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Abstract

In this paper, we estimate a logit mixture vector autoregressive (Logit-MVAR)

model describing monetary policy transmission in the euro area over the period

1999−2015. MVARs allow us to differentiate between different states of the econ-

omy. In our model, the state weights are determined by an underlying logit model.

In contrast to other classes of non-linear VARs, the regime affiliation is neither

strictly binary nor binary with a (short) transition period. We show that monetary

policy transmission in the euro area can indeed be described as a mixture of two

states. The first (second) state with an overall share of 80% (20%) can be inter-

preted as a “normal state” (“crisis state”). In both states, output and prices are

found to decrease after monetary policy shocks. During “crisis times” the contrac-

tion is much stronger, as the peak effect is more than twice as large when compared

to “normal times.” In contrast, the effect of monetary policy shocks is less endur-

ing in crisis times. Both findings provide a strong indication that the transmission

mechanism is indeed different for the euro area during times of economic and fi-

nancial distress.
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1 Introduction

There is an ongoing discussion as to whether or not the transmission mechanism of

monetary policy is different during crisis times compared to normal times. For in-

stance, the “aim at safeguarding an appropriate monetary policy transmission” is used

by the European Central Bank (ECB) as justification for the Outright Monetary Trans-

actions program (ECB 2012).

Empirical research based on cross-country studies generally supports the notion

that there are differences between normal times and crisis times. Bouis et al (2013)

and Bech et al (2014) find that monetary policy is less effective following a financial

crisis due to a partially impaired transmission mechanism. Jannsen et al (2015) dif-

ferentiate between an acute initial phase of financial crises and a subsequent recovery

phase. They show that the transmission mechanism is only impaired during the recov-

ery phase, whereas the effects on output and inflation during the acute initial phase

are even stronger than during normal times. A related branch of the literature deals

with the asymmetric effects of monetary policy during the “regular” business cycle.

For instance, Weise (1999), Garcia and Schaller (2002), and Lo and Piger (2005) find

that monetary policy is more effective during recessions than during expansions.1

In all these studies, monetary policy is examined either in a linear or in a regime-

switching vector autoregressive (VAR) model. We extend these approaches by using

a so-called mixture VAR model. Similar to threshold VARs (Tsay 1998), Markov-

switching VARs (Hamilton 1989, 1990), and smooth transition VARs (Weise 1999; Ca-

macho 2004), mixture VARs allow us to differentiate between different states of the

economy. In contrast to the three other classes of VARs, however, the regime affilia-

tion is neither strictly binary nor binary with a (short) transition period. Mixture VARs

(Fong et al 2007) are comprised of a composite model with continuous state affiliations

that are allowed to vary over the complete sample period.

1Tenreyro and Thwaites (2016) find the opposite. In their paper, US monetary policy is less effective
during recessions.
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Our analysis is the first to implement the idea of Bec et al (2008) of a concomitant

logit model for the calculation of state weights in a mixture VAR model. We deviate

from existing models (Dueker et al 2011; Kalliovirta et al 2016) by leaving the set of

variables that determine these weights open to the user, rather than restricting these

to the set of endogenous variables in the mixture VAR model. Employing a logit model

to determine the weights also leads to a smoother transition between the different eco-

nomic states and avoids the problem of jumping regime weights, as in Fong et al (2007)

and Kalliovirta et al (2016). In addition, we provide the first implementation of a logit

mixture vector autoregressive (Logit-MVAR) model in the context of monetary policy

transmission. Our analysis focuses on the euro area during the period 1999−2015.

We show that monetary policy transmission in the euro area can be described as

a mixture of two states. The second state with an overall share of 20% can be inter-

preted as a “crisis state,” as its weights are particularly large during the recession in

2002−2003, after the Lehman collapse in 2008, during the euro area sovereign debt

crisis in 2011, and during the Greek sovereign debt crisis in 2015. Correspondingly,

the first state with an overall share of 80% can be interpreted as representing “nor-

mal times.” In both states, output and prices decrease after monetary policy shocks.

During crisis times, the contraction is much stronger as the peak effect of both vari-

ables is more than twice as large compared to normal times. In contrast, despite this

stronger peak effect, the effect of monetary policy shocks on output and prices is less

enduring during crisis times. Both findings provide a strong indication that the trans-

mission mechanism is indeed different for the euro area during times of economic and

financial distress. In line with Weise (1999), Garcia and Schaller (2002), Lo and Piger

(2005), Neuenkirch (2013), and Jannsen et al (2015) we find a stronger reaction during

the acute phase of a financial crisis and during recessions.

The remainder of this paper is organized as follows. Section 2 introduces the Logit-

MVAR model and the data set. Section 3 shows the empirical results. Section 4 con-

cludes with some policy implications.
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2 Econometric Methodology

The idea of non-linearities in macroeconomic variables, arising from business cycle

fluctuations, has been discussed for a long time. The most common approaches to

capture these regime-dependent non-linearities are the Markov-switching VAR model

proposed by Hamilton (1989, 1990), and the threshold VAR model of Tsay (1998). A

general criticism of both model classes is the binary regime affiliation as the economy is

assumed to shift between regimes, but is restricted to be located in strictly one regime

at a time. A transition period including a mixture of regimes, however, could be a more

realistic description of the data. Smooth transition VAR models (Weise 1999; Camacho

2004) attempt to fill this gap. Nevertheless, outside of the short transition period, the

economy remains rigidly in one state in this class of models.

2.1 Mixture Vector Autoregressive Models

In contrast to these models, MVAR models proposed by Fong et al (2007) allow for

a composite model with the weights of the states continuously varying over the com-

plete sample period. The model consists of K components, each following a linear

Gaussian VAR process with an individual lag order pk. The estimation is performed

using an expectation-maximization algorithm. An MVAR(n,K ,p1,p2,. . . ,pK ) model with

K regimes and an n-dimensional vector of endogenous variables Yt is defined as:

F(yt |Ft−1) =
K∑
k=1

αkΦ
(
Ω
− 1

2
k

(
Yt −Θk0 −Θk1Yt−1 −Θk2Yt−2 − . . .−ΘkpkYt−pk

))
(1)

F denotes the information set up to time t −1. Φ(.) is the multivariate cumulative dis-

tribution function of the Gaussian distribution with mean zero and variance-covariance

matrix equal to the n-dimensional identity matrix In. The probability for the kth com-

ponent to occur is labeled by αk. Θk0 is the n-dimensional vector of intercepts in

regime k. Θk1,. . . ,Θkpk are the n × n coefficient matrices for the kth regime and Ωk is

the n× n variance covariance matrix for the kth regime. In order to get a unique char-

acterization of the model, we have to constrain α1 ≥ α2 ≥ . . . ≥ αK ≥ 0 and
∑K
k=1αk = 1
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(Titterington et al 1985; McLachlan and Basford 1988). Fong et al (2007) provide a

proof of two sufficient stationarity conditions for MVAR processes.

2.2 Estimation

Starting from the aforementioned MVAR(n,K ,p1,p2,. . . ,pK ) process, we define Zt =

(Zt,1, . . . ,Zt,K )>,∀t = 1, . . . ,T as the component affiliation of Yt:

Zt,i =


1 if Yt comes from the ith component;1 ≤ i ≤ K

0 otherwise.
(2)

The conditional log-likelihood function at time t is given by:

lt =
K∑
k=1

Zt,k log(αk)−
1
2

K∑
k=1

Zt,k log |Ωk | −
1
2

K∑
k=1

Zt,k(e
>
ktΩ

−1
k ekt) (3)

where

ekt = Yt −Θk0 −Θk1Yt−1 −Θk2Yt−2 − . . .−ΘkpkYt−pk

= Yt − Θ̃kXkt

Θ̃k = [Θk0,Θk1, . . . ,Θkpk ]

Xkt = (1,Y>t−1,Y
>
t−2, . . . ,Y

>
t−pk )

for k = 1, . . . ,K . The log-likelihood is then given by:

l =
T∑

t=p+1

lt =
T∑

t=p+1

 K∑
k=1

Zt,k log(αk)−
1
2

K∑
k=1

Zt,k log |Ωk | −
1
2

K∑
k=1

Zt,k(e
>
ktΩ

−1
k ekt)

 (4)

Expectation Step

Since we cannot directly observe the vectors Z1, . . . ,ZK , these are replaced by their con-

ditional expectation on the matrix of parameters Θ̃ and the observed vectors Y1, . . . ,YT .

