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Abstract

Both from theoretical and practical viewpoints, I argue that the New Key-

nesian model’s forward-looking IS curve should be derived by quadratic ap-

proximation. This leaves uncertainty in the basic three-equation model. After

adding exogenous AR(1) processes, I examine the results by numerical simu-

lation. First, I derive a reduced-form solution for the nominal rate of interest

which describes the equilibrium behavior under optimal discretion. Focusing

on the persistence parameter, the equilibrium will be simulated and com-

pared to the model version containing the certainty equivalence. In a next

step, impulse response functions show the adjustments over time after a cost

shock. As a result, accounting for uncertainty can lead to lower interest rates

of roughly 25 basis points compared to the case without uncertainty.
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1 Introduction

The objective of this paper is to examine a dynamic general equilibrium condi-

tion out of a basic three-equation New Keynesian model (NKM), augmented with

stochastic terms and non-linearity. More precisely, the additive terms behave like

persistent stochastic shocks and are modeled as an exogenous first-order autore-

gressive process. In line with the literature (see, among others, the textbooks by

Gaĺı 2015 and Walsh 2010), cost shock and demand shock are utilized for the New

Keynesian Phillips curve (NKPC) and the forward-looking IS curve respectively.

Non-linearity enters the model through a second-order Taylor approximation re-

garding the IS curve. Bauer and Neuenkirch (2015) were the first to derive such a

framework and found empirical evidence that central banks indeed take the result-

ing uncertainty into account. Moreover, their paper provides strong arguments that

linear macroeconomic models are a shortcoming in the scientific literature.

The method chosen in order to extend the IS curve completes the approach of

including quadratic approximation in all derived equations. First, in the analytical

part, demand and supply side (including monopolistic competition and price rigid-

ity) will yield the NKPC, where firms use second-order approximation when setting

the prices. Second, from the households’ Euler equation follows the forward-looking

IS curve which differs fundamentally from standard approaches. Third, the central

bank’s optimization under discretion ends in a (standard) targeting rule originating

in a (quadratic) welfare optimization concerning output gap and inflation rate.

The main contribution of this paper is to analyze how the economy evolves after

shocks and to what extent persistence plays a role. After adding AR(1) processes to

the derived equations, conditional expectations and variances can be substituted by

solving forward. Next, parameter values are selected for the resulting equilibrium

condition (or instrument rule) with the focus on persistence and shock strength. A

numerical simulation analyzes differences to the basic model. Finally, to examine the

adjustment of macro variables in the medium term, impulse responses are carried

out and contrasted to the linear counterpart.1

The remainder of this paper is organized as follows. Section 2 derives a basic

version of the NKM augmented with a quadratic IS curve. Section 3 expands this

model with shocks and discusses the resulting equilibrium condition. Section 4

1To keep the framework easily understandable, government, investments, money supply, and
labor markets are omitted. Consequently, neither money holdings nor working hours (or leisure
time) will enter the households’ utility function.
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carries out the numerical simulation of both the equilibrium condition and the more

dynamic view of an impulse response analysis. Section 5 concludes.

2 New Keynesian Model with Uncertainty

2.1 New Keynesian Phillips Curve

For deriving the NKPC, two optimization problems concerning private households

and firms are employed, leading to aggregated demand and supply. Furthermore,

price rigidity is modeled through the method introduced by Calvo (1983). The time

index t is only used from the Calvo Pricing section onwards, where it is needed to

make a distinction between the different periods.

Demand and Supply Side

Consumers. On the demand side, the representative consumer can choose from

a variety of goods Cξ which results in an aggregate consumption of C. Usually, the

CES function is used to model monopolistic competition,2 one of the two market

frictions incorporated into the NKPC:

C =

(∫ 1

0

C
ε−1
ε

ξ dξ

) ε
ε−1

. (1)

Here, ξ ∈ [0, 1] can be viewed as a continuum of firms from 0 to 100%. The expo-

nent is a measure for the substitutability between the goods Cξ, where ε represents

the elasticity of substitution.

