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Sorting in Iterated Incumbency Contests∗

Samuel Häfner† Georg Nöldeke‡

August 2, 2016

Abstract: This paper analyzes iterated incumbency contests with heterogeneous
valuations in a large population setting. Incumbents repeatedly face different chal-
lengers, holding on to their positions until defeated in a contest. Defeated incumbents
turn into challengers until they win a contest against an incumbent, thereby regaining an
incumbency position. We consider steady-state equilibria of this process and study how
and to which extend individuals sort into the incumbency positions depending on their
valuations. In particular, we identify sufficient conditions for positive sorting, meaning
that the share of individuals with a given valuation holding an incumbency position is
increasing in the valuation, and provide an example to show that negative rather than
positive sorting may arise in equilibrium. Further results show how incumbency rents
and sorting are affected by the frequency at which incumbency is contested and the
scarcity of the incumbency positions.

Keywords: Contests, Sorting, Incumbency Rents, Steady-State Equilibrium.

JEL Classification Numbers: C72, D72, D74.

1 Introduction

Repeated incumbency contests describe situations in which an incumbent, who enjoys
an incumbency rent, faces a sequence of challenger each of whom seeks to displace the
current incumbent in a contest. Such repeated incumbency contests occur, for example,
when incumbent politicians have to secure reelection after every legislative period or
when a ruler has to repeatedly defend his territory against external aggressors. Other
forms of repeated incumbency contests involve CEOs that have to uphold their positions
in the face of recurrent competition from rivals, or firms that have to stand their ground
in market niches against potential entrants. Sports champions can reap benefits while
being the leader but have to constantly fight against challengers to stay on top.

As is suggested by these examples, repeated incumbency contests come in various
forms: In some, the incumbent once defeated by a challenger leaves the game forever,
as is the case e.g. with medieval kings but also with modern despots generally not
surviving successful uprisings. This is the situation analyzed in Stephan and Ursprung
(1998) and Virág (2009). On the other hand, there are situations in which the defeated

∗We thank Helmut Bester and seminar audiences at the conference “Current Frontiers in the Theory
of Contest” in Munich and at the WZB in Berlin for helpful suggestions and comments. Financial
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incumbent becomes the challenger in the following period. Such is the situation analyzed
in Mehlum and Moene (2006) who consider repeated incumbency contests between two
agents that switch positions whenever the incumbent looses. The political competition
in two-party systems is an example of this form of repeated incumbency contests.

There are many instances of repeated incumbency contests, however, where the
defeated incumbent neither leaves the game forever nor returns to challenge the very
position that he has just been evicted from. An example illustrating this is the mar-
ket for CEOs, who usually stay in the market after losing the job to a competitor and
sooner or later appear again as CEO in a different firm. Alternatively, one may think
of the incumbents as entrepreneurs whose firms occupy market niches which accommo-
date at most one firm. Once an entrepreneur has successfully entered a niche she has
to defend it against the intrusion of rival firms, and here, too, the presumption is that
an entrepreneur whose firm is driven out of its niche proceeds to searching for alter-
native ways of doing business. The model that we consider in this paper captures this
turnover in the incumbency positions by supposing that there are many incumbency
positions and defeated incumbents return to the pool of the challengers that search for
other incumbency positions to contest. We refer to this kind of scenario as an iterated
incumbency contest.

We assume that the valuations for the incumbency positions are heterogeneous. One
would then expect that individuals with higher valuations are inclined to fight harder
in any given contest and, consequently, will have a higher likelihood to win contests
and, therefore, a higher likelihood of being an incumbent rather than a challenger. The
main purpose of this paper is to test the intuition that such positive sorting into the
incumbency positions must arise in equilibrium. More generally, we are interested in
the factors determining the extent of sorting in equilibrium and in studying how the
iterated nature of the contests affects (relative) incumbency rents.1

In our model there is a continuum of identical incumbency positions, with these
positions distributed among members of a unit mass population. Each individual can
hold at most one incumbency position at a given time. We refer to individuals that
do so as incumbents, and individuals that do not as challengers. Time is continuous.
Individuals meet other individuals, randomly sampled from the population, at a fixed,
exogenous rate. Whenever a meeting is between an incumbent and a challenger, a contest
ensues. If the current incumbent wins the contest, then the challenger awaits her next
opportunity to contest an incumbent. If the current incumbent loses the contest, then
the challenger takes over the position and the incumbent joins the pools of challengers.
We study steady states in which the strategies and the utilities of the players are time-
invariant.2

1Related questions are analysed in Virág (2009) who considers a model in which there is only one
incumbency position and, as already mentioned above, considers the case in which defeated incumbents
leave the game forever. Contests are modelled as an all-pay auction with private values, with values
drawn from a continuous distribution. The focus in Virág (2009) is on the question whether sorting
must be perfect in a stationary equilibrium in the sense that the incumbent distribution is concentrated
on the highest possible type. His main finding is that such perfect sorting does not obtain even in the
limit when the arrival rate of challengers becomes infinite. In contrast, our analysis focuses on situations
for which it is transparent that perfect sorting cannot arise in equilibrium.

2Our focus on steady states differentiates our analysis from the one in Hafer (2006), who studies the
transitional dynamics from an arbitrary initial situation. Further important difference to Hafer (2006)
are that (i) in her setting investments into contest efforts cease after the transitional period, whereas
in our setting costly contests are a recurring phenomenon in steady-state, (ii) she, like Virág (2009),
considers a setting with incomplete information, whereas we assume complete information, and (iii)
she restricts attention to the war of attrition when modeling the interaction between challenger and
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Individuals come in a finite number of types, differing in their commonly known flow
payoff obtained when being incumbent. The masses of these types, that we refer to as
the population distribution, are exogenous. Given the probability that an individual of
a given type retains or acquires the incumbency position in a contest with an individual
of some other type, the population distribution determines, as we show, the incumbent
distribution, that is, the masses of the different types that hold an incumbency position.
These probabilities of winning the contest are in turn determined by the incumbency
rents. Crucially, these incumbency rents are endogenous, as they not only depend on
the flow payoff obtained while being incumbent, but also on the rents that are lost in
defending the incumbency position as well as the rents that are gained by attacking an
incumbency positions – with these later two terms depending on the incumbency rents
of other agents and the incumbent distribution.

As regards the contests, we do not restrict attention to a particular contest model
but capture the structure of a variety of contests by specifying the contest payoffs and
the winning probability of the challenger directly as functions of the incumbency rents
of the two contestants. We impose a number of regularity conditions on these functions:
(i) both the winning probabilities and the payoffs are continuous in the rents, (ii) payoffs
are consistent with the assumptions that either contestant can forego the incumbency
position at zero cost and that neither contestant receives more than her rent in case of
winning, and (iii) the contestant’s winning probabilities are strictly increasing in own
rents. This approach is convenient as we can abstract from the details of the contests
in our general analysis, but still relate to particular contest models when discussing our
assumptions and results. Specifically, our assumptions on the contest outcomes encom-
pass the standard complete information contests, namely the Tullock contest (Tullock,
1980) and the all-pay auction (Baye et al., 1996). We discuss other contests from the
literature that fit our framework, including sequential move and multiple-stage contests,
when introducing the formal model in Section 2.1. For the time being, we refer the
reader to Konrad (2009) who provides an exhaustive survey of contests with complete
information.

Equilibrium is characterized by an incumbent distribution specifying a time-invariant
mass of incumbents for each of the different types and a incumbency rent profile spec-
ifying a time-invariant incumbency rent for each of the different types. Equilibrium
requires that the incumbent distribution and the rent profile correspond to a steady
state and are consistent with optimal behavior in the contests. Our first main result
(Proposition 1) establishes that equilibrium exists.

We then turn to the question of sorting in equilibrium. Proposition 2 establishes
sufficient conditions on the structure of the contests which ensure that positive sorting
obtains. These conditions entail that the challenger’s expected gain from engaging in
the contest is increasing in her rent and, similarly, that the incumbent’s expected loss
from engaging in the contest is increasing in her rent. These monotonicity conditions
on expected gains and losses ensure that higher types have higher equilibrium rents.
Together with the assumption that the winning probabilities are strictly increasing in
the own rent, which ensures that types sort into the incumbency conditions according
to their rents, these conditions ensure positive sorting. The monotonicity conditions of
Proposition 2 are satisfied in the standard cases of the all-pay auction as well as of the
Tullock contest.

Following Virág (2009), we also consider the limit when the meeting process be-

incumbent, whereas our main results impose relatively little structure on the incumbency contests.
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comes frictionless, so that both incumbents and challengers are continually engaged in
contests. With such continual contests the incumbency rents of all types vanish un-
der fairly general conditions (Lemma 5). Somewhat surprisingly, for a broad class of
contests, including the all-pay auction and the Tullock contest, strictly positive sort-
ing nevertheless obtains in the limit (Proposition 3) and the surplus generated by the
availability of incumbency positions is not fully dissipated (Proposition 4).

For the special case of an iterated all-pay auction with two types we establish unique-
ness of the equilibrium (Proposition 5) and discuss the comparative statics with respect
to the frequency of meetings and the abundance of the incumbency positions. In partic-
ular we can show that sorting becomes more pronounced when we increase the meeting
rate in settings where the incumbency positions are scarce, yet that it becomes less pro-
nounced when the incumbency positions are abundant (Proposition 6). Furthermore,
adding a fixed cost of attack to the all-pay auction allows us to construct an example
which satisfies the monotonicity condition on the gain of the challenger in Proposition 2
but violates that on the incumbent loss and features both an equilibrium with positive
sorting and an equilibrium with negative sorting (Proposition 7). In the later equi-
librium individuals with lower flow payoff from the incumbency position obtain higher
incumbency rents because they face a lower probability of being dislodged from their
position. We view this example as important as it shows that the sufficient conditions
of Proposition 2 indeed have bite.

From a modelling perspective, the most novel aspect of this paper is to use a search
model with a large population to model iterated contests. Embedding pairwise in-
teractions into a dynamic framework via the use of a search-model is, of course, a
well-established modelling strategy in other contexts. For surveys of the vast litera-
ture concerned with search models of the labor market we refer the reader to Pissarides
(1990) or Rogerson et al. (2005). Closer to our concerns is the literature on sorting
in search-and-matching models with heterogenous agents, recently surveyed in Chade
et al. (forthcoming). Relative to this second strand of literature, the most important
distinguishing feature of our analysis arises from the very nature of incumbency con-
tests, namely that for incumbents meetings do not generate but destroy rents and that
sorting does not arise from agent’s decisions which matches to accept but from the in-
tensity with which agents fight to maintain or change their positions.3 Finally, we note
that researchers in behavioral ecology have considered steady-state models of territorial
conflicts (Grafen, 1987; Eshel and Sansone, 1995, 2001; Kokko et al., 2006) that bear
some similarity to our work but differ in that the model of the conflict arising when
an incumbent and a challenger meet is very rudimentary (namely the Hawk-Dove game
in which the contestants simply decide whether to fight or not) and that there are no
counterparts to our positive sorting results.

