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Abstract Supply chain coordination is enabled by adequately designed contracts

so that decision making by multiple actors avoids efficiency losses in the supply

chain. From the literature it is known that in newsvendor-type settings with random

demand and deterministic supply the activities in supply chains can be coordinated

by sophisticated contracts while the simple wholesale price contract fails to achieve

coordination due to the double marginalization effect. Advanced contracts are

typically characterized by risk sharing mechanisms between the actors, which have

the potential to coordinate the supply chain. Regarding the opposite setting with

random supply and deterministic demand, literature offers a considerably smaller

spectrum of solution schemes. While contract types for the well-known stochasti-

cally proportional yield have been analyzed under different settings, other yield

distributions have not received much attention in the literature so far. However,

practice shows that yield types strongly depend on the industry and the production

process that is considered. As consequence, they can deviate very much from the

specific case of a stochastically proportional yield. This paper analyzes a buyer–

supplier supply chain in a random yield, deterministic demand setting with pro-

duction yield of a binomial type. It is shown how under binomially distributed

yields risk sharing contracts can be used to coordinate buyer’s ordering and sup-

plier’s production decision. Both parties are exposed to risks of overproduction and

under-delivery. In contrast to settings with stochastically proportional yield, how-

ever, the impact of yield uncertainty can be quite different in the binomial yield

case. Under binomial yield, the output uncertainty decreases with larger production

quantities while it is independent from lot sizes under stochastically proportional

yield. Consequently, the results from previous contract analyses on other yield types
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may not hold any longer. The current analytical study reveals that, like under

stochastically proportional yield, coordination is impeded by double marginalization

if a simple wholesale price contract is applied. However, more sophisticated con-

tracts which penalize or reward the supplier can change the risk distribution so that

supply chain coordination is possible also under binomial yield. In this context,

many contract properties from planning under stochastically proportional yield

carry over. Nevertheless, numerical examples reveal that a misspecification of the

yield type can considerably downgrade the extent of supply chain coordination.

Keywords Supply chain coordination � Contracts � Binomial yield � Risk
sharing

1 Introduction

Uncertainties are widely spread in supply chains with demand and supply

uncertainties being the most common types. Regarding the supply side, business

risks primarily result from yield uncertainty which is typical for a variety of

business sectors. It frequently occurs in the agricultural sector or in the chemical,

electronic and mechanical manufacturing industries (see Gurnani et al. 2000; Jones

et al. 2001; Kazaz 2004; Nahmias 2009). Here, random supply can appear due to

different reasons such as weather conditions, production process risks or imperfect

input material. In a supply chain context, yield or supply randomness obviously

influences the risk position of the actors and, therefore, has an effect on the buyer–

supplier relationship in a supply chain. The question that arises is to what extent

random yields affect the decisions of the single supply chain actors and the

performance of the whole supply chain. In this study, we limit ourselves to a

problem setting with deterministic demand. This is to focus the risk analysis of

contracting on the random yield aspect which is of practical relevance for

production planning in some industries (see Bassok et al. 2002). Except for papers

that address disruption risks (e.g., Asian 2014; Hou et al. 2010), all contributions in

the field of contract analysis under yield randomness restrict to situations where the

yield type is characterized by stochastically proportional random yields. This also

holds for a prior work of Inderfurth and Clemens (2014) which considers the

coordination properties of various risk-sharing contracts under this type of yield

randomness.

The preference for the assumption of stochastically proportional yield is mainly

due to the fact that this yield type is relatively easy to handle analytically in standard

yield models where only a single production run per period is used for demand

fulfillment. In this model context, already the basic analytical studies by Gerchak

et al. (1988) and Henig and Gerchak (1990) which investigate the optimal policy

structure in a centralized supply chain setting with random yield environment refer

to the stochastically proportional yield type. In practice, this form of production

yield is only observed if yield losses are caused by an external effect that has a joint

impact on a complete production batch so that the yield of each unit in the batch is

perfectly correlated. Often, however, other yield types are found (see Yano and Lee
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1995) which are of greater practical relevance and demand for specific consideration

in decision making and contract analysis. Literature contributions which refer to a

larger variety of yield models concentrate on planning situations where multiple

production lots within a single period can be released [see (Grosfeld-Nir and

Gerchak 2004) for an overview]. These studies, however, only address centralized

decision making problems.

In our study, we focus on problems with a single production run and deviate from

the assumption of stochastically proportional yield. Instead, we study a framework

with binomially distributed yield which is characterized by a zero yield correlation

of units within a production batch. This yield property is observed if failures in

manufacturing operations or if material defectives occur independently in a

production process. Since the properties of stochastically proportional and binomial

yield are contrary (perfect vs. zero yield correlation), it is by no means

straightforward if the coordination properties of contracts hold for both yield types

in the same way. This paper is the first one that addresses the analysis of

coordination by contracts under binomial yield conditions and investigates to which

extent the results for stochastically proportional yields in Inderfurth and Clemens

(2014) carry over to a situation where yields are binomially distributed.

In this context, the main purpose of this paper is to study how contracts can be

used to diminish profit losses which are driven by uncoordinated behavior.

Therefore, three different contracts are applied and analyzed regarding their

coordination ability, namely the simple wholesale price contract, a reward contract

[overproduction risk-sharing contract, first introduced by He and Zhang (2008)] and

a penalty contract (compare Gurnani and Gerchak 2007). Comparable to the

newsvendor setting with stochastic demand but reliable supply, the double

marginalization effect of the wholesale price contract is found in our setting. Both

advanced contract types can be shown to facilitate supply chain coordination if

contract parameters are chosen appropriately.

The rest of this paper is organized as follows. In Sect. 2 the supply chain model

and the yield distribution are introduced. In part 3 the centralized supply chain is

analyzed in a binomial yield setting to generate a benchmark for decisions and

objective values in the following contract analyses. Section 4 describes three

contract designs, namely the wholesale price contract, the overproduction risk

sharing contract, and the penalty contract and analyzes them with respect to their

supply chain coordination potential. Section 5 summarizes main results, highlights

problems caused by yield misspecification and suggests aspects of further research.

2 Model and assumptions

This paper considers a basic single-period interaction within a serial supply chain

with one buyer (indicated by B) and one supplier (indicated by S). It is assumed that

all cost, price, and yield information is common knowledge. In contrast to that,

deterministic end-customer demand is not common knowledge but only known to

the buyer. As the supplier decision is totally independent from end-customer

demand, this is a reasonable assumption. This setting connects to the field of
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contracting in a principal-agent context with information asymmetry [see (Corbett

and Tang 1999) or (Burnetas et al. 2007)] where the principal (buyer) is better

informed than the agent (supplier). Nevertheless, this property has no effect on the

agent’s profit because it is not a direct function of the principal’s information on

demand (compare Maskin and Tirole 1990). The supply chain and the course of

interaction (explained below) are depicted in Fig. 1.

Assume the above two-member supply chain (indexed by SC). End-customer

demand is denoted by D. The buyer orders from the supplier an amount of X units.

The production process of the supplier, however, underlies risks which lead to

random production yields, i.e., although the production input is fixed the output

quantity in a specific production run is uncertain. The supplier can, due to

production lead times, realize only a single production run.

In the following, production yield is denoted by YðQÞ where Q is the production

input chosen by the supplier. The quantity delivered to the buyer is the minimum of

order quantity and production output. Hence, the supplier faces the risk of losing

sales in case of too low production yield. However, it is a reasonable assumption

that, given a simple wholesale price contract, the supplier is not further penalized (in

addition to losing potential revenue) if end-customer demand cannot be satisfied due

to under-delivery. In typical business transactions the supplying side is usually

measured in terms of its ability to deliver to the buyer and not to the end customer.

As the mechanism to satisfy end-customer demand is not in the control of the

supplier, she cannot be held responsible for potential sales losses. However, both

actors face the risk of lost sales because under-delivery by the supplier can cause

unsatisfied demand at the buyer as stated above. Consequently, both parties may

have incentives to inflate demand (from the buyer’s perspective) or order quantity

(from the supplier’s perspective) to account for the yield risk and avoid lost sales. In

case production output is larger than order quantity, excess units are worthless and

cannot generate any revenue even though they incurred production cost. Sales at the

buyer are the minimum of delivery quantity and end-customer demand. If the

buyer’s order and delivery quantity exceed demand, excess units are also of no

value and cannot be turned into revenues.

