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Abstract In this paper, we propose a binomial approach to modeling sequential

R&D investments. More specifically, we present a compound real options approach,

simplifying the existing valuation methodology. Based upon the same set of

assumptions as prior models, we show that the number of computational steps for

valuing any compound option can be reduced to a single step. We demonstrate the

applicability of our approach using the real-world example of valuing a new drug

application. Overall, our work provides a heuristic framework for fostering the

adoption of binomial compound option valuation techniques in R&D management.

Keywords Research and development � Real options � Compound

options � Resource allocation � Binomial model

JEL O32 � G11

1 Introduction

R&D is key to long-term success in many industries such as the pharmaceutical

sector. However, effectively allocating resources to the most valuable R&D
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project(s) is challenging (Hartmann and Hassan 2006). Valuing (sequential) R&D

projects has thus received much attention in academia and corporate practice (e.g.,

Amram et al. 2006; Cassimon et al. 2011a; Nichols 1994). In this regard, it is well

acknowledged among researchers and practitioners that R&D investments represent

real options to the investing firm (Huchzermeier and Loch 2001; Koussis et al.

2013; Pennings and Lint 1997; Perlitz et al. 1999). As such, R&D projects typically

do not lead to immediate cash flows but open up further investment opportunities.

Traditional valuation methodologies fail to capture this option-like flexibility

though (Bowman and Moskowitz 2001; Pennings and Lint 1997). Consequently,

calculating real option values and incorporating these values when analyzing

whether to fund the respective investments has been called for in the academic

literature for decades (Denison et al. 2012).

Albeit this potential of real options valuation, numerous studies have shown that

many firms do not explicitly incorporate the real options approach in allocating

R&D resources (e.g., Baker et al. 2011; Bennouna et al. 2010; Block 2007; Graham

and Harvey 2001). However, in some industries like the pharmaceutical sector, real

options analysis seemingly found its place in the method set as an auxiliary

valuation tool:1 Hartmann and Hassan (2006), in their study of leading international

research-based pharmaceutical and biotech companies, find that roughly one quarter

of the surveyed R&D managers use real options analysis as a valuation method.

Among the obstacles to more widespread adoption of real options analysis, the

complexity of option pricing models and a perceived lack of transparency stand out

(Hartmann and Hassan 2006, for further evidence, see Baker et al. 2011; Bowman

and Moskowitz 2001; Lander and Pinches 1998). Thus, continuous-time analytical

option pricing models in particular are characterized by ‘‘low practical validity’’

(Worren et al. 2002) because of their advanced, intransparent valuation algorithms

(Lander and Pinches 1998; Triantis 2005). Consequently, Hartmann and Hassan

(2006: 353) emphasize that ‘‘academia is challenged to develop more adequate

models to boost acceptance,’’ and they emphasize the potential of binomial

approaches. Binomial real options approaches do not require sophisticated

continuous-time stochastic calculus (Lander and Pinches 1998) but allow scenario

planning techniques to be integrated to determine possible development paths for

the value of the underlying R&D project (Alessandri et al. 2004; Miller and Waller

2003). As scenario planning is one of the most common long-term planning tools in

corporate practice, binomial approaches have the potential to be implemented in

corporate practice. In this paper, we therefore propose a binomial compound real

options approach to modeling sequential R&D investments that typically require a

series of more than two irreversible investments. We increase the practical validity

of current compound option models by simplifying the existing valuation

methodology (see Copeland and Antikarov 2001; Copeland et al. 2005; Mun

2006). Specifically, based upon the same set of assumptions as prior models, we

show that the number of computational steps for valuing a z-fold compound option

1 Especially, firms in R&D-intensive industries are more willing to implement more sophisticated capital

budgeting techniques (Verbeeten 2006). Among the firms that report using real options analysis are, for

example, Boeing (Mathews 2009); BP (Woolley and Cannizzo 2005); and Intel (Miller and O’Leary

2005).
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can be reduced from z steps to just a single step. Our work thus provides a heuristic

framework for fostering the adoption of binomial compound option valuation

techniques in R&D management. However, we have to note that in the case of

R&D, no (perfect) market for trading such a unique ‘‘asset’’ exists. This is an

inherent limitation of the binomial compound option valuation technique that needs

to be considered when applying the methodology in corporate practice.

We demonstrate the applicability of our approach using the real-world example

of valuing a new drug application (NDA), building upon empirical data from the

typical drug development process presented in Kellogg and Charnes (2000). This

example has been used in various prior papers that mostly chose an analytical

approach to modeling compound real options (e.g., Cassimon et al. 2004; Cassimon

et al. 2011b). Thus, we can compare our approach to existing models and assess the

practical validity of the different approaches.

The remainder of this paper is structured as follows. In Sect. 2, we present the

Kellogg and Charnes (2000) example and we outline how such sequential R&D

investments can be modeled as compound options, before we finally present our

binomial model. In Sect. 3, we apply this approach to valuing the NDA as presented

in Kellogg and Charnes (2000). Finally, in Sect. 4, we discuss the practical validity

of our approach, we present conclusions, and we outline avenues for future research.