A Hicksian-like optimization by means of the Lagrangian function helps to solve

for the demand curve:

L (Cξ, λ) =

∫ 1

0

Pξ · Cξ dξ − λ

((∫ 1

0

C
ε−1
ε

ξ dξ

) ε
ε−1

− C

)
. (2)

Since firms have pricing power, the representative consumer takes prices Pξ as

given. Minimizing expenditures
∫
PξCξ with the constraint of a certain consumption

2Dixit and Stiglitz (1977) developed this approach. However, they used a discrete sum and no
integral but received the same results.
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level C requires the following first-order conditions:3

∂L

∂Cτ
= Pτ − λC

− 1
ε

τ

(∫ 1

0

C
ε−1
ε

ξ dξ

) 1
ε−1

= 0. (3)

Differentiating with respect to λ provides the constraint, Eq.(1). Rearranging4

condition (3) and defining λ ≡ P 5 as the aggregated price level yields

Cτ =

(
P

Pτ

)ε
C, (4)

the demand for good i. Substituting this in Eq.(1) and rearranging gives the

formula

P =

(∫ 1

0

P 1−ε
ξ dξ

) 1
1−ε

, (5)

which describes the aggregated price level. The lack of investment and govern-

mental spendings in this model leads to Yτ = Cτ . Each firms’ production Yτ will be

consumed completely by private households and hence Y = C.

Firms. Each firm takes the aggregated demand function and the aggregated price

level P as given since any single firm is too small to directly influence other prices

or productions. It chooses its own price Pτ and faces the typical (real) profit maxi-

mization problem

max
Pτ ,Yτ

{
PτYτ
P
−K(Yτ )

}
(6)

with the cost function K(.). Using Eq.(4), the first-order condition is straight-

forward and leads6 to

P ∗τ =

(
ε

ε− 1

)
K ′(Yτ ) · P, (7)

an important result that states that the optimal price P ∗τ equals the nominal

marginal costs and a mark-up bigger than one for all ε > 1. Log-linearizing7 and

using that the long-run marginal costs equal the multiplicative inverse of the firms’

3Note that τ denotes a continuum of derivatives.
4See Appendix A.1 for the missing steps in this paragraph.
5When the consumption constraint is relaxed by one unit, total consumption expenditures (see

Gaĺı (2015, 53)) will increase to (C+1)P = CP +P , where P is the amount by which the optimum
will change. This is exactly the information the Lagrange multiplier λ contains.

6See Appendix A.2 for the missing steps.
7Note that lower case letters denote the log value of a variable in capital letters minus their

long-run log value, e.g. y = ln(Y )− ln(Yss).
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mark-up (Kss = 1− ε−1) yields

p∗τ − p = γyτ , (8)

where γ is a parameter for the long-run cost elasticity and therefore log deviations

of marginal costs from their long-run trend are assumed to be linear.8 Inserting the

log-version of Eq.(4) gives

p∗τ − p =

(
γ

1 + γε

)
y. (9)

Making use of ŷ, the GDP growth rate around the steady state, as an approxi-

mation for y and using αγ ∈ [0, 1[ as a summarizing parameter, Eq.(9) yields

p∗τ − p = αγ ŷ, (10)

a description of the steady state output growth rate, depending on price growth

and microeconomic behavior. The next section introduces a non-optimal price set-

ting scheme which replicates the actual observed economic patterns.9

Calvo Pricing

Nominal rigidities as the second market friction in the basic NKM are implemented

through the assumption that the firms’ infrequent price adjustment follows an exoge-

nous Poisson process,10 where all firms have a constant probability (φ) to be unable

to update their price in each period with φ ∈ [0, 1[ (i.e., φ = 0 in the absence of

price rigidity). It is crucial that price setters do not know how long the nominal

price will remain in place. Only the expected value is known due to probabilities

that are all equal and constant for all firms and periods. This implies a probability

of φj for having the same price in j periods as today and so the average expected

duration between price changes will be 1/(1− φ).11

From now on, the time index t will be used, as more than one period is being

8See Appendix A.3 for the missing steps.
9See the survey by Taylor (1999), that came to abundant evidence. See also Gaĺı (2015, 7–8)

for a literature overview.
10Calvo (1983) originally wrote his article in continuous time. However, using discrete periods

immensely helps the clearness and is more realistic with regard to how firms actually operate.
Moreover, Calvo (1983, 396–397) shows the equivalence of both approaches.

11See Appendix A.4 for proof.
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considered. Simultaniously, the firm index τ is no longer important since it is suf-

ficient to calculate with a share of firms φ (or 1 − φ). Hence, p∗τ ≡ p∗t and p ≡ pt.

When xt is the price that firms will set in period t (provided they are able to do so),

the following will apply:

xt =
pt − φpt−1

1− φ
⇒ Etxt+1 =

Etpt+1 − φpt
1− φ

. (11)

Firms will act on the probability of not being able to adjust prices in future

periods. In consequence, they try to set a price xt that is not necessarily the optimal

price p∗t , derived in the previous section. Also, in the presence of price rigidities,

xt 6= p∗t generally holds.