Production yields are assumed to be binomially distributed, i.e., a unit turns out

‘good’ (or usable) with success probability h (0� h� 1) and it is unusable with

counter probability 1� h:

Fig. 1 Serial supply chain and course of interaction
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Thus, the probabilities for possible yields from a production batch Q are given by

Pr Y Qð Þ ¼ kf g ¼
Q

k

� �
� hk 1� hð ÞQ�k 8 k ¼ 0; 1; . . .;Q

Mean production yield amounts to

lYðQÞ ¼ h � Q ð1Þ

with a standard deviation of

rYðQÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h � ð1� hÞ � Q

p
ð2Þ

Note that the coefficient of variation ðrYðQÞ
.
lYðQÞÞ decreases as the input quantity

grows, i.e., the risk diminishes with increasing production quantity. This is different

from a situation with stochastically proportional yield where production yield is a

random fraction of production input and neither mean nor variance of the yield rate

depends on the batch size. Thus, a reasonable conjecture is that under binomially

distributed yields, the risk allocation between the single actors is different from that

under stochastically proportional yields. Hence, contract schemes with different risk-

sharing mechanisms may perform differently when the lot size influences the

‘‘amount of risk’’ in the supply chain and may change the proposed contract types’

coordination efficiency. The subsequent analyses will shed light on this issue.

For large values of demand (like for most consumer goods) and the respective

production quantity, i.e., if the sample of the binomial distribution is sufficiently large,

according to the De Moivre–Laplace theorem1 the binomial distribution can be

approximated through a normal distribution. This approximation will be used in the

sequel with parameters which are fitted according to (1) and (2).2 This deviation from the

exact binomial distribution is motivated by the fact that it facilitates the contract analysis

by modeling the decision problem with continuous instead of discrete variables so that

general analytic results with closed-form expressions can be derived. Furthermore, the

respective numerical results are very close to optimal under fairly high demand levels.

Further notation is as follows:

c Production cost (per unit input)

w Wholesale price (per unit)

p Retail price (per unit)

fS �ð Þ pdf of standard normal distribution

FS �ð Þ cdf of standard normal distribution

fYðQÞ �ð Þ pdf of random variable YðQÞ (yield)
FYðQÞ �ð Þ cdf of random variable YðQÞ (yield)

The problem which arises is how to determine quantities for ordering on the

one hand (by the buyer) and choosing a production input quantity on the other

hand (by the supplier) given the risks mentioned above. The general underlying

1 Compare Feller (1968) pp. 174 ff.
2 The condition which justifies the use of the Normal distribution is the following: Q � h � 1� hð Þ[ 5 for

0:1� h� 0:9 (compare Evans et al. 2000 p. 45).
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assumption in this analysis is that profitability of the business for both parties is

assured, i.e., the retail price p exceeds the wholesale price w which in turn

exceeds the expected production cost c=h, i.e., p[w[ c=h. As is common in the

field of contract analysis, the behavior of the actors in a supply chain is

investigated under the assumption that decentralized decision making can be

modeled as a Stackelberg game. Before we come to the respective analyses, first

the optimal decisions will be evaluated for a centralized supply chain setting to

provide a benchmark solution.3

3 Analysis for a centralized supply chain

Under centralized decision making, the planner has only one decision to make,

namely the production input quantity Q: Revenues are generated from selling the

available quantity, i.e., the minimum of production output and demand, to the end

customer. Production cost, however, is incurred for every produced unit. Thus, the

total supply chain profit is given by

PSC Qð Þ ¼ p � E min D;Y Qð Þð Þ½ � � c � Q: ð3Þ
The first term in (3) describes the expected revenue from selling usable units; the

second part constitutes the costs which are incurred by the respective production

quantity. For deriving the optimal decision on production input, two cases have to

be analyzed separately: Q�D and Q�D:
Case SC(I)

Under case SC(I) ðQ�DÞ it is obvious that YðQÞ�Q�D, due to 0� h� 1:
Thus, the supply chain profit transforms to

PSC Qð Þ ¼ p � E Y Qð Þ½ � � c � Q ¼ p � h� cð Þ � Q
Taking the first-order derivative yields

dPSC Qð Þ
dQ

¼ p � h� c
[ 0 for p[ c=h
� 0 else

�

For case SC(I), it follows that the supply chain produces the following quantity

QSCðIÞ ¼
D for p[ c=h
0 else

�
: ð4Þ

If the condition for profitability of the business holds, i.e., p[ c=h, it has to be

evaluated whether an input quantity Q�D is preferable.

Case SC(II)
In this case ðQ�DÞ the supply chain profit to maximize is given in (3). In this

function the expected sales quantity of the supply chain will be denoted by L (D, Q)

and can be expressed by

3 More details of the analyses and all respective proofs can be found in a working paper version of

Clemens and Inderfurth (2014) under http://www.fww.ovgu.de/fww_media/femm/femm_2014/2014_11.

pdf.
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L D;Qð Þ :¼ E min D; Y Qð Þð Þ½ � ¼ D�
ZD

0

D� yð Þ � fYðQÞ yð Þdy:

Transforming this expression under the normality assumption for Y(Q) yields

L D;Qð Þ :¼ D� rYðQÞ � FS zD;Q
� �

� zD;Q þ fS zD;Q
� �� �

ð5Þ

Here we define zD;Q :¼ D�lYðQÞ
rYðQÞ

. Note that zD;Q depends on demand D as well as on

production input Q through mean and standard deviation of the yield YðQÞ. Thus,
the above supply chain profit transforms to

PSC Qð Þ ¼ p � L D;Qð Þ � c � Q ð6Þ
Taking the first-order derivative yields

dPSC Qð Þ
dQ

¼ p � oL D;Qð Þ
oQ

� c

¼ p � h
2
� 2 � FS zD;Q

� �
�
rYðQÞ
lYðQÞ

� fS zD;Q
� � !

� c:

The second-order derivative turns out to be negative so that the profit function in

(6) is concave. Thus, we can utilize the first-order condition dPSC Qð Þ=dQ ¼! 0 to

derive the optimal input decision for case SC(II). The respective production quantity

results implicitly from the following optimality condition

c

p
¼ h

2
� 2 � FS zD;Q

� �
�
rYðQÞ
lYðQÞ

� fS zD;Q
� � !

and is denoted by QSCðIIÞ. If we define

M D;Qð Þ :¼ h
2
� 2 � FS zD;Q

� �
�
rYðQÞ
lYðQÞ

� fS zD;Q
� � !

¼ oL D;Qð Þ
oQ

ð7Þ

and zD;Q as above, the optimality condition for QSCðIIÞ can be re-formulated as

c

p
¼ M D;QSCðIIÞ

� �
ð8Þ

3.1 Overall solution

Since the solution space of case SC(II) includes the solution from (4) for p[ c=h,
the overall production decision of the supply chain is given by

Q� ¼ QSCðIIÞ for p[ c=h
0 else

�
ð9Þ

The corresponding optimal profit of the supply chain results from (6) and takes

the following form:
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P�
SC ¼ PSC Q�ð Þ

¼ p � D� p � FS z�D;Q

� 	
� D� l�YðQÞ

� 	
þ r�YðQÞ � fS z�D;Q

� 	� 	
� c � Q�

with l�YðQÞ ¼ lYðQ�Þ, r
�
YðQÞ ¼ rYðQ�Þ, and z�D;Q ¼ D�l�

YðQÞ
r�
YðQÞ

:

Inserting r�YðQÞ � fS z�D;Q

� 	
¼ 2 � FS z�D;Q

� 	
� l�YðQÞ � 2�c

p�h � l�YðQÞ which is given from

(7) and (8) and exploiting l�YðQÞ ¼ h � Q� yields the optimal supply chain profit

P�
SC ¼ p � 1� FS z�D;Q

� 	� 	
� D� p � h � FS z�D;Q

� 	
� c

� 	
� Q�: ð10Þ

To analyze the relationship between production quantity and demand, the

derivative dQ Dð Þ=dD is evaluated. The relation between Q and D is given by

dQ Dð Þ
dD

¼ �oM D;Qð Þ
oD



oM D;Qð Þ

oQ

¼
2 � lYðQÞ � lYðQÞ þ D

� 	

h � lYðQÞ þ Dþ rYðQÞ
� 	

lYðQÞ þ D� rYðQÞ
� 	 [ 0 ð11Þ

which shows that larger demand leads to larger production quantities which is

intuitive. Interestingly, the production/demand ratio ðQ=DÞ converges to a constant

the larger demand gets. Assuming that demand approaches infinity, it can be shown

that the production quantity approaches demand multiplied by 1=h: This means that

production is only inflated to compensate for expected yield losses, but no further

adjustment is made to account for the yield risk. This is reasonable as binomially

distributed yields decrease in risk as the input quantity rises (noting that

lim
Q!1

rYðQÞ
.
lYðQÞ

� 	
¼ 0). Generally, we can formulate the following Lemma:

Lemma If demand approaches infinity, the inflation factor of demand for the

production input, i.e., Q=D, approaches 1=h:

However, there is no unique way how the Q=D ratio is approaching 1=h as

demand grows. Rather, it depends on the value of demand, production cost, retail

price, and success probability whether the ratio is increasing from below 1=h,
decreasing from above 1=h or takes a combination of both. ‘‘Examples for the

development of the production/demand ratio’’ in Appendix shows respective

numerical examples.

