. Smaller ݎ  are connected with smaller  

(regarded as counterintuitive by Diekmann, 1993). Because of Proposition 1 and ܳା ൌ 1, 

in this equilibrium players earn ܴ ൌ ܩ െ ܿ , i.e. as much as players who always 

contribute. 

The case 1<k<n 

If all ܿ ⁄ܩ ൌ ݎ ൌ  are equal, then, in a completely mixed strategy equilibrium, all ߩ ൌ  ߨ

are equal (see Bolle, 2015b) and ߨ is derived from  

ߩ  (4) ൌ ݍ ൌ ቀ݊ െ 1
݇ െ 1

ቁߨିଵሺ1 െ  .ሻିߨ

For 1 ൏ ݇ ൏ ݊, the right hand side of (4) is a unimodal function of  ߨ with a maximum at  

ሺ݇ െ 1ሻ ሺ݊ െ 1ሻ⁄ . Therefore (4) has either two solutions ߨ′′   or (ߩ for small enough)  ′ߨ

one solution (border case) or no solution; i.e., completely mixed strategy equilibria do not 

necessarily exist and, if they exist, generically there are two. In the positive frame, the 

equilibrium with ߨ′′ Pareto-dominates the one with ߨ′ and vice versa in the negative frame 

(Proposition 1 (iii)). If the ݎ are unequal then the system of equations (2) has to be solved 

with ݍ being a more complicated function of  than (4). 

The number of equilibria 

A completely mixed strategy equilibrium depends only on  ݎ 	ൌ ܿ/ܩ   and therefore 

applies in the positive (ܩ  ܿ  0) as well as in the negative (ܩ ൏ ܿ ൏ 0) frame. Pure 

strategy equilibria and equilibrium selection, however, correspond only after applying the 

strategically neutral transformation.  

If 1<k<n, n>3, then completely mixed strategy equilibria can be determined only by 

numerical methods. For n=4, four polynomial equations of degree 3 with four variables 

have up to 12 different solutions, though not necessarily real numbers and not 

necessarily in (0,1)4. For our experimental case n=4 and if ܿ ⁄ܩ ൌ   are not equal weݎ

find numerically (with a lot of parameter variations) mostly up to two completely mixed 

strategy equilibria, in rare cases also more than two.  
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Independent of whether or not ݎ are equal, there are many more pure/mixed strategy 

equilibria (see Table 1). In the case k=1, the Volunteer’s Dilemma, there are four pure 

strategy equilibria where exactly one player contributes, there is possibly one completely 

mixed strategy equilibrium (see above), there are up to four additional equilibria where 

one player plays pi=0 and the others according to the completely mixed strategy 

equilibrium of the Volunteer’s Dilemma with n=3, and there are up to six equilibria where 

two players play pi=0 and the other two according to the completely mixed strategy 

equilibrium of the Volunteer’s Dilemma with n=2. The number of equilibria for k=2 and 

k=3 are derived accordingly. In the Stag Hunt game, however, no pure/mixed strategy 

equilibrium exists where the player with the highest ri contributes with pi=1. This results 

from the others contributing with such probabilities that their expected revenue is 0. 

Threshold k 1 2 3 4 
# pure str. equ. 4 7 5 2 
# compl. mixed equ.  1  2*  2*  1 
# pure/mixed equ. 10  24  24  6 
     
Table 1: Number of equilibria in the positive frame if the threshold is “k contributions from 

n=4 players”.  

Explanatory remarks: * For the parameters estimated below there are exactly two equilibria. Computations 

with many different parameter constellations resulted often in less than two completely mixed strategy 

equilibria and in rare cases in more than two. 

The HS selection for games with identical ࢘ 

In the case of symmetric games, Harsany and Selten (1992) restrict their selection to the 

set of symmetric equilibria. These can generically be ordered according to Pareto-

dominance. For BTPG games we extend the HS definition of symmetry to games with 

identical ݎ ൌ ܿ/ܩ. 

Proposition 2: In a BTPG game with identical ݎ	the following equilibria are selected 

according to the Harsanyi-Selten theory. 

(i) For ݇ ൌ 1 in the positive (negative) frame (5) applies (no player contributes). 

(ii) For ݇ ൌ ݊ in the positive (negative) frame all players contribute ((6) applies). 

(iii) For 1 ൏ ݇ ൏ ݊ in the positive (negative) frame we get: if solutions ߨ′′   of (4)  ′ߨ

exist, then   ൌ  otherwise ( ′ߨሺ	′′ߨ ൌ 0	ሺ1ሻ. 

Proof: Appendix A1.  
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4. The selection of modes of play in BTPG games 

As already outlined in the introduction we allow the coexistence of different beliefs about 

the appropriate selection of a mode of play. Our first distinction is between equilibrium 

and non-equilibrium players. While equilibrium requires a certain consistency of beliefs, 

we assume also two (small) populations of non-equilibrium players who do not care 

about the beliefs of others. There are absolute cooperators (population P1) who believe 

that their own contribution is decisive with a high probability (qi>ri in Proposition 1) and 

who therefore always contribute (pi=1) in the positive frame. There is also a population 

P0 with opposite beliefs (qi<ri) that never contributes (pi=0) in the positive frame. P1 may 

consist of extremely altruistic players and P0 of extremely spiteful players. Close to the 

P0 players are free riders who may be characterized by optimistic maximax strategies 

(resulting in pi=0 for games with k<4 and pi=1 for k=4 in the positive frame) and risk 

averters who may be characterized by pessimistic maximin strategies (resulting in pi=0 

for games with k>1 and pi=1 for k=1 in the positive frame). We introduce P0 players as 

counterparts of P1 players but it may turn out that, in other applications, the alternatives 

maximax or minimax strategies are more different and more successful. 

Equilibrium players believe that the appropriate mode of play is defined as the most 

efficient among the Nash equilibria (population PE) or among the “fair” Nash equilibria 

(population PF). An efficient mode of play maximizes the social product (the sum of 

incomes). “Fairness” is used here mainly in the sense of “equality” and, as a concession 

to bounded rationality, it is defined only qualitatively with the binary values “equal” and 

“unequal”. Modes of play p=(1,1,1,1) or p=(0,0,0,0) or a completely mixed strategy with 

0<pi<1 for all i are considered as (qualitatively) equal and therefore fair; all other modes 

of play p are defined as unequal and unfair. Of course, fairness has many other facets 

which may be important in other applications and even below we will discuss also 

another interpretation of fairness but our main assumption remains that mixed strategy 

equilibria are fairer than asymmetric pure strategy equilibria. 

The assumption that all players behave according to these four classes is too strong, 

however. We assume that most efficient equilibria are selected only by the 

subpopulations PE1 and PF1 and introduce two further classes PE2 and PF2 where 

“most efficient” is substituted by “second most efficient”. Such behaviors may be 

assumed to be errors or they may indicate deviations from lexicographic preferences. 

PE2 players may be concerned “a bit” about fairness and PF2 players “a bit” about error 
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of others and risk. In a game with the threshold k=2 and different costs c1<c2<c3<c4, the 

most efficient Nash equilibrium is p=(1,1,0,0). Although in PE efficiency has priority over 

fairness, some dissatisfaction of the contributing players can be expected. In particular, 

player 2 may ask whether player 3 should not also contribute, at least sometimes. In one-

shot games4, however, they cannot coordinate on alternatingly playing (1,1,0,0) and 

(1,0,1,0). Instead of that we assume the subpopulation PE2 playing according to the 

unique mixed strategy equilibrium (1,v2,v3,0) where vi denotes the mixed strategy 

equilibrium probabilities of the Volunteer’s Dilemma with n=2. In games with k=1 and k=3, 

PE2 people are assumed to play according to the unique strategies (v1,v2,0,0) and 

(1,1,v3,v4); in the game with k=4 dissatisfaction arguments are without bite and we 

assume both subpopulations playing (1,1,1,1). In the population PF a fair equilibrium is 

selected but players may be concerned about riskiness in a loose and weak sense. PF1 

players select (1,1,1,1) in the game with k=4, and the (if it exists) unique completely 

mixed strategy equilibrium M1 for k=1, and the most efficient Hk of completely mixed 

strategy equilibria (if existent) in the games with k=2 and k=3. Population PF2 trades off 

efficiency against equilibria with less frequent contributions (on average less risky 

concerning errors or deviant beliefs of their co-players) and select the (if existent) unique 

completely mixed strategy M4 for k=4, and the second most efficient completely mixed 

strategy equilibrium Lk for k=2 and k=3. For k=1, the completely mixed equilibrium is the 

only fair equilibrium. In the error interpretation of PF2’s behavior, the selection of L in the 

games with k=2 and k=3 is the consequence of ignorance of Hk, in particular if we 

assume equilibria not to be computed but approximately known from a lifelong 

experience with similar situations.  