To reveal the mechanics behind the staggered price setting, it is convenient to ver-

bally treat pt and xt as level variables. Strictly speaking, the firms set price growth

paths in the following optimization problem rather than maximizing a discounted

profit as the difference between revenue and costs.12 In the present way, the optimal

reset price, determined by the discounted sum of future profits, is derived through a

quadratic approximation of the per-period deviation from maximum-possible profit

with β ∈ [0, 1[, the discount factor over an infinite planning horizon. Therefore,

firms minimize their loss function, the discounted deviations from p∗t over all t:

min
xt

{
Et

[
k
∞∑
j=0

βjφj
(
xt − p∗t+j

)2]}
. (12)

The parameter k > 0 enters the loss function multiplicatively and indicates all

exogenous factors that will influence the costs of not setting the optimal price in

each period.13 The first-order condition is

∂

∂xt
= Et

[
2k

∞∑
j=0

(βφ)j(xt − p∗t+j)

]
= 0. (13)

After rearranging14 and expressing x through p with Eq.(11), it follows

pt − φpt−1 = βφ(Etpt+1 − φpt) + (1− φ)(1− βφ)p∗t , (14)

12See Walsh (2010, 241–242) for the use of level variables in Calvo pricing.
13Note that it can also come up as an additive term or any other positive monotonic transfor-

mation and does not alter the results.
14See Appendix A.5 for the missing steps.
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that only contains parameters and variants of the variable p. Expressing p

through π15 as well as isolating (p∗t − pt) and replacing it with the result from

last section, Eq.(10), gives

πt = βEtπt+1 +
αγ(1− φ)(1− βφ)

φ
ŷt. (15)

In a final step, a summarizing parameter κ > 0 for all parameters, multiplied

with ŷt, will be defined to end up in the NKPC:

πt = βEtπt+1 + κŷt. (16)

Both the expected inflation rate Etπt+1 and the GDP growth rate around the

steady state ŷt (or output gap) have a positive impact on πt since β, κ > 0. Moreover,

the slope of the NKPC (κ), depends on all four parameters (β, γ, ε, and φ) of this

section.16

2.2 The Quadratic IS Curve

The objective is to derive an Euler equation via maximizing utility with a dynamic

budget constraint. Initially, it is not necessary to formulate an explicit utility func-

tion. On the contrary, the general marginal utility gives a better insight into the

intertemporal mechanics. Only one specific assumption will be made, namely not

considering money, working hours or any other possible utility-gainer. It solely re-

lies on consumption and thus households maximize their intertemporal discounted

utility

max
Ct

{
Et

[
∞∑
s=t

βs−tU(Cs)

]}
. (17)

Taking an intertemporal budget contraint with prices and the interest rate it

into account, the maximization problem leads17 to the Euler equation

U ′(Ct) = β(1 + it)
Pt

Et[Pt+1]
Et[U

′(Ct+1)], (18)

15

pt − pt−1 = lnPt − lnPss − (lnPt−1 − lnPss) = ln

(
Pt
Pt−1

)
= ln(1 + πt) ≈ πt.

16See Appendix A.6 for a more detailed analysis of κ. Depending on the exact model, the slope
of the NKPC can have a slightly different meaning, e.g. Walsh (2010, 336) uses a measure for the
firm’s real marginal costs instead of the output gap.

17See Appendix A.7 for the missing steps.
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revealing the intertemporal relationship of the marignal utility out of consump-

tion. Marginal utility in period t equals the counterpart in t + 1, corrected by

discount factor, nominal interest rate, and the ratio of current and expected future

price level. Assuming it rises, marginal utility in t would also rise relative to pe-

riod t+ 1. Given the diminishing marginal utility property and therefore concavity,

consumption will be higher in the future.18

One convenient formulation for such a function is U(Ct) = (1−σ)−1 · (C1−σ
t − 1)

with σ > 0 implying 1/σ as the intertemporal elasticity of substitiution (IES).