4 Contract analysis for a decentralized supply chain

A decentralized supply chain consists of more than one decision maker. In our

setting, a single buyer decides on the order quantity to fill end-customer demand and

a single supplier produces to satisfy the order from the buyer as described in the

beginning. The decentralized supply chain is modelled as a Stackelberg game with

the buyer being the leader and the supplier being the follower, i.e., the buyer

308 Business Research (2015) 8:301–332

123



anticipates the production decision by the supplier in reaction to his order. In this

context, it is assumed that the buyer has knowledge of the supplier’s yield

distribution and production cost.

Following the above decision making process, each of the considered contract

types is analyzed in three steps. First, the supplier’s optimal production decision for a

given buyer’s order volume is analyzed. Second, the buyer’s decision is evaluated that

maximizes his profit under anticipation of the supplier’s production response. Third, it

is investigated if and under which specific conditions the interaction of buyer and

supplier is able to lead to the first-best result from the centralized supply chain so that

coordination is achieved. This three-step analysis will first be carried out for the

standard wholesale price contract before it is extended to two contracts (overpro-

duction risk sharing contract and penalty contract) which are known to coordinate the

supply chain in the case of stochastically proportional production yield.

4.1 Wholesale price contract

Under a simple wholesale price (WHP) contract the buyer orders some quantity X,

and the supplier releases a production batch Q: The output from this batch is used to

satisfy the buyer’s order to a maximum extent. Delivered units are sold to the buyer

at a per unit wholesale price w: In the context of this analysis the price w which rules

the distribution of supply chain profits is a given parameter. In the following, the

decisions made by the supplier and by the buyer are analyzed separately.

4.1.1 Supplier decision

Given the buyer’s order quantity X, the supplier maximizes the following expected

profit4:

PWHP
S Q Xjð Þ ¼ w � E min X; Y Qð Þð Þ½ � � c � Q ð12Þ

The first term in (12) describes the expected revenue from selling usable units to

the buyer; the second term represents the corresponding production cost. According

to their implication for the supplier’s profit function, two cases (Q�X and Q�X)

are considered separately.

Case S(I)
Under case S(I) ðQ�XÞ it holds that YðQÞ�Q�X due to 0� h� 1, and the

supplier faces a profit of

PWHP
S Q Xjð Þ ¼ w � E Y Qð Þ½ � � c � Q ¼ w � h� cð Þ � Q ð13Þ

The first-order derivative

dPWHP
S Q Xjð Þ
dQ

¼ w � h� c

is positive if w[ c=h and zero or negative otherwise. This implies the following

production decision

4 The following analysis is identical to the centralized case with X instead of D and w instead of p.
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QWHP
SðIÞ Xð Þ ¼ X for w[ c=h

0 else

�
ð14Þ

If the condition for profitability of the business holds, i.e., w[ c=h, it has to be

evaluated whether Q�X is preferable for the supplier.

Case S(II)
In this case ðQ�XÞ the supplier’s profit to maximize is the one in (12) which

after some transformation is given by

PWHP
S Q Xjð Þ ¼ w � L X;Qð Þ � c � Q ð15Þ

Here, we define the delivery quantity from the supplier to the buyer as

L X;Qð Þ ¼ X � rY Qð Þ � FS zX;Q
� �

� zX;Q þ fS zX;Q
� �� �

ð16Þ

and zX;Q :¼ X�lYðQÞ
rYðQÞ

: The optimal production input for case S(II) results from the

first-order condition below:

dPWHP
S Q Xjð Þ
dQ

¼ w � oL X;Qð Þ
oQ

� c ¼! 0

with

oL X;Qð Þ
oQ

¼ h
2
� 2 � FS zX;Q

� �
�
rYðQÞ
lYðQÞ

� fS zX;Q
� � !

¼ M X;Qð Þ ð17Þ

which is independent from any cost or price parameter. The optimal input

quantity under case S(II) is denoted by QWHP
SðIIÞ and satisfies the optimality con-

dition below

c

w
¼ M X;QWHP

SðIIÞ

� 	
ð18Þ

Theoretically, the supplier can choose a production quantity which is smaller

than the order quantity and generate positive profits. However, in this case the

optimization will follow case S(I), the solution of which is included in the solution

space of S(II). Summarizing, the supplier’s production decision under the simple

WHP contract is given by

QWHP Xð Þ ¼ QWHP
SðIIÞ for w[ c=h

0 else

�
: ð19Þ

The supplier’s profit is concave as the second-order derivative is negative5:

5 The result is identical to the second-order derivative of the supply chain profit with X instead of D and

w instead of p.
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d2PWHP
S Q Xjð Þ
dQ2

¼ w � oM X;Qð Þ
oQ

¼ �fSðzX;QÞ �
w � h2

4

�
X þ lYðQÞ þ rYðQÞ
� 	

� X þ lYðQÞ � rYðQÞ
� 	

rYðQÞ � l2YðQÞ
\0:

Analogously to the centralized supply chain analysis, the relation between Q and

X is given by6

dQ Xð Þ
dX

¼ �oMðX;QÞ
oX



oMðX;QÞ

oQ

¼
2 � lYðQÞ � lYðQÞ þ X

� 	

h � lYðQÞ þ X þ rYðQÞ
� 	

lYðQÞ þ X � rYðQÞ
� 	 [ 0: ð20Þ

4.1.2 Buyer decision

The buyer as the leader in this Stackelberg game anticipates the supplier’s decision

from (19). As first mover, under a simple WHP contract the buyer maximizes the

following expected profit:

PWHP
B Xð Þ ¼ p � E min D;X; Y Qð Þð Þ½ � � w � E min X; Y Qð Þð Þ½ � ð21Þ

The first term of this profit function is the expected revenue from selling to the

end customer; the second term describes the expected cost from procuring units

from the supplier. Also for the buyer decision, depending on the order/demand

relationship (X�D or X�D), two cases for the profit function have to be

distinguished.

Case B(I)
Under case B(I) ðX�DÞ the buyer’s profit is given by

PWHP
B Xð Þ ¼ p� wð Þ � E min X;Y Qð Þð Þ½ � ¼ p� wð Þ � L X;Qð Þ ð22Þ

The first-order derivative is rather complex as the buyer is the leader in this

Stackelberg game and accounts for the supplier’s reaction to his decision, i.e.,

Q ¼ QWHP Xð Þ: Therefore, the total first-order derivative of this function includes

the relation dQ Xð Þ=dX from (20) which describes the change in production input

given a change in order quantity. The total first-order derivative is given by

dPWHP
B Xð Þ
dX

¼ oPWHP
B Xð Þ
oX

þ oPWHP
B Xð Þ
oQ

� dQ Xð Þ
dX

ð23Þ

Given the partial first-order derivative oL X;Qð Þ=oX [with L X;Qð Þ from (16)] as

6 The result is identical to (11) with X instead of D.
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oL X;Qð Þ
oX

¼ 1� rYðQÞ

� fS zX;Q
� �

� zX;Q � 1

rYðQÞ
þ FS zX;Q

� �
� 1

rYðQÞ
� fS zX;Q

� �
� zX;Q � 1

rYðQÞ

� �

¼ 1� FS zX;Q
� �

ð24Þ

the total first-order derivative of the buyer’s profit is derived from the following

partial derivatives below

oPWHP
B Xð Þ
oX

¼ p� wð Þ � oL X;Qð Þ
oX

¼ p� wð Þ � 1� FS zX;Q
� �� �

oPWHP
B Xð Þ
oQ

� dQ Xð Þ
dX

¼ p� wð Þ � oL X;Qð Þ
oQ

� dQ Xð Þ
dX

¼ p� wð Þ �M X;Qð Þ � dQ Xð Þ
dX

with oL X;Qð Þ=oQ from (17).