Table 2 provides an overview about populations and their selections of modes of play in 

the case with different costs, i.e. in our treatments A and B. For the thresholds k=1 and 

k=4, some modes of play of different populations coincide. In particular, the Stag Hunt 

game alone cannot provide an estimation of the hypothetical populations.  

Asymmetry is generic but many example games are symmetric. This poses a problem for 

efficiency play in our almost symmetric games for cases k=1 and k=3 where there are 

two efficient asymmetric equilibria and where it seems to be impossible to coordinate 

actions for playing one of these. Our treatments S+ and S- have identical ri=0.4 and, in 

                                                            
4 In our experiments repeated games with a stranger design were played, i.e. for every repetition the four players in 
a game were randomly composed. 
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S+, c1=c2=4, c3=c4=8. This allows to define equilibria E1 for k=2 and k=4 and equilibria 

E2 for k=1 and k=3 as indicated in Table 2. Our new definition of E1 is the play of 

(v1,v2,0,0), (1,1,0,0), (1,v2,v3,0), (1,1,1,1) for k=1,2,3,4. Population E2 in treatments S+ 

(correspondingly in S-) is assumed to be concerned also with fairness and they may 

argue as follows:  Players 3 and 4 have not only larger costs but also larger benefits; if 

player 3 contributes and player 1 not and if the project is launched then player 3 earns 12 

and player 1 earns 8. Therefore population E2 favors switching the roles of small and 

large players compared with E1’s selection of equilibria. 

Pop  Characterization  Modes of play for k=1,2,3,4 

PE1  Most efficient equilibrium  (1,0,0,0), (1,1,0,0),(1,1,1,0), (1,1,1,1) 
PE2  “Second” most efficient equilibrium  (v1, v2,0,0), (1, v2, v3,0),(1,1, v3, v4), (1,1,1,1) 
PF1  Most efficient fair equilibrium  M1, H2, H3, (1,1,1,1) 
PF2  Second most efficient fair equilibrium  M1, L2, L3, M4 
P1  Putative pivots  (1,1,1,1) for all k
P0  Putative non‐pivots   (0,0,0,0) for all k 

Table 2: Subpopulations for games with c1<c2<c3<c4  

Explanatory remarks: M1 (M4) denotes the (if existent) unique completely mixed strategy equilibrium in the 

game with k=1 (k=4). v2 denotes the symmetric equilibrium contribution probabilities of the Volunteer’s 

Dilemma with two players. H denotes the most efficient of the (mostly two) completely mixed strategy 
equilibria with k=2 and k=3, L the second most efficient one. 

The shares of the six subpopulations constitute the first five parameters of our finite 

mixture model. The shares are assumed to be independent of the threshold k and the 

player type ሺܿ, ሻܩ . The pure strategy modes of play are, except in extreme cases, 

independent of social preferences. Mixed strategy equilibria, however, vary with the 

social preferences which constitute one (in the two almost symmetric treatments) or four 

(in the two asymmetric treatments) additional parameters. 

Social preferences are introduced as altruism and/or warm glow in the spirit of Andreoni’s 

(1989, 1990) suggestion. They change the game only insofar as the cost/benefit ratios ݎ 

are multiplied by a factor. Following Andreoni (1990) we add an “altruistic” term by 

substituting ܩ  by ܩ  ܽ ∗ ିܩ  with ିܩ ൌ ∑ ஷܩ  and we introduce an additional “warm 

glow” utility ܾ ∗ ܿ of contributing to the public good. With such a utility function, players 

who play mixed strategies with probabilities  have revenues  

(5)  ܴ 	ൌ ܳ ∗ ሺܩ  ܽ ∗ ሻ	ିܩ െ	ሺ1 െ ܾሻ ∗  ∗ ܿ. 

This results in the equivalent to (2),  
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(6)  ሺܩ  ܽ ∗ ሻ	ିܩ ∗ ݍ െ ሺ1 െ ܾሻ ∗ ܿ ൌ 0. 

Proposition 4: The introduction of altruistic and/or warm glow players results in an 

equilibrium condition for mixed strategies 

ݍ   (7) ൌ ݎ ∗ ݏ    withݏ ൌ
ீሺଵିሻ

ீା∗ீష
.  

Proof: (6).  

For the sake of simplicity we assume ܽ ൌ 0 so that  ݏ ൌ 1 െ ܾ does not depend on ܿ or 

ܩ . In the following we will assume that players with equal ݎ  have equal ݏ , while 

otherwise  the ݏ  may be different. This is in the spirit of role dependent preferences 

(Bolle and Otto, 2016) which assume that social preferences are adapted in an 

evolutionary process in order to improve the strategic position of a player. For an 

investigation concerning the evolutionary stability5 of altruistic preferences see Bester 

and Güth (1998) and Bolle (2000). Roles are defined by the strategic situation of a 

player, here the cost/benefit ratios of all players. In the almost symmetric treatments one 

ݏ ൌ  .is estimated and in the asymmetric treatments there are four (one for every player) ݏ

These values are independent of the populations and the thresholds.  

The last parameter of our model describes an average random deviation (perturbation) 

probability from the strategies selected. Small and large contribution probabilities are 

thus moved to the middle as hypothesized in Prospect Theory when probability weighting 

functions are introduced. The perturbation probability should be small and is indeed 

estimated as smaller than 3.3% for four of the six separately estimated data sets.  

4. Experiments and overview of results 

All our experimental games are with four players. In Treatment S+ (almost symmetric, 

positive frame), players 1 and 2 with ሺܿ, ሻܩ ൌ ሺ4,10ሻ Lab-Dollars are called small players; 

players 3 and 4 with ሺܿ, ሻܩ ൌ ሺ8,20ሻ are called large players. In Treatment S- (almost 

symmetric, negative frame) ܩ and ܿ have the same absolute values as in S+ but are 

both negative, i.e., players earn a profit by contributing and suffer a loss if the threshold is 

                                                            
5 Evolutionary stable preferences depend on the parameters of the game (Heifetz, 2007) and thus such an approach 
challenges the stability of preferences. Note, however, that also other approaches as many variants of Prospect 
Theory (Kahnemann and Tversky, 1979) do this. Bolle and Otto (2016) comment on the plausible extent of role 
dependent variability. 
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surpassed. Again, players 1 and 2 are called small players and 3 and 4 large players. All 

players have a cost/benefit ratio ci/Gi =0.4. 

In the asymmetric treatments A and B benefits were Gi=20 and costs varied. In 

Treatment A, contribution costs (ci) were ሺ4.5, 5, 5.5, 6ሻ  and cost/benefit ratios 

(ri)=(0.225, 0.25, 0.275, 0.3) had a small spread. In Treatment B costs were (2, 4, 6, 8) 

and cost/benefit ratios (0.1, 0.2, 0.3, 0.4) showed a large spread. The costs and benefits 

of a player define his type. A player kept his type during the whole experiment. Every 

subject participated in only one treatment.  

Treat‐

ment 

Endow‐ 

ment 

costs 

ci 

Benefits 

Gi 

 

ci/Gi 

 #sessions 

(at V, at TU)

S+  8  (4,4,8,8)  (10,10,20,20)  0.4  (10,  ‐) 

S‐  20  (‐4,‐4,‐8,‐8)  (‐10,‐10,‐20,‐20)  0.4  (10,  ‐) 

A  8  (4.5, 5, 5.5, 6)  20  (0.225, 0.25, 0.275, 0.3)  (6,  12) 

B  8  (2, 4, 6, 8)  20  (0.1, 0.2, 0.3, 0.4)  (10,  6) 

Table 3: Game parameters (in lab dollars) in the four treatments for players i=1,2,3,4 and 

number of sessions with eight subjects either at TU (Technische Universität Berlin) or V 

(Europa-Universität Viadrina Frankfurt (Oder)). 