Substituting this in the Euler equation gives

Y −σt = β(1 + it)
Pt

Et[Pt+1]
Et[Y

−σ
t+1], (19)

when recalling the market clearing condition Y = C. The long-run real interest

r enters the equation through β since it equals 1/β − 1.19

Quadratic Approximation. Eq.(19) can be prepared for quadratic approxima-

tion when inserting 1/(1 + r) for β, treating t-measurable variables as constants for

the conditional expectation, rearranging, and taking logs:

ln

(
1 + r

1 + it

)
= lnEt

[(
Yt+1

Yt

)−σ]
− lnEt

[
Pt+1

Pt

]
. (20)

Ignoring Jensen’s inequality is equivalent to first-order Taylor series expansions

of both logarithm and exponential function. Hence, the right side of Eq.(20) can be

written as20

' Et

[
ln

((
Yt+1

Yt

)−σ)]
− Et

[
ln

(
Pt+1

Pt

)]
(21)

and thereby be expressed in growth rates:21

Et[−σ ln(1 + ỹt+1)]− Et[ln(1 + πt+1)]. (22)

Instead of linearizing, the logarithm will be represented by a second-degree poly-

18Note that present consumption could also increase because of the income effect.
19The relation follows from the steady state Euler equation. See Gaĺı (2015, 132) for a more

complex definition of the long-term real interest rate.
20See Appendix A.9 for the missing steps.
21Note that the use of the actual GDP growth rate ỹt+1 in Eq.(22) is merely for clarity. See

Appendix A.10 and in particular Eq.(A35.3) for the relationship between ỹt+1 and ŷt+1.
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nomial22 and only at this point the approximation steps in concerning output and

price level:

≈ Et

[
−σ
(
ỹt+1 −

1

2
ỹt+1

2

)]
− Et

[
πt+1 −

1

2
π2
t+1

]
(23.1)

= −σEtỹt+1 +
σ

2
Etỹt+1

2 − Etπt+1 +
1

2
Etπ

2
t+1 (23.2)

= σŷt − σEtŷt+1 +
σ

2
Etỹt+1

2 − Etπt+1 +
1

2
Etπ

2
t+1. (23.3)

Bringing together the linearized form of the left side in Eq.(20) yields the quadratic

IS curve:

ŷt = Etŷt+1 −
1

σ
(it − r − Etπt+1)−

1

2σ
Etπ

2
t+1 −

1

2
Etỹt+1

2. (24)

Referring to the original graphical IS relation (in the ŷ/i–space), the curve shifts

to the right if the long-term real interest rate r, the output gap expectations Etŷt+1

or the inflation expectations Etπt+1 rise. However, the slope will rise and the curve

becomes flatter if the intertemporal elasticity of substitution (1/σ) rises. The second-

order terms have a negative effect on ŷt. However, Eq.(24) is not in reduced-form

since the last term still contains ŷt. The formula for the conditional variance,23 can

be utilized to show the second moments’ influence in detail:

ŷt = Etŷt+1 −
1

σ
(it − r − Etπt+1)−

1

2σ
V artπt+1 −

1

2
V artỹt+1

− 1

2σ
(Etπt+1)

2 − 1

2
(Etỹt+1)

2. (25)

In a first step, looking only at the variances24 and solving for the interest rate

yields

it = −σŷt + r + Etπt+1 + σEtŷt+1 −
1

2
V artπt+1 −

σ

2
V artŷt+1 − . . . , (26)

which states that uncertainty would shift the curve to the left compared to the

original IS curve. Considering the second moment, there are two additional effects,

22See Appendix A.11 for more detail.
23The following applies for a random variable z:

V artzt+1 = Etz
2
t+1 − (Etzt+1)2 ⇔ Etz

2
t+1 = (Etzt+1)2 + V artzt+1.

24Note that V artỹt+1 ≈ V art(ŷt+1 − ŷt) = V artŷt+1 because ŷt is t-measurable and constants
(in period t) do not affect V art.
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namely expected output gap growth affects the slope and also a variation of the

curve’s shape. That is because the last term of Eq.(25) contains ŷt and ŷt
2:

−1

2
(Etŷt+1 − ŷt)2 = −1

2
(Etŷt+1)

2 + Etŷt+1 · ŷt −
1

2
ŷt

2. (27)

Inserting everything in Eq.(26) gives

it =− σ

2
ŷt

2 + (σEtŷt+1 − σ)ŷt + r + Etπt+1 + σEtŷt+1 −
1

2
V artπt+1 −

σ

2
V artŷt+1

− 1

2
(Etπt+1)

2 − σ

2
(Etŷt+1)

2. (28)

Larger values for Etŷt+1 result in a (slightly) flatter IS curve and vice versa.

Figure 1 illustrates the shift, the different slope, and the quadratic form.

ŷt

it linearized IS

slope: −σ + σE
t ŷ
t+1

1.

quadratic IS
2.

Figure 1: 1. Shift of the locus and a change in the slope (for Etŷt+1 > 0). 2. The
quadratic form.

In the quadratic IS formula, σ is the only parameter besides r. