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Abstract 

Conventional parametric count distributions, namely the Poisson and Negative-Binomial 
models, do not offer satisfactory descriptions of empirical distributions of completed cohort 
parity. One reason is that they cannot model variance-to-mean ratios below unity, that is, 
underdispersion, which is typical of low-fertility parity distributions. Statisticians have 
relatively recently revived two generalised count distributions that can model both 
overdispersion and underdispersion, but that have to date not attracted the attention of 
demographers. The objective of this note is to assess the utility of these distributions, the 
Conway-Maxwell-Poisson and Gamma Count models, for the modelling of parity 
distributions, using both simulations and maximum-likelihood fitting to empirical data from 
the Human Fertility Database (HFD). The results show that these generalised count 
distributions offer a greatly improved fit compared to customary Poisson and Negative-
Binomial models in the presence of underdispersion, without loss of performance in the 
presence of equi- or overdispersion. 
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Generalised Poisson Distributions for Modelling Parity 
Bilal Barakat 

 

1. Introduction 

The number of live births a women experiences, her parity, is an integer count. The statistical 
analysis of parities therefore requires the use of discrete count distributions. (Fully non-
parametric approaches are an alternative in some, but by no means all applications, and suffer 
serious disadvantages of their own, notably a lack of analytic parsimony.) Unfortunately, 
while there is a vast number of distributions for continuous outcomes, the analysis of discrete 
count outcomes, including in demography, has until recently been limited to a choice between 
two: the Poisson distribution, and the Negative-Binomial distribution. 

It is well-known that, by construction, the mean of a Poisson distribution equals its 
variance. Equivalently, its variance-to-mean ratio equals one, a measure also known as 
statistical dispersion. Accordingly, a Poisson distribution can be expected to fit only poorly to 
an empirical distribution whose dispersion differs considerably from unity. In applied statistics 
generally, attention has largely focused on the need to account for overdispersion, that is, 
distributions with dispersion considerably larger than one. This is unsurprising, given that 
mixtures of Poisson distributions are always overdispersed, and heterogeneity is one of the 
most common ways in which we expect reality to diverge from simple statistical models. 
Indeed, both the Negative-Binomial distribution, as well as the ‘zero-inflated’ Poisson, where 
a certain share of structurally-zero outcomes are assumed, can be mathematically interpreted 
as special cases of Poisson mixtures, and like the regular Poisson distribution, are structurally 
unable to model underdispersion. 

The need for alternative modelling options in the context of human birth parities arises 
from the fact that in low-fertility settings underdispersion is actually the norm, in other words: 
parity distributions whose mean considerably exceeds their variances. Even severe 
underdispersion is far more common than overdispersion. Figure 2 demonstrates this using 
data from the Human Fertility Database (HFD) (additional details regarding the data are 
provided in Section 3.1). 
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Statistically speaking, underdispersion could arise as a consequence of any of the 
following: a) a positive inter-personal correlation in terms of the child count (‘If others have 
more/fewer children, so will I.’); or of mechanisms that diminish the occurrance of ‘runaway’ 
parity, where some women tend towards extremely high birth counts, while others are ‘stuck’ 
at low levels, namely b) a parity progression rate that is negatively related to the parity already 
achieved (‘The more children I already have, the less likely I am to have more.’); or c) a parity 
progression rate that is positively correlated with the waiting time since the last birth (‘The 
longer it’s been since the last birth, the more likely I am to have another child.’). 

Only during the last decade have two instances of ‘generalised Poisson distributions’ that 
formalise the latter two effects and thereby allow for parametric modeling of underdispersed 
counts seen a modest ‘revival’ in applied statistics. They do not, however, appear to have been 
exploited in demographic analysis yet, despite the underdispersion of parity counts. The 

Figure 1: Statistical dispersion (variance-to-mean ratio) in completed cohort parity 
distributions of the HFD 
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present aim is to begin to fill this gap by providing an introduction and first assessment of 
their utility to demographers. 