Defining τt,k ≡ E(Zt,k |Θ̃,Y1, . . . ,YT ) to be the conditional expectation of the kth compo-
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nent of Zt, we obtain the mixture weights:

τ̃t,k =
αk |Ωk |

1
2 e−

1
2 e
>
ktΩ

−1
k ekt∑K

k=1αk |Ωk |
1
2 e−

1
2 e
>
ktΩ

−1
k ekt

, ∀k = 1, . . . ,K (5)

These weights τt,k, however, lead to very unstable estimates and a huge variability in

the impulse response functions for different starting values. In addition, from an eco-

nomic point of view the transition process should be dependent on variables known or

suspected to have impact on regime changes rather than on a function of, inter alia, the

residuals of the MVAR model itself. To overcome this instability problem and to base

the regime changes on economic theory, we propose to use a submodel for the mixture

weights as done in mixture models for other contexts (Dang and McNicholas 2015;

Grün 2008; McLachlan and Peel 2000; Thompson et al 1998; Wedel and Kamakura

2000).

Similar to Thompson et al (1998) and Wong and Li (2001), we use a multinomial

logit model for the transition process. The mixture weights obtained in Eq. (5) are

employed as dependent variables and the explanatory variables are denoted by the

vector ζ. The γj ’s are the estimated parameters of the multinomial logit model, where

we set γ1 ≡ 0 for identification reasons. The predicted mixture weights are then the

predictions of the submodel given ζ, that is:

τ̃t,k =
eζ

T
t γk∑K

j=1 eζ
T
t γj

(6)

In the empirical application below, we restrict the description of the economy to a

mixture of two states allowing us to estimate a binary logit model as submodel that

simplifies Eq. (6) as follows:

τ̃t,k =
1

1 + e−(
∑n
j=0 βjxt,j )

(7)

β denotes the coefficients of the logit model and n is the number of exogenous variables

xj with x0 = 1. In each iteration step, we replace the values for τ̃t,k from Eq. (5) with
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the expected value of the logit model in Eq. (7):

τ̂t,k = E

 1

1 + e−(
∑g
j=0 βjxt,j )

| Xkt , βj

 ∀k = 1, . . . ,K , ∀j = 1, . . . ,n (8)

One major advantage of our approach compared to threshold VARs and smooth tran-

sition VARs is that we do not require a weakly stationary transition variable. Hence,

we do not lose information in the levels of non-stationary time series.2

Maximization Step

Given the expected values for Z, we can obtain estimates for the αk’s, the param-

eter matrixes Θ̃k, and the variance-covariance matrices Ωk by maximizing the log-

likelihood function l in Eq. (4) with respect to each variable. This yields the following

estimates:

α̂k =
1

T − p

T∑
t=p+1

τ̂t,k (9)

̂̃
Θ
>
k =

 T∑
t=p+1

τ̂t,kXktX
>
kt

−1 T∑
t=p+1

τ̂t,kXktY
>
t

 (10)

Ω̂k =

∑T
t=p+1 τ̂t,k êkt ê

>
kt∑T

t=p+1 τ̂t,k
(11)

Both iteration steps are repeated until we achieve convergence using a tolerance pa-

rameter of 10−6.

2.3 Data

Our dataset covers the period January 1999−December 2015. We estimate a five-

variable Logit-MVAR model for the euro area with: (i) the industrial production in-

dex (IP, in logs), (ii) the harmonized index of consumer prices inflation rate, (iii) the

monetary aggregate M3 (in logs), and (iv) the VSTOXX volatility index as endogenous

variables. The fifth variable is a composite indicator for the monetary policy stance.
2Note that an augmented Dickey-Fuller test indeed fails to reject that the key variable in the under-

lying logit model (i.e., the VSTOXX) is non-stationary (see Section 3.1).
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From January 1999 through October 2008, we use the ECB’s main refinancing rate

(MRR).3 After October 2008, we replace the MRR with the shadow interest rate by Wu

and Xia (2016), which provides a quantification of all unconventional monetary policy

measures in a single shadow interest rate, and allows for negative interest rates. In our

view, this is the most parsimonious description of monetary policy in normal times

and crisis times in a single variable.

We add the monetary aggregate M3 and the VSTOXX to a standard monetary pol-

icy transmission model with output, prices, and interest rates for two reasons. First,

the ECB places an emphasis on monetary analysis in its two pillar strategy. Second,

financial market turbulences clearly play a role for monetary policy makers and, in

particular, for unconventional monetary policy (see also Gambacorta et al 2014).

Our concomitant model that determines the state weights includes four of these

five variables: (i) industrial production in logs, (ii) the inflation rate, (iii) the compos-

ite interest rate indicator, and (iv) the VSTOXX volatility index.4 Figure A1 in the

Appendix shows all five variables over the sample period.

2.4 Lag Length Selection

We use the Bayesian information criterion (BIC), the Hannan-Quinn information cri-

terion (HQ), and the Akaike information criterion (AIC) to select an appropriate lag

length for each mixture component k. Following Fong et al (2007), we use the weighted

sum of component densities as the multivariate application of the weighted sum of the

conditional log likelihood:

logL =
T∑
t=1

log
K∑
k=1

αk

{
|Ωk |−

1
2 e−

1
2 e
>
ktΩ

−1
k ekt

}
(12)

3Note that replacing the MRR with the EONIA leaves the results virtually unchanged.
4We do not include the monetary aggregate M3 into the submodel as this leads to non-stationary

impulse responses. Interestingly, the inclusion of M3 into the main model is a key requirement for
obtaining stationary impulse responses.
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The information criteria are then defined as:

BIC = −2logL+ log(T − pmax)
{(
n2

K∑
k=1

pk

)
+K

[n(n+ 1)
2

+n+ 1
]
− 1

}
(13)

AIC = −2logL+ 2
{(
n2

K∑
k=1

pk

)
+K

[n(n+ 1)
2

+n+ 1
]
− 1

}
(14)

HQ = −2logL+ 2log
[
log(T − pmax)

]{(
n2

K∑
k=1

pk

)
+K

[n(n+ 1)
2

+n+ 1
]
− 1

}
(15)

Table 1 shows the information criteria for different lag combinations.5 All three infor-

mation criteria favor a lag length of two for both states. Consequently, we estimate a

Logit-MVAR model with five endogenous variables (IP, inflation, M3, interest rate, and

VSTOXX), two states, two lags per state, and four variables in the submodel determin-

ing the state weights (IP, inflation, interest rate, and VSTOXX).

Table 1: Lag Length Selection

Lags AIC BIC HQ
2,2 171.82 638.28 360.55
3,2 240.60 788.94 462.48
4,2 279.04 909.01 533.98
3,3 282.86 913.79 538.16
4,3 324.45 1036.88 612.76
4,4 377.51 1172.41 699.20

2.5 Impulse Response Functions

The focus of our paper is to introduce a Logit-MVAR model in the context of monetary

policy transmission. Therefore, we follow Sims (1980) and employ a rather simple

recursive identification scheme using a Cholesky decomposition. The ordering follows

the standard in the literature as IP is ordered first, followed by the inflation rate, M3,

the interest rate, and the VSTOXX. This identification scheme implies that monetary

policy shocks affect output, prices, and the monetary aggregate only with a time lag,

whereas monetary policy shocks can affect stock market volatility instantaneously.

5Note that we do not allow for combinations with one lag in a particular state as in such a parsimo-
nious specification the impulse responses fail to sufficiently capture the dynamics in the model.
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The calculation of impulse response functions is based on the bootstrap idea of

Runkle (1987) with an adjustment to the multinomial context of the mixture model

literature. We complete the calculation using the following six steps. First, we use the

original sample and calculate the estimates τ̂t,k,
̂̃
Θk, and Ω̂k using Eqs. (9)−(11). Sec-

ond, we use the original regime-dependent error terms ek1, . . . , ekt and calculate regime-

independent errors et =
∑K
k=1 τ̂t,k · ekt using the state weights. Third, we center et for

each variable to obtain the centered errors e∗t,n = et,n −
∑T
t=1 et,n with et,n denoting the

error term for variable n at time t. Fourth, we randomly draw 500 bootstrap samples

using the centered errors e∗t,n. Fifth, we calculate the orthogonalized impulse responses

for each of the 500 bootstrap samples with a horizon of 48 periods and the above men-

tioned identification scheme. Finally, we obtain the impulse response functions by

calculating the mean over the 500 bootstrapped samples for each horizon. The cor-

responding confidence bands are calculated using the 2.5%, 16%, 84%, and 97.5%

quantile of the distribution over the 500 bootstrapped samples for each horizon.

It is worth highlighting that for the calculation of the impulse responses we do not

have to assume that the economy remains in a single state as done in many Markov-

switching VAR applications. The overall impulse response function is a continuously

varying mixture of the impulse responses for both states, with the weights being de-

termined by the underlying logit model.