We conducted the experiments as computerized laboratory experiments (implemented in 

a z-tree program design, Fischbacher, 2007) at two locations, the Vialab (V) of the 

Europa-Universität Viadrina in Frankfurt (Oder) and in the experimental laboratory of the 

Technische Universität (TU) Berlin. Table 4 describes the experimental parameters and 

how many sessions of a treatment were conducted at TU and Viadrina.  

A session consisted of 32 games with the same eight subjects. In every session there 

were four (in treatments S+ and S-) or two (in treatments A and B) players of each type. 

In each of the 32 periods they were allocated randomly to two experimental groups under 

the restriction that in every group two (in treatments S+ and S-) or one player of each 

type was present. So there are 36 different groups in treatments S+ and S- and 16 

different groups in treatments A and B. In each session every threshold k=1, 2, 3, 4 was 

played in eight periods in a row. During 32 periods all thresholds were adopted in a 

random order but with the restriction that, in the 10 sessions with treatments S+, S-, and 

B at the Viadrina, each k was played either 2 or 3 times at each of the four positions. In 
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the 12 sessions with treatment A at TU each k was played three times at each of the four 

positions, in the six sessions of A at Viadrina and B at TU, each k was played once or 

twice in each position. 

Subjects were not informed about the order of the thresholds in the beginning, but only 

when the threshold changed. We mentioned already that we used a stranger design, i.e. 

the composition of the groups was changed after each round and the co-players could 

not be identified. Subjects were informed about how many players contributed to the 

public good but not who contributed. 

Before subjects played the games, they were given printed instructions and had the 

possibility to ask questions. Instructions contained general information, the description of 

the threshold public good game and two example calculations. Furthermore, they had to 

answer five comprehension questions to make sure that everyone understood the game. 

The experiment did not start until all subjects had answered the questions correctly. In 

cases of problems, personal advice was given. In every period the subjects were 

reminded of the actual threshold and, every eighth period, the changing of the threshold 

was announced. In each period subjects were informed on the decision screen that the 

group composition had been changed and they were required to decide whether or not to 

contribute. On the profit display screen they were informed about the number of 

contributing players and whether the threshold was reached. They further received 

information about their payoff in the current period. 

In all of the 32 periods players were endowed with 8 Lab-Dollars (treatments S+, A, B) or 

20 Lab-dollars (treatment S-). If the threshold of k contributions was reached or 

surpassed, all players received the benefit Gi (suffered losses in treatment S-); otherwise 

they received nothing. Their total income in a period consisted of their endowment minus 

their costs of contributing (if they contributed) plus benefits (if the threshold was reached 

or surpassed). One Lab Dollar was worth 4 Eurocents. Participants earned between 17 

and 36 Euros with an average of 28.11 Euros. Sessions lasted roughly 45 minutes. 

Average contribution probabilities 

In Tables A2 and A3 (Appendix A3, adopted from Spiller and Bolle, 2016), average 

contribution frequencies ܨܥܣሺ݇, ܿ,  ሻ are reported for different thresholds k and differentܩ

player types described by ሺܿ,  ሻ. Non-parametric tests are carried out based on sessionܩ

averages. The stylized conclusions for treatments S+ and S- are: 
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- Small and large players show similar ACFs except for k=4, i.e. there is little evidence of 

efficient play with small players contributing more frequently than large players. 

- ACFs in the positive and the negative frame are mirrored, i.e. ܨܥܣሺ݇, ܿ, ሻܩ ൌ 1 െ

ሺ5ܨܥܣ െ ݇,െܿ, െܩሻ. 

Stylized conclusions for treatments A and B are: 

- There are no systematic differences between V and TU subjects in treatment B; there 

are some differences in treatment A. 

- There is a tendency towards efficiency. Generally, lower cost players contribute with 

higher probability. In particular, the k least cost players contribute more than the other 

players. 

For all treatments we find: 

- ACFs increase with the threshold. 

- The predictions of Global Games and Risk Dominance (Propositions 2 and 3 for k=4), 

namely that no one will contribute in the game with k=4, are clearly rejected.6  

Further results are reported in Spiller and Bolle (2016) where also regression analyses 

are carried out which show traces of dynamics, in particular a trend towards more 

cooperation in later periods of S+ and S-. 

5. A finite mixture model of equilibrium selection 

In treatments A and B we found hints that efficient play may have a certain influence on 

average contribution frequencies. On the other hand, it is clear that, except in the Stag 

Hunt game (k=4), only a small part of the population can have played efficient pure 

strategies. The question is whether efficiency players exist at all or whether there is only 

a general tendency that players with smaller ci contribute with higher probability. 

Therefore we now turn to individual contributions. 

We call a player’s number of contributions to the public good in the eight repetitions of 

decisions (for a certain threshold k) the individual contribution frequency ICF. The 

distributions of these ICFs are provided in Appendix A5 for treatments, subject pools, 

                                                            
6 Note that, in treatment S-, k=1 is the Stag Hunt game and no one contributing is the cooperative 
equilibrium. 
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player types, and thresholds, for treatments S+ and S- also for the first half of 

experiments (period<17) and the second half (period>16). As an example, Figure 1 

provides the ICFs of treatment S+, aggregated over small and large players. There are 

some players who choose the same action eight times (ICF=0 or ICF=8), but this number 

varies over games and player types. As we assume the shares of the subpopulations to 

be independent of the threshold k and the player type, we conclude that the share of P1 

cannot be large and that the share of P0 must be even smaller. Also efficiency players 

from PE cannot be frequent. So we expect the bulk of subjects to belong to the PF 

subpopulations. 

 

Figure 1: Frequency distribution of individual contribution frequencies (ICFs) in treatment 

S+. k= threshold. For every k, 8 decisions by 80 individuals. 

Methodological issues 

For the estimation of our model we need a hypothesis about the variation of membership 

in the six subpopulations (Table 2) during the 32 periods of an experiment. A regression 

model for single decisions predicts each decision separately. In a finite mixture model 

this would mean:  

HypNo:  Players may switch randomly between the six subpopulations in every of their 

32 decisions. The shares of the subpopulations remain constant, however. 

Alternative hypotheses are:  

HypThresh:  Players keep their membership of one of the six subpopulations during the 

eight decisions under a certain threshold. Between games with different thresholds they 
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may change their membership. The shares of the subpopulations remain constant 

however. 

HypAll:  Players keep their membership of one of the six subpopulations during the 32 

decisions of a session. 

HypNo almost obliterates the assumption of consistently acting subpopulations. Its 

consequence is that players in a certain game (defined by the threshold k) act according 

to an average contribution probability, i.e. overall we should observe a binomial 

distribution of ICFs for a certain k. This is apparently not the case in Figure 1. HypThresh 

results in a mixture of binomial distributions of ICFs and HypAll in a mixture of the 

product of four binomial distributions. HypAll is possibly too demanding. A new game with 

a new threshold requires a new evaluation and, similar as perturbations occur in the play 

of strategies, they may also occur in the choice of the appropriate mode of play. In 

Appendix A3 we compute the likelihood functions for the three hypotheses and the chi-

square function for HypThresh. We present also a table with the results of Maximum 

Likelihood estimations under the three hypotheses. As HypThresh is the clear winner of 

this competition we employ it in the following. 

In the following, S+/S-(per<17) denotes the aggregated data from the two treatments S+ 

and S- in the first half of the session (period<17), i.e., the first two experiments of a 

session. ATU denotes the data from treatment A at the TU laboratory. Etc.. The estimation 

of our model is carried out separately for each of the six data sets S+/S-(per<17), S+/S-

(per>16), ATU, AV, BTU, and BV and jointly for the data of the same treatments ATU+AV, 

BTU+BV, and S+/S-(per<17) + S+/S-(per>16). The separate investigation of the early 

(per<17) and late (per>16) decisions in S+/S- is motivated by the detection of dynamics 

in a regression analysis (Spiller and Bolle, 2016). The separate investigation of TU and V 

data is due to the four significant differences in treatment A (Table A4). For the 

estimation of the model parameters we have employed the Maximum Likelihood method 

as well as the Minimum Chi-square method (Berkson, 1980; Newey and West, 1987). 