 

2. Generalized Count Distributions 

2.1.The Conway-Maxwell-Poisson Distribution (COM-Poisson) 

This distribution was originally proposed by Conway and Maxwell (1962) and more recently 
revived by Shmueli et al. (2005). It generalises the standard Poisson distribution by allowing 
the probabilities to decay more rapidly or more slowly as the distance from the mean 
increases. As such, it formalises mechanism b) above. Formally, its probability function takes 
the form: 

𝑃𝑃(𝑌𝑌 = 𝑛𝑛) =
𝜆𝜆𝑛𝑛

(𝑛𝑛!)𝜈𝜈
1

𝑍𝑍(𝜆𝜆, 𝜈𝜈), 

for 𝑛𝑛 = 0,1,2, …, where the normalising constant is 𝑍𝑍(𝜆𝜆, 𝜈𝜈) = ∑ 𝜆𝜆𝑖𝑖

(𝑖𝑖!)𝜈𝜈
𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖=0 , and the parameters 

must satisfy the constraints 𝜆𝜆 > 0, 𝜈𝜈 ≥ 0. This specification implies that the ratios of 
successive probabilities can be expressed as: 

𝑌𝑌 = 𝑛𝑛 − 1
𝑌𝑌 = 𝑛𝑛

=
𝑛𝑛𝜈𝜈

𝜆𝜆
. 

For 𝜈𝜈 = 1 this reduces to the regular Poisson case, while 𝜈𝜈 ≤ 1 and 𝜈𝜈 ≥ 1 result in 
overdispersion respectively underdispersion. 

 

2.2.The Gamma Count Distribution 

The Gamma count distribution arises from the assumption that the waiting times between 
births follow a Gamma distribution (rather than an exponential distribution, as in the Poisson 
model). In other words, it formalises mechanism c) mentioned above. Depending on the 
parameters of this Gamma distribution, the hazard can be modelled to increase or decrease as a 
function of the waiting time, corresponding to underdispersion and overdispersion 
respectively. Accessible derivations for the Gamma Count model are provided by 
Winkelmann (2008), including asymptotics. 

Specifically, the Gamma count model takes the following form: 

𝑃𝑃(𝑌𝑌 = 𝑛𝑛) = 𝐺𝐺(𝛼𝛼𝛼𝛼, 𝛽𝛽𝛽𝛽) − 𝐺𝐺(𝛼𝛼(𝑛𝑛 + 1), 𝛽𝛽𝛽𝛽) 

for 𝑛𝑛 = 0,1,2, …, where 𝐺𝐺(𝛼𝛼𝛼𝛼, 𝛽𝛽𝛽𝛽) is the regularized lower incomplete Gamma function 
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𝐺𝐺(𝛼𝛼𝛼𝛼, 𝛽𝛽𝛽𝛽) =
1

𝛤𝛤(𝑛𝑛𝑛𝑛)� 𝑢𝑢𝑛𝑛𝑛𝑛−1𝑒𝑒𝑒𝑒𝑒𝑒−𝑢𝑢𝑑𝑑𝑑𝑑,
𝛽𝛽𝛽𝛽

0
 

and 𝑇𝑇 is the scale of the overall exposure period. We have 𝛼𝛼, 𝛽𝛽 > 0 and 𝐺𝐺(0, 𝛽𝛽𝛽𝛽) ≡ 1 by 
assumption. In our setting, 𝑇𝑇 = 1 may be assumed without loss of generality. Then 𝛼𝛼 is the 
dispersion factor, 𝛼𝛼

𝛽𝛽
 is the mean waiting time between births, and—asymptotically—𝛽𝛽

𝛼𝛼
 is the 

expected count—although this approximation can be poor in the parameter range of interest 
for fertility applications and should not be relied on. For 𝛼𝛼 = 1, the model reduces to the 
special case of Poisson counts. The regression is for the waiting times, so that we may equate 
the linear predictor with 𝜆𝜆𝑖𝑖 = 𝛼𝛼

𝛽𝛽𝑖𝑖
 

A well-known property of the standard Poisson model is that the number of events per unit 
of exposure is a sufficient statistic for the mean. One implication is that two individuals 
experiencing ten years of exposure and one event each, and one individual experiencing 
twenty years of exposure and two events, result in the same estimate. In practice, this is 
frequently exploited to allow for the aggregation of data without loss of information: for any 
given values of possible covariates, only the total amount of exposure and total number of 
events needs to be recorded. It is important to note that this operational shortcut is not possible 
with the generalised Poisson models! Because the hazard is a non-constant function of the 
waiting time or parity already attained, the way the eventless episodes are distributed between 
individuals does matter. 