3 Empirical Results

3.1 State Weights

In a first step, we present the weights of the different states obtained with the help of

the logit submodel. Figure 1 shows a plot of the weights over time. State 2 in the right

panel with an overall share of 20.1% can be interpreted as a “crisis state” as its weights

are particularly large during the recession in 2002−2003, after the Lehman collapse

in 2008, during the euro area sovereign debt crisis in 2011, and during the Greek

sovereign debt crisis in 2015. Correspondingly, state 1 in the left panel with an overall
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share of 79.9% can be interpreted as representing “normal times.” Consequently, the

impulse responses for models 1 and 2 will provide a quantification of monetary policy

transmission during “normal times” and “crisis times,” respectively.

Figure 1: Weights of Both States

Notes: Weights of both states over time are obtained by estimation of Eq. (6).

Figure 2 shows the predicted probabilities of the logit submodel, based on the pro-

cedure by Hanmer and Kalkan (2013), for both states and different realized values of

industrial production, inflation, the interest rate indicator, and the VSTOXX. The most

striking result is that the VSTOXX clearly separates the regimes. For small values of the

volatility index the probability of being in state 1 is almost 100% (left panel), whereas

for large values the probability of being in state 2 is almost 100% (right panel).

The predicted probabilities of the other three variables are rather flat around the

overall shares of 80% (normal times) and 20% (crisis times) found in Figure 1. Higher

levels of inflation and the interest rate are associated with a larger probability of be-

ing in normal times. In contrast, larger figures for industrial production lead to a

higher probability of being in crisis times. The latter counterintuitive result might be

explained by collinearity as there is substantial correlation between industrial produc-

tion and inflation in our sample (ρ = 0.48).6

6Note that based on these results we also considered reducing the submodel to a single variable, that
is, the VSTOXX. However, the state weights in Figure 1 and the impulse responses in Figure 3 are less
distinct in such a parsimonious setting. Therefore, we stick to the setup with the four-variable logit
submodel.
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Figure 2: Predicted Probabilities of Logit Model

Notes: Figure shows the predicted probabilities of the logit submodel for both states and
different realized values of industrial production, inflation, the interest rate indicator, and the
VSTOXX. Dark grey-shaded areas indicate 68% confidence bands and light grey-shaded areas
indicate 95% confidence bands.
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3.2 Impulse Response Functions

In a second step, we derive the impulse response after a one standard deviation shock

in the error terms of the interest rate equation, which corresponds to 40.37 basis

points.7 The results for output and prices are presented in Figure 3.

Figure 3: Reaction of Output and Inflation to Shocks in the Interest Rate

Notes: Impulse responses for both states are obtained by the bootstrap procedure described
in Section 2.5. Dark grey-shaded areas indicate 68% confidence bands and light grey-shaded
areas indicate 95% confidence bands.

There are three striking findings. First, the impulse responses are much more sig-

nificant in the crisis state. Even at the conservative 5% level the responses for output

and inflation are significant 9−30 and 5−38 months after the monetary policy shock,

respectively. In contrast, in the normal state the responses for output are never signifi-

cant at the 5% level and the responses for inflation become significant for the first time

16 months after the interest rate shock. Second, the contractionary effects are stronger

7Note that the shock size is the same in both states.
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in the crisis state, as a monetary policy shock leads to a reduction in industrial pro-

duction by 0.38% 18 months after the shock and to a decrease in inflation by 0.08

percentage points (pp) 19 months after the shock. During normal times, the reduction

in both output and prices is less than half of the aforementioned sizes (0.17% after 23

months for IP and 0.04 pp after 24 months for inflation). Third, however, the effect of

monetary policy shocks is less enduring during crisis times compared to normal times.

When considering the 68% confidence bands the effects become insignificant in the

crisis state after 35 months (IP) and after 43 months (inflation), respectively, whereas

in the normal state the influence on IP becomes insignificant after 47 months and the

impact on inflation is significant even beyond 48 months.8

3.3 Discussion

One crucial advantage of the Logit-MVAR model is the gain in efficiency, for instance,

compared to a standard linear VAR model. Figure 4 shows the corresponding impulse

responses for a standard linear VAR model obtained using the identification strategy

described in Section 2.5.

Figure 4: Impulse Reponses for Linear VAR

Notes: The figure shows selected impulse responses to a one standard deviation shock in the
interest rate indicator for a linear VAR. Dark grey-shaded areas indicate 68% confidence bands
and light grey-shaded areas indicate 95% confidence bands that are created by bootstrapping
and 500 replications.