After inserting these terms, the total first-order derivative turns out to be

dPWHP
B Xð Þ
dX

¼ p� wð Þ � 1� FS zX;Q
� �� �

þ p� wð Þ �M X;Qð Þ � dQ Xð Þ
dX

ð25Þ

Due to M X;Qð Þ[ 0, dQ Xð Þ=dX[ 0, and the profitability assumption p[w it

follows that XWHP ¼ D because

dPWHP
B Xð Þ
dX

[ 0 for p[w

� 0 else

�

The order decision under case B(I) is formulated below

XWHP
BðIÞ ¼ D for p[w

0 else

�

Case B(II)
Analyzing the second case B(II) ðX�DÞ, the buyer’s profit is given by

PWHP
B Xð Þ ¼ p � E min D; Y Qð Þð Þ½ � � w � E min X; Y Qð Þð Þ½ � or, equivalently,

PWHP
B Xð Þ ¼ p � L D;Qð Þ � w � L X;Qð Þ: ð26Þ

As under case B(I), the first-order derivative is given by

dPWHP
B Xð Þ
dX

¼ oPWHP
B Xð Þ
oX

þ oPWHP
B Xð Þ
oQ

� dQ Xð Þ
dX

:

The single terms can be expressed as

oPWHP
B Xð Þ
oX

¼ �w � oL X;Qð Þ
oX

¼ �w � 1� FS zX;Q
� �� �
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and

oPWHP
B Xð Þ
oQ

� dQ Xð Þ
dX

¼ p � oL D;Qð Þ
oQ

� w � oL X;Qð Þ
oQ

� �
� dQ Xð Þ

dX

¼ p �M D;Qð Þ � w �M X;Qð Þð Þ � dQ Xð Þ
dX

with oL X;Qð Þ=oX from (24) and oL X;Qð Þ=oQ from (17).

Finally, the total first-order derivative is given by

dPWHP
B Xð Þ
dX

¼ �w � 1� FS zX;Q
� �� �

þ p �M D;Qð Þ � w �M X;Qð Þð Þ � dQ Xð Þ
dX

ð27Þ

Exploiting this derivative, the buyer decision under case B(II), denoted by XWHP
BðIIÞ ,

is implicitly given from the first-order condition dPWHP
B Xð Þ

�
dX¼! 0. Hence, as the

order decision under case B(II) includes the solution of case B(I), the overall order

decision under the WHP contract is formulated below

XWHP ¼ XWHP
BðIIÞ for p[w

0 else

�
ð28Þ

4.1.3 Interaction of buyer and supplier

To evaluate the coordination ability of the WHP contract it has to be analyzed

whether a wholesale price value exists which induces the supplier to produce the

supply chain optimal quantity Q* chosen in the centralized setting. In a second step

it must be checked if a coordinating wholesale price leaves each supply chain actor

with a positive profit so that both of them have an incentive to participate in the

business.

The following analysis shows that two extreme wholesale price values (w ¼ p

and w ¼ c=h) exist which formally meet the coordination condition but violate the

participation constraints.

(I) Wholesale price w ¼ p

From the supply chain’s and the supplier’s optimality conditions in (8) and (18)

we know that c
p
¼ M D;Q�ð Þ and c

w
¼ M X;QWHPð Þ, respectively, if p[w[ c=h:

Coordination is achieved if QWHP ¼ Q�. Obviously, this is guaranteed if the

following two conditions hold: (i) the buyer orders at demand level ðXWHP ¼ DÞ
which yields M X;QWHPð Þ ¼ M D;Q�ð Þ and (ii) the wholesale price is equal to the

retail price which guarantees that c=p ¼ c=w: Given w ¼ p, the effect on the buyer’s

profit has to be evaluated. Under case B(II) ðX�DÞ, the first-order derivative of the
buyer profit in (27) transforms to

dPWHP
B Xð Þ
dX

¼ �p � 1� FS zX;Q
� �� �

þ p � c
p
� p � c

p

� �
� dQ Xð Þ

dX

¼ �p � 1� FS zX;Q
� �� �

\0:

Thus, for all values of the buyer’s order in the range X�D, his marginal profit is

negative. Consequently, the buyer will not order above end-customer demand.
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Evaluating the decision spectrum X�D, the buyer profit from (22), given w ¼ p,

turns out to be zero:

PWHP
B Xð Þ ¼ p� pð Þ � L X;QWHP

� �
¼ 0:

Because the buyer’s profit is zero for any order quantity below end-customer

demand, he is indifferent between all values from 0 to D. Assuming that the buyer

orders XWHP ¼ D units and given w ¼ p, it follows from the supply chain’s and the

supplier’s profits in (6) and (15) that

PWHP
S QWHP XWHP ¼ D

��� �
¼ p � L D;Qð Þ � c � Q ¼ PSC Qð Þ:

Thus, the supplier receives the total supply chain profit while the buyer does not

generate any profit when ordering D units. Hence, the buyer does not agree on the

contract and the business does not take place at all. Consequently, coordination

cannot be achieved by the simple wholesale price contract if the two above

conditions hold. The buyer only participates in the business if the wholesale price is

below the retail price. However, in this case it holds that c=p\c=w and,

consequently, M X;QWHPð Þ[M D;Q�ð Þ: As oM X;Qð Þ=oQ\0, it follows that the

supplier’s production quantity is too low to coordinate the supply chain. Only a

wholesale price value as large as the retail price incentivizes the supplier to produce

the supply chain optimal quantity when the buyer’s order equals demand.

(II) Wholesale price w ¼ c=h
However, a low wholesale price might induce the buyer to order larger amounts

which compensate the unwillingness of the supplier to inflate the order enough to

reach the supply chain optimum. For that reason, another extreme case for the

wholesale price is evaluated.

If the supplier sells at her expected production cost to the buyer ðw ¼ c=hÞ, it is
obvious that a production quantity larger than the order quantity makes no sense.

Thus, case S(I) Q�X must be analyzed with the profit function from (13). Setting

w ¼ c=h yields

PWHP
S Qð Þ ¼ c

h
� h� c

� 	
� Q ¼ 0:

Because the supplier’s profit is zero for all possible production choices, she is

indifferent between all values from 0 to XWHP: That being the case, it will be

assumed that the supplier produces QWHP ¼ XWHP units. Anticipating this behavior,

the buyer maximizes his profit for case B(II) X�D in (26)

PWHP
B Xð Þ ¼ p � L D;Qð Þ � w � L X;Qð Þ

Given QWHP ¼ XWHP, it follows that FS zX;Q
� �

¼ 1 and fS zX;Q
� �

¼ 0. Thus, the

buyer’s profit function transforms to

PWHP
B XWHP QWHP ¼ XWHP

��� �
¼ p � L D;Qð Þ � c � Q ¼ PSC Qð Þ

because according to (5) w � L X;Qð Þ ¼ c
h � L X;Qð Þ ¼ c

h � Qþ c
h � 1 � Q� h � Qð Þþð

rYðQÞ � 0Þ ¼ c � Q is given.
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As XWHP ¼ QWHP and PWHP
B XWHP QWHP ¼ XWHPjð Þ ¼ PSC Qð Þ, it obviously

follows that XWHP ¼ Q� and PWHP
B XWHPð Þ ¼ PSC Q�ð Þ:

Thus, it can be shown that given w ¼ c=h, coordination of the supply chain could

be enabled with the buyer ordering the supply chain optimal production quantity and

the supplier producing the exact order quantity. However, as the supplier is left with

no profit, her participation constraint is violated and she does not agree on the

contract. Thus, coordination of the supply chain is impeded by violating the

supplier’s participation constraint.

Summarizing, each case violates the participation constraint of one actor in the

supply chain (PWHP
B Xð Þ ¼ 0 for w ¼ p and PWHP

S Q Xjð Þ ¼ 0 for w ¼ c=h) and, thus,
terminates the interaction.