 

2.3.Gamma Count as a Swiss Army Knife 

Fortunately, it turns out that what initially appears as a potentially confusing proliferation of 
options for modelling count data ultimately leads to a simplification. Figure 3 shows both the 
COM-Poisson and Gamma Count model fitted to an overdispersed target drawn from a 
Negative Binomial distribution, and the Gamma Count model fitted to an underdispersed 
target drawn from a COM-Poisson distribution. This illustrates two points. Firstly, that the 
availability of fully generalised count distributions makes the Negative Binomial model 
redundant for practical purposes, because it can be well-approximated when the COM-Poisson 
or Gamma Count models are set to be overdispersed. Secondly, that their unique ability to 
model underdispersion sets the COM-Poisson and Gamma Count distributions apart from 
other count models, but not from each other, because they can mimic each other very closely. 
This was tested for this study across the entire parameter range of interest in fertility 
applications. As a matter of fact, the case displayed in Figure 2 displays the maximal 
discrepancy found, with the typical error being an order of magnitude smaller than the one 
shown here. 
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Figure 2: Simulated parity distributions resulting from Maximum-Likelihood fits of: 
COM-Poisson and Gamma count models to an overdispersed target distribution 
sampled from a Negative Binomial distribution (top panel), and a Gamma count 
model to an underdispersed target sampled from a COM-Poisson distribution 
(bottom panel) 
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The effective equivalence of these two distributions is striking because their theoretical 
derivations bear no obvious relationship to each other, and no formal mathematical 
(asymptotic?) equivalence appears to have been established in the literature. Indeed, 
Winkelmann (2008) does not mention the COM-Poisson model in his derivation of the 
Gamma count model, or indeed at all in his book on count models. Conversely, neither do 
Shmueli et al. (2005), who established the statistical properties of COM-Poisson, cite 
Winkelmann or mention the Gamma count model. While it seems unlikely that the almost 
perfect match between the two distributions is coincidental, the question of their formal 
mathematical relationship is not pursued further here. 

The marginal effective difference between the COM-Poisson and Gamma Count 
distributions does not make them entirely redundant, however. Firstly, the conceptual 
derivations are different, so depending on the argument being made, in particular whether it 
focuses on parity progression or on waiting times, either the COM-Poisson model or Gamma 
count model may be more appropriate. Secondly, and following from the first point, for 
regression analysis the choice of model is dictated by whether the dependent variable is mean 
waiting time or mean birth count directly. Thirdly, the purpose of modelling may be decisive, 
because the two distributions differ in their practical properties. On the one hand, the statistical 
properties of the COM-Poisson model have been investigated more fully (Sellers and Shmueli 
2010), and asymptotic significance tests are available. For simulations, on the other hand, the 
Gamma Count model has the advantage that it appears to be vastly more efficient 
computationally, by one or two orders of magnitude. This is no doubt due to the fact that the 
underlying Gamma function benefits from being a common mathematical function for which 
highly optimised algorithms are standard. For illustration, on the system used to generate this 
report, fitting the Gamma count distribution to a Negative Binomial target one hundred times 
took 0 seconds of computation time, compared to 3 for the COM-Poisson distribution. Since it 
is also much faster to sample from, the Gamma count model is also preferable for inferential 
approaches involving frequent (re-)sampling from the distribution, namely both bootstrapping 
and Bayesian inference. 

So while there is a role for the COM-Poisson distribution for certain applications, a case 
can be made to consider the Gamma Count distribution as a general-purpose default for 
modelling both over- and underdispersed distributions of human birth parities. 

 

3. Empirical Analysis 

3.1.Completed Cohort Parity from the Human Fertility Database 

The Human Fertility Database, at least with respect to time series of completed parity, is 
focused on industrialised high-income countries. Cumulative fertility rates by birth order from 
the HFD were extracted for all countries for which these were available at the time of writing. 
The strength of these data for present purposes is the fact that they carefully account for 
exposure rates and mortality, and that they provide a consistent longitudinal perspective. The 
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limitations (for present purposes) are, firstly, that, even for the earliest cohorts, only a 
relatively limited range of average fertility levels are represented, namely the low fertility end 
of the spectrum, and secondly, that high parities are aggregated at 5+. As the aggregation 
occurs at the level of cumulative fertility rates (CCFR), the calculated share at parity 4 is also 
affected, corresponding to the difference between CCFR4 and CCFR at exactly 5 (rather than 
5+). Three different synthetic assumptions about the true spread of the reported CCFR5+ over 
parities 5-10 were tried, namely a uniform distribution, and a linear or exponential decline. All 
presented analyses are based on the exponential model, but, unless noted otherwise, the 
conclusions are qualitatively robust in the sense of not being sensitive to the choice of 
imputation. 

 

3.2.Zero-Inflation 

Before comparing the overall fit of generalised and regular Poisson distributions to the 
empirical HFD data, it is worthwhile examining the residual at parity 0 separately. It is 
common in count data models that zero counts have a special status vis-à-vis higher counts. 