2 Modeling sequential investment decisions as compound options

2.1 Applying binomial option pricing methodology to sequential R&D

investments

To further illustrate the problem of valuing sequential R&D projects, we refer to the

example presented in Kellogg and Charnes (2000), which has received wide

attention in academia and, for example, was analyzed by Cassimon et al. (2004).

The Kellogg and Charnes (2000) example describes the 6-stage R&D process of a

real-life biotechnology company (i.e., Agouron Pharmaceuticals). Figure 1 outlines

the progress of the R&D stages and summarizes the most important valuation

parameters obtained from Kellogg and Charnes (2000). The R&D project consists of

a discovery phase (1 year), a preclinical phase (3 years), three clinical phases I to III

(1, 2, and 3 years, respectively), and the FDA filing phase (2 years). The total time

to a possible approval is thus 12 years. During those 12 years, typically no revenues

occur. The total costs (i.e., investments) incurred in each phase are depicted in

Fig. 1 (note that all values are in thousand US$). They represent real-life data

collected by Kellogg and Charnes (2000).2 In the discovery phase, cost primarily

incurs for chemists and biologists developing concepts for synthesizing new

molecular entities. In the preclinical phase and the subsequent clinical trial I–III,

costs incur for testing the drugs on animals and humans. In the final pre-approval

phase, cost incurs for submitting the NDA to the US Food and Drug Administration

2 Kellogg and Charnes (2000) state that they drew on the work of Myers and Howe (1997) and DiMasi

et al. (1991) to make assumptions about development costs.
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(FDA) for review. In the subsequent post-approval phase, the company receives

revenues from selling the new drug while additional costs (e.g., marketing, product

extensions) are incurred. This allows calculating post-approval cash flows. The

uncertain possible net payoff values from commercialization are also depicted in

Fig. 1. For deriving these payoff values, Kellogg and Charnes (2000) present a

scenario analysis for the development of future post-approval cash flows, assuming

that a drug reaching the market would fall into one of the categories presented in the

work of Myers and Howe (1997). In their study, the (reasonable) investment for the

commercialization depends on the expected (gross) payoff of the R&D project.

Therefore, Fig. 1 depicts the expected net payoffs from commercialization after

(scenario-specific) investments. Cash flows are then discounted to time t = 12

assuming a discount rate of 12.9 %, again following Myers and Howe (1997).

This example shows that R&D investments are often sequential and thus

typically require a series of more than two irreversible investments, while

significant positive project cash flows are realized only when the project is

complete (also see Majd and Pindyck 1987). The first investment made to initiate

the project can be interpreted as an option premium as it opens up the opportunity to

make further investments depending on the progress of the project. On the one hand,

sequentiality offers increased flexibility to dynamically allocate resources depend-

ing on how the R&D project develops (i.e., how uncertainty resolves) over time

(e.g., Klingebiel and Adner 2012). On the other hand, sequentiality also increases

the complexity of the decision problem: In the case of failure, the R&D project can

be abandoned at any time, but if the project prospers over time, further resources

t = 0 t = 4t = 1 t = 5 t = 7 t = 10 t = 12

Discovery

Pre-clinical

Clinical Phase 1

Clinical Phase 2

Clinical Phase 3

FDA Filing

-2,200 -2,800-13,800 -6,400 -18,100 -3,300

+2,156,699

+1,276,976

+756,085

+447,661

+265,041

+156,910

+92,885

+54,975

+32,528

+19,238

+11,368

+6,708

+3,949

total costs (in thousands) for R&D stages

Possible net payoff 
values from 
commercialization

Fig. 1 Example of sequential R&D investment
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can be allocated, and budgets can also be increased (e.g., Gong et al. 2011). On the

methodological level, this implies that simply adding up the isolated values of the

option rights inherent in a single R&D project can result in significant misevaluation

(Trigeorgis 1993). Instead, sequential R&D investment projects comprising a series

of more than just two payments have to be valued as compound real options, that is,

options on options (Cassimon et al. 2004; Lee et al. 2008; Pennings and Sereno

2011). We focus exclusively on compound call options as they mirror the iterative

multistage R&D management decision process (Crama et al. 2013; Ghosh and

Marvin 2012; Kort et al. 2010) and are thus the most appropriate for modeling

sequential R&D investments.

Option pricing models are based on a perfect market assumption (Black and

Scholes 1973; Cox et al. 1979). However, when applying option pricing techniques

to real investment problems, the perfect market assumption does not hold. For

example, in the case of R&D, investments are undertaken in order to achieve an

innovation. Consequentially, no (perfect) market for trading such a unique ‘‘asset’’

exists. This, of course, is an inherent limitation of the real options approach that

needs to be carefully reflected when applying the methodology in corporate

practice. However, we still refer to the example of R&D for several reasons: First,

this limitation exists for any real investment problem under uncertainty that can be

modeled as a real option. Examples include among others IT infrastructure

investments (e.g., Panayi and Trigeorgis 1998), venture capital (e.g., Davis et al.

2004), and exploration projects (e.g., Paddock et al. 1988). Second, R&D is still the

most prominent application of the real options approach in corporate practice and

academic literature. We can thus build on a well-established stream of research and

are able to link our results to prior work. Finally, prior research has investigated how

the violation of the perfect market assumption affects the model results. Most

importantly, on incomplete markets no asset exists that perfectly correlates with the

value of the investment project under consideration. In this case, a highly correlated

asset can serve as a surrogate when forming a duplicating portfolio (Paddock et al.