Maximum Likelihood allows to identify significant differences between alternative models 

and to evaluate the aggregation of data sets; the chi-square score is a measure of the 

absolute fit between model and data. Results of these estimations are presented in 

Tables 4 and 5. 
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Although the parameter estimations by Minimum Chi-square and Maximum Likelihood 

are asymptotically equivalent, real estimations differ to a certain degree. The 

loglikelihood scores are improved by 3-13 points when we employ Maximum Likelihood 

instead of Minimum Chi-square (see Table 4) while the Chi-square values increase 

considerably and signal significant deviations between the predictions from maximum 

likelihood estimations of parameters and results. This gives rise to the question whether 

Minimum Chi-square leads to over-fitting, i.e. the question whether it can compensate 

structural weaknesses of the model. We think this is unlikely because most model 

variations as, for example, neglecting the mostly smallest subpopulation, P0 with a share 

of 3-6%, lead to strongly increasing 2  scores. We take the stance that the loss of 

degrees of freedom by estimating the seven or ten parameters is best taken into account 

with corresponding tests and estimation procedures. Likelihood ratio tests and 

applications of the Akaike and Bayes information criteria AIC and BIC should be carried 

out on the basis of Maximum Likelihood estimations; a Chi-square test of the model fit on 

the basis of Minimum Chi-square estimations. Of course, we should keep in mind that the 

loss of degrees of freedom by the number of estimated parameters is generally true only 

for linear models (Andrae et al., 2010), and that it is unclear when numbers are large 

enough for asymptotic properties to apply. The fine differentiation of ICFs allows testing a 

particularly detailed structure but it leads to many small frequencies. As a rule of thumb, 

the estimated frequencies in Chi-square tests should not be smaller than 5. This 

requirement is not fulfilled in our estimations. Note, however, that the danger under such 

circumstances is to produce too large 2 scores, i.e. there is an increased danger of 

rejecting an adequate model. Therefore corrections as the Williams correction7 decrease 

the computed 2 scores. In Table 7 we report uncorrected 2 scores. Because of our large 

sample size, the Williams correction factor for 2 is smaller than 1.02 and would not 

change our evaluations considerably. We carry out, however, an additional estimation 

based on categories where ICFs {0,1,2}, {3,4,5}, and {6,7,8} are aggregated. As a result, 

the p(2) values are either about the same or considerably larger than in the 

disaggregated model. 

 

 

                                                            
7 2 is divided by the Williams correction factor which is always larger than 1. In our investigation it is maximal in AV 

(1.0191). 2  is then reduced from 141.9 to 139.2 and p increases from 0.066 to 0.088. 
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The fit of the finite mixture model 

The chi-square scores and the average log-likelihood scores indicate that our model 

shows the worst fit in the almost symmetric cases S+/S- and the best fit in the case of the 

highly asymmetric treatment B and for the subject pool TU. For all data sets except S+/S-

(per<17) the chi-square scores indicate a sufficient fit (not rejected on the 5% level). In 

the maximum likelihood estimations of treatments S+/S- the score of the joint maximum 

likelihood estimation of 1329.5 is 33.5 points worse than the separate estimations for 

per<17 and per>16, 700.8+595.2=1296.0. For treatment A, the score of the joint 

estimation ATU+AV, 980.0, is worse by 27.9 points compared to the score in the separate 

estimations. According to a Likelihood Ratio test the separate estimation is significantly 

better (p<10-7 in the case of treatment A, even smaller in S+/S-), in spite of the additional 

10 parameters (7 parameters in S+/S). Also AIC and BIC favor the separate estimation. 

The separate estimations in treatment B are worse by only 10.7 points and are justified 

according to the Likelihood ratio test with p=0.018 and (just) AIC but not according to 

BIC. The minimum chi-square estimation confirms the first two comparisons, but it allows 

merging the subject pools in treatment B. 

  Minimum 2                         Minimum ୰
ଶ Maximum Likelihood 

Data N 2 p(2) -logL  ୰
ଶ p(୰

ଶ) 2 p(2) -logL -logL/N 

S+/S- per<17 320 171.0  0.002 712.1 24.7 0.479 216.4 <10-6 700.8 2.190 

S+/S- per>16 320 146.1  0.060 602.9 38.6 0.040 174.2 0.001 595.2 1.860 

S+/S- all 640 190.8  <10-4 1342.5 22.1 0.683 248.8 <10-9 1329.5 2.077 

ATU 384 121.0 0.405 610.5 24.4 0.328 134.5 0.142 604.5 1.574 

AV 192 141.9 0.066 350.9 24.8 0.304 177.3 0.003 347.6 1.810 

ATU+ AV 576 181.7 10-4 986.7 32.4 0.070 208.5 <10-6 980.0 1.701 

BTU 192 124.2 0.300 291.0 18.6 0.667 368.3 0 279.2 1.454 

BV 320 122.0 0.382 549.3 20.6 0.546 143.4 0.056 544.4 1.701 

BTU+ BV 512 135.5 0.129 841.3 24.4 0.328 162.6 0.004 834.3 1.629 

Table 4: Minimum Chi-square and Maximum likelihood estimation of the finite mixture 

model with six data sets under HypThresh.  

Explanatory remarks: 2 is determined from the estimation of 144 cells of 16 mixtures of binomial 

distributions (2 treatments times 2 player types times four games in S+/S-, 4 player types times 4 games in 

treatments A and B) with nine different ICFs; therefore df=144-16-10=118 for p(2) from treatments A and B 

and df= 121 for treatments S+/S-. For ୰
ଶ only three classes of ICFs are defined; therefore df=48-16-10=22 

for p(2) from treatments A and B and df= 25 for treatments S+/S-.  
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  1 E1 E2 F1 F2 0 s1 s2 s3 s4 

S+/S‐	 0.114  0.168 0  0.008 0.223 0.398 0.202 ‐ ‐  ‐  0.708

per<17	 0.010  0.025 0.010  0.026 0.029 0.026 ‐ ‐ ‐  ‐  (0.039)

S+/S‐	 0.021  0.122 0.035  0.109 0.406 0.259 0.070 ‐ ‐  ‐  0.814

per>16	 (0.005)  (0.017) (0.020)  (0.023) (0.027) (0.022) ‐ ‐ ‐  ‐  (0.024)

ATU	 0.020  0.180 0.083  0.214 0.322 0.171 0.029 1.414 1.880  1.686 1.546

	 0.002  0.020 0.022  0.023 0.025 0.019 ‐ <10‐4 <10‐4  <10‐4 <10‐4

AV	 0.063  0.149 0  0.104 0.498 0.186 0.062 1.894 1.779  1.642 1.485

	 0.008  0.025 0.039  0.032 0.024 0.026 ‐ <10‐3 <10‐3  <10‐3 <10‐3

BTU	 0.022  0.226 0.172  0.132 0.208 0.213 0.050 3.270 1.378  1.072 0.784

	 0.004  0.027 0.035  0.0405 0.033 0.026 ‐ 0.234 0.098  0.070 0.055

BV	 0.032  0.110 0.119  0.217 0.321 0.188 0.045 3.294 1.331  1.020 0.757

	 0.005  0.019 0.029  0.034 0.032 0.019 ‐ 0.157 0.075  0.058 0.043

Table 5: Parameters estimated by minimum chi-square, standard errors in parentheses. 

Explanatory remarks. Standard errors are estimated by the square roots of the diagonal elements of the 

inversion of the Hessian. A peculiarity of the standard errors is their tiny values for the si parameters in ATU 

and AV. This results from the fact that the estimated parameters “just” allow the existence of completely 

mixed strategies.   

 

Figure 2: Shares (%) of subpopulations (left) and altruism/warm glow parameters of 

player types characterized by ci/Gi. S<17 stands for S+/S-(per<17). 

The parameters of the estimations according to minimum chi-square are shown in Table 

5 and Figure 2. Note that 0 = 1- 1 - E1 - E2 - F1 - F2. The corresponding contribution 

probabilities for S+/S-(per>16) and the two larger data sets ATU and BV of the asymmetric 

0

0,1

0,2

0,3

0,4

0,5

0,6

0 2 4 6 8

0

0,5

1

1,5

2

2,5

3

3,5

0 0,1 0,2 0,3 0,4 0,5

 ATU

AV

BTU

BV

S<17

S>16

      1      E1     E2      F1     F2     0             0.1          0.2         0.3         0. 4         ci/Gi

 

10 

40 

30 

20 

50 

60 



25 
 

treatments are presented in Appendix A4. First, we observe that the perturbation 

probability  is small and has its largest values for the data set with the worst fit, S+/S-

(per<17). Otherwise  is at most 0.063 and, on average, 0.030; therefore it certainly does 

not dominate the intrinsic structure of the model.  