In the following, I therefore restrict attention to the case of zero-inflation. Recall the key 
difference between a zero-inflation model and a hurdle model, namely that zero-inflation 
assumes that cases of parity 0 are contributed by two sources, a fixed zero group and some of 
the observations sampled from the basic distribution, whereas in the hurdle model, cases of 
parity 0 are contributed only by those not crossing the initial hurdle. In the context of 
modelling birth parities, the former is more plausible than the latter, since even women who 
do cross the hurdle of wanting to have children and being able to have them may nevertheless 
end up childless by chance. 

To gain some insight into the relationship between zero-inflation on the one hand and the 
regular Poisson and Gamma count distributions on the other (the Negative Binomial and 
COM-Poisson models add no information since their fits are each practically identical to one 
shown), Figure 3 displays the absolute residual at parity 0, in other words, the share of 
“excess” or “missing” zeroes in the data. 
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It is evident that the regular Poisson model actually predicts too many zeroes in general, 
rather than too few. Actually, this is unsurprising given we know the vast majority of HFD 
parity distributions to be underdispersed. By observing that a probability point mass at zero 
can actually be interpreted as a Poisson distribution with mean and variance zero, it becomes 
clear that the zero-inflated Poisson model is actually a special case of a mixture of Poisson 
distributions. Accordingly, it always results in overdispersion. An underdispersed distribution 
is therefore unlikely to exhibit excess zeroes relative to a regular Poisson distribution. 

The presence of excess zeroes relative to the underdispersed Gamma count baseline is 
positive for two reasons. Substantively, we know that the true data generating process, namely 
human fertility, does in fact involve a small proportion of women whose probability of giving 
birth is close to zero. From this point of view, the presence of moderate zero-inflation relative 
to the Gamma count distribution actually raises its plausibility. Moreover, in practical terms, it 
allows for improving the fit to the data by explicitly taking zero-inflation into account—an 
option not available to the Poisson (or indeed, the Negative Binomial) model, that is already 
overestimating the proportion at parity 0. 

Figure 3: Absolute residuals (observed – fitted) at parity 0 of Maximum-Likelihood 
fits of different models to empirical HFD distributions of completed cohort parity in 
terms of women per 1,000 
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3.3.Fits to Empirical Parity Distributions 

With this in mind, Figure 4 compares the fits of the regular Poisson, Gamma Count, and zero-
inflated Gamma Count models to the empirical HFD completed cohort birth parity 
distributions, in terms of Mean Squared Error based on the original scale of women per 1,000. 
To simplify the presentation, the redundant Negative Binomial and COM-Poisson fits are 
omitted. The former is redundant because most of the observed distributions are 
underdispersed, and so the Negative Binomial would reduce to the Poisson case. The latter is 
redundant because we already established that the COM-Poisson and Gamma Count 
distributions closely mimic each other in the relevant parameter range, and therefore perform 
approximately equally well in fitting the empirical data. 

 

The left set of boxplots shows the fits to each country-and-cohort-specific parity 
distribution individually. Of course, the mere fact that the Gamma Count distribution fits the 
data better than the Poisson distribution, and that the zero-inflated Gamma Count distribution 
fits better still, is to be expected, given that the number of independent parameters (and 
degrees of freedom) increases from one to two to three as we move through these models. 
However, even the three-parameter zero-inflated Gamma Count distribution cannot be said to 
be overfitted. Technically the fit here is to eleven data points for each distribution, namely 
parities 0 through 10, but even restricting attention to those with meaningful frequencies, 0 to 
5, say, still leaves the data with six degrees of freedom. So even the most ‘complex’ of the 
three models is still parsimonious, with the additional parameters all enjoying meaningful 
substantive interpretations and achieving a fit as close to perfect as one can hope for in 
modelling natural phenomena. With a typical Mean Squared Error of less than nine in the vast 

Figure 4: Mean Squared Error of Maximum-Likelihood fits of different models to 
empirical HFD distributions of completed cohort parity in terms of women per 1,000 
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majority of cases, and typically closer to four, the zero-inflated Gamma Count model is 
generally within two or three women per 1,000 of the true parity share. Moreover, the right set 
of boxplots demonstrates that the great improvement in fit over the Poisson distribution is 
certainly not due to approximating a saturated model: this specification assumes linear (over 
cohorts) country-specific trends in each parameter, and therefore uses two (Poisson), four 
(Gamma Count), respectively six (zero-inflated Gamma Count) parameters to fit all parities 0 
through 10 for between 6 (Austria, Finland) and 57 (USA) cohorts at once. This is not 
proposed as an appropriate, much less optimal, regression specification, merely to illustrate 
that the advantage of generalised count distributions in the presence of underdispersion 
remains considerable even in applications more typical of real-life research. 
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