1988). The calculated option value thus represents an upper boundary of the

investment project value. Still, this can be considered valuable information for

corporate decision making (Nau and McCardle 1991; Liu 2010). We thus argue that

applying option pricing techniques to valuing sequential R&D investments is a

worthwhile approach.

Option pricing models are commonly classified as either continuous-time (closed-

form solution) models such as the seminal work of Black and Scholes (1973) and

Geske (1979) or discrete-time models such as Cox et al. (1979) and Rendleman and

Bartter (1979). Continuous-time models assume a continuous stochastic process for

the development of the investment project under consideration and require advanced

mathematical calculus such as partial differential equations to determine the final

project value. In addition to the complexity of the valuation algorithm, applying

analytical models to real options assumes the continuous trading of the underlying

asset (i.e., the R&D project) to dynamically duplicate the payoff. While a dynamic

programing approach can mitigate tradability constraints, it is difficult to apply in

many real-life situations when, for example, the number of state variables is high. In

this case, numerical-lattice approaches constitute more practical approaches to
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valuation (Trigeorgis 1996). However, discrete-time models require adjustments of

the duplicating portfolio only at discrete points in time. Reevaluations of R&D

projects are also usually made at equidistant points in time, e.g., on a quarterly,

semiannual, or annual basis, which may represent the discrete points in time where

the duplicating portfolio is adjusted. Discrete-time real options models thus provide a

suitable framework for valuing sequential R&D investment decisions. However, the

use of discrete-time models comes at the cost of imposing a simplified (e.g.,

binomial) distribution of the asset value.

A prominent subcategory of discrete-time models is binomial option pricing

models that consider two distinct possible outcomes for the R&D project in every

(sub-) period (see Cox et al. 1979; Rendleman and Bartter 1979). Reducing the

number of possible states in each period to two states is a simplification of the (real)

valuation problem that comes at the cost of reducing the analysis to only one source

of uncertainty. However, a common distinction of sources of uncertainty in the

literature on valuation of R&D or new product development (NPD) is the distinction

between market uncertainty and technical uncertainty (e.g., Cassimon et al. 2011a).

Market uncertainty usually resolves over time, whereas technical uncertainty can

only be reduced by undertaking the project. Therefore, technical uncertainty does

not generate a value of waiting to invest. Modeling technical and market

uncertainty, Schneider et al. (2008), for example, assume a lognormal distribution

for the relevant parameters (e.g., market share, price, etc.). The value of the

underlying is modeled as a Geometric Brownian Motion, where the different

sources of uncertainty are assumed to be independent. However, we argue that in the

case of long-term projects like pharmaceutical R&D applying scenario planning is

more appropriate for capturing uncertainty than using other quantitative forecasting

techniques to develop a scenario tree. Thus, we focus on binomial lattices that

implicitly aggregate multiple sources of uncertainty to different scenarios (e.g., best

case vs. worst case). Therefore, problems of exactly specifying each source of

uncertainty and specifying their correlation can be mitigated. Given our objective of

practical validity and complexity reduction, we thus focus on the binomial modeling

approach as in Cox et al. (1979) and Rendleman and Bartter (1979) who allows

sequential decision problems to be analyzed in the simplest model setup. In this

regard, our model can be classified as a heuristic approach because it assumes

simplified distributions for the asset value of the derivative project. Thus, the

number of possible states for the value of the derivative project is reduced, and

thereby also the number of possible values of the compound option is limited.

2.2 Simplifying the arbitrage-based valuation of compound options

In this section, we demonstrate how the current valuation methodology of

compound option models can be simplified. As we consider this methodological

contribution of our work valid for any iterative multistage resource allocation

process, we use common real option model terminology as established in prior work

(Cox et al. 1979; Rendleman and Bartter 1979). However, in Sect. 3, we

demonstrate the specific applicability of our model to valuing the Kellogg and

Charnes (2000) example, thus turning to the specific R&D context.
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In all (real) option models, the payoff of a single-fold call option is duplicated by

investing in m (0 B m B 1) parts of the derivative project V and partly financing

this investment by taking out a risk-free loan of B (B B 0).3 The strike price is I,4

the risk-free interest rate is rf and the time to maturity is s. Assuming complete and

arbitrage-free markets (e.g., for a highly correlated surrogate asset), the value Ct of

the single-fold option is

Ct ¼ m � Vt þ B ¼
Cþ
tþ1 � C�

tþ1

u� d
þ
u � C�

tþ1 � d � Cþ
tþ1

ðu� dÞ � ð1þ rf Þs
; ð1Þ

where

C
þ=�
tþ1 ¼ max½0; ðVþ=�

tþ1 � IÞ�;
with Vþ

tþ1 ¼ Vt � u; V�
tþ1 ¼ Vt � d and 0\d\1\ð1þ rf Þ\u;

ð2Þ

mt ¼
Cþ
tþ1 � C�

tþ1

Vþ
tþ1 � V�

tþ1

¼
Cþ
tþ1 � C�

tþ1

ðu� dÞ � Vt

ð3Þ

Bt ¼
C�
t � Vþ

tþ1 � Cþ
tþ1 � V�

tþ1

ð1þ rf Þ � ðV�
tþ1 � Vþ

tþ1Þ
¼

u � C�
tþ1 � d � Cþ

tþ1

ðu� dÞ � ð1þ rf Þ
: ð4Þ

A series of uncertain investments I0, I1, …, In, can be valued as a compound

option by recursively applying these formulas. For the following valuation of the

compound option, we use the notation depicted in Fig. 2. Cz,t is the value of a z-fold

(compound) option at time t. More specifically, an investment in t = i can be

considered an option to make an investment in the next round in t = i ? 1, where

the option is exercised only if the project value is greater than the investment Ii?1

needed to continue the investment; otherwise, the project is abandoned (Lin 2002).