The remainder of the paper is organized as follows: Section 2 describes our model of
iterated contests and defines equilibrium. Section 3 establishes existence of equilibrium
, derives sufficient conditions for positive sorting, and analyzes the case of continual
contests. Section 4 offers a detailed analysis of the iterated all-pay auction with two-
types and shows, in particular, how extending the all-pay auction by adding an an
attack cost for the challenger may give rise to equilibria with negative sorting. Section
5 concludes. All proofs and some supplementary materials are in the appendix.

3The feature that meetings may destroy rents is also present in the otherwise rather different model
of marriage and divorce investigated in Cornelius (2003) in which agents may unilaterally decide to
leave a current relationship upon encountering a more attractive partner, thereby leaving their current
partner worse off.
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2 The Model

Our model has two main building blocks: a description of equilibrium behavior in a
given incumbency contest as a function of the contestants’ values of winning or losing
the contest and a population framework with heterogenous agents in which incumbency
contests arise over time from random meetings between incumbents and challengers.
Section 2.1 introduces the first of these building blocks, Section 2.2 the second. Section
2.3 then ties the building blocks together by defining equilibrium. In a nutshell, equi-
librium requires that the distributions of agents who hold incumbency positions is in
steady state and that all agents’ steady-state continuation values of winning or losing an
incumbency contest are consistent with equilibrium behavior in the subsequent contests
they will face.

2.1 Incumbency Contests

We consider two-player contests between an incumbent I and a challenger C. A contest
is parameterized by specifying both contestants’ values for winning or losing the contest.
We denote these values by (WI , LI) ∈ R2

+ for the incumbent and by (WC , LC) ∈ R2
+

for the challenger and assume that winning is more attractive than losing: WI > LI

and WC > LC . The parameters are assumed to be common knowledge among the
contestants. Both contestants are risk neutral. If the challenger wins the contest with
probability p and loses it with probability 1− p, then the challenger’s payoff is pWC −
(1− p)LC − κC and the incumbent’s payoff is (1− p)WI + pLI − κI , where κC and κI
are the costs the two contestants incur in their fight for the incumbency position.

Let
xI = WI − LI > 0 and xC = WC − LC > 0 (1)

denote the player’s incumbency rents. We model the outcome of the contest as a function
of these rents, thereby gaining the flexibility to accommodate a variety of different
contests in our formal analysis. In particular, we suppose that any contest between an
incumbent with values (WI , LI) and a challenger with values (WC , LC) has a unique
equilibrium with expected payoff LC + σ(xI , xC) and winning probability µ(xI , xC)
for the challenger and expected payoff WI − τ(xI , xC) and winning probability 1 −
µ(xI , xC) for the incumbent.4 We are thus expressing equilibrium payoffs in terms of
the challenger’s expected gain σ(xI , xC) from participating in the contest (compared
to the benchmark of simply obtaining LC) and the incumbents’ expected loss τ(xI , xC)
from participating in the contest (compared to the benchmark of simply obtaining WI).5

Throughout our analysis we impose the following three assumptions on the expected
gains, expected losses, and winning probabilities.

Assumption 1. The functions σ : R2
++ → R, τ : R2

++ → R, and µ : R2
++ → [0, 1] are

continuous.

Assumption 2. The expected gains σ(xI , xC) and the expected losses τ(xI , xC) satisfy

0 ≤ σ(xI , xC) ≤ xC , 0 ≤ τ(xI , xC) ≤ xI (2)

4The presumption that equilibrium in any given contest is unique is restrictive. We impose it to focus
on the effects that arise from challengers and incumbents being repeatedly engaged in such contests.

5While unconventional, expressing equilibrium payoffs in terms of expected gains for challengers and
expected losses for incumbents will greatly simplify the exposition once we embed incumbency contests
into our population framework.
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and
σ(xI , xC)− τ(xI , xC) ≤ max{0, xC − xI} (3)

for all (xI , xC) ∈ R2
++.

Assumption 3. The challenger’s winning probability µ(xI , xC) is strictly decreasing in
xI and strictly increasing in xC .

Assumption 1 serves to ensure the existence of equilibria in our population model
(cf. Proposition 1 in Section 3.1). It is also required for the limit analysis we conduct
in Section 3.3.

To interpret Assumption 2, we begin by observing that the inequality 0 ≤ σ(xI , xC)
states that the challenger is assured to obtain at least her value from losing the contest
as her equilibrium payoff. This condition is satisfied in all standard contest models
(e.g., because the challenger can refuse to enter the contest or can choose zero effort
at zero cost). At the other extreme the inequality σ(xI , xC) ≤ xC indicates that the
challenger can never expect to gain more than her incumbency rent from participating in
the contest. The interpretation of the inequalities 0 ≤ τ(xI , xC) ≤ xI appearing in (2) is
analogous: On the one hand, the incumbent cannot lose more than her incumbency rent
from participating in the contest (e.g., because she can walk away from the incumbency
position when threatened by an attack). On the other hand, it is not possible for her
to obtain an equilibrium payoff that is higher than her value of winning the contest.
Upon adding LI +WC on both sides of it, inequality (3) is easily seen to be equivalent
to the statement that the sum of the two contestants equilibrium payoffs is smaller than
max{LI +WC , LC +WI}, which is a natural consequence of the fact that there is only
one incumbency position to be filled, so that in any outcome of the contest there is one
winner and one loser. If the two contestants have identical rents xI = xC = y, then
inequality (3) reduces to σ(y, y) − τ(y, y) ≤ 0, with strict inequality indicating that
there is some rent-dissipation in such a symmetric contest. In case both σ(y, y) = 0
and τ(y, y) = y holds, we have full rent-dissipation when the contestants have identical
rents.

Recalling that the incumbent’s winning probability is 1 − µ(xI , xC), Assumption 3
is equivalent to the requirement that for both contestants their equilibrium probability
of winning the contest is strictly increasing in their own incumbency rents. This is a
substantive assumption in that it excludes the possibility that a contestant’s winning
probability is constant in her own rent over some range - as will be the case, for instance,
if the equilibrium of the contest involves a boundary solution in which the challenger
has a zero probability of winning the contest when xC is sufficiently small. We return
to this point in Section 4.4, where we explain why such violations of Assumption 3 sever
the link between individual contests and the population structure which is at the heart
of our paper.

Before we proceed, we give two examples of complete-information contests that fit
our assumptions, namely the familiar all-pay auction and the equally familiar Tullock
contest. These contests will serve as leading examples throughout our subsequent anal-
ysis.

Contest 1 (All-Pay Auction). In the standard all-pay auction with complete informa-
tion, I and C simultaneously sink efforts eI , eC ≥ 0 at a cost equal to the chosen efforts.
A player wins the contest for sure if he chooses the higher effort, and ties are broken by
a fair coin toss.
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It is well-known (Baye et al., 1996) that this contest has a unique equilibrium, that
is in mixed strategies. In this equilibrium, player C wins the contest with probability

µ(xI , xC) =


1

2

xC
xI

if xC < xI

1− 1

2

xI
xC

if xC ≥ xI
. (4)

and the equilibrium payoffs are max{xI−xC , 0}+LI for player I and max{xC−xI , 0}+
LC for player C. In terms of the functions σ and τ we thus have

σ(xI , xC) = max{xC − xI , 0} (5)

τ(xI , xC) = xI −max{xI − xC , 0}. (6)

Contest 2 (Tullock Contest). In a Tullock contest with complete information, I and C
simultaneously sink efforts eI , eC ≥ 0 at a cost equal to the chosen efforts. Given such
effort choices player C wins with probability

p(eI , eC) =


erC

erI + erC
if eI + eC > 0

1

2
if eI + eC = 0

, (7)

and player I wins with probability 1− p(eI , eC).
Under the parameter restriction 0 < r ≤ 1 a unique pure strategy equilibrium exists,6

in which (Nti, 1999)

σ(xI , xC) =
xr+1
C(

xrI + xrC
)2 [xrC + (1− r)xrI ] (8)

τ(xI , xC) = xI −
xr+1
I(

xrI + xrC
)2 [xrI + (1− r)xrC ] (9)

and

µ(xI , xC) =
xrC

xrI + xrC
. (10)

Throughout the following, when we refer to the Tullock contest, we mean a Tullock
contest satisfying the parameter restriction 0 < r ≤ 1.

It is easily verified that for the all-pay auction and for the Tullock contest Assumptions
1 - 3 are satisfied. Further, these two contests are homogeneous and role symmetric in
the sense of the following definitions. These two properties play an important role in
our subsequent analysis.

Definition 1. (Homogeneity) A contest is homogenous if σ(xI , xC) and τ(xI , xC) are
both homogenous of degree 1 in (xI , xC) and µ(xI , xC) is homogenous of degree 0 in
(xI , xC).

6More generally, a unique pure strategy equilibrium exists when xrI + xrC > rmin{xrI , xrC}, but as
xC and xI are endogenous in our subsequent analysis, we work with the assumption 0 < r ≤ 1, which
ensures this inequality for all strictly positive xI and xC .
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Definition 2. (Role Symmetry) A contest is role symmetric if

µ(y, z) = 1− µ(z, y) (11)

and
σ(y, z) + τ(z, y) = z (12)

hold for all (y, z) ∈ R2
++.

Condition (11) in the definition of role-symmetry states that a contestant’s winning
probability does not depend on her role in the contest (i.e., whether she is the incum-
bent or the challenger) but is solely determined by her own incumbency rent and the
incumbency rent of her opponent. The interpretation of (12) is less obvious but makes
an analogous statement for contest payoffs. Specifically, consider an agent who has
value W for winning and value L for losing the contest and who faces an opponent with
incumbency rent y. If the agent under consideration is the incumbent, then her contest
payoff is given by W − τ(W − L, y). If she is the challenger, then her contest payoff is
L+σ(y,W −L). Equating these expressions yields σ(y,W −L)+ τ(W −L, y) = W −L,
which, upon denoting the agent’s incumbency rent W − L by z, is equation (12).

Examples of contests complying with Assumptions 1 - 3 that are homogeneous but
not role-symmetric include both all-pay auctions and Tullock contests with asymmetric
bid-effectiveness for the challenger and the incumbent (Franke et al., 2014a; Leininger,
1993). Examples of contests that satisfy neither homogeneity nor role symmetry include
contests with asymmetric head-starts as analyzed by Konrad (2002) and Siegel (2014)
in an all-pay auction framework and by Franke et al. (2014b) in a Tullock contest
framework. Alas, these contests violate our Assumption 3: if one of the players enjoys
a head start that is sufficiently high, then both players remain inactive, implying that,
for both players, the winning probabilities stay constant in their respective incumbency
rents over a range.

Our formulation of a contest is not confined to simultaneous move one-shot contests,
but also covers contests complying with Assumption 1 - 3 where players move sequen-
tially (Baik and Shogren, 1992; Leininger, 1993) or contest where players simultaneously
sink efforts in multiple periods along the lines of Yildirim (2005). As is the case for con-
tests with head-starts (and for essentially the same reason), contests where the players
first have to sink a fixed cost in order to participate as in Fu et al. (2015) violate As-
sumption 3 when such participation costs are deterministic. In Section 4.4 we provide
an example of a contest featuring stochastic entry costs that satisfies Assumptions 1 –
3 and is neither homogenous nor role-symmetric.