4.2 Overproduction risk-sharing contract

Under the overproduction risk-sharing (ORS) contract, the risk of producing too

many units (i.e., those units which exceed the order quantity) is shared among the

two parties. Thus, the supplier bears less risk and is motivated to respond to the

buyer’s order with a higher production quantity. Under this contract, the buyer

commits to pay for all units produced by the supplier. While he pays the wholesale

price w per unit for deliveries up to his actual order volume, quantities that exceed

this amount are compensated at a lower price w0: To exclude situations where the

supplier will generate unlimited profits from overproduction the following

parameter restrictions are set: w0\c=h\w: As the supplier is able to generate

revenue for every produced unit she has an incentive to produce a larger lot

compared to the situation under the simple WHP contract. This increase might

provide the potential to align the supplier’s production decision with the supply

chain optimal one.

In this context, two contract variants have to be distinguished depending on the

way a possible overproduction is handled by the parties. Under the first variant the

buyer just financially compensates the supplier for overproduction without

physically receiving deliveries that exceed his order size. This Pull-ORS contract

leaves him in a different risk position as when the parties agree that the supplier will

deliver the whole production output irrespective of the buyer’s order. This variant is

denoted as a Push-ORS contract.

4.2.1 Supplier decision

The profit to optimize by the supplier is identical for both contract variants.

Different from the WHP profit function in (12) it includes the compensation for

overproduction and is given by

PORS
S Q Xjð Þ ¼ w � E min X; Y Qð Þð Þ½ � þ wO � E Y Qð Þ � Xð Þþ

 �
� c � Q ð29Þ

Like in the WHP contract analysis, two cases are analyzed separately, S(I)

ðQ�XÞ and S(II) ðQ�XÞ:
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Case S(I)
From case S(I) ðQ�XÞ it results that YðQÞ�Q�X and the supplier’s profit

transforms to

PORS
S Q Xjð Þ ¼ w � E Y Qð Þ½ � þ wO � 0� c � Q ¼ w � h� cð Þ � Q ð30Þ

For the first-order derivative it holds that

dPORS
S Q Xjð Þ
dQ

¼ w � h� c
[ 0 for w[ c=h
� 0 else

�

From that, the optimal input decision under case S(I) is given by

QORS
SðIÞ Xð Þ ¼ X for w[ c=h

0 else

�
ð31Þ

Consequently, it has to be evaluated whether case S(II) ðQ�XÞ is preferable for
the supplier.

Case S(II)
In this case, the supplier profit is given by

PORS
S Q Xjð Þ ¼ w � E min X; Y Qð Þð Þ½ � þ wO � E Y Qð Þ �min X; Y Qð Þð Þ½ � � c � Q

¼ w� wOð Þ � E min X; Y Qð Þð Þ½ � þ wO � E Y Qð Þ½ � � c � Q

so that we can formulate

PORS
S Q Xjð Þ ¼ w� w0ð Þ � L X;Qð Þ þ w0 � lYðQÞ � c � Q ð32Þ

with L X;Qð Þ from (16). The first-order derivative of the supplier’s profit is given by

dPORS
S Q Xjð Þ
dQ

¼ w� w0ð Þ � oL X;Qð Þ
oQ

þ w0 � h� c

¼ w� w0ð Þ �M X;Qð Þ þ w0 � h� c ð33Þ

with oL X;Qð Þ=oQ from (17). The supplier’s production quantity under case S(II),

QORS
SðIIÞ, results from the first-order condition dPORS

S Q Xjð Þ
�
dQ¼! 0 and is implicitly

given from:

c� w0 � h
w� w0

¼ M X;QORS
SðIIÞ

� 	
: ð34Þ

Thus, the supplier’s production decision under an ORS contract can be

formulated as

QORS Xð Þ ¼ QORS
SðIIÞ if w[ c=h

0 else

�
: ð35Þ

Note that for wO ¼ 0 the optimal decision is identical to that under a WHP

contract.

The supplier’s profit is concave as the second-order derivative is negative:
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d2PORS
S Q Xjð Þ
dQ2

¼ w� w0ð Þ � oM X;Qð Þ
oQ

¼ �fS zX;Q
� �

� w� w0ð Þ � h2

4

�
X þ lYðQÞ þ rYðQÞ
� 	

� X þ lYðQÞ � rYðQÞ
� 	

rYðQÞ � l2YðQÞ
\0:

Since M X;Qð Þ in (34) is a constant like for the WHP contract, the first-order

derivative dQORS Xð Þ
�
dX is identical to that in (20).

4.2.2 Buyer decision

The buyer’s profit function depends on the specific type of ORS contract that is

applied. Under a Pull-ORS type (exclusion of over-delivery) the buyer maximizes a

profit which compared to the WHP contract is reduced by the supplier’s

compensation for overproduced items

PORS
B Xð Þ ¼ p � E min D;X; Y Qð Þð Þ½ � � w � E min X; Y Qð Þð Þ½ � � w0 � E Y Qð Þ � Xð Þþ

 �
:

ð36Þ
As for the supplier, the buyer analysis treats two separate cases.

Case B(I)
Under case B(I) ðX�DÞ, the buyer’s profit is given by

PORS
B Xð Þ ¼ p� wð Þ � E min X; Y Qð Þð Þ½ � � w0 � E Y Qð Þ � Xð Þþ

 �
¼ p� wþ w0ð Þ � E min X; Y Qð Þð Þ½ � � w0 � E Y Qð Þ½ �

which delivers

PORS
B Xð Þ ¼ p� wþ w0ð Þ � L X;Qð Þ � w0 � lYðQÞ ð37Þ

The total first-order derivative of (37) is given by

dPORS
B Xð Þ
dX

¼ p� wþ w0ð Þ � 1� FS zX;Q
� �� �

þ p� wþ w0ð Þ �M X;Qð Þ � w0 � hð Þ

� dQ Xð Þ
dX

ð38Þ

with M X;Qð Þ from (17) and dQ Xð Þ=dX from (20). Depending on whether the first-

order derivative is positive or negative, the order quantity under case B(I), XORS
BðIÞ ,

ranges from zero up to demand D.

Case B(II)
For case B(II) ðX�DÞ the buyer maximizes the following profit

PORS
B Xð Þ ¼ p � E min D; Y Qð Þð Þ½ � � w� w0ð Þ � E min X; Y Qð Þð Þ½ � � w0 � E Y Qð Þ½ �

that equals
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PORS
B Xð Þ ¼ p � L D;Qð Þ � w� w0ð Þ � L X;Qð Þ � w0 � lYðQÞ ð39Þ

with L D;Qð Þ from (5) and L X;Qð Þ from (16). The profit maximizing order quantity

for case B(II), XORS
BðIIÞ, results from the first-order derivative below

dPORS
B Xð Þ
dX

¼ � w� w0ð Þ � 1� FS zX;Q
� �� �

þ p �M D;Qð Þ � w� w0ð Þ �M X;Qð Þ � w0 � hð Þ � dQ Xð Þ
dX

ð40Þ

with M D;Qð Þ and M X;Qð Þ from (7) and (17), respectively, by setting

dPORS
B Xð Þ

�
dX¼! 0:

4.2.3 Interaction of buyer and supplier

Under the extended contract with two parameters w and w0 it has to be analyzed

whether there exists a combination of contract parameters which guarantees that the

total supply chain profit is maximized while both, supplier and buyer, accept the

contract. Coordination is achieved if the optimality conditions of supply chain and

supplier under an ORS contract are identical. They are given from (8) and (34),

respectively:

c

p
¼ M D;Q�ð Þ and c� w0 � h

w� w0

¼ M X;QORS
� �

:

This condition is fulfilled if (i) the buyer orders at demand level, i.e., if XORS ¼ D

and (ii) M D;Q�ð Þ ¼ M X;QORSð Þ holds, i.e., if the following condition for the

contract parameters is satisfied

c � w� w0ð Þ ¼ p � c� w0 � hð Þ ð41Þ

which ensures that c=p ¼ c� w0 � hð Þ= w� w0ð Þ: This condition also implies that

p ¼ w� w0ð Þ � c= c� w0 � hð Þ[w� w0:
For this parameter setting the supplier’s marginal profit under case S(II) in (33)

turns out to be

dPORS
S QORS ¼ Q� XORS ¼ D

��� �
dQ

¼ w� w0ð Þ � c� w0 � hð Þ
w� w0ð Þ þ w0 � h� c ¼ 0:

The supplier’s marginal profit being zero, shows that the supplier actually

chooses the respective quantity. As the buyer anticipates this behavior, it can be

evaluated which order decision maximizes the buyer’s profit. Under case B(II)