Second, we find some considerable differences between S+/S-(per<17) on the one hand 

and S+/S-(per>16) as well as the other data sets on the other. The estimated parameters 

for S+/S-(per<17) are either outliers or at least extreme compared with the other 

estimations. From the first to the second half of the experiments with S+ and S- subjects 

learn to contribute: the shares of efficient and F1 play increased and those of P0 and F2 

decreased. Leaving aside the outliers from S+/S-(per<17), the shares of populations P1, 

PE2, PF2, and P0 are rather similar while the shares of PE1 and PF1 are more variable. 

For four of the six data sets, PF1 is the largest population; for treatments S+ and S- PF1 

is the HS selection.  

Third, the altruism/warm glow parameters vary little between subject pools but a lot 

between treatments. Figure 2 shows a strong negative correlation between ݎ ൌ ܿ/ܩ and 

ݎ  which may be expressed by a linear or hyperbolic function, in the latter caseݏ ∗ ݏ ൎ

0.35. If our model is correct the estimation of different preferences across player types 

but not across populations means that preferences are not stable. Our explanation is that 

preferences are “role dependent” where a role is narrowly defined as a player in a certain 

game. But it does not make sense to define thousands of different roles; therefore the 

same role should be taken also in “similar” strategic situations. Preferences guide 

behavior and are therefore similar to commitments8 which allow players to gain higher 

material profits. Whether and under which conditions evolutionary stable preferences are 

described by ݎ ∗ ݏ ൌ  may be investigated as in Bester and Güth (1998); but such a ݐݏ݊ܿ

theoretical investigation is beyond the scope of this paper.  

Roles in bargaining are discussed by Bolle and Otto (2016). Envy towards one’s 

bargaining partner generally improves the bargaining results of a player (except when 

both show so much spite that no agreement can be reached) but although, except for 

ݎ ൌ 0.4, all the estimated si are larger than 1 and thus indicate spite or cold prickle, in 

BTPG games things are more difficult. In the mixed strategy equilibrium of the 

Volunteer’s Dilemma a player’s increasing altruism improves his material success, in the 
                                                            
8 That’s the point in strategic delegation (Vickers, 1985; Fershtman et al.,1991). 
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mixed strategy equilibrium of the Stag Hunt game it reduces his material success. The 

same contrary effects are valid when comparing the completely mixed strategy equilibria 

with k=2 and k=3.  

In general, our equilibrium selection hypothesis has turned out to be successful, but of 

course minor adaptations to other applications may be necessary. An example is the 

substitution of the small population P0 by a population of maximax players (free riders) or 

maximin players (risk averters). In our data set, in both cases only one of the four games 

(k=1 or k=4) is affected. For many simple games, the predictions for several populations 

coincide. Therefore the complete model should be re-tested preferably in a rich 

environment and not for single 2x2 games. On the other hand, the theory must be 

applicable also to such “simple games”. 

7. Conclusion 

The main message from this investigation is that Nash equilibria can explain behavior but 

that, first, people have individual beliefs about the appropriate equilibrium, second, that 

people have adopted “role dependent” social preferences, and, third, that there is a 

certain level of random and perhaps also systematic error. With some qualifications, 

behavior in our four treatments can be explained by a finite mixture model with six 

populations who are guided by different principles for the selection of (mostly equilibrium) 

modes of play. About 80% of the subjects either play most efficient equilibria or most 

efficient fair equilibria. Some fuzziness is introduced by a perturbation probability (about 

3%) and by reducing the “most efficient” requirement to a “second best” level.   

The almost symmetric treatments S+ and S- are estimated jointly, i.e., with the same 

parameters. Contrary to many linear Public Good experiments (e.g. Dufwenberg et al., 

2011) no effect of framing a decision positively or negatively is observed. Comparing 

early and late decisions in treatments S+ and S- shows that there is a trend towards 

more cooperation. The consequence is that only decisions from the second half of the 

experiment fit our static model with a non-significant chi-square score. In the moderately 

asymmetric treatment A and the considerably asymmetric treatment B a strong (A) and a 

weak (B) subject pool effect is observed. Only in the latter case is the estimation of the 

model with the joint data from two laboratories at different universities successful. 

Parameters are always estimated jointly for games with thresholds k=1,2,3,4. Across 

treatments, the shares of populations do not differ considerably. The altruism parameters 
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do differ but they are rather similar for players with the same cost/benefit ratios. For 

increasing cost/benefit ratios, altruism increases (si decreases). Figure 2 suggests a 

close relationship between the cost/benefit relation of a player and his altruism/ warm 

glow parameter. We interpret this as an indication for role dependent preferences. 

People often doubt that game theoretic equilibria have any meaning for behavior. In the 

Volunteer’s dilemma not even qualitative predictions seem to apply. (a) In the completely 

mixed strategy equilibrium of the symmetric Volunteer’s Dilemma the probability of 

producing the public good should decrease with the number of players n, but it is shown 

to increase (Diekmann, 1986). (b) In the completely mixed strategy equilibrium of the  

asymmetric Volunteer’s Dilemma, the probabilities of contribution should increase with 

the cost/benefit ratios of players, but average observed frequencies are shown to 

decrease (Diekmann, 1993). However, (b) is implied in our finite mixture model because 

of the existence of efficiency players and because altruism parameters counteract the 

influence of cost/benefit ratios. (a) follows from the existence of the group P1 whose 

members always contribute. The larger the number of players n, the larger the probability 

that a member of P1 is present. In many other investigations of BTPG games not even 

an attempt is made to match observed behavior with equilibria (see Section 2).  

The other extreme game, the Stag Hunt game, is the favorite example for discussing 

coordination problems. In our experiments the “optimistic” subpopulations P1, PE1, PE2, 

and PH who have an aggregate share of about 75% choose to always contribute. A 

share of about 20% PL people contribute with a probability of 2/3 and only about 5% P0 

people do not contribute at all. This result clearly contradicts the selection of P0 by risk 

dominance or Global Games. It poses the question how to explain behavior in some 

experiments with the Stag Hunt game (van Huyck et al., 1990; Rydval und Ortmann, 

2005) with intermediate contribution probabilities or convergence to zero contributions. 

The usual result for the wider class of games with Pareto-ranked equilibria is, however, 

successful coordination (Blume and Ortmann, 2007). 

Dynamics need not be strong, in particular in a stranger design. For repetitions in a 

partner design, however, a behavioral drift may be the dominant phenomenon. The 

consequence would be that subpopulations could no longer be assumed to be constant. 

From the perspective of our model the most interesting question is whether even after 

many repetitions several modes of play survive or whether convergence to a single 

equilibrium is the rule. 
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Appendix 

A1 Proofs 

Lemma 1 (for the proof of Proposition 2): In a BTPG game with k=n, the strategy profile 

ܽ∗ ൌ ሺ0,… ,0ሻ is a local potential maximizer. 

Proof: Let ܽ ൌ ሺܽ, ܽିሻ denote a vector of actions of the players with ܽ ൌ 1 denoting 

contribution to the production of the public good and ܽ ൌ 0	denoting non-contribution. 

Adapting the requirements on a local potential maximizer ܽ∗ ൌ ሺ0,… ,0ሻ from Frankel et al. 

(2003) to our binary choice game we have to find a function ݒሺܽሻ ൌ ,ሺܽݒ ܽିሻ which takes 

a strict local maximum at ܽ ൌ ܽ∗ and find positive numbers ߤ so that 

ܿ               for ܽିߤ         ് ሺ1,… ,1ሻ 

,ሺ0ݒ ܽିሻ െ ,ሺ1ݒ ܽିሻ  ,ሾܴሺ0ߤ ܽିሻ െ ܴሺ1, ܽିሻሿ ൌ   

        െߤሺܩ െ ܿ)  for ܽି ൌ ሺ1,… ,1ሻ 

for all i. The function ݒሺܽሻ ൌ ∑ ܴሺܽሻ  and  ߤ ൌ 1 fulfill these conditions.  