In the first step, applying the current valuation methodology from the extant

literature, the innermost option must be valued with an extended time to maturity

from t0 to tn. Extending the innermost option’s time to maturity is necessary to

duplicate the twofold option by acquiring the (single-fold) innermost option and

taking out a risk-free loan (also see Benaroch et al. 2006, who explicitly state this

assumption). Then, in the second step, the value of the twofold compound option

can be determined by forming a portfolio D1,t of a single-fold option C1,t in t that

duplicates the payoff of the option in t ? 1 by investing in m1,t parts of the

underlying and taking out a risk-free loan of B1,t:

D1;t ¼ m1;t � Vt þ B1;t: ð5Þ
Now, we consider a compound option C2,t that represents an option on the option

C1,t. Applying the compound option methodology proposed in current literature, we

can determine the value of the twofold compound option by forming the duplicating

3 It can be shown that for the valuation of (compound) call options, the parameters mt and Bt in Eqs. (3)

and (4) can take the following values: Bt B 0 and 0 B mt B 1, if 0\ d\ 1\ (1 ? rf)\ u; the latter is a

necessary condition to eliminate arbitrage opportunities (McDonald and Siegel 1984, also see Cox et al.

1979, and Rubinstein 1999).
4 We refer to the exercise price as It, because in a compound options setting, the exercise price represents

an investment payment in 0\ t\ n that is an exercise price and an option premium at the same time.

Business Research (2015) 8:39–59 45

123



portfolio D2,t, thus investing in m2,t parts of the single-fold option Ct and taking out

a risk-free loan of B2,t. However, the value of the single-fold option Ct is duplicated

by D1,t [also see Eq. (5)]. Consequently, the payoff of the twofold compound option

C2,t can be duplicated by a portfolio which consists of the partially debt-funded

acquisition of the single-fold option’s duplicating portfolio D1,t. We call this

stepwise duplication process the ‘‘indirect duplication’’:

D2;t ¼ m2;t � C1;t þ B2 ¼ m2;t � D1;t þ B2: ð6Þ
Applying the indirect duplication, which is the only method proposed in the

current literature on real options (e.g., Copeland and Antikarov 2001), the valuation

of a z-fold compound option requires a total of z computational steps, where in each

computational step a binomial tree for the value of the layer of the compound option

is derived.

Referring to the Kellogg and Charnes (2000) example, the indirect duplication

requires a total of 6 computational steps to value the sixfold compound option. In

each step, a binomial tree for each layer of the compound option has to be

developed. In the first step, a binomial lattice for the value of the underlying project

(considering the net payoffs) for the whole 12 periods (t = 0 to t = 12) needs to be

developed (this is also depicted in the gray boxes in Fig. 5 in the appendix). Then, in

the next step, the binomial tree for the second layer of the compound option needs

be derived by taking into account the investment in t = 10 and calculating the net

payoffs of the twofold compound option applying formula (2). This allows again

applying formula (1) to calculate the value of the twofold option from t = 0 to

t = 9. This procedure needs to be repeated in the following steps 3–6 to determine

the value of the sixfold option, which is the R&D project. In our opinion, this

methodology which is found in common text books (e.g., Copeland and Antikarov

2001) is not very straightforward especially when applied to higher-fold compound

options (z[ 2). However, within the very same set of assumptions (i.e., complete

and arbitrage-free markets), we can reduce the multistep sequential duplication

process to a single-step duplication process. Thus, we can derive the lattice that

depicts the value of the z-fold compound option directly from the lattice depicting

the value of the derivative project. Note that we have duplicated the single-fold

option by taking out a risk-free loan and by acquiring part of the derivative project.

Referring to Ross’s (1978) general analysis of duplicating uncertain income streams

as linear combinations of traded assets, we can duplicate the twofold compound

t = 0 t = 1 t = 2

fold number: z z-1 1

time to maturity:

strike price:

τz τz-1 τ1

I0 I1 I2 In-1 In

z-fold compound
option

(z-1)-fold compound
option

single-fold
(innermost) option

t = n-1 t = n

Fig. 2 Valuing sequential investments as compound option (adapted from Lee et al. 2008: 48)
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option by directly investing in m2,t* parts of the derivative project and a higher

relative amount of debt B2,t*. We call this approach ‘‘direct duplication’’:5

D2;t ¼ m2;t � D1;t þ B2;t ¼ m2;t � m1;t � Vt þ B1;t

� �
þ B2;t

¼ m�
2;t � Vt þ B�

2;t ; with m�
2;t ¼ m1;t � m2;t

B�
2;t ¼ m2;t � B1;t þ B2;t:

ð7Þ

In this approach, the duplicating portfolio of the single-fold option D1,t is a linear

combination of a risk-free loan B and the acquisition of m shares of the underlying.