ðX�DÞ, for QORS ¼ Q� the buyer’s marginal profit from (40) transforms to
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dPORS
B Xð Þ
dX

¼ � w� w0ð Þ � 1� FSðzX;QÞ
 �

þ p � c
p
� w� w0ð Þ � c� w0 � h

w� w0ð Þ

� �
� w0 � h

� �
� dQ Xð Þ

dX

¼ � w� w0ð Þ � 1� FSðzX;QÞ
 �

þ c� cð Þ � dQ Xð Þ
dX

¼ � w� w0ð Þ � 1� FSðzX;QÞ
 �

\0

:

Due to the first-order derivative being negative, the buyer will not order above

demand. Assuming an order quantity of XORS ¼ D and the coordinating parameter

setting from (41), the buyer maximizes the profit under case B(I) ðX�DÞ in (37)

according to

PORS
B XORS ¼ D
� �

¼ p� wþ w0ð Þ � L D;Q�ð Þ � w0 � l�YðQÞ:

Rearranging the above profit yields:

PORS
B XORS ¼D
� �

¼ p �L D;Q�ð Þ� c �Q� þ c �Q� � w�w0ð Þ �L D;Q�ð Þ�w0 � h �Q�

¼P�
SC� w�w0ð Þ �L D;Q�ð Þþ c�w0 � hð Þ �Q�

¼P�
SC� w�w0ð Þ �L D;Q�ð Þþ c

p
� wþw0ð Þ �Q� ¼P�

SC� w�w0ð Þ �P
�
SC

p

PORS
B XORS ¼ D
� �

¼ P�
SC � 1� w� w0

p

� �
: ð42Þ

Due to (41) it holds that p[w� w0 and thus, PORS
B XORS ¼ Dð Þ[ 0: Utilizing

the first-order condition of the above profit, the optimal order quantity is

determined. The relation in (42) allows us to conclude that dPORS
B Xð Þ

�
dX[ 0

since dP�
SC Xð Þ

�
dX[ 0 (with P�

SC Xð Þ ¼ P�
SC for D ¼ X) and thus, XORS ¼ D:

So, both conditions for coordination are fulfilled which proves that the Pull-ORS

contract can enable supply chain coordination, because the buyer incentivizes the

supplier to produce the supply chain optimal amount by ordering at demand level if

the contract parameters are fixed appropriately, i.e., according to (41).

If the actors agree on a Push-ORS contract the situation changes. In case all

produced items are physically delivered, the buyer’s sales are not restricted by his

own order and his profit turns out to be identical for the cases B(I) and B(II), i.e., for

X�D and X�D, and is given from (39):

PORS
B Xð Þ ¼ p � L D;Qð Þ � w� w0ð Þ � L X;Qð Þ � w0 � lYðQÞ:

From the previous analysis of the interaction between supplier and buyer, it is

given that coordination requests XORS ¼ D and c � w� w0ð Þ ¼ p � c� w0 � hð Þ:
These conditions result in the following marginal profit for the buyer:

dPORS
B Xð Þ
dX

¼� w�w0ð Þ � 1�FS zX;Q
� �� �

þ p � c
p
� w�w0ð Þ �c�w0 �h

w�w0

�w0 �h
� �

�dQ Xð Þ
dX

¼� w�w0ð Þ � 1�FS zX;Q
� �� �

\0

:
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As the buyer’s marginal profit is negative (given w0\w), it is no option for the

buyer to order at demand level. Through the design of the contract, orders below

demand may be optimal. As the delivered quantity can exceed the order or even

end-customer demand, the buyer can still meet demand by ‘under-ordering’.

Assuming the buyer orders below demand, there may be combinations of w and w0

which incentivize the supplier to produce the supply chain optimal quantity

(obviously, a larger wholesale price or a higher compensation for overstock is

necessary). However, higher prices are less profitable for the buyer who would

further reduce his order quantity. This downward trend continues until nothing is

ordered at all. Thus, the Push-ORS contract cannot coordinate the supply chain.

4.3 Penalty contract

If a penalty (PEN) contract is applied the supplier will bear a higher risk than under

a simple WHP contract since she is punished for under-delivery. The supplier is

penalized by the buyer (in the amount of p) for each unit ordered that cannot be

delivered because of insufficient production yield. Given the potential penalty the

supplier has an incentive to produce more than under the simple WHP contract

which might be sufficient to achieve coordination of the supply chain.

4.3.1 Supplier decision

Under the PEN contract, the profit to optimize by the supplier includes the revenue

from product delivery as well as a penalty for under-delivery and is given by

PPEN
S Q Xjð Þ ¼ w � E min X; Y Qð Þð Þ½ � � p � E X � Y Qð Þð Þþ

 �
� c � Q: ð43Þ

In the following, the two cases S(I) ðQ�XÞ and S(II) ðQ�XÞ are, again,

analyzed separately.

Case S(I)
Given case S(I) ðQ�XÞ the supplier’s profit simplifies to

PPEN
S Q Xjð Þ ¼ w � E Y Qð Þ½ � � p � X � E Y Qð Þ½ �ð Þ � c � Q

¼ wþ pð Þ � h� cð Þ � Q� p � X ð44Þ
From the first-order derivative of (44) which is given by

dPPEN
S Q Xjð Þ
dQ

¼ wþ pð Þ � h� c

it follows that the supplier produces either zero or the ordered amount depending on

the parameter constellation as formulated below

dPPEN
S Q Xjð Þ
dQ

[ 0 for wþ p[
cþ p
h

� 0 else

(
:

Note that if Q ¼ X, then PPEN
S Q Xjð Þ ¼ wþ pð Þ � h� c� pð Þ � X which consti-

tutes the parameter condition above. Finally, the production quantity under case

S(I), QPEN
SðIÞ , is formulated as follows
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QPEN
SðIÞ Xð Þ ¼ X for wþ p[

cþ p
h

0 else

(
: ð45Þ

Case S(II)
Assuming that wþ p[ cþ pð Þ=h holds, case S(II) ðQ�XÞ has to be evaluated.

The profit generated by the supplier is according to (43)

PPEN
S Q Xjð Þ ¼ w � E min X; Y Qð Þð Þ½ � � p � E X �min X; Y Qð Þð Þ½ � � c � Q

and can be expressed as

PPEN
S Q Xjð Þ ¼ wþ pð Þ � L X;Qð Þ � p � X � c � Q: ð46Þ

Taking the first-order derivative yields

dPPEN
S Q Xjð Þ
dQ

¼ wþ pð Þ � oL X;Qð Þ
oQ

� c ¼ wþ pð Þ �M X;Qð Þ � c ð47Þ

with oL X;Qð Þ=oQ from (17). Hence, from dPPEN
S Q Xjð Þ

�
dQ¼! 0 the optimal pro-

duction input under case S(II), QPEN
SðIIÞ, satisfies the following equation

c

wþ p
¼ M X;QPEN

SðIIÞ

� 	
ð48Þ

Hence, the supplier’s production policy under a PEN contract is the following

QPEN Xð Þ ¼ QPEN
SðIIÞ for wþ p[

cþ p
h

0 else

(
: ð49Þ

Note that for p ¼ 0 the optimal decision is identical to that under a WHP

contract.

The supplier’s profit is concave as the second-order derivative is negative:

d2PPEN
S Q Xjð Þ
dQ2

¼ wþ pð Þ � oM X;Qð Þ
oQ

¼ �fS zX;Q
� �

� wþ pð Þ � h2

4

�
X þ lYðQÞ þ rYðQÞ
� 	

� X þ lYðQÞ � rYðQÞ
� 	

rYðQÞ � l2YðQÞ
\0:

Since M X;Qð Þ in (48) is a constant like for the WHP contract, the first-order

derivative dQPEN Xð Þ=dX is identical to that in (20).

4.3.2 Buyer decision

The buyer under a PEN contract is compensated for missing units by the penalty

rate. The profit the buyer generates is the following
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PPEN
B Xð Þ ¼ p � E min D;X; Y Qð Þð Þ½ � � w � E min X; Y Qð Þð Þ½ � þ p � E X � Y Qð Þð Þþ

 �
:

The two cases B(I) ðX�DÞ and B(II) ðX�DÞ are evaluated in the next section.