Proposition 2: ܽ∗ ൌ ሺ0,… ,0ሻ is the unique global game equilibrium of a BTPG game with 

k=n. 

Proof: Because of Frankel et al. (2003), Theorem 1, the equilibrium is unique, because 

of Theorem 2 it is a pure strategy Nash equilibrium, and because of Theorem 3 (which 

needs Lemma 1 above) it is independent of the distribution of noise.   

Proposition 3: In the case k=n, if ݎ  ∏ ஷݎ   for all ݅ then ሺ0, … ,0ሻ risk dominates all 

other equilibria p. 

Proof:  According to Harsanyi and Selten (1988), for the question whether a mixed or 

pure strategy equilibrium p risk dominates another equilibrium p’ first the bicentric prior of 

p and p’ is derived. For BTPG games we have to determine, for every 0  ݐ  1, whether 

ܽ ൌ 1  or ܽ ൌ 0  is a best reply of player i to the other players contributing with 

probabilities ݐ ∗ ି  ሺ1 െ ሻݐ ∗ . The shares of t values with ܽି′ ൌ 1 constitute a vector 

x of prior probabilities. With these priors the tracing procedure is carried out where for 

every 0  ݐ  1 equilibria are determined in a game where player i assumes that, with 

probability t, the BTPG game is played and with 1-t the other players decide according to 
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the prior probability. If there is a continuous path of equilibria from t=0 to t=1 then the 

corresponding equilibrium for t= 1 is selected. 

The bicentric priors of the equilibria ሺ1, … ,1ሻ and ሺ0, … ,0ሻ are ݔ
∗ ൌ    and are at least asݎ

large as the bicentric priors of any strategy profile p and ሺ0, … ,0ሻ. Because of ݍ ൌ ∏ ஷݎ  

the best reply to these priors is  ൌ 0 (Proposition 1 (ii)). Then there is a constant path of 

equilibria ሺ0, … ,0ሻ for all t which constitutes the generically unique risk dominant 

equilibrium. (Lemma 4.17.7 in Harsanyi and Selten, 1988).  

Proposition 2: In a BTPG game with identical ݎ	the following equilibria are selected 

according to the Harsanyi-Selten theory. 

(i) For ݇ ൌ 1 in the positive (negative) frame (5) applies (no player contributes). 

(ii) For ݇ ൌ ݊ in the positive (negative) frame all players contribute ((6) applies). 

(iii) For 1 ൏ ݇ ൏ ݊ in the positive (negative) frame we get: if solutions ߨ′′   of (4)  ′ߨ

exist, then   ൌ  otherwise ( ′ߨሺ	′′ߨ ൌ 0	ሺ1ሻ. 

Proof: (i) In the positive frame, (5) denotes the only symmetric equilibrium. In the 

negative frame, because of Proposition 2, the equilibrium defined by (5) yields ܴ ൌ

ܳିܩ ൏ 0  and is therefore Pareto-dominated by the equilibrium where no one 

contributes. (ii) In the positive frame, Proposition 2 implies that the mixed strategy 

equilibrium for k=n has zero payoff (because of ܳି ൌ 0ሻ  and is therefore Pareto-

dominated by the symmetric equilibrium where all contribute with certainty (ܳା ൌ 1ሻ. In 

the negative frame, the mixed strategy equilibrium defined by (6) is the only symmetric 

equilibrium. (iii) For  ߨ′′   .′ߨ is larger than ܳି computed with ′′ߨ  computed withିܳ  ,′ߨ

Therefore, if (4) has a solution, ߨ′′  is used in the positive and ߨ′  in the negative frame. If 

(4) has no solution, then no one contributing (all contributing) is the only symmetric 

equilibrium in the positive (negative) frame.  
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A2 Average contribution frequencies 

  pos. frame S+    neg. frame S‐   

k  Small   Large    Small  L arge   

1    0.35*  0.37*    0.30  0.26   

2    0.49*  0.56    0.43*  0.39*   

3    0.61*  0.63*    0.57*  0.49*   

4    0.74§  0.81    0.75§  0.59   

Table A1: Average contribution probabilities (ACPs) in treatments S+ and S-. Source: 

Spiller and Bolle (2016). 

Explanatory note: Small player type S with (GS,cS)=(10,4) and large player type L with 

(GL,cL)=(20,8) in the positive frame. k= threshold. HS= equilibrium according to Harsanyi and 

Selten (1992) as described in Proposition 3 and without altruism or warm glow. § Two-sided 

Wilcoxon matched pairs-test for small vs. large players. * One-sided Wilcoxon matched pairs-test 

of non-increasing ACPs for k (position of *)  vs. k+1. No significant results in two-sided Mann-

Whitney tests between ܲܥܣሺ݇, ܿ, ሻ and 1ܩ െ ሺ5ܲܥܣ െ ݇,െܿ, െܩሻ.  All tests are based on 

averages from 10 sessions and p<0.05.  

  Exp A  (ATU + AV)  Exp B  (BTU + BV)    

ci/Gi 

k 
0.225  0.25  0.275  0.3  0.1  0.2  0.3  0.4 

1   0.389  0.497*  0.333*  0.250*  0.676  0.344*  0.227*  0.277* 
2   0.622  0.625  0.483*  0.483*  0.781  0.613  0.398*  0.418* 
3   0.733  0.792  0.733*§  0.559*§  0.930  0.840  0.688*§  0.637*§ 
4   0.997  0.948  0.931  0.944*  0.984  0.945  0.918  0.883* 

         
Table A2: Average contribution frequencies in treatments A  and B. Source: Spiller and 
Bolle (2016). 

Explanatory note:  There are four significant differences (bold types) between V and TU 
subjects in two-sided Wilcoxon tests on the 5% level, in three cases higher probabilities in TU, in 
one case in V. All differences between threshold k and threshold k+1 are significant in two-sided 
Wilcoxon match-pairs tests (except in three cases) on the 5% level. * (§) Significant differences 
between player types compared with type ci/Gi =0.225 (0.25) in treatment A and ci/Gi =0.1 (0.2) in 
treatment B in a two-sided Wilcoxon test on the 5% level. Tests are based on averages from 16 
sessions (A) and 18 sessions (B) and p<0.05. 
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A3 Chi-square and Log-likelihood functions 

In the following description the treatment and the subject pool are kept constant. 

For the three alternative hypotheses about the duration of subpopulation (group) 
membership we use the following representation of our data. Let k denote the threshold 
of a game, h the player type, and i=ICF the individual contribution frequency of a player in 
the 8 repetitions of a game. ܨሺ݇, ݄, ݅ሻ denotes how many players h in a game with 
threshold k contributed i times to the production of the public good. (See A3.) 
,ሺ݄ܪ ݅ଵ, ݅ଶ, ݅ଷ, ݅ସሻ denotes the number of players h who contributed ݅ଵ  times in the game 
with threshold k=1, ݅ଶ times in the game with threshold k=2, etc.. Most of the 4*94=26244 
cells of H are empty, i.e. H(.)=0. 

The theoretical prediction about frequency distributions depend on the hypothesis about 
the duration of membership in a subpopulation. In Section 5.3 we regarded the three 
alternatives HypNo, HypThresh, and HypAll.  

In the subpopulation	݆ ∈ ሼ1, ,1ܧ ,1ܧ ,1ܨ  2,0ሽ a player h in game k contributes withܨ
probability pj*(k,h/X)  which depends on the parameter vector X=(s1, s2, s3, s4). The 
shares of the groups are 1, E1, E2,  F1, F2 and 0=1-1-E1-E2-F1-F2. The 
parameters are defined in Section 5.3 and are assumed to be independent of the group. 
The equilibrium contribution probabilities pj*(k,h/X) and their determination are described 
in Section 3.2. Taking into account the perturbation probability , the effective contribution 

probability is pj(k,h/X,)= (1-) pj*+ (1- pj*). This perturbation is most important for the 
pure strategies pj*=1 or 0.  