2.2 Population Framework

There is a unit mass of risk-neutral and infinitely lived individuals. Time is continuous.
All individuals discount future payoffs at rate ρ > 0. At each moment in time an
individual either holds an incumbency position or not and will be referred to as an
incumbent or a challenger accordingly. The mass of incumbency positions is fixed and
given by θ ∈ (0, 1).

Individuals come in n ≥ 2 different, exogenous types labeled by i ∈ N = {1, . . . , n}.
The type of an individual determines the flow payoff vi > 0 received while holding
an incumbency position. Types are ordered such that v1 < v2 < . . . < vn. When
not holding an incumbency position all individuals receive a flow payoff of zero. As
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we explain in more detail below, individuals transit from being incumbents to being
challengers and vice versa by engaging in contests.

The proportion of type i individuals is given by fi > 0. We refer to the vector
f = (fi, ..., fn), which satisfies

∑n
i fi = 1, as the population distribution. To simplify

the exposition, we impose the genericity condition∑
j∈J

fj 6= θ for all J ⊂ N. (13)

We will consider steady states in which the masses of incumbents and challengers
of the different types are time-invariant and all incumbency positions are held by some
agent, so that at each moment in time a fraction θ of the individuals are incumbents
whereas the remaining fraction 1 − θ of the individuals are challengers. We use gi ≥ 0
to denote the mass of incumbents of type i in such a steady-state, whereas fi − gi ≥ 0
is the corresponding mass of challengers. Let

G = {g ∈ Rn
+ : gi ≤ fi,∀i ∈ N and

n∑
i=1

gi = θ}. (14)

We refer to a vector g = (g1, . . . , gn) ∈ G as an incumbent distribution.
Incumbency contest arise when challengers meet incumbents. For simplicity, we

suppose that meetings between individuals are random and generated by a quadratic
search technology (Diamond and Maskin, 1979) with exogenous meeting rate m > 0:
Thus, each challenger meets incumbents of type i ∈ N at rate mgi and each incumbent
meets challengers of type i ∈ N at rate m(fi−gi). Every meeting between an incumbent
and a challenger triggers an incumbency contest. If the incumbent wins the contest, both
contestants retain their current roles. If the challenger wins the contest, she obtains the
incumbency position, whereas the previous incumbent becomes a challenger.7 For any
agent, the value of of winning a contest is thus given by the continuation value of being
an incumbent and the value of losing a contest is given by the continuation value of
being a challenger. These continuation values must not only take into account the flow
payoffs (vi for an incumbent of type i and 0 for a challenger) of being in the particular
role but also the expected losses (for an incumbent) and expected gains (for a challenger)
arising from future contests.

2.3 Equilibrium

As mentioned previously, we restrict attention to steady states. Further, we only con-
sider steady states which are type-symmetric in the sense that any two individuals with
the same type have identical continuation payoffs when being in the same role. In line
with the notation introduced in Section 2.1, we denote the continuation payoff of an
incumbent of type i by Wi and the continuation payoff of a challenger of type i by Li

and let xi = Wi − Li denote the incumbency rent of an individual of type i, which we
take to be strictly positive.

7 Assuming that every meeting between an incumbent and a challenger triggers a contest for the
incumbency position is without loss of generality provided that both agents in the meeting have strictly
positive incumbency rents. Condition (2) in Assumption 2 then ensure that both agents are at least as
well off from participating in the contest rather than avoiding it (say, by the challenger choosing not to
attack or the incumbent choosing not to defend her position). The proviso that incumbency rents are
strictly positive will be part of our equilibrium definition. See also Remark 1 at the end of Section 2.3.
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Throughout the following we take for granted that payoffs and winning probabil-
ities in every contest are determined as discussed in Section 2.1. In particular, if a
challenger of type i encounters an incumbent of type j, then the resulting gain for the
challenger is σ(xj , xi), the resulting loss for the incumbent is τ(xj , xi), and the winning
probability for the challenger is µ(xj , xi). In defining equilibrium we can thus focus on
the determination of the incumbent distribution g ∈ G and an incumbency rent profile
x = (x1, . . . , xn) ∈ Rn

++ specifying an incumbency rent for each type. Together the
incumbent distribution and the incumbency rent profile provide sufficient information
to determine all the continuation values (cf. equations (16) and (17) below).

Our first equilibrium requirement is that the incumbency distribution is in steady-
state. The rates at which individuals of different types switch from being challengers to
being incumbents and vice versa are jointly determined by the incumbent distribution
g and the vector of incumbency rents x, with the former determining the meeting rates
and the later determining the winning probability of a challenger. In particular, the rate
at which challengers of type i obtain incumbency positions is given by

∑
j gjµ(xj , xi)

and the rate at which incumbents of type i lose incumbency positions (and thereby turn
into challengers) is given by

∑
j∈N (fj − gj)µ(xi, xj). To maintain a steady state, the

inflow and the outflow to and from incumbency must balance for each type. Hence,
steady state requires the following balance conditions:

(fi − gi)
∑
j∈N

gjµ(xj , xi) = gi
∑
j∈N

(fj − gj)µ(xi, xj), ∀i ∈ N. (15)

Our second equilibrium requirement is that the expected gains and losses individuals
obtain from future interactions generate continuation values which are consistent with
the incumbency rents presumed in calculating expected gains and losses. Given an
incumbency rent profile x and an incumbent distribution g, the continuation value Li

of a challenger of type i is given by

Li =
m

ρ

∑
j∈N

σ(xj , xi)gj . (16)

This is so because the flow payoff of a challenger is zero, implying that the continuation
value of a challenger is nothing but the expected value of the gains arising from the
possibility of contesting an incumbency position. As meetings with an incumbent of
type j lead to an expected payoff of Li + σ(xj , xi), the expected gain of such a meeting
is σ(xj , xi). Hence, taking all potential meetings and the rates mgj at which they occur
into account, the expected gain is given by the right side of (16). (Observe that by
Assumption 2 the expression σ(xj , xi) is positive for all i and j, ensuring that it is indeed
optimal - as we have presumed before - for a challenger to engage in any opportunity to
contest an incumbency position.) Similarly, taking the flow payoff vi and the expected
value of the losses arising from being drawn into a contest into account, the continuation
value of an incumbent of type i is given by

Wi =
vi
ρ
− m

ρ

∑
j∈N

τ(xi, xj)(fj − gj). (17)

Equations (16) and (17) embody the requirement that continuation values are de-
termined by the flow payoffs and expected gains and losses accruing to challengers and
incumbents. To turn this into an equilibrium condition in terms of an incumbency rent
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profile and incumbent distribution, we recall the identity xi = Wi−Li and subtract (16)
from (17) to obtain the value equations

ρxi = vi −m
∑
j∈N

τ(xi, xj)(fj − gj)−m
∑
j∈N

σ(xj , xi)gj , ∀i ∈ N. (18)

Together with the the balance conditions (15), the value equations (18) define equi-
librium (with the associated equilibrium continuation values given by (16) and (17)):

Definition 3 (Equilibrium). An equilibrium is a tuple (x, g) = (x1, . . . , xn, g1, . . . , gn) ∈
Rn

++ × G satisfying the balance conditions (15) and the value equations (18).

Remark 1 (Strict Positivity of Rents). We have made it part of our equilibrium defi-
nition that all incumbency rents are strictly positive and have used this requirement to
argue that it is always optimal for both challengers and incumbents to engage in a contest
upon meeting each other (cf. Footnote 7). The existence result in Proposition 1 below
provides justification for this approach. Nevertheless, one may wonder what happens if
we had taken the possibility of negative (including zero) incumbency rents into account.
Let us thus suppose that there is some type i for which the continuation value of being
a challenger weakly exceeds the continuation value of being an incumbent. When in the
role of a challenger an individual of type i would then weakly prefer not to engage in any
contests and, presuming that doing so is possible, thus obtain a continuation value of
zero. On the other hand, presuming that incumbents can also avoid participating in any
contests by abandoning the incumbency position upon meeting a challenger, the continu-
ation payoff of any incumbent of type i must be strictly positive as such an incumbent can
simply collect the strictly positive flow payoff vi until first meeting a challenger. Conse-
quently, the same considerations that motivate Assumption 2 in Section 2.1 preclude the
possibility of negative incumbency rents arising in our population framework. Observe,
though, that zero incumbency rents will appear in the limit of continual contests that we
consider in Section 3.3.

3 Sorting in Equilibrium

3.1 Preliminary Results

Before turning to the substance of our analysis, we make two observations. The first
observation is that equilibrium exists:

Proposition 1. An equilibrium exists.

The proof of Proposition 1 is (as are all other proofs for Section3) in Appendix
A. It consists in a fairly standard application of Brouwers’ fixed-point theorem, using
the continuity of the functions σ, τ and µ on their domains to obtain the requisite
continuity of the fixed-point map. The one difficulty in the proof is that the domain
of these functions excludes the boundary of R2

+. As in the related existence proof for
search-and-matching models with a finite number of types in Lauermann and Nöldeke
(2015), this difficulty can be dealt with by using appropriate boundary conditions, which
are here provided by Assumption 2.

In general, there is no assurance that equilibrium is unique. Indeed, Section 4.4
presents an example with multiple equilibria and the only result establishing uniqueness
of equilibrium that we have been able to obtain is for the case of the all-pay auction (cf.
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Proposition 5 in Section 4.2). What we can say, however, is that for a given incumbency
rent profile there is a unique incumbent distribution solving the balance conditions (15),
providing us with a counterpart to the fundamental matching lemma from Shimer and
Smith (2000). For later reference we state this observation as a lemma.

Lemma 1. For every x ∈ Rn
++, there is a unique g ∈ G such that (x, g) solves the

balance conditions (15) and this g is strictly positive.

The proof of Lemma 1 adapts arguments that Banaji and Baigent (2008) have de-
veloped to establish uniqueness of an equilibrium in a model of an electron transfer
networks to our model. Besides the continuity of the functions µ, the key property re-
quired for the argument is an implication of Assumption 3, namely that the challenger’s
winning probability is strictly positive no matter what the types of the challenger and
the incumbent are. It is this implication which also yields that any g solving the balance
conditions is strictly positive, that is, satisfies gi > 0 for all i ∈ N .

3.2 Sufficient Conditions for Positive Sorting

We are interested in determining whether equilibrium induces positive sorting in the
sense that the share of individuals of a given type who hold incumbency positions is
strictly increasing in type. This is captured in the following definition:

Definition 4 (Positive Sorting). There is positive sorting in equilibrium (x, g) if gi/fi
is strictly increasing in i.

Recalling that individuals with higher types obtain higher flow payoffs while holding
the incumbency position, there is a two-part intuition for why one would expect positive
sorting in equilibrium. The first part is that one would expect individuals with higher
flow payoffs to be more eager to obtain the incumbency position, that is, to have higher
incumbency rents. The second part is that (due to Assumption 3) contestants with
higher incumbency rents are more likely to win any incumbency contest they engage in
and should thus be overrepresented among incumbents.

We begin our analysis by verifying that the second part of this intuition is correct.

Lemma 2. In any equilibrium (x, g) there is sorting by rents: xi > xj implies gi/fi >
gj/fj.

We now turn to the first part of the above intuition, namely that one would expect
higher incumbency flow payoffs to imply higher incumbency rents. This intuition is
always correct when the threat of being challenged pales into insignificance for the
incumbents, that is, the meeting rate is sufficiently small. In that case it follows from
the value equations (18) that incumbency rents are approximately proportional to flow
payoffs and therefore increasing in type. More formally, we obtain:

Lemma 3. Let m ∈ (0,m), where m = ρmini=1,...n−1

[
vi+1

vi
− 1
]
> 0. Then xi is strictly

increasing in i in any equilibrium (x, g).

When the iterated nature of the contests has a significant impact on incumbency
rents, the link between the flow payoffs vi and the incumbency gains xi is more subtle.
However, a positive link between the flow payoffs vi and the incumbency gains xi is en-
sured when both the expected gain of a challenger and the expected loss of an incumbent
are increasing in own rents:
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Lemma 4. If σ(xI , xC) is increasing in xC and τ(xI , xC) is increasing in xI , then the
incumbency rents xi are strictly increasing in i in any equilibrium (x, g).

Requiring that the challenger’s expected gain σ(xI , xC) from contesting an incum-
bent is increasing in the challenger’s incumbency rent does not seem like much of an
assumption. Indeed, we are not aware of any contest model in which this property does
not hold. The requirement that the incumbent’s expected loss τ(xI , xC) from an en-
gaging in a contest is increasing in the incumbent’s rent is less obvious. In particular,
this requirement will be violated if a higher rent for the incumbent has a sufficiently
strong discouragement effect on possible challengers. We will explore this issue in more
detail in Section 4.4, where we demonstrate by example that the conclusion of Lemma 4
does not obtain if the condition on τ is dropped. On the other hand, for role-symmetric
contests, the identity (12) implies that τ(xI , xC) is increasing in xI if σ(xI , xC) is in-
creasing in xC at a rate bounded above by one. Therefore, for role-symmetric contests
Lemma 4 is applicable whenever an increase in a contestant’s incumbency rent is partly
dissipated by incurring higher costs in the the contest so that the contestant’s expected
gain increases by less than the incumbency rent.

Combining Lemmas 2, 3, and 4, the following sufficient conditions for positive sorting
in equilibrium are immediate.

Proposition 2. There is positive sorting in any equilibrium (x, g) if (i) 0 < m < m
holds or (ii) σ(xI , xC) is increasing in xC and τ(xI , xC) is increasing in xI .

Inspection of (5) and (6) shows that for the all-pay auction the sufficient condition
(ii) for positive sorting in Proposition 2 is satisfied. As demonstrated in the proof of the
following corollary, the same is true for the Tullock contest.

Corollary 1. Suppose the incumbency contest is an all-pay auction or a Tullock contest.
Then the incumbency rents xi are strictly increasing in i in any equilibrium (x, g) and
there is positive sorting in any equilibrium.

3.3 Continual Contests

Lemma 3 in Section 3.2 has considered the case in which contests for the incumbency
position occur only rarely because the meeting rate m is low. We have seen that for
such sporadic contests positive sorting always obtains in equilibrium (Proposition 2).
In particular, in the limit m → 0 incumbency rents converge to xi = vi/ρ and the
equilibrium sorting pattern is determined by the solution - which we have shown to
be unique in Lemma 1 - to the balance conditions (15) given these incumbency rents.
Here we consider the opposite extreme of continual contests, i.e., the limit as m → ∞.
Formally, we study limit equilibria in the sense of the following definition.

Definition 5 (Limit Equilibrium). A tuple (x, g) ∈ Rn
+×G is a limit equilibrium if there

exists a sequence (mk, xk, gk)∞k=1 ∈ R++×Rn
++×G such that for all k the tuple (xk, gk)

is an equilibrium given the meeting rate mk, the sequence of meeting rates converges to
infinity, and the sequence (xk, gk)∞k=1 converges to (x, g).

Note that the definition of a limit equilibrium does not require the limit incumbency
rents to be strictly positive. Indeed, our first result is that quite generally incumbency
rents vanish as the meeting rate goes to infinity:

Lemma 5. Suppose that (i) σ(y, y) > 0 holds for all y > 0 or (ii) the contest is role-
symmetric. Then every limit equilibrium (x, g) satisfies x = 0.
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The conclusion obtained in Lemma 5 is intuitive: ultimately, incumbency rents stem
from the ability to enjoy the flow payoff associated with holding the incumbency position.
As the meeting rate goes to infinity incumbency becomes constantly contested, thereby
eliminating the advantage of holding the incumbency position. Alas, this conclusion
might fail if there were some type who (for finite meeting rates) never has a chance of
obtaining a strictly positive gain when in the role of a challenger and, simultaneously
is effectively insulated from any competitive pressure when holding the incumbency
position. Condition (i) in the statement of Lemma 5 eliminates this possibility by
ensuring that a challenger obtains a strictly positive gain when contesting an incumbent
with the same, strictly positive incumbency gain. As indicated by condition (ii) this
requirement can be dispensed with when the contest is role-symmetric. The reason is
that if σ(y, y) = 0 holds in a role symmetric contest (as would be the case for all y > 0 in
an all-pay auction, cf. equation (5)), then it is the case that there is full rent-dissipation
if two contestants with incumbency rents y are matched with each other.8 In conjunction
with the genericity requirement (13) this suffices to imply the desired result.

The result that incumbency rents vanish with continual contests, suggests two con-
jectures. The first is that even if positive sorting holds for all finite meeting rates, it
vanishes in the limit as m converges to infinity. That is, the ratios gi/fi all converge
to θ. The second is that the aggregate flow payoff

∑
i∈N givi accruing to the holders of

the incumbency positions is fully dissipated in the same limit. That is, the aggregate
surplus

S =
∑
i∈N

[(fi − gi)Li + giWi] =
∑
i∈N

[fiLi + gixi] , (19)

converges to zero. In the following we show that under fairly mild additional assumptions
both of these conjectures are false for homogenous contests.

Proposition 3. Suppose the contest is homogenous with σ(xI , xC) increasing in xC and
τ(xI , xC) increasing in xI and that condition (i) or (ii) from Lemma 5 holds. Then there
is positive sorting in every limit equilibrium (x, g).

As the proof of Proposition 3 makes clear, the reason why positive sorting persists
in the limit is that even though all incumbency rents converge to zero as the meeting
rate goes to infinity, they do so at the same rate and in such a way that the ratio of the
incumbency rents xj/xi remains strictly increasing in j. As for homogeneous contests the
ratios xj/xi uniquely determine the sorting pattern arising from the balance conditions,
this suffices to deliver the result. We view homogeneity of the contest as the most
substantive of the assumptions appearing in the statement of the proposition. The role
of the additional conditions is simply to ensure that there is positive sorting along the
equilibrium sequence converging to the limit equilibrium and that the arguments proving
Lemma 5 are applicable to make the appropriate inferences for the convergence of the
incumbency rents.

To state our next result about surplus dissipation for continual contests, it will be
convenient to say that there is incomplete surplus dissipation in a limit equilibrium (x, g)
if for any sequence of equilibria (xk, gk)∞k=1 converging to (x, g) in the sense of Definition
5 every limit point of the associated sequence of equilibrium surpluses (Sk)∞k=1 is strictly

8To see this, observe that from (12) we have σ(y, y) + τ(y, y) = y in every role-symmetric contest.
Therefore σ(y, y) = 0 implies τ(y, y) = y, so that the challenger’s equilibrium payoff is LC and the
incumbent’s equilibrium payoff is LI .
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positive. Formally, this associated sequence of equilibrium surpluses is defined by

Sk =
∑
i∈N

fimk

ρ

∑
j∈N

σ(xkj , x
k
i )gkj + gki x

k
i

 , (20)

where we have substituted (16) into the rightmost expression from (19) to obtain an
expression depending only on (mk, xk, gk). With this terminology in place, we can state
the following result:

Proposition 4. Suppose the conditions from Proposition 3 are satisfied and σ(xI , xC) >
0 holds for xI < xC . Then there is incomplete surplus dissipation in every limit equilib-
rium (x, g).

The proof of Proposition 4 proceeds by showing that while the incumbency rents xki
and also the expected gains σ(xkj , x

k
i ) in equation (20) all converge to zero, the additional

condition σ(xI , xC) > 0 for xI < xC in the statement of the proposition ensures that
challengers with the highest type have strictly positive continuation payoffs in the limit.
The intuition for this result is that incumbency rents for the highest type disappear
not because incumbents of this type face continual contests but rather because with
frequent meetings challengers of the highest type find it very easy to obtain incumbency
positions.9

Both the all-pay auction and the Tullock contest are role symmetric and, as we
have noted before (cf. the discussion preceding the statement of Corollary 1) satisfy
the monotonicity conditions on σ and τ appearing in the statement of Proposition 3.
Further, it is immediate from (5) and (8) that the additional condition appearing in
Proposition 4 holds for both of these contests, too. Hence, we may state without further
proof:

Corollary 2. Suppose the contest is an all-pay auction or a Tullock contest. Then there
is positive sorting and incomplete surplus dissipation in every limit equilibrium (x, g).

4 The All-Pay Auction with Two Types

In this section we conduct a more detailed study of the equilibria in the all-pay auction
with two types. Focusing on this special case allows us provide insights into the structure
of equilibria of iterated contests that go beyond the sufficient conditions for positive
sorting and the limit results presented in the previous section. In particular, we can
establish uniqueness of equilibrium and and derive the comparative statics with respect
to the meeting rate m. In addition, the all-pay auction with two-types provides a
convenient building block for the construction of an iterated contest which allows us to
illustrate the possibility of equilibrium multiplicity and negative sorting. All proofs for
this section are in Appendix B.

9Observe that this conclusion hinges on the fact that, as we have assumed, there are at least two
different types of individuals. The all-pay auction without heterogeneity of types provides a simple
example of a contest satisfying all the conditions of Proposition 4 but leading to complete surplus
dissipation in every limit equilibrium.
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4.1 Equilibrium Conditions

From Proposition 1, Lemma 1, and Corollary 1 we know that an equilibrium (x, g)) for
the all-pay auction with two-types exists and every equilibrium satisfies

x2 > x1 > 0, g1 > 0, g2 > 0. (21)

Using the winning probabilities for the all-pay auction (4) and the inequality x2 > x1,
the balance conditions (15) reduce to10

g2(f1 − g1) =

[
2
x2

x1
− 1

]
g1(f2 − g2). (22)

Similarly, substituting the expected gains (5) and losses (6) for the all-pay auction
into the value equations (18) and using x2 > x1, the value equations reduce to

ρx1 = v1 −m(1− θ)x1 (23)

ρx2 = v2 −m(1− θ)x2 −m(2g1 − f1)(x2 − x1), (24)

where we have used f1 + f2 = 1 and

g1 + g2 = θ (25)

to simplify the resulting expressions. An equilibrium of the all-pay auction with two
types is thus given by a tuple (x1, x2, g1, g2) satisfying the inequalities in (21) and solving
the equations (22) - (25).

4.2 Uniqueness of Equilibrium

For the all-pay auction the expected gain for a challenger with the lowest incumbency
rent x1 is always zero and the expected loss for such an incumbent is always equal to the
incumbency rent. Therefore, as indicated by equation (23), the incumbency rent for type
1 is simply the present value v1/(ρ+m(1− θ) of the flow payoff v1, where the discount
rate is incremented by m(1− θ)) to take the complete loss of the incumbency rent into
account that results whenever an incumbent of type 1 meets a challenger. In particular,
the equilibrium value of x1 is independent of x2, so that for given g1 the value equations
(23) - (24) can be solved recursively beginning with x1 and then moving on to x2.11

Substituting the resulting value for the ratio x2/x1 into (22) and eliminating g2 from
this equation by using (25) then yields one equation in g1. As we show in Appendix B
the resulting equation has a unique solution in the interval [max{θ− f2, 0},min{f1, θ}].
This suffices to imply uniqueness of equilibrium as, first, (x1, x2) and g2 are uniquely
determined by g1 and, second, for g1 outside of the indicated interval either the condition
g1 > 0 or the condition g2 > 0 from (21) is violated.

Proposition 5. Let the contest be the all-pay auction and let n = 2. Then there exists
a unique equilibrium (x, g).

10Observe that with only two types it is always the case that the balance conditions for both types
are equivalent to g2(f1 − g1)µ(x2, x1) = g1(f2 − g2)µ(x1, x2). Inserting the winning probabilities for the
all-pay auction yields (22).

11This insight extends to the all-pay auction with an arbitrary number of types: given that incumbency
rents are increasing in type, the value equations can be solved recursively to determine the unique vector
x of incumbency rents that are consistent with a given incumbent distribution g.
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4.3 Comparative Statics

In this section we investigate the question whether a higher frequency of meetings pro-
motes or impedes positive sorting. To do so, we measure the extent of sorting by the
ratio g2/g1. For given θ, f1, and f2 this seems a natural measure of sorting in the
two-type model we consider here, because an increase in this ratio indicates that the
fraction of type 2 individuals who hold an incumbency position has increased, whereas
the fraction of type 1 individuals who hold an incumbency position has decreased.

For the all-pay auction with two types, it is immediate from (22) that for given θ, f1,
and f2 the extent of sorting occurring in equilibrium is determined by the ratio x2/x1:
higher values of the ratio x2/x1 cause an increase in the right side of (22). As the sum
of g1 and g2 equals θ, restoring the balance condition then requires a decrease in g1 and
an increase in g2, so that the extent of sorting increases. Identifying conditions under
which the extent of sorting is increasing (resp. decreasing) in the meeting rate m is thus
tantamount to identifying conditions under which the ratio x2/x1 is increasing (resp.
decreasing) in m in the (by Proposition 5) unique associated equilibrium.

Considering the value equations (23) and (24) it is evident that the equilibrium ratio
x2/x1 is independent of m and equal to v2/v1 if 2g1 − f1 = 0 holds. Substituting v2/v1

into (22) we obtain that in equilibrium x2/x1 is independent of m and equal to v2/v1 if

θ = θ∗ ≡ 1

2
+

1

2

(
1− v1

v2

)
(1− f1) ∈ (0, 1). (26)

As one would expect (and the proof of the following proposition verifies), when
incumbency positions are relatively scare (θ < θ∗ holds), then the equilibrium incumbent
distribution features a lower mass of type 1 agents than when θ = θ∗ holds. This implies
2g1 − f1 < 0, which in turn implies that the equilibrium ratio x2/x1 is not only strictly
larger than the ratio of the flow payoffs v1/v2 but also (as we show) strictly increasing in
m. As a consequence, we obtain the result that for relatively scare incumbency positions
more frequent conflicts lead to more pronounced sorting. Vice versa, the extent of sorting
decreases in m when incumbency positions are relatively abundant:

Proposition 6. Let the contest be the all-pay auction, let n = 2, and let θ∗ be as given
in (26).

(i) If θ < θ∗, then the ratio of rents x2/x1 and the extent of sorting in equilibrium is
strictly increasing in m.

(ii) If θ = θ∗, then the ratio of rents x2/x1 and the extent of sorting in equilibrium is
constant in m.

(iii) if θ > θ∗, then the ratio of rents x2/x1 and the extent of sorting in equilibrium is
strictly decreasing in m.

Proposition 6 shows that the extent of sorting is not simply driven by the differences
in flow payoffs, but depends in a subtle way on both the meeting rates and the avail-
ability of incumbency positions which shape the competitive environment in which the
individual contests are embedded.

4.4 Negative Sorting and Multiple Equilibria in the All-Pay Auction
with Attack Costs

In this section we consider the following extension of the all-pay auction.
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Contest 3 (All-Pay Auction with Stochastic Attack Costs). The contest is given by
the following game: Whenever a challenger and an incumbent meet, the challenger first
draws a cost c ≥ 0 from a probability distribution H(c) which is continuous on its
support [0, c] and has a mass point at 0, that is H(0) > 0. The realization of the cost
level is observed by both contestants. The challenger then decides whether to attack the
incumbent or not. If the challenger decides not to attack, then no further interaction
takes place, neither player incurs any cost and both individuals retain their current roles.
If the challenger attacks, then the all-pay auction as described in Section 2.1 is played
with the challenger incurring the additional cost c.

Imposing the refinement that the challenger attacks in case of indifference, this game
has a unique subgame-perfect equilibrium with

σ(xI , xC) =

{
0 if xI > xC

H(xC − xI) · [xC − xI − E[c|c ≤ xC − xI ]] if xI ≤ xC
(27)

τ(xI , xC) =

{
H(0) · xC if xI > xC

H(xC − xI) · xI if xI ≤ xC
(28)

µ(xI , xC) =


H(0) · 1

2

xC
xI

if xI > xC

H(xC − xI) ·
[
1− 1

2

xI
xC

]
if xI ≤ xC

(29)

The functions µ(xI , xC), σ(xI , xc), and τ(xI , xc) associated with this contest satisfy
Assumptions 1 - 3. Indeed, this is the point of modelling attack costs as being drawn
from a distribution H(c) satisfying the stated conditions, with the continuity of the
attack-cost distribution ensuring Assumption 1 and the mass point at c = 0 ensuring
that the winning probability µ(xI , xC) is strictly positive for all xC > 0, which is a
prerequisite for Assumption 3 to hold.

Because Assumptions 1 - 3 hold, existence of equilibrium for the all-pay auction
with stochastic attack costs is assured (Proposition 1) and every equilibrium features
sorting by rents (Lemma 2). Therefore, every equilibrium of such a contest in which
higher types obtain strictly higher incumbency rents must feature positive sorting. For
meeting rates larger than the bound m given in Lemma 3 we are, however, not assured
that this must be the case. The reason is that Lemma 4 is not applicable: While the
expected gain in (27) is increasing in xC , the expected loss in (28) fails to be increasing
in xI . To see the latter claim, fix xC satisfying the inequality xC > c̄/(1 −H(0)) and
consider that an incumbent with xI = xC − c̄ will always be attacked by the challenger
with rent xC and thus faces an expected loss of τ(xI , xC) = xC − c̄. On the other hand,
an incumbent with x′I = xC > xI is only attacked by the challenger with rent xC if
the cost realization is c = 0 and therefore has an expected loss of τ(x′I , xC) = H(0)xC .
From the inequality xC > c̄/(1−H(0)) we thus have τ(x′I , xC) < τ(xI , xC) for x′I > xI .
Intuitively, what happens is that τ(xI , xC) fails to be increasing in xI because stronger
incumbents benefit from a discouragement effect, which reduces the probability that a
challenger with a given rent xC will attack them.

It is thus the case that Proposition 2 does not exclude the existence of an equilibrium
in which the incumbency rent of the low type exceeds the incumbency rent of the high
type (recall that we consider n = 2), that is, x1 > x2 holds. In such a constellation,
Lemma 2 then implies that such an equilibrium features negative rather than positive
sorting, that is, g1/f1 > g2/f2 holds.
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The failure of the monotonicity requirement on τ(xI , xC) is indeed enough to invali-
date the conclusion of Proposition 2. Specifically, it is possible to construct an example
of an all-pay auctions with stochastic attack costs featuring an equilibrium with neg-
ative sorting. This equilibrium exists along with an equilibrium that entails positive
sorting, so that the example also demonstrates how the iterated nature of the contest
may give rise to multiple equilibria with strikingly different properties. To construct
such an example, we suppose that the masses of the two types satisfy

f1 > θ > f2. (30)

In addition, we impose the parameter restriction

min

{
v1

ρ
− v2

ρ+m(f1 − θ)
,
v2 − v1

ρ

}
> c̄, (31)

indicating that the upper bound of the support of the cost distribution H(c) is not too
large.12

Proposition 7. Let the contest be an all-pay auction with stochastic attack costs satis-
fying conditions (30) and (31) and let n = 2. Then for suitable choice of the attack-cost
distribution H(c) there exists an equilibrium with positive sorting and there also exists
an equilibrium with negative sorting.

The proof of Proposition 7 considers sequences of cost distributions (Hk)∞k=1 con-
verging pointwise to a cost distribution H∗ assigning probability one to the highest
possible cost realization c̄ and showing that for sufficiently large k the associated all-pay
auctions with stochastic attack cost feature both an equilibrium with positive sorting
and an equilibrium with negative sorting. The key to the argument is that for the case
in which the attack cost is deterministic and given by c̄ there exists both an equilibrium
with positive sorting and an equilibrium with negative sorting with both of these equi-
libria featuring sorting by rents.13 We explain here how to construct these two equilibria
for the case of deterministic attack costs equal to c̄ > 0, leaving the remainder of the
proof to Appendix B.

Let conditions (30) and (31) hold. We first argue that (x∗, g∗) with

x∗1 =
v1

ρ
and x∗2 =

v2 +m [v1/ρ+ c̄] [θ − f2]

ρ+m[θ − f2]
, (32)

as well as
g∗1 = θ − f2 and g∗2 = f2 (33)

12As our model also requires c̄ > 0, it is worthwhile pointing out that for any given c̄ > 0 and flow
payoffs satisfying 2v1 > v2, there exists m > 0, ρ > 0, θ ∈ (0, 1) and f1 ∈ (θ, 1) such that (31) holds.