The duplicating portfolio of the twofold compound option D2,t again is a linear

combination of D1,t and a risk-free loan. D2,t can thus be directly modeled as a linear

combination of the original underlying and a risk-free loan. In this line of reasoning,

Garman (1976) noted that the value of any compound option is a piecewise linear

function of the value of the derivative project. By induction, the direct valuation can

be generalized to a valuation of any z-fold compound option. This means that any z-

fold compound option can be valued by forming a duplicating portfolio of mz,t*

parts of the underlying and a risk-free loan of Bz,t*, where

m�
z;t ¼

Yz

i¼1

mi;t; and ð8Þ

B�
z;t ¼ B�

z�1;t � m�
z;t þ Bz;t; that can be reformulated as ð9Þ

B�
z;t ¼

Xz

l¼1

Bl;t �
Yz

i¼lþ1

mi;t:

The parametermz,t*, which represents the acquired part of the derivative project, is

the product of all fold-specific partsmi,t of the fold-specific underlying, which is an (i-

1)-fold (compound) option (or the derivative project if i = 1). Given that

0 B mi,t B 1, the part of the derivative project that needs to be acquired to form a

duplicating portfolio decreases in the fold number z. Bz,t* can be calculated as sum of

mz,t parts of Bz-1,t* (that is the amount of risk-free loan of the duplicating portfolio of

the (z-1)-fold compound option) and the increment of an additional risk-free loan.6

Thus, by increasing the number of stages in a sequential investment project from (z-1)

to z, an increment Bz,t of debt is added to finance the acquisition of (part of) the

derivative underlying when forming the duplicating portfolio. Consequently, the

fraction of irreversibly committed option premium decreases. This has interesting

implications for the valuation of compound options: The valuation of any compound

option can be computed in a single step by directly forming a duplicating portfolio

5 We connote the parameters of the direct duplicating portfolio of the compound option—a risk-free loan

and shares of the underlying asset—with the index* (m*, B*), while the parameters of the indirect

duplicating portfolio consisting of the (z-1)-fold option and a risk-free loan are still denoted by m and B.
6 The expression Bz,t* can be reformulated as

B�
z;t ¼ m�

z;t �
Xz

l¼1

Bl;t

m�
l;t

:

This, again, demonstrates the recursive characteristic of the valuation methodology.
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consisting of the derivative project and a risk-free loan. Directly duplicating a z-fold

compound option requires applying Eqs. (1) to (6) and using the derivative project

(and a risk-free loan) in Eqs. (5) and (6) instead of the duplicating portfolio of the (z-

1)-fold compound option as we will demonstrate in Sect. 3.

Most importantly, the direct duplication and the indirect valuation are mathemat-

ically equivalent and thus yield the exact same results; however, the direct duplication

does not require any additional and more restrictive assumptions compared to the

indirect duplication.We simply refer to the perfect markets assumption and the absence

of cash flows before the project is completed, as in the case of indirect duplication.

Overall, the direct duplication of a compound option is a methodological simplification

that requires fewer computational steps than prior approaches; furthermore, no

complexity reduction versus loss-of-accuracy tradeoff exists. The heuristic character-

istic of our approach thus lies in the assumption of a simplified binomial distribution for

the asset value of the underlying project which leads to a reduced complexity.

3 Applying the direct duplication approach to R&D

3.1 The Kellogg and Charnes (2000) example as a binomial compound option

In this section, we apply the direct duplication approach to the Kellogg and Charnes

(2000) NDA example, thus demonstrating the applicability of our approach in a real-

world context. Furthermore, we can compare our approach to existingmodels referring

to the very same example, and assess the practical validity of the different approaches.

Note that Kellogg and Charnes (2000) do not present a compound option approach,

while Cassimon et al. (2004) compute an analytical extension of the Geske (1979)

model. The latter approach thus requires sophisticatedmodeling inMathematicaTM and

does not offer an intuitive algorithm that allowsmanagement to check the plausibility of

the computed results. However, our approach allows directly duplicating the compound

optionwith just standard spreadsheet calculation programs (e.g.,MSExcelTM) and thus

enables management to comprehend the necessary computational steps.

As in Kellogg and Charnes (2000), we assume Cox et al. (1979) parameters

u = 1.30 and d = 0.77 and a risk-free rate r = 7.09 % for our analysis. The value

of the derivative project in every node of the lattice can be determined with the

following equation:

Vþ=�
n ¼ V0 � un�m � dm; ð10Þ

where (n-m) (0 B m B n) is the total number of realizations of the growth factor u,

while m is the number of realizations of factor d.

Using these values as inputs, we obtain a value for the sixfold compound option

in t = 0 of 59,958 thousand US$. Note that our direct approach requires only a

single computational step which allows the calculation to be depicted in a single

spreadsheet; this would not be possible applying the standard indirect approach.