Under HypNo the probability of player h contributing in a game with threshold k is 

,ேሺkܾݎ h/X, ሻ ൌ ߙ ∗
ୀଵ,ாଵ,ாଶ,ிଵ,ிଶ,

p୨ሺk, h/X, ሻ 

and the log-likelihood function is 

ேܮ݈݃ ൌ ∑ ,ሺ݇ܨ ݄, ݅ሻ ∗ ሺi ∗ log	ሺ,, ,ேሺkܾݎ h/X, ሻሻ  ሺ8 െ ݅ሻ ∗ log	ሺ1 െ ,ேሺkܾݎ h/X, ሻሻ. 

Under HypThresh, after 8 independent repetitions the number of contributions i=ICF is 
binomially distributed with a probability B(i,8; pj(k,h/X)). Taking into account the different 
groups j we get a probability for i contributions by player h in a game with threshold k of  

,௦ሺ்ܾ݇ݎ ݄, ݅/ܺሻ ൌ ∑ ߙ ∗ୀଵ,ாଵ,ாଶ,ிଵ,ிଶ, Bሺi, 8;	p୨ሺk, h/X, ሻሻ. 

The log-likelihood function is  

௦்ܮ݈݃ ൌ ∑ ,ሺ݇ܨ ݄, ݅ሻ ∗ log	ሺ,, ,௦ሺk்ܾݎ h/X, ሻሻ. 

Under HypAll, the probability of observing ሺ݅ଵ, ݅ଶ, ݅ଷ, ݅ସሻ in the games with k=1, 2, 3, 4 is 

,ሺ݄ܾݎ ݅ଵ, ݅ଶ, ݅ଷ, ݅ସ/ܺ, ሻ ൌ ∑ ߙ ∗ୀଵ,ாଵ,ாଶ,ிଵ,ிଶ, ∏ Bሺi୩, 8;	p୨ሺk, h/X, ሻሻ୩ . 



36 
 

The log-likelihood function is 

ܮ݈݃ ൌ ∑ ,ሺ݄ܪ ݅ଵ, ݅ଶ, ݅ଷ, ݅ସሻ 	∗ log	ሺ,భ,మ,య,ర ,ሺ݄ܾݎ ݅ଵ, ݅ଶ, ݅ଷ, ݅ସ/ܺ, ሻሻ. 

The chi-square score is computed only for HypThresh:  

߯ଶ ൌ ሺܨሺ݇, ݄, ݅ሻ െ N ∗
,,

,௦ሺk்ܾݎ	 h/X, ሻሻଶ/ሺܰ ∗ ,ሺkܾݎ h/X, ሻሻ 

with ܰ ൌ ∑ ,ሺ݇ܨ ݄, ݅ሻ = number of players of type h in game k (independent of h and k in 
our experiment). 

X and the shares of groups and  are chosen such that -logL or ߯ଶ is minimized. For this 
purpose the Nelder-Mead algorithm from the R-library is used with a large number of 
starting values. For the model specification outlined in subsections 3.2 and 5.2 
HypThresh is the clear winner of the  competition  as Table A1 shows. Note that 
computations of S+/S-(per<17) or S+/S-(per>16) for  െ݈ܮ݃  requires the computation 
of products of two binomial distributions for different combinations of thresholds k. 

Data  െ݈ܮ݃ே  െ்݈ܮ݃௦   െ݈ܮ݃  

S+/S‐(all per.)  3282.4  1329.5  1463.3 

ATU  1529.2  604.5  705.9 

AV  869.1  347.6  384.1 

BTU  733.9  279.2  373.9 

BV  1282.6  544.4  599.7 

Table A3: Maximum likelihood scores of the finite mixture model under the hypotheses  

HypNo, HypThresh, and HypAll. For treatments A and B, ten parameters are estimated, 

for treatments S+/S-, six. 
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A4 Equilibrium contribution probabilities with Parameters from Table 5 

  share  k=1  k=2  k=3  k=4 

P1  .122  (1, 1)*  (1, 1)*  (1, 1)*  (1, 1) 

PE1  .035  (.67, 0)  (1, 0)  (1, 0.67)  (1, 1) 

PE2  .109  (0, .67)  (0, 1)  (0.67, 1)  (1, 1) 

PF1  .406  (.31, .31)  (.56,  .56)      (.85,  .85)      (1, 1) 

PF2  .259  (.31, .31)  ( .15,  .15)      (.44,  .44)      (.69,  .69) 

P0  .070  (0, 0)*  (0, 0)  (0, 0)   (0, 0) 

Table A4 : Share of groups and equilibrium probabilities of player types (small players, 
large players) for treatment S+. Parameters estimated from data S+/S-(per>16). * Non-
equilibria. 

  share  k=1  k=2  k=3  k=4 

P1  .180  (1, 1, 1, 1)*  (1, 1, 1, 1)*  (1, 1 ,1, 1)*  (1, 1, 1, 1) 

PE1  .083  (1, 0 ,0, 0)  (1, 1, 0, 0)  (1, 1, 1, 0)  (1, 1, 1, 1) 

PE2  .214  (.53,.68,0,0)  (1,.54,.53,0)  (1,1,.54,.54)  (1, 1, 1, 1) 

PF1  .322  (0$, .32,.31, .31)  (.08,.61,.55,.55)      (.55,.84,1§,.77)      (1,1,1,1) 

PF2  .171  (0$,.32,.31,.31)  (.45, .16, 0§,.23)      (.91,.39,.45,.45)      (1$, .68,.69,.69) 

P0  .029  (0,0,0,0)*  (0,0,0,0)  (0,0,0,0)  (0,0,0,0) 

Table A5 : Share of groups and equilibrium probabilities of player types with cost/benefit 
ratios (.225, .25, .275, .3). Parameters estimated from data ATU. * Non-equilibria. § More 
exactly: $ 0<p1<10-8 or 1-10-8<p1<1. § 0<p3<10-4 or 1-10-4<p1<1. 

  share  k=1  k=2  k=3  k=4 

P1  .110  (1,1,1,1)*  (1,1,1,1)*  (1,1,1,1)*  (1,1,1,1) 

PE1  .119  (1,0,0,0)  (1,1,0,0)  (1,1,1,0)  (1,1,1,1) 

PE2  .0217  (.73,.67,0,0)  (1,.69,.73,0,0)  (1,1,.70,.69)  (1,1,1,1) 

PF1  .321  (.40,.23,.35, .34)  (.69,.46,.61,.60)      (.93, .80, .88, .87)     (1,1,1,1) 

PF2  .188  (.40,.23,.35, .34)  (.07,.20,.12,.13)      (.31,.54,.39,.40)      (.60, .77,.65, .66) 

P0  .045  (0,0,0,0)*  (0,0,0,0)  (0,0,0,0)  (0,0,0,0) 

Table A6 : Share of groups and equilibrium contribution probabilities of player types with 

cost/benefit ratios (.1, .2, .3, .4). Parameters estimated from data BV. * Non-equilibria. 
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A5 Data: The distribution of individual contribution frequencies (number of players 

with a certain ICF) 

  Periods 1‐ 16,  small players  Periods 17 – 32, small players 

k     ICF  0  1  2  3  4  5  6  7  8  0  1  2  3  4  5  6  7  8 

1  5  4  2  3  1  0  2  1  2  6  5  0   2  3  0  0  0   4 

2  2  1  3  1  2  2  1  1  3  3  2  4  1  2  3  4  1  4 

3  1  1  1  3  5  4  3  1   5  3  1  1  4  1  1  0  0  5 

4  2  1  3  0  4  0  3   4   3  0  0  0  0  0  2  2  3  13 

  Periods 1‐ 16,  large players  Periods 17 – 32, large players 

k     ICF  0  1  2  3  4  5  6  7  8  0  1  2  3  4  5  6  7  8 

1  5  2  2  3  4  0  1  2   1  2  6  4  3  1  0   0   1  3 

2  0  2   3  2  2  2  2  0   3  4  2  2  0  4  2  4  0  6 

3  1  0  0  6  3  5  3   1   5  0  0  1  0  1  3  5  2  4 

4  0  0  1  4  0  6   2   4  3  0  0  0  0  0  1  3  2  14 

Table A7: Frequency distribution of ICFs (individual contribution frequencies) in 

Treatment 1. k= threshold. For every k, 8 decisions by 40 individuals. 