13The latter point is essential and is what leads to conditions (30) and (31). To see the issues involved,
consider an all-pay auction with prohibitively high deterministic attack costs (c̄ > v2/ρ will suffice). It
it then clear that no challenger will ever choose to attack. Incumbents are thus completely insulated
from any challenges to their position. This implies that incumbency rents are given by x∗i = vi/ρ for all
i. Because there is no turnover, so that the balance conditions (15) hold vacuously, for any g ∈ G the
tuple (x∗, g) is then an equilibrium. In particular, there are equilibria with positive sorting and with
negative sorting. All the equilibria with negative sorting do, however, fail sorting by rents, indicating
that these equilibria can not be approximated by a sequence of equilibria in all-pay auctions with attack
costs satisfying Assumptions 1 - 3. We view sorting by rents as a key (and natural) feature of our model
and find the possibility to obtain negative sorting from a failure of sorting by rents not very insightful.
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is an equilibrium for an all-pay auction with deterministic attack cost c̄ > 0 that features
both positive sorting and sorting by rents. Positive sorting is immediate from (33) as
g∗2/f2 = 1 and g∗1/f1 < 1 is then implied by θ < 1. Sorting by rents is somewhat less
obvious. Observe that (32) implies

x∗2 − x∗1 =
v2 − v1 +mc̄(θ − f2)

ρ+m(θ − f2)
, (34)

from which it follows that x∗2 − x1 > c̄ is implied by (v2 − v1)ρ > c̄, which we have
assumed in (31). Therefore, we have

x∗2 − x∗1 > c̄, (35)

so that x∗2 − x∗1 > 0 holds and we have sorting by rent. It remains to establish that
(32) and (33) indeed describe an equilibrium. Observe first that with strictly positive
attack costs, it is never optimal for a challenger of type 1 to mount an attack (because
x∗1−x∗2 < 0), so that the incumbency rent x∗1 must be given by the continuation value of
an incumbent of type 1. Such an incumbent is, as we have just noticed, never attacked
by a challenger of type 1. Because g∗2 = f2 holds, there are no challengers of type
2. Hence, an incumbent of type 1 is also never attacked by a challenger of type 2,
so that the equilibrium condition for x∗1 is that it coincides with the present value of
the incumbency flow payoff v1, which is the first equation in (32). Given x∗1 − x∗2 < 0
and g∗2 = f2, incumbents of type 2 will also never be attacked. Nevertheless, their
incumbency rent is not simply v2/ρ. The reason is that if an incumbent of type 2
were to loose the incumbency position, she would find it worthwhile to attack (only)
incumbents of type 1 as doing so results in the expected gain x∗2−x∗1− c̄, which is strictly
greater than zero by (35). This yields the value equation ρx∗2 = v2 −m[x∗2 − x∗1 − c̄]g∗1,
which can be rearranged to get x∗2 as specified in (32). Finally, given that there is no
turnover in equilibrium, the specification of the incumbent distribution in (33) is clearly
consistent with the balance conditions.14

Next, let (x̂, ĝ) be given by

x̂1 =
v1

ρ
and x̂2 =

v2

ρ+m(f1 − θ)
, (36)

as well as
ĝ1 = θ and ĝ2 = 0. (37)

Then (x̂, ĝ) is an equilibrium featuring negative sorting and sorting by rents. Negative
sorting is immediate from (37). Sorting by rent then follows by observing that the first
inequality in (31) implies x̂1 > x̂2. To verify that (x̂, ĝ) is an equilibrium first observe
that ĝ2 = 0 means that there are no incumbents of type 2. Therefore, challenger’s of
type 1 have a continuation value of zero. On the other hand, incumbents of type 1 will
never be attacked because x̂2 < x̂1 holds. Hence, the incumbency rent x̂1 is the present
value of v1, as specified in (36). Given x̂2 < x̂1 it is also clear that challengers of type
2 will never attack. The incumbency rent x̂2 is thus determined by the continuation

14Note, however, that in contrast to the example discussed in the previous footnote, this specification
of the incumbent distribution is the only one consistent with the given incumbency rents as any other
g ∈ G would imply that incumbents of type 1 suffer a strictly positive loss from meetings with challengers
of type 2, invalidating the first equation in (32). An analogous remark applies for the equilibrium with
negative sorting that we consider in the following paragraph.
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payoff an individual of type 2 would obtain if she were to hold an incumbency position.
From (36) and the first inequality in (31) we have

x̂1 − x̂2 > c̄, (38)

so that such an individual would be attacked by any challenger of type 1 whom she
happens to encounter. From (37) there are (f1 − θ) of such challengers, so that the
value equation for the incumbency rent of type 2 individuals becomes ρx̂2 = v2−m(f1−
θ)x̂2, which is the second equality in (36). Finally, given that there is no turnover in
equilibrium it is immediate that (ĝ1, ĝ2) as given in (37) solves the balance conditions.

5 Conclusion

We have developed a model of repeated contests over incumbency positions among a pop-
ulation of players holding heterogeneous but commonly known valuations: Incumbents
have to recurrently defend their positions against challengers, unsuccessful challengers
continue searching for incumbency positions to contest, and defeated incumbents may
regain incumbency positions again in the future by mounting successful challenges. We
have identified conditions on the structure of the contests which ensure positive sorting
in equilibrium and have shown that these conditions hold in the two standard complete-
information contests, namely the all-pay auction and the Tullock contests. We have also
established that under fairly general conditions positive sorting and incomplete surplus
dissipation arise in the limit of continual conflicts. For the all-pay auction with two types
we have shown uniqueness of equilibrium and have discussed how the frequency at which
incumbency is contested affects the extend of sorting in this equilibrium. Finally, we
have provided a non-trivial example of a contest which gives rise to an equilibrium with
negative sorting because, somewhat paradoxically, individuals with lower flow payoffs
from holding the incumbency position have higher incumbency rents in equilibrium.

Numerous open issues remain. For example, we believe that it should be possible
to establish uniqueness of equilibrium much more generally than for the all-pay auction
with two types, but so far we have been unable to do so. Obtaining such a uniqueness
result for the Tullock contest would be of special interest – not only because of the
prominence of this contest but also because it would provide the starting point for going
beyond the comparative statics we have investigated in Section 4 to study, for instance,
how the decisiveness of a contest affects the extend of sorting. Concerning extensions of
our modelling framework, the literature on search-theoretic models of the labor market
suggests a number of interesting possibilities. In particular, we view endogenizing the
intensity at which challengers search for possibilities to acquire incumbency positions
as a promosing direction to pursue as we conjecture that doing so will have a profound
impact on the extend of sorting arising in equilibrium.

A Proofs for Section 3

Proof of Proposition 1. Fix ε satisfying 0 < ε < v1/(ρ + m). Let X = {x ∈ Rn
+ : ε ≤

xi ≤ vi/ρ,∀i ∈ N} and recall G = {g ∈ Rn
+ : gi ≤ fi, ∀i ∈ N and

∑n
i=1 gi = θ}. Define
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the vector-valued maps V : X × G → X and G : X × G → G by setting

Vi(x, g) = max

{
vi −m

∑
j∈N τ(xi, xj)(fj − gj)−m

∑
j∈N σ(xi, xj)gj

ρ
, ε

}
(39)

Gi(x, g) = gi + (fi − gi)
∑
j∈N

gjµ(xi, xj)− gi
∑
j∈N

(fj − gj)µ(xj , xi). (40)

Because σ(xi, xj) ≥ 0 and τ(xi, xj) ≥ 0 holds for all x ∈ X , it is immediate that V
does indeed map into X . To verify that G maps into G observe that the inequalities
0 ≤ µ(y, z) ≤ 1, which hold for all (y, z) ∈ R2

++ imply

Gi(x, g) ≥ gi − gi(1− θ) = giθ ≥ 0

and
Gi(x, g) ≤ gi + (fi − gi)θ = θfi + (1− θ)gi ≤ fi,

for all (x, g) ∈ X ×G. Further, adding (40) over all i, gives
∑n

i=1Wi(x, g) =
∑n

i=1 gi = θ.
The sets X and G are both non-empty, compact and convex and, by continuity of

σ, τ , and µ, the functions V and G are both continuous. Hence, Brouwer’s fixed point
theorem implies that the mapping (V,G) : X ×G → X ×G has a fixed point. Comparing
(39) with (18) and (40) with (15) it is immediate that any such fixed point (x∗, g∗) is
an equilibrium, provided that the inequalities

x∗i = Vi(x
∗, g∗) > ε (41)

holds for all i ∈ N . We now argue that given our choice of ε < v1/(ρ + m) this is the
case. For suppose (41) does not hold for some i ∈ N . For such i we then have x∗i = ε.
Using the upper bounds (2) from Assumption 2 yields the inequality

vi −m
∑
j∈N

τ(ε, xj)(fj − gj)−m
∑
j∈N

σ(ε, xj)gj ≥ vi −mε,

so that ε = Vi(x
∗, g∗) implies ε ≥ (vi −mε)/ρ or, equivalently, ε ≥ vi/(m + ρ). Conse-

quently, for ε < v1/(ρ+m) every fixed point of (V,G) is an equilibrium.

Proof of Lemma 1. Fix x ∈ Rn
++. From Assumption 3 we have that µ(xi, xj) > 0 holds

for all i, j ∈ N (as otherwise there exists (xI , xC) ∈ R2
++ such that µ(xI , xC) = 0 holds,

with Assumption 3 then implying that µ takes on strictly negative values on its domain,
which is impossible.) Observing that gi = 0 implies that the right side of the balance
condition (15) for type i is equal to zero, whereas the left side is strictly positive for
g ∈ G implies that if (x, g) ∈ Rn

++ × G solves (15), then g is strictly positive.
Let D =

∏
i∈N [0, fi] and let D−k =

∏
i 6=k∈N [0, fi] for k ∈ N . Define the map

F : D → Rn by letting its i − th coordinate be given by the net outflow of type i from
the incumbent position, that is,

Fi(g) =
∑
j∈N

[gi(fj − gj)µ(xi, xj)− (fi − gi)gjµ(xj , xi)] , (42)

for all i ∈ N . By construction, g ∈ D then solves the balance conditions (15) if and
only F (g) = 0 holds. A straightforward application of Brouwer’s fixed point theorem
along the lines given in the proof of Proposition 1 shows that for any θ ∈ (0, 1) such a
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solution satisfying
∑

j∈N gj = θ, so that g ∈ G holds, exists and that, similarly, for any
given ḡk ∈ [0, fk] there exists a vector g ∈ D satisfying gk = ḡk and solving F (g) = 0. It
remains to show that for every θ ∈ (0, 1) there is exactly one solution to the equation
F (g) = 0 satisfying

∑
j∈N gj = θ.