8Note that the impulse response function for inflation in normal times eventually becomes insignif-
icant and approaches zero when considering horizons longer than 48 months.
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Whereas the maximum contractionary effects found for the linear VAR are in be-

tween those of the crisis state and the normal state of the Logit-MVAR, the latter’s

impulse responses are much more significant. Moreover, the confidence bands of the

Logit-MVAR are symmetric around the mean responses. In contrast, this is not the

case for a linear VAR where the mean is clearly below the median, presumably due to

outliers (or due to forcing two different states in a single model). In short, monetary

policy transmission in the euro area can be described more efficiently with the help of

a Logit-MVAR model than with a conventional VAR model.

As a final step, we compare the performance of our Logit-MVAR model to that

of a standard logistic smooth transition VAR (LSTVAR) model with the same set of

variables. In line with our previous results (see Figure 2), we use the VSTOXX as

transition variable for the LSTVAR model. In this model, the estimated smoothness

parameter (γ = 174.8) is even larger than the parameter found in the original paper of

Weise (1999). The left panel of Figure 5 shows the regime probabilities for different

realized values of the VSTOXX. The threshold value of the VSTOXX is 34.4 (i.e., the

87% quantile of this variable) and the plot almost favors a “sharp” threshold VAR

model as there is only a single observation with a regime probability other than 0 or 1.

Figure 5: Regime Probabilities of LSTVAR Model

Notes: The left panel shows the regime probabilities of the LSTVAR model for different realized
values of the VSTOXX. The right panel shows the regime probabilities of the LSTVAR model
over time (solid line) compared to the weights of the crisis state in the Logit-MVAR model
(dotted line), the latter of which are taken from the right panel in Figure 1.
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The right panel of Figure 5 shows the regime probabilities of the LSTVAR model

over time (solid line) compared to the weights of the crisis state in the Logit-MVAR

model (dotted line), the latter of which are taken from the right panel in Figure 1.

The correlation between both series is quite high (ρ = 0.74) showing that both models

capture similar crisis episodes. However, the plot indicates one major advantage of the

Logit-MVAR model. In this model, the state affiliations are allowed to continuously

vary over the complete sample period. Therefore, the Logit-MVAR model allows for

different “degrees” of crises, which in turn are captured by different weights of the two

states in the impulse response functions (see Figures 1 and 3). In the LSTVAR model,

we see an almost perfect 0/1 distinction of the regimes, a finding that only allows for

two extreme cases and no states in between.

4 Conclusions

In this paper, we estimate a logit mixture vector autoregressive model describing mon-

etary policy transmission in the euro area over the period 1999−2015. This model al-

lows us to differentiate between different states of the economy with the state weights

being determined by an underlying logit model. In contrast to other classes of non-

linear VARs, the regime affiliation is neither strictly binary nor binary with a (short)

transition period. Mixture VARs allow for a composite model with the weights of the

states continuously varying over the complete sample period.

We show that monetary policy transmission in the euro area can indeed be de-

scribed as a mixture of two states. The second state with an overall share of 20% can

be interpreted as a “crisis state” as its weights are particularly large during the reces-

sion in 2002−2003, after the Lehman collapse in 2008, during the euro area sovereign

debt crisis in 2011, and during the Greek sovereign debt crisis in 2015. Correspond-

ingly, the first state with an overall share of 80% can be interpreted as representing

“normal times.”

In both states, output and prices decrease after monetary policy shocks. During

crisis times, the contraction is much stronger as the peak effect of both variables is
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more than twice as large compared to normal times. In contrast, despite this stronger

peak effect, the effect of monetary policy shocks on output and prices is less enduring

during crisis times. Both results provide a strong indication that the transmission

mechanism for the euro area is indeed different during times of economic and financial

distress and are well in line with previous findings in the literature.

One implication of our results is that monetary policy can be a powerful tool for

economic stimulus during crisis times in the euro area. However, the expansionary

effects are found to be rather short-lived indicating that strong interest rate cuts (or

other expansionary non-conventional policy measures) are required to move the econ-

omy out of a recession.
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Appendix

Figure A1: Macroeconomic Variables for the Euro Area 1999−2015

Source: ECB (IP, inflation, M3, and MRR), Wu and Xia (2016) (shadow interest rate), and
STOXX Limited (VSTOXX).
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