Figure 5 in Appendix A shows the detailed spreadsheet (the MS ExcelTM sheet

containing all formulae is also provided as supplementary material to this article).
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Given that the option premium (costs in t = 0) is 2,200 thousand US$, it is

beneficial to acquire the real option and initiate the R&D project.

To further illustrate the direct duplicationmethodology, we examine the valuation of

the last two stages of the project development process as a twofold compound option.

Figure 3 depicts this sublattice.7 The gray boxes depict the development of the value of

the derivative project, excluding investments It, to keep the project alive. For example,

in t = 10, an investment of I10 = 3,300 is required to start the FDA filing phase, which

takes another 2 years. In the best case (the upper path of the binomial lattice), the value

of the R&D project increases to 2,877,759, resulting in a net payoff value of 2,156,699

from the subsequent commercialization (these values are also taken from Kellogg and

Charnes (2000); in their study, the (reasonable) investment for the commercialization

depends on the (gross) payoff of theR&Dproject,which seems a realistic assumption to

us).8 From the different payoff scenarios in t = 12, the value of the (single-fold) option

in t = 11 and t = 10 can be calculated by applying Eq. (1). In t = 10, management

needs to decide about investment I10: a rational R&Dmanager will invest an additional

3,300—thus exercising the twofold compound option from the clinical phase 3—only if

the value of the underlying single-fold option is higher than the required investment [the

exercise decision is thus represented by Eq. (2)]. In the best-case scenario in t = 10, the
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Fig. 3 Binomial lattice of the drug development process

7 We limit our detailed analysis to a twofold option because all methodological findings can be derived

within this setting (also see Carr 1988); the valuation of the complete development process as the sixfold

option is shown in Appendix A, Fig. 5.
8 Thus, in Kellogg and Charnes (2000), the investment for the subsequent commercialization is an

endogenous variable. We think that it is reasonable to assume that the management decides about

marketing expenses depending on the expected payoffs from commercialization.
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value of the project is 1,702,616, and the value of the single-fold real option is 1,275,742

(see Fig. 3). Subtracting the exercise price of the twofold compound option of 3,300

results in a 1,272,442 net payoff for the twofold compound option. In this manner, we

can calculate all possible (net) payoffs for the twofold compound option.

To determine the value of the twofold compound option in t = 9, we need to

duplicate its payoffs from the duplicating portfolio. Applying the indirect valuation

methodology suggested in existing literature on binomial compound option

modeling requires a valuation of the single-fold option with an extended time to

maturity from t = 0 to t = 12. This step is necessary to form a duplicating portfolio

of the twofold compound option. In the next step, it is necessary to model (and

value) the lattice of the twofold compound option from t = 0 to its time to maturity

(t = 10), to build a duplicating portfolio of the threefold compound option and so

on. Thus, z lattices must be modeled to finally derive the lattice that depicts the

value of the z-fold compound option. However, with our suggested methodology,

we can directly duplicate any compound option by acquiring part of the derivative

project and a risk-free loan. In t = 9, in the best-case scenario, the payoff of the

twofold compound option can be directly duplicated by acquiring 0.7498 parts of

the derivative asset and taking out a risk-free loan of -3,990.8254:

0:7498 � 1;702;816þ ð�3;990:8254Þ � 1:0709 ¼ 1;272;442

0:7498 � 1;008;754þ ð�3;990:8254Þ � 1:0709 ¼ 752;057
:

Thus, the value of the option is 978,098:

0:7498 � 1;309;858þ ð�3;990:8254Þ ¼ 978;098:

With the R&D project progressing over time, the binomial tree becomes smaller

as development paths that were not realized can be excluded from the analysis. This

also allows updating information on the R&D project in case a project manager

finds that assumptions of previous calculations were not accurate.

3.2 Leverage of the duplicating portfolio as measure of commitment

Given that R&D investments are highly irreversible (Goel and Ram 2001; Pindyck

1991), the investments made up to a given point in time determine the firms

‘‘commitment’’ to the project (Bremser and Barsky 2004; Ghemawat 1991; Sull

2003). We define commitment in a broad sense as all valuable resources irreversibly

dedicated to a certain R&D project. However, by investing sequentially, the initial

commitment is reduced, and further investments can be deferred until uncertainty

has resolved and new information about the R&D project is available. The more the

sequence of investments is staged, the lower ceteris paribus the initial investment

necessary to start the project while the time between two investment payments

decreases (given that the project’s total time to completion remains unchanged).

However, most projects require a ‘‘minimal investment rate’’ that must be sustained

to keep the project alive (Mölls and Schild 2012). Consequently, there are certain

limits to increasing the sequentiality of the investment process.

To analyze the effects of staging on the firm’s propensity to make further

investments in a real option setting, ameasure of commitment is needed.Generally, the
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more the investments are staged (i.e., with higher sequentiality), the lower ceteris

paribus the commitment to the project at a certain point in time. We therefore suggest

the ‘‘leverage of the duplicating portfolio’’ as a measure of the firm’s commitment to a

given series of investments. Smith (2007) proposes the amount of up-front investment

relative to the total investment required to complete the project as a measure of an

investment project’s sequentiality, and thus its commitment. Smith’s (2007) approach

is thus input-oriented, as it solely depends on the investments It. However, we think that

a measure reflecting how much the firm has already invested relative to the current

market value of its real option is more informative, as the market value determines the

firm’s propensity tomake further investments.We therefore differ fromSmith’s (2007)

approach and suggest the leverage of the duplicate portfolio as a market value-based

measure of the sequentiality of the R&D project. The leverage not only considers how

much additional investment is needed but also how uncertainty has resolved over time.

The leverage of the duplicating portfolio and the commitment to the R&D project are

inversely related; the higher the leverage, the lower ceteris paribus the commitment.

The leverage thus reflects how the commitment develops over time depending on the

progress of the project.We therefore define the leverage of the duplicating portfolioLz,t
as the proportion Bz,t* of the risk-free loan in acquiring mz,t* shares of the underlying

asset with a value of Vt (see Naik and Uppal 1994 for a similar formulation):

Lz;t ¼
B�
z;t

���
���

m�
z;t � Vt

¼
�
Pz

l¼1

Bl;t �
Qz

i¼lþ1

mi;t

Qz

i¼1

mi;t � Vt

: ð11Þ

Expression (mz,t*� Vt) can be interpreted as the (gross) total value of the duplicating

portfolio, with Bz,t* the amount funded by a risk-free loan. Similar to a debt-funded

firm, the ratio of both expressions can be denoted as the leverage ratio of the portfolio

(note that Lmust not be confused with the leverage of the firm for valuing an option on

the equity of a debt-funded firm in Geske’s (1979) model). The leverage is thus

complement to the ‘‘equity ratio,’’ which reflects the (relative) amount of irreversible

investmentsmade up to a certain point in time or, in otherwords, the commitment to the

R&D project. Therefore, the leverage and the commitment are inversely related. Thus,

given the sequentially of the R&D project in our example, a levered position

corresponds to a weaker commitment to continuing the project because the sunk costs,

which are the irreversibly committed investment payments that have already been spent

on the project, are low relative to the (gross) project value.

Overall, the leverage ratio Lmirrors important aspects of sequential versus unstaged

investment projects. First, as the number of stages of the investment increases, the

leverage ratio of the compound option also increases (ceteris paribus). This reflects the

relatively lower initial capital investment of sequential investment projects compared

to complete irreversible up-front financed projects that inevitably have an (implicit)

leverage of zero. Second, this lower initial capital investment has a risk-reducing effect

since losses are limited to the option premium(s), that is, prior investment outlays.
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Sequential investment projects can thus be characterized as low-commitment (R&D)

strategies (see Klingebiel and Adner 2012) or as ‘‘exploratory investments’’ (Bar-Ilan

and Strange 1998) as the staging of investments implies varying degrees of

commitment. Consequently, the leverage of the duplicating portfolio is a market-

based operationalization of the (resource) commitment construct, andmight be used as

such also in future empirical research studies.

We can now illustrate how the leverage of the duplicating portfolio develops in

the example from Cassimon, Engelen, Thomassen, and van Wouwe (2004) and

Kellogg and Charnes (2000). The leverage depends on (1) the series of investments

made (their impact is similar to Smith 2007) but also on (2) the value of the

derivative project. If a project develops favorably, further investments are made,

and the value of the derivative project increases. We therefore would expect a

continuous decline of the leverage that reflects the increased commitment over time.

Figure 4 illustrates the leverageL (red line) for thebest-case path of theR&Dproject

(the upper path in the binomial lattice, see Fig. 5 in Appendix A) where in any sub-

period a value increase (u) is realized. The points in timewhen further investments It are

required to keep the project running are marked with a cross. The investments

obviously lead to a decrease in the leverage that reflects the increased commitment.

Figure 4 also illustrates that even in periods when no investments are made, the

leverage still decreases. This can be explained by the positive development of the

‘‘market value’’ of the R&D project. We consider this a methodological advantage as

Smith’s (2007) measure for the ‘‘degree of sequentiality’’ depicts only the amount of

investments made up to a certain point in time, relative to the total investments needed

to complete the project. This measure is independent of the progress of the project and

therefore does not truly capture the firm’s propensity to make further investments.

To supplement the discussion of the option’s leverage, Fig. 4 also visualizes in

addition to L the parameters m* and the absolute amount of B* of the duplicating

portfolio, again in the best-case path, as the number of periods goes from 1 to 11 (m*

and B* can only be determined for t = n-1). While m* remains almost at the same

level,9 the development of the absolute amount of debt B* decreases over time which

is one factor in the decrease of the leverage L (the other being the increasing value of

the underlying project). Furthermore, note that a significant decrease of B* occurs at

those points in time where additional capital infusions are made (e.g., t = 7). Thus,

the increasing commitment is also reflected in the substitution of debt for equity.