Towards this end, we begin by observing that the Jacobian matrix J(g) of F is
defined for all g ∈ D and is continuous in g. Let J−k(g) denote the Jacobian-matrix
with the k−th row and column deleted. Straightforward calculation shows that - because
µ(xi, xj) > 0 holds for all i, j ∈ N the matrix J−k(g) has a positive strictly (column)
dominant diagonal and negative non-diagonal entries. Hence, J−k(g) is a P-matrix and
a Leontief matrix (Gale and Nikaido, 1965). As the domain D−k is rectangular, it follows
(Gale and Nikaido, 1965) that for any given ḡk ∈ [0, fk] there is exactly one solution
g ∈ D to the equation F (g) = 0 satisfying gk = ḡk. Using H : [0, fk] → D−k to
denote the function mapping ḡk into the remaining coordinates of the vector g solving
F (g) = 0, it is easy to see that

∑
j 6=kHj(0) = 0 and

∑
j 6=kHj(fk) =

∑
j fj = 1 − fk

holds. Further, the implicit function theorem ensures that H is continuous and - because
J−k(g) is a Leontief matrix, so that all of the elements of its inverse are positive (Gale
and Nikaido, 1965) - increasing. It follows that the function Z : [0, fk] → R+ defined
by Z(ḡk) =

∑
j Hj(ḡk) + ḡk is continuous, strictly increasing, and satisfies Z(0) = 0 and

Z(1) = 1. Consequently, for every θ ∈ (0, 1) all solutions to the equation F (g) = 0
satisfying

∑
j gj = θ have the property that gk is given by the unique solution to the

condition Z(gk) = θ. As this argument applies for all k ∈ N , the desired uniqueness
result follows.

Proof of Lemma 2. Let (x, g) be an equilibrium. As noted at the beginning of the proof
of Lemma 1, Assumption 3 implies that µ(xi, xj) > 0 holds for all i, j ∈ N . We also
have

∑
j∈N gj = θ > 0 and

∑
j∈N (fj − gj) = (1 − θ) > 0. Hence, together with gj ≥ 0

and fj − gj ≥ 0 for all j ∈ N , we obtain∑
j∈N

gjµ(xj , xi) > 0 and
∑
j∈N

(fj − gj)µ(xi, xj) > 0.

for all i ∈ N . Therefore, we may rearrange the flow balance conditions (15) as

gi
fi − gi

=

∑
j∈N gjµ(xj , xi)∑

j∈N (fj − gj)µ(xi, xj)
(43)

for all i ∈ N . By Assumption 3, each summand in the numerator of the right hand
expression in (43) is strictly increasing in xi and each summand in the denominator is
strictly decreasing in xi. Hence, we obtain xi > xj ⇒ gi/(fi − gi) > gj/(fj − gj) ⇔
gi/fi > gj/fj , which is the desired conclusion.

Proof of Lemma 3. Let (x, g) be an equilibrium. From the bounds (2) in Assumption 2
and the value equations in (18) we obtain

vi ≥ ρxi ≥ vi −mxi ⇔ xi ∈
[

vi
ρ+m

,
vi
ρ

]
.

Hence, xi+1 > xi is implied by

vi
ρ
<

vi+1

ρ+m
⇔ m < ρ

[
vi+1

vi
− 1

]
.
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By definition of m, the latter inequality holds for i = 1, . . . n − 1 whenever m < m,
delivering the result.

Proof of Lemma 4. Deducting the value equations (18) for two adjacent types i, i+1 ∈ N
from each other, we obtain

m
∑
j∈N

[[τ(xi+1, xj)− τ(xi, xj)] (fj − gj) + [σ(xj , xi+1)− σ(xj , xi)] gj ] + ρ [xi+1 − xi]

= vi+1 − vi.

The right side of this expression is strictly positive, whereas for xi ≥ xi+1 the assumption
that σ(xI , xC) is increasing in xC and τ(xI , xC) is increasing in xI implies that the left
side is negative. Hence, in every equilibrium xi+1 > xi must hold for all i, i+1 ∈ N .

Proof of Corollary 1. As noted before the statement of the corollary, it it obvious from
(5) and (6) that for all the all-pay auction σ(xI , xc) is increasing in xC and τ(xI , xC) in
increasing in xI , so that the result follows from Proposition 2.

For the Tullock contest Nti (1999) calculates

σ2(xI , xC) =
1(

xrI + xrC
)3 [(x2r

C + (r + 1)xrCx
r
I

)
(xrC + (1− r)xrI) + r2x2r

C x
r
I

]
,

which is clearly positive for 0 ≤ r ≤ 1.15 Further, σ2(xI , xC) ≤ 1 is equivalent to

x3r
C + (2 + r2)x2r

C x
r
I + (r + 1)(1− r)xrCx2r

I ≤ (xrI + xrC)3,

which is also satisfied for 0 ≤ r ≤ 1 and (xI , xC) ∈ R2
++.

Proof of Lemma 5. Let (x, g) be a limit equilibrium and let (mk, xk, gk)∞k=1 be the as-
sociated sequence with the properties indicated in Definition 5.

From the value equations (18) and the requirement that (xk, gk) is an equilibrium
when the meeting rate is mk we have

ρxki +mk

∑
j

τ(xki , x
k
j )(fj − gkj ) + σ(xkj , x

k
i )gkj

 = vi (44)

for all i ∈ N . We now consider the the two cases appearing in the statement of the
lemma.
(i) Equation (44) implies

ρxki +mk
[
τ(xki , x

k
i )(fi − gki ) + σ(xki , x

k
i )gki )

]
≤ vi.

Using the inequality τ(y, y) ≥ σ(y, y) implied by (3) in Assumption 2 this implies

ρxki +mkσ(xki , x
k
i )fi ≤ vi. (45)

15In fact, the expression is positive whenever the condition for existence of a pure strategy equilibrium
in a Tullock contest is satisfied.
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Suppose there exists some i ∈ N such that the sequence (xki )∞k=1 does not converge to
zero, so that it converges to some x∗i > 0.

As σ(x∗i , x
∗
i ) > 0 holds by assumption and (mk)∞k=1 converges to infinity, it then

follows that the left side of (45) converges to infinity, yielding a contradiction. Therefore
limk→∞ x

k
i = 0 holds for all i ∈ N .

(ii) Define
ζ = min

g∈G
Z(g),

where
Z(g) = max

i∈N
min{gi, fi − gi}.

The function Z : G → R+ is clearly continuous and, using the genericity condition (13),
strictly positive on its domain. As G is compact, it follows that ζ is not only well-defined,
but satisfies ζ > 0.

Considering that all the summands multiplying mk in (44) are positive and that
Z(gk) ≥ ζ holds, we obtain the existence of jk such that

ρxki +mk
[
τ(xki , x

k
jk) + σ(xkjk , x

k
i )
]
ζ ≤ vi (46)

holds for all i. Using the assumption of role symmetry, the term in square brackets in
(46) is identical to xki , delivering the inequality

[ρ+mkζ]xki ≤ vi

for all i and k. As ζ > 0 holds and the sequence (mk)∞k=1 converges to infinity, the
desired conclusion limk→∞ x

k
i = 0 for all i is then immediate.

Proof of Proposition 3. Let (x, g) be a limit equilibrium and let (mk, xk, gk)∞k=1 be the
associated sequence with the properties indicated in Definition 5. As the conditions of
Lemma 5 are satisfied, we have x = 0.

Using homogeneity of the contest, we may rewrite the balance equations as

(fi − gki )
∑
j∈N

gkj µ(xkj /x
k
i , 1) = gki

∑
j∈N

(fj − gkj )µ(1, xkj /x
k
i ), ∀i ∈ N. (47)

Similarly, the value equations can be rewritten as

xki

[
ρ+mkZi(x

k)
]

= vi, (48)

where

Zi(x
k) =

∑
j∈N

[
τ(1,

xkj

xki
)(fj − gkj ) + σ(

xkj

xki
, 1)gkj

]
, (49)

Observe that (48) implies

xkj

xki
=

(
vj
vi

)(
ρ/mk + Zi(x

k)

ρ/mk + Zj(xk)

)
. (50)

From the bounds (2) in Assumption 2 we have that Zi(x
k) as defined in (49) is

bounded above by 1. Further (cf. the proof of Lemma 5), under condition (i) of Lemma
5 Zi(x

k) is bounded below by σ(1, 1)fi > 0 and under condition (ii) of Lemma 5 it is
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bounded below by ζ > 0. No matter which of these two lower bounds is applicable, we
thus obtain from (50) that there exists α > 0 and α > α such that

αk
ij =

xkj

xki
∈ [α, α]

holds for all i, j ∈ N and k. Consequently, the sequence (mk, xk, gk)∞k=1 has a subse-
quence for which all the ratios xkj /x

k
i converge to some finite limit αij > 0. Taking limits

along this subsequence and using (47), we then obtain that the limit equilibrium (x, g)
satisfies

(fi − gi)
∑
j∈N

gjµ(αij , 1) = gi
∑
j∈N

(fj − gj)µ(1, αij), ∀i ∈ N.

Provided that αij is strictly increasing in j, the desired result then follows by applying
the same argument as in the proof of Lemma 2.

As the conditions from Proposition 2 are satisfied, we have that j > i implies xkj > xki
for all k. Consequently, we have αij ≥ 1 for all j > i. As αij > 1 for all j > i implies that
αij is strictly increasing in j (because for ` > j > i we have αi` = αijαj`), it thus remains
to exclude the possibility that αij = 1 holds for some i 6= j. Suppose to the contrary
that such a pair of types exists. As αij = 1 implies αi` = αj` for all ` ∈ N , (49) then
implies that along the relevant subsequence Zi(x

k) and Zj(x
k) converges to the same

limit. Taking limits in (50) along the same subsequence, we then obtain αij = vj/vi. As
vj 6= vi holds for i 6= j, this contradicts the hypothesis αij = 1, finishing the proof.

Proof of Proposition 4. Let (x, g) be a limit equilibrium and let (mk, xk, gk)∞k=1 be the
associated sequence with the properties indicated in Definition 5. As the conditions
of Lemma 5 are satisfied, we have x = 0. Let (Sk)∞k=1 be the associated sequence of
surpluses as defined by (20) and suppose that there exists a subsequence, which we may
take to be the sequence (mk, xk, gk)∞k=1, itself such that (Sk)∞k=1 converges to zero. We
argue that this results in a contradiction.

Using the arguments from the proof of Proposition 3, we may suppose without loss of
generality that the sequences (αk

ij)
∞
k=1 defined by αk

ij = xkj /x
k
i converge to finite, strictly

positive limits αij that satisfy αij < 1 for i > j.
Using homogeneity, we may rewrite the expression

∑
j∈N σ(xkj , x

k
n)gkj as

xkn
∑
j∈N

σ(αk
nj , 1)gkj

and then observe that

Sk ≥ fn
mk

ρ
xkn
∑
j∈N

σ(αk
nj , 1)gkj

holds. Consequently, to obtain the desired contradiction, it suffices to show that

lim
k→∞

mkxkn
∑
j∈N

σ(αk
nj , 1)gkj > 0. (51)

To establish (51) we proceed as follows. Taking limits in equation (49) appearing in
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the proof of Proposition 3 for type n, we then have

Zn = lim
k→∞

Zn(xk) =
∑
j∈N

[τ(1, αnj)(fj − gj) + σ(αnj , 1)gj ] (52)

As g satisfies (cf. the proof of Proposition 3)

(fi − gi)
∑
j∈N

gjµ(αij , 1) = gi
∑
j∈N

(fj − gj)µ(1, αij), ∀i ∈ N

and the winning probabilities appearing in this expression are all strictly positive (cf.
the initial paragraph in the proof of Lemma 1), we have gj > 0 holds for all j ∈ N .
Further, because αnj < 1 holds for j < n and αnj thus increases in j, we have that
r = maxj<n αnj < 1 holds. By the assumption that σ(y, z) > 0 holds for all y < z, this
implies ∑

j∈N
σ(αnj , 1)gj ≥ σ(r, 1)

∑
j 6=n

gj > 0. (53)

Comparing the left side of (53) with the left side of (51), it then suffices to show that
the term mkxkn does not converge to zero to establish (51). Noting that, as established
in the proof of 3, Zn(xk) is bounded above by 1, this is, however, immediate from (48)
which yields

xkn

[
ρ+mkZn(xk)

]
= vn,

thus finishing the proof.