  Periods 1‐ 16,  small players  Periods 17 – 32, small players 

k     ICF  0  1  2  3  4  5  6  7  8  0  1  2  3  4  5  6  7  8 

1  3  1  0  3  3   4   1  4  1  16  3  1  0  0  0  0  0  0 

2  2  4  2  2  3  4  1   1  1  3  2  4  3  1  4  1  1  1 

3  1  1  4   2  5   1  1  3  2  0  2  2  3  5  3  0  1  4 

4  0  0   0  0  5  4  7  4  0  2  1  0  0  0  4  5  2  6 

  Periods 1‐ 16,  large players  Periods 17 – 32, large players 

k     ICF  0  1  2  3  4  5  6  7  8  0  1  2  3  4  5  6  7  8 

1  3  1  1  3  5  1  1  2  3  14  4  1  1  0  0  0  0  0 

2  4   2   3  2  1  4  1  1  2  4  3  3  2  1  2  3  1  1 

3  3  0  3  2  1  2  5   2  2  4  2  1  2  1  3  1  3  3 

4  2  1  1  1  3   2  4  1  5  3  0  2  1  0  2  1  5  6 

Table A8: Frequency distribution of ICFs (individual contribution frequencies) in 

Treatment 2. k= threshold. For every k, 8 decisions by 40 individuals. 
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  Player type 1: r1 =0.225  Player type 2: r2 =0.25 

k     ICF  0  1  2  3  4  5  6  7  8  0  1  2  3  4  5  6  7  8 

1  9  0  2  2  3  2  0  2  4  5  2  3  4  2  2  0  1  5 
2  3  0  2  1  2  3  1  1  11  2  1  4  2  3  3  0  1  8 
3  1  1  1  2  0  3  1  1  14  0  1  0  1  1  0  6  4  11 
4  0  0  0  0  0  0  0  0  24  0  0  0  0  0  1  1  1  21 

  Player type 3: r3 =0.275  Player type 4: r4 =0.3 

k     ICF  0  1  2  3  4  5  6  7  8  0  1  2  3  4  5  6  7  8 

1  8  5  1  1  2  1  2  0  4  8  4  4  3  3  0  0  1  1 
2  5  1  1  4  1  4  2  1  5  4  2  1  5  2  3  1  2  4 
3  0  1  1  2  2  2  2  1  13  2  2  2  3  0  4  2  3  6 
4  1  0  0  0  0  0  1  1  21  0  0  0  0  0  0  1  1  22 

Table A9: Frequency distribution of ICF. Data ATU (Treatment A, subject pool TU). For 

every game and every player type 24 players (=number of ICF=sum of rows). 

  Player type 1: r1 =0.225  Player type 2: r2 =0.25 

k     ICF  0  1  2  3  4  5  6  7  8  0  1  2  3  4  5  6  7  8 

1  1  4  0  4  1  0  1  0  1  0  2  1  1  1  2  1  1  3 
2  0  2  3  1  1  2  0  1  2  0  0  3  1  1  0  0  2  5 
3  0  1  0  2  2  2  1  1  3  0  1  0  1  1  3  1  1  4 
4  0  0  0  0  0  0  0  1  11  0  0  0  1  0  1  0  1  9 

  Player type 3: r3 =0.275  Player type 4: r4 =0.3 

k     ICF  0  1  2  3  4  5  6  7  8  0  1  2  3  4  5  6  7  8 

1  3  0  3  2  3  1  0  0  0  1  4  5  1  0  0  0  1  0 
2  0  1  2  5  2  1  0  0  1  1  2  2  1  0  2  3  0  1 
3  1  0  0  1  3  1  2  3  1  0  1  4  1  2  2  0  1  1 
4  0  1  0  0  0  0  1  0  10  0  1  0  1  0  0  0  1  9 

Table A10: Frequency distribution of ICF. Data AV (Treatment A, subject pool V). For 

every game and every player type 12 players (=number of ICF=sum of rows). 

  Player type 1: r1 =0.225  Player type 2: r2 =0.25 

k     ICF  0  1  2  3  4  5  6  7  8  0  1  2  3  4  5  6  7  8 

1  1  0  1  2  1  0  0  1  6  4  1  3  3  0  0  0  0  1 
2  0  0  0  1  0  1  2  1  7  2  0  0  0  3  1  0  2  4 
3  0  0  0  0  1  0  0  0  11  0  0  0  0  0  1  1  3  7 
4  0  0  0  0  0  0  0  1  11  0  0  0  0  0  0  1  1  10 

  Player type 3: r3 =0.275  Player type 4: r4 =0.3 

k     ICF  0  1  2  3  4  5  6  7  8  0  1  2  3  4  5  6  7  8 

1  6  2  0  1  1  0  0  2  0  3  3  2  0  1  0  0  0  3 
2  5  1  1  0  1  1  1  0  2  4  0  0  2  1  0  0  0  5 
3  1  0  0  3  1  1  0  1  5  3  0  0  0  0  4  1  1  3 
4  0  0  0  0  1  0  0  1  10  1  0  1  0  0  1  0  1  8 

Table A11: Frequency distribution of ICF. Data BTU (Treatment B, subject pool TU). For 

every game and every player type 12 players (=number of ICF=sum of rows). 
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  Player type 1: r1 =0.225  Player type 2: r2 =0.25 

k     ICF  0  1  2  3  4  5  6  7  8  0  1  2  3  4  5  6  7  8 

1  2  0  1  0  2  4  5  2  4  5  2  3  4  0  1  0  1  4 
2  0  0  1  1  2  3  4  7  2  2  0  4  2  1  2  2  2  5 
3  0  0  0  0  1  1  2  3  13  0  0  1  2  0  2  4  3  8 
4  0  0  0  0  0  0  0  3  17  0  1  0  0  0  0  0  4  15 

  Player type 3: r3 =0.275  Player type 4: r4 =0.3 

k     ICF  0  1  2  3  4  5  6  7  8  0  1  2  3  4  5  6  7  8 

1  10  2  2  3  1  0    0  2  9  2  2  2  4  0  0  0  1 
2  4  1  4  1  4  1  2  1  2  6  2  3  2  2  1  0  2  2 
3  0  1  3  1  1  3  2  2  7  1  2  0  1  3  1  3  6  3 
4  0  0  0  1  1  1  1  2  14  0  0  0  0  0  2  2  2  14 

Table A12: Frequency distribution of ICF. Data BV (Treatment B, subject pool V). For 

every game and every player type 20 players (=number of ICF=sum of rows). 

 

 

 

 

 

A6. Instructions 

Welcome 

You are participating in an economic experiment. You will receive your payoff personally 

and directly after the experiment. The payoff depends on your own decisions and the 

decisions of your co-players. 

Please turn off your cellphone and similar devices. The entire experiment is conducted 
on the computer. During the course of the experiment, please do not speak and do not 
communicate with other participants in any other way. 

Below you will find an explanation of the experiment. Please read it carefully. If you have 
questions notify the experimenter. The experimenter will then answer them. After reading 
these instructions you will answer several test questions. If you have problems answering 
these questions, please also notify the experimenter. 
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Instructions for Treatment A 

 In this experiment you have to make decisions in several periods. 
 In each period groups of 4 players are built. You are always player 1 in your 

group. [In other instructions: Player 2, 3, or 4] 
 Each period each player is endowed with 8 points. 
 Each player can either choose A or B. 
 For now choosing B has no impact on your points. 
 Choosing A costs 

o you and player 2  4 points each 
o player 3 and 4  8 points each 

 If a threshold of players choosing A is reached then 
o you and player 2  get 10 points each 
o player 3 and 4  get 20 points each 

 The level of this threshold is changed every 8th round. It is displayed on the 
screen. 

 Each 25 points pays you 1 Euro. 

 

Example 

At the beginning of the period you get 8 points. The threshold is 1. Your 3 co-players 
choose B. 

In case you choose A: 

 you player 2 player 3 player 4 

points at the beginning of the period 8 8 8 8 
costs for choosing A -4 0 0 0 
profit for reaching the threshold +10 +10 +20 +20 

period payoff 14 18 28 28 
 
In case you choose B: 

 you player 2 player 3 player 4 

points at the beginning of the period 8 8 8 8 
costs for choosing A 0 0 0 0 
profit for reaching the threshold 0 0 0 0 

period payoff 8 8 8 8 
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