Case B(I)
The buyer’s profit in case B(I) ðX�DÞ transforms to

PPEN
B Xð Þ ¼ p� wð Þ � E min X; Y Qð Þð Þ½ � þ p � E X � Y Qð Þð Þþ

 �
¼ p� w� pð Þ � E min X; Y Qð Þð Þ½ � þ p � X

PPEN
B Xð Þ ¼ p� w� pð Þ � L X;Qð Þ þ p � X ð50Þ

with L X;Qð Þ from (16). Taking the first-order derivative yields the expression below

dPPEN
B Xð Þ
dX

¼ p� w� pð Þ � 1� FS zX;Q
� �� �

þ pþ p� w� pð Þ �M X;Qð Þ � dQ Xð Þ
dX

ð51Þ

with M X;Qð Þ from (17) and dQ Xð Þ=dX from (20). The optimal order quantity under

case B(I), XPEN
BðIÞ , then results from dPPEN

B Xð Þ
�
dX¼! 0: However, also the case X�D

has to be analyzed.

Case B(II)
Under case B(II), i.e., X�D, the buyer maximizes the subsequent profit

PPEN
B Xð Þ ¼ p � E min D; YðQÞð Þ½ � � wþ pð Þ � E min X; YðQÞð Þ½ � þ p � X that equals

PPEN
B Xð Þ ¼ p � L D;Qð Þ � wþ pð Þ � L X;Qð Þ þ p � X ð52Þ

with L D;Qð Þ from (5) and L X;Qð Þ from (16). The buyer’s optimal decision under

case B(II), XPEN
BðIIÞ, is derived from exploiting the first-order condition

dPPEN
B Xð Þ

�
dX¼! 0 concerning the derivative below

dPPEN
B Xð Þ
dX

¼ � wþ pð Þ � 1� FS zX;Q
� �� �

þ pþ p �M D;Qð Þ � wþ pð Þ �M X;Qð Þð Þ

� dQ Xð Þ
dX

ð53Þ

with M D;Qð Þ from (7), M X;Qð Þ from (17) and dQ Xð Þ=dX from (20).

4.3.3 Interaction of buyer and supplier

As under the ORS contract, it has to be analyzed whether there exists a combination

of contract parameters which guarantees that total supply chain profit is maximized

while both, supplier and buyer, accept the contract. To coordinate the supply chain,

the optimality conditions of supply chain and supplier under a PEN contract have to

be identical. They are given from (8) and (48), respectively:

c

p
¼ M D;Q�ð Þ
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and

c

wþ p
¼ M X;QPEN

� �
:

This condition is fulfilled if the buyer orders at demand level, i.e., if XPEN ¼ D

and if M D;Q�ð Þ ¼ M X;QPENð Þ, i.e., if the following condition for the contract

parameters is satisfied

p ¼ wþ p ð54Þ

which ensures that c=p ¼ c= wþ pð Þ: Given the parameter condition, the supplier’s

marginal profit in (47) turns out to be zero:

dPPEN
S Q Xjð Þ
dQ

¼ wþ pð Þ � c

wþ p
� c ¼ 0:

As the supplier’s marginal profit is zero, she actually chooses the corresponding

input quantity. Because the buyer anticipates this behavior, it can be evaluated

which order decision maximizes his profit. Under case B(II) ðX�DÞ, the buyer’s

marginal profit from (53) in combination with the parameter condition in (54),

transforms to

dPPEN
B Xð Þ
dX

¼ � wþ pð Þ � 1� FS zX;Q
� �� �

þ p

þ wþ pð Þ � c

wþ p
� wþ pð Þ � c

wþ p

� �
� dQ Xð Þ

dX

and yields

dPPEN
B Xð Þ
dX

¼ �wþ wþ pð Þ � FS zX;Q
� �

: ð55Þ

For proving that dPPEN
B Xð Þ

�
dX\0, it will be shown that the penalty p must not

be too large. Thus, the determination of the penalty needs particular analysis. Under

coordination (given p ¼ wþ p and XPEN ¼ D which leads to QPEN ¼ Q�), and using
the supply chain profit from (6), the supplier’s and the buyer’s profits from (46) and

(52) can be expressed as follows

PPEN
S QPEN XPEN ¼ D

��� �
¼ wþ pð Þ � L D;QPEN

� �
� p � D� c � QPEN

¼ p � L D;Q�ð Þ � c � Q� � p � D ¼ PSC Q�ð Þ � p � D

and

PPEN
B XPEN ¼ D
� �

¼ p � D:
Consequently, for the supplier’s participation constraint to hold, i.e., to generate a

non-negative profit, the maximum penalty pþ that results in PPEN
S QPEN XPEN ¼jð

D:Þ ¼ 0, is given by

pþ ¼ PSC Q�ð Þ
D

ð56Þ
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From PSC Q�ð Þ ¼ p � 1� FS z�D;Q

� 	� 	
� D� p � h � FS z�D;Q

� 	
� c

� 	
� Q� in (10)

we get:

p\pþ ¼ p � 1� FS z�D;Q

� 	� 	
� p � h � FS z�D;Q

� 	
� c

� 	
� Q

�

D
:

Given the coordinating parameter constellation p ¼ wþ p, the restriction p\pþ

transforms to

p\ wþ pð Þ � 1� FS z�D;Q

� 	� 	
� p � h � FS z�D;Q

� 	
� c

� 	
� Q

�

D
:

From that we further get

�wþ wþ pð Þ � FS z�D;Q

� 	
\� p � h � FS z�D;Q

� 	
� c

� 	
� Q

�

D
: ð57Þ

Under case B(II), from (55), the optimal buyer decision of XPEN ¼ D is only

given if

dPPEN
B Xð Þ
dX

¼ �wþ wþ pð Þ � FS zX;Q
� �

\0:

According to (57) this holds if p � h � FS z�D;Q

� 	
� c[ 0:

From (7) and (8) we know that

FS z�D;Q

� 	
¼ c

p � hþ
r�YðQÞ

2 � l�
YðQÞ

� fS z�D;Q

� 	

so that p � h � FS z�D;Q

� 	
� c ¼ p � h � r�

YðQÞ
2�l�

YðQÞ
� fS z�D;Q

� 	
[ 0:

Thus, if the participation constraint for the supplier is fulfilled and if the penalty

p is restricted to be lower that pþ, the buyer’s optimal order quantity will be

XPEN ¼ D in case B(II). Since for X�D the first-order derivative in (53) reduces to

dPPEN
B Xð Þ

�
dX ¼ p[ 0 the contract coordinating parameter condition p ¼ wþ p

also initiates XPEN ¼ D in case B(I). Thus, analogously to the ORS contract, the

PEN contract can enable supply chain coordination because the buyer incentivizes

the supplier to produce the supply chain optimal amount by ordering at demand

level while the contract parameters are fixed appropriately, i.e., under p ¼ wþ p:

5 Conclusion and outlook

The analyses in this paper are the first that address the problem of coordination

through contracts in supply chains with binomially distributed production yield.

They reveal several interesting insights for a buyer–supplier chain with determin-

istic end-customer demand. The simple WHP contract fails to coordinate, while

more sophisticated contracts with reward or penalty scheme enable coordinated

behavior in the supply chain without violating the actors’ participation constraints.

However, the ORS contract’s ability to coordinate a supply chain depends on the
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variant that is applied. If a Pull-type contract (without the delivery of excess units)

is used, coordination can be achieved. However, if physical delivery of overstock is

allowed (Push variant), the contract loses its coordination power. For the PEN

contract, however, it can be shown that the design enables SC coordination and,

depending on the parameter setting (including a maximum penalty restriction),

guarantees an arbitrary profit split.

A comparison with the results from Inderfurth and Clemens (2014) obtained for

stochastically proportional yields reveals that all contract designs retain their ability

or disability to trigger coordination. For the coordinating contract types, Pull-ORS

and PEN, it furthermore turns out that coordination is always coupled with a buyer’s

order at demand level. It is also interesting to see that the contract parameter setting

which is necessary to coordinate the supply chain under both contract types, i.e.,

ðw;w0Þ in (41) and ðw; pÞ in (54), is exactly the same as in the case of stochastically

proportional yield. So it becomes evident that the general coordination properties of

the studied contracts, including the ability of profit split, do not differ between the

different yield types although under binomial yield, different from stochastically

proportional yield, the level of the yield uncertainty is critically dependent on the

size of the production batch. This property, however, will in first line affect the size

of the production and order decision.