B Proofs for Section 4

Proof of Proposition 5. Let (x1, x2) satisfying x2 > x1 > 0 solve (23) – (24) for given
g1 > 0. To simplify notation let α = x2/x1.

It is readily verified that (23) – (24) imply

[α− 1][ρ+m(1− θ) +m(2g1 − f1)]v1 = [v2 − v1][ρ+m(1− θ)]. (54)

Substituting g2 = θ − g1 from (25) into (22) yields

(θ − g1)(f1 − g1) = [2α− 1]g1(f2 − θ + g1),

which is equivalent to

f1θ − g1 = 2[α− 1][g1(f2 − θ) + g2
1]. (55)

Using (54) to substitute for α − 1 into (55) yields an equilibrium condition that only
depends on g1, namely

[f1θ− g1][ρ+m(1− θ) +m(2g1− f1)]v1 = 2[v2− v1][ρ+m(1− θ)][g1(f2− θ) + g2
1]. (56)

As existence of an equilibrium is assured by Proposition 1, it suffices to establish that
(56) cannot have more than one solution in the interval G1 = [max{θ−f2, 0},min{f1, θ}].
To do so we distinguish two cases: (i) f2 − θ ≥ 0 and (ii) f2 − θ < 0.

We begin with case (i). Because f2 − θ ≥ 0, we have G1 = [0,min{f1, θ}]. At g1 = 0
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the right side of (56) is zero, and the left side is f1θ[ρ + m[f2 − θ]] > 0. Furthermore,
because the left side of (56) is concave in g1 and the right side is convex g1, there can
only be one g1 ≥ 0 solving (56).

We turn to case (ii). Because f2− θ < 0, we have G1 = [θ− f2,min{f1, θ}]. Observe
that the right side of (56) has one root at g1 = 0 and a second one at g1 = θ − f2 > 0.
The right side of (56) is strictly increasing at g1 = θ−f2 and hence, because it is convex
in g1, it is strictly increasing at all g1 > θ − f2. Next, we note that the left side of (56)
has one root at g1 = [θ − f2 − ρ/m]/2 < θ − f2 and one root at g1 = f1θ > θ − f2.
Because the left side of (56) is concave and strictly decreasing at the root g1 = f1θ, it
follows that there is a unique g1 satisfying θ − f2 < g1 < f1θ < min{f1, θ} that solves
(56).

Proof of Proposition 6. The result for case (ii) has already been established in the text.
We consider case (i) here; the argument for case (iii) is analogous.

Let θ < θ∗. As in the proof of Proposition 5 we use (25) to rewrite the balance
condition (22) as

(θ − g1)(f1 − g1) = [2α− 1]g1(f2 − θ + g1). (57)

for α ≥ 1. By Lemma 1, this equation has a unique solution g1(α) ∈ G1 = [0,min{f1, θ}].
Next, let

F (α,m) =
v2

v1

(
ρ+m(1− θ)

ρ+m(1− θ) +m (1− 1/α) (2g1(α)− f1)

)
− α, (58)

As (23) and (24) imply

x2

x1
=
v2

v1

(
ρ+m(1− θ)

ρ+m(1− θ) +m (1− x1/x2) (2g1 − f1)

)
,

it is easily verified that if (x1, x2, g1, g2) is an equilibrium for meeting rate m > 0, then
α = x2/x1 solves

F (α,m) = 0. (59)

Vice versa, if α solves (59), then letting x1 be the unique solution to (23), setting x2 =
αx1, g1 = g1(α) and g2 = θ − g1(α) provides a solution to the equilibrium conditions.
Hence, from the uniqueness result in Proposition 5, equation (59) has a unique solution
α(m) satisfying α(m) > 1. As F (1,m) > 0 holds, this solution must occur at a point
where F (α,m) intersects 0 from above. Inspection of (58) reveals that for α > 1 the
partial derivative of F with respect to m satisfies

Fm(α,m)


> 0 if 2g1(α) < f1

= 0 if 2g1(α) = f1

< 0 if 2g1(α) > f1

.

It follows that α(m) is strictly increasing in m if 2g1(α(m)) < f1 holds. Further,
as observed in the text, g1(α) is clearly strictly decreasing in α and g2(α) is strictly
increasing in α. Therefore, to finish our argument, it suffices to show that 2g1(α(m)) <
f1 holds for all m > 0. In fact, as g1(α(m)) is strictly decreasing in m whenever
2g1(α(m)) < f1 holds, it suffices to show this for m sufficiently small.

Let α∗ = limm→0 α(m). Because g(m) ∈ G1 holds for all m > 0, it is easy to see
from (23) and (24) that this limit exists and satisfies α∗ = v2/v1. Now, by definition of
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g1(α), we have that g1(α∗) satisfies (57), so that we obtain

(θ − g1(α∗)(f1 − g1(α∗) = [2α∗ − 1]g1(α∗(f2 − θ + g1(α∗)),

which we may rewrite as

θ − g1(α∗)

1− f1 − θ + g1(α∗)
= [2α∗ − 1]

g1(α∗)

f1 − g1(α∗)
.

From this equality we see that

2g1(α∗) < f1 ⇔
θ − f1/2

1− θ − f1/2
< [2α∗ − 1]⇔ θ <

1

2
+

1

2

(
1− 1

α∗

)
(1− f1) ,

and, consequently,

2g1(α∗) < f1 ⇔ θ <
1

2
+

1

2

(
1− 1

α∗

)
(1− f1) = θ∗,

where the last equality follows from the definition of θ∗ in (26) and α∗ = v2/v1. Therefore
θ < θ∗ implies that 2g1(α(m)) < f1 holds for all sufficiently small m > 0.

Proof of Proposition 7. We consider a sequence of all-pay auctions with attack costs
parameterized by a sequence of attack-cost distributions (Hk)∞k=1 with distributions
Hk that are continuous on their support [0, c̄] and have a mass point at zero. All
other relevant parameters are held fixed and are assumed to satisfy conditions (30)
and (31). The sequence (Hk)∞k=1 is assumed to converge pointwise to H∗(x) = 1{x≥c̄},
corresponding to the case of deterministic attack costs discussed in the main body of
the paper. For each of the two equilibria (x∗, g∗) and (x̂, ĝ) for this deterministic case
we show that there exists a sequence (xk, gk)∞k=1, where (xk, gk) is an equilibrium for the
all-pay auction with cost distribution Hk, converging to the limit (x∗, g∗), resp. to the
limit (x̂, ĝ). As the conditions for positive (resp. negative) sorting and for sorting by
rents are given by strict inequalities this suffices to prove the proposition. Throughout
the following we use Ek to denote expectations with respect to the distribution Hk.

We start with the positive sorting equilibrium discussed in the text, i.e. we want
to argue that for our sequence (Hk)∞k=1 converging to H∗ we can construct a sequence
(xk, gk)∞k=1 of associated equilibria with limit (x∗, g∗) given by (32) and (33).

Consider (xk, gk) satisfying xk2 − xk1 > c̄. It is then straightforward to verify that
(xk, gk) is an equilibrium associated with the distribution Hk if

ρxk1 = v1 −m
[
Hk(0)xk1(f1 − gk1 ) + xk1(f2 − gk2 )

]
(60)

ρxk2 = v2 −m
[
Hk(0)xk1(f1 − gk1 ) +Hk(0)xk2(f2 − gk2 ) + [xk2 − xk1 − Ek[c]]gk1

]
(61)

and

(f1 − gk1 )gk2H
k(0)

1

2

xk1
xk2

= gk1 (f2 − gk2 )

[
1− 1

2

xk1
xk2

]
(62)

hold.
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Now consider replacing (62) by

(f1 − gk1 )gk2H
k(0)

1

2
max{x

k
1

xk2
, 1} = gk1 (f2 − gk2 ) min{

[
1− 1

2

xk1
xk2

]
, 1/2}. (63)

Then the existence argument from the proof of Proposition 1 is applicable to guarantee
that equations (60), (61), and (63) have a solution (xk, gk) ∈ R2

++×G for any k. We now
argue that for sufficiently large k any such solution satisfies xk2 − xk1 > c̄ and therefore
solves (60) - (62) and thus is an equilibrium. Further, the sequence (xk, gk) converges
to (x∗, g∗) as given by (32) and (33). To see this, observe that for k → ∞ we have
Hk(0)→ 0, so that the left side of (63) converges to zero. By the condition θ > f2 from
(30), we have that gk1 cannot converge to zero. Therefore (63) implies gk2 → g∗2 = f2

and, as a consequence, gk1 → g∗1 = θ − f2. Observing that Ek[c] → c̄ holds, we thus
obtain from (60) that xk1 converges to x∗1 and from (61) that xk2 converges to x∗2. The
strict inequality in (35) then establishes the desired result.

The argument for the existence of a sequence of equilibria (xk, gk)∞k=1 of equilibria
with limit (x̂, ĝ) given by (36) and (37) is analogous: Consider (xk, gk) satisfying xk1 −
xk2 > c̄. It is then straightforward to verify that (xk, gk) is an equilibrium associated
with the distribution Hk if

ρxk1 = v1 −m
[
Hk(0)xk1(f1 − gk1 ) +Hk(0)xk2(f2 − gk2 ) + [xk1 − xk2 − Ek[c]gk2

]
(64)

ρxk2 = v2 −m
[
xk2(f1 − gk1 ) +Hk(0)xk2(f2 − gk2 )

]
, (65)

and

(f1 − gk1 )gk2

[
1− 1

2

xk2
xk1

]
= gk1 (f2 − gk2 )Hk(0)

1

2

xk2
xk1

(66)

hold. Replacing (66) by

(f1 − gk1 )gk2 min{
[
1− 1

2

xk2
xk1

]
,
1

2
} = gk1 (f2 − gk2 )Hk(0)

1

2
max{x

k
2

xk1
, 1} (67)

we obtain the existence of a solution (xg, gk) to equations (64), (65), and (67). As the
right side of (67) converges to zero for k → ∞, the condition f1 > θ from (30) implies
that gk2 converges to ĝ2 = 0 and, therefore, gk1 converges to ĝ1 = θ. Using Hk(0) → 0
and Ek[c] → c̄, we then obtain xk1 → x∗1 and xk2 → x∗2. The result then follows from
(38).
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