3.3 Implementing the model in corporate R&D management

We developed our proposed binomial model, answering the call of Hartmann and

Hassan (2006), who emphasize the need to ‘‘boost acceptance’’ of the real options

approach in corporate practice. In this context, it is crucial that a valuationmethodology

9 More specifically, m* actually slightly increases from 0.7483 (t = 0) to 0.7500 (t = 11). Note that we

are looking at the upper path in the binomial lattice, with a high probability that the option is finally

exercised. The slight increase in m* means that the probability that the option is exercised increases over

time as uncertainty is reduced. Therefore, the share of the underlying asset required to form the

duplicating portfolio remains at almost the same level over the remaining periods (this would change if

the underlying’s value would decrease and the probability that the option is exercised decreases).
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can be easily implemented in corporate R&D management (Triantis 2005). The

implementation of our model requires the following procedure, using standard

spreadsheet calculation programs such as MS ExcelTM. First, the multiplicative

binomial tree has tobemodeled for the entire durationof the project.Most challenging is

estimating the parameters u and d, as the option value is highly sensitive to their

specification. However, possible development paths for the value of the underlying

R&D project can be derived using scenario planning techniques (Miller and Waller

2003). Second, the necessary investments need to be estimated as well as the specific

points in time where these capital infusions become necessary. These investments

determine the time to maturity of each compound option and can be obtained from the

R&D project plan. Third, the risk-free interest rate can be derived from the yield of

government bonds with an equivalent maturity date. These input parameters given, the

value of the z-fold compound option can be calculated recursively, starting with the

innermost option thatmust bevalued for the timeperiodbetween the last two investment

payments applyingEqs. (1) to (4). In ourNDAexample, the innermost option thusmust

be valued from t = 10 to t = 12 (also see Fig. 3). Next, the value of the twofold

compound option on the innermost option is calculated. The possible payoffs of the

twofold compound option are determined by comparing the innermost option’s value to

the investment payment necessary to acquire the innermost option. This requires

substituting the value of the innermost option for Vt in Eq. (2). Again, in our example,

the investment to acquire the innermost option is 3,300 (in thousands), whereas the

innermost option’s value depends on the progress of theR&Dproject (seeFigs. 3 and6).

Next, the value of the threefold compound option, whose underlying is the twofold

option, is computed accordingly. Applying this recursive valuation methodology, the

value of any z-fold compound option can be calculated in a single binomial tree (see

Fig. 5 in appendix A), thus requiring only a single computational step. The calculation

can be depicted in a single spreadsheet, which can be used as a ‘‘graphic user interface’’

(also see Ghosh andMarvin 2012). Note that these ‘‘steps’’ for implementing the model

listed abovemust not be confusedwith the number of computational steps, which is just

one in the case of our direct duplication.Applying the sequential duplication proposed in

current literature requires calculating each of the compound option’s z layers starting

from t = 0, resulting in a total of z computational steps.
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Overall, for implementation issues, our proposed model reduces valuation

complexity and thus allows for a more user-friendly graphic ‘‘interface.’’ In this

context, our approach builds upon generally accepted tools in R&D management,

including commonly used spreadsheet programs (i.e., MS ExcelTM) and scenario

planning. This is often a key requirement for implementation in corporate practice.

4 Discussion and conclusion

In this paper, we proposed an approach to modeling sequential compound options

inherent in R&D projects by applying binomial lattice techniques. We argue that our

binomial approach to modeling sequential compound options enhances the practical

validity of the real options approach (1) by reducing the mathematical complexity

compared to continuous-time analytical option pricing models, (2) by significantly

reducing the number of computational steps to value a z-fold compound option from z

steps (as in prior binomial approaches) to just one step, and (3) using an approach that

mirrors the iterative multistage resource allocation process of sequential investment

analysis, thus potentially increasing managers’ awareness of option-like rights

(Driouchi and Bennett 2011). Note that (correctly) valuing real options requires an

awareness of option-like rights in the first place. Furthermore, our approach shifts focus

from a single initial R&D investment decision to effectively exercising the subsequent

investment options (to continue the R&D project). In this context, we present the

market-based leverage as a measure of the firm’s commitment to a given series of R&D

investments. The leverage measure illustrates the risk-reducing effects of sequential

investment projects to management, thus mitigating underinvestment problems.

There are several limitations to our suggested approach. Most of these limitations

are closely related to the real options approach in general and are thus not model-

specific. Most importantly, we have emphasized that in the case of R&D, no

(perfect) market for trading such a unique ‘‘asset’’ exists. This is an inherent

limitation of the real options approach that needs to be considered when applying

the methodology in corporate practice. However, prior literature states that a highly

correlated tradable asset can serve as a surrogate when forming a duplicating

portfolio. Furthermore, the use of discrete-time binomial models comes at the cost

of imposing a simplified distribution of the asset value. Estimating the parameters u

and d is thus challenging, as the option value is highly sensitive to their

specification. However, the same argument applies to the variance in the (analytical)

models of Black and Scholes (1973) and Geske (1979). We also have to admit that

we cannot ultimately predict the potential acceptance of our approach in corporate

practice. However, as demonstrated in Verbeeten’s (2006) study, highly uncertain

environments increase firms’ willingness to adopt more sophisticated capital

budgeting practices. As R&D is typically associated with high levels of uncertainty,

we think that implementing our approach is most likely in R&D management (also

see Hartmann and Hassan 2006). Also note that although we use the example of

NDA valuation, our proposed compound option model works in any iterative

multistage resource allocation process. For example, valuing start-up firms whose

business-model mainly builds upon R&D (e.g., biotech firms) shares many features
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with R&D valuation. We thus suggest that our approach can also be applied in

future research to valuing such companies, whose lead R&D compound accounts for

the key value driver.
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