Regarding the production quantity, it is found in this paper that demand is inflated

to some extent to cope with yield losses. The respective inflation factor, however, is

not a constant multiplier of demand like in the case of stochastically proportional

yield (see Inderfurth and Clemens 2014). Instead, depending on the cost, price and

yield data this inflation factor might increase or decrease with increasing demand

level and approaches the reciprocal of the expected yield rate when demand tends to

become very large. This is due to the characteristic of binomial yields to

monotonically decrease the output risk as the production input level rises up to a

level where this risk almost vanishes. The consequences are twofold. First, under

comparable parameter settings and identical demand the production level under

binomial yield is lower and the expected supply chain profit is higher than in the case

of stochastically proportional yield. Second, in high-demand environments the

coordination deficit of the simple WHP contract becomes negligible because the

yield risk almost disappears in case of binomial yield so that the production decisions

in the centralized and decentralized supply chain setting tend to coincide. This is

completely different from what is valid under stochastically proportional yield.

The contract analysis for the case of binomial production yield in this paper also

permits to study the effects of yield misspecification in the sense that it is assumed

that the yield is stochastically proportional, but the real underlying model is

binomial. A respective numerical study has been carried out for both settings, the

centralized and decentralized one (see ‘‘ Effects of yield misspecification if real yield

is binomial’’ and ‘‘Effects of yield misspecification if real yield is stochastically

proportional’’ in Appendices). In this study the production and order decisions under

the wrong yield assumption are inserted in the profit function with correct yield

specification with yield parameters that are identical for both yield models. In the

centralized case it turns out that a major profit loss of more than 30 % can emerge

from such a misspecification, especially if the profitability in terms of price/cost ratio

Business Research (2015) 8:301–332 325

123



is very small as can be verified in ‘‘Effects of yield misspecification if real yield is

binomial’’ in Appendix. In the case of decentralized decision making under a WHP

contract, however, the profit loss for the whole supply chain is in general smaller. In

some specific cases the supply chain can even profit from yield misspecification since

the wrong buyer’s order and supplier’s reaction can improve the total supply chain

performance. ‘‘Effects of yield misspecification if real yield is stochastically

proportional’’ in Appendix reveals that the same qualitative outcome (with different

quantitative results) is found in the case of a reverse misspecification, i.e., if binomial

yield is assumed but the real yield is stochastically proportional. The lesson that can

be learnt from this specific investigation is that it is very important to specify the

yield type correctly. It would be highly interesting to find out if one can distinguish

data settings where it really matters to use the true yield model. Such a study,

however, is beyond the scope of this paper and will be a matter of future research.

Additionally, further research should focus on extending the supply chain to an

emergency option for procuring extra units in case of under-delivery. This option

was introduced by Inderfurth and Clemens (2014) and it was shown to coordinate

the supply chain by applying the WHP contract. This, however, only holds if the

supplier, and not the buyer, is able to utilize the emergency source. In the current

setting, this option might reveal a similar performance. Besides, the setting can also

be adjusted with respect to supply chain structure. An important aspect in this

context is the extension from a serial to a converging supply chain. Another

interesting extension of the current work would lie in a contract analysis for an

environment where demand is also random. From research in the case of

stochastically proportional yield (see Yan and Liu 2009) we know that the simple

contracts considered in this paper cannot guarantee coordination while more

complex ones might do so. It is an open question, however, if these results also hold

under binomially distributed yields.

Concentrating on further types of yield uncertainty, the all-or-nothing type of

yield realization, also known as disruption risk (see Xia et al. 2011), has hardly

received any attention in literature so far. The same holds for additional yield types

mentioned in Yano and Lee (1995), like interrupted geometric yield or yield

uncertainty from random capacity. Furthermore, it would be a challenging task to

study how contracts can be used for supply chain coordination in planning

environments with multiple productions runs that are addressed in Grosfeld-Nir and

Gerchak (2004).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to theCreativeCommons license, and indicate if changesweremade.

Appendix

Examples for the development of the production/demand ratio

Figure 2 illustrates three exemplary curves for the Q=D-ratio with increasing

demand.
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It is evident from the different curves that there is no monotony in the Q=D-ratio.
Yet, the results in (a) and (b) are comparable with typical newsvendor settings

where the critical ratio (here it is given by c=p) determines whether optimal

production quantities are below or above expected demand (which corresponds to

Fig. 2 Three exemplary developments for production input/demand ratio for 50 % success probability
which approaches 1=h

Business Research (2015) 8:301–332 327

123



Fig. 3 Extraction from Fig. 2 part (c)

Fig. 4 Critical parameter ratio (c=p) which guarantees a Q=D ratio of 1=h
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production yield in our setting). The major difference is that, in addition to prices

and costs, also demand has an influence on the production decision as the

production risk decreases with increasing quantity. A high margin [as in (a)] causes

Q=D ratios above 1=h while low margins [compare (b)] lead to production inputs

below the expected yield. Yet, the shape of the curve in (c) is quite interesting. The

changes in Q=D are minor with increasing demand, however, at one point the curve

intersects with 1=h (which is at D ¼ 50). For illustrative purpose, the segment

0�D� 1000 from curve (c) is extracted in Fig. 3.

The intersection with 1=h raises the question whether there exist parameter

combinations which always guarantee an inflation of demand in the amount of 1=h:
Figure 4 part (a) answers this question by illustrating the c=p ratio which results in

Q=D ¼ 1=h for increasing demand.

Part (b) of the above figure extracts the range 0�D� 1000 from part (a).

Comparing this illustration with Fig. 3, the point Q=D ¼ 1=h at D ¼ 50 corresponds

to the starting point of the curve in Fig. 4b which is at c=p ¼ 1=4:17 ¼ 0:24:

Effects of yield misspecification if real yield is binomial

For presenting numerical examples we set the parameters as follows: c ¼ 1, p ¼ 14

and D ¼ 100: The binomially distributed yield is approximated by the normal

distribution with mean and standard deviation from (1) and (2). For Q�D ¼ 100

this approximation is feasible for 0:06� h� 0:94 because for these values the

condition Q � h � 1� hð Þ[ 5 is satisfied. In the following Tables 1, 2, 3 and 4,

miscalculated decision variables and the respective profits are indicated by the

superscript mis.

Table 1 Supply chain decisions and profit deviations (in %) for changing retails prices under cen-

tralized decision making for 50 % success probability

p Qmis Q� Pmis
SC

P�
SC DPSC (%)

2 100 100 0 0 0.00

3 122 194 61 92 33.73

4 141 200 141 189 25.06

5 158 203 237 286 17.14

6 173 205 346 384 9.95

7 187 208 463 483 4.05

8 200 209 577 582 0.72

9 212 211 680 681 0.02

10 224 212 775 780 0.65

11 235 213 865 879 1.56

12 245 214 955 978 2.36

13 255 214 1045 1077 3.00

14 265 215 1135 1177 3.52
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Effects of yield misspecification if real yield is stochastically proportional

Table 2 Supply chain decisions and profit deviations (in %) for changing wholesale prices under

decentralized decision making for 50 % success probability

w Qmis Xmis QWHP
S XWHP Pmis

SC PWHP
SC DPWHP

SC (%)

2 265 265 215 215 1135 1177 3.52

3 220 179 211 109 1176 1176 0.00

4 196 138 207 104 1148 1173 2.11

5 180 114 205 101 1077 1170 7.97

6 173 100 205 100 1039 1171 1.30

7 187 100 208 100 1114 1173 5.07

8 200 100 209 100 1161 1175 1.20

9 212 100 211 100 1176 1175 -0.07

10 224 100 212 100 1174 1176 0.19

11 235 100 213 100 1165 1176 0.97

12 245 100 214 100 1155 1177 1.84

13 255 100 214 100 1145 1177 2.70

14 265 100 215 100 1135 1177 3.52

Table 3 Supply chain decisions and profit deviations (in %) for changing retail prices under centralized

decision making for a mean yield rate of 0.5

p Qmis Q� Pmis
SC

P�
SC DPSC (%)

2 100 100 0 0 0.00

3 194 122 29 55 47.68

4 200 141 100 117 14.43

5 203 158 174 184 5.42

6 205 173 249 254 1.99

7 208 187 324 326 0.64

8 209 200 400 400 0.09

9 211 212 476 476 0.00

10 212 224 552 553 0.12

11 213 235 629 631 0.35

12 214 245 706 710 0.65

13 214 255 782 790 0.97

14 215 265 859 871 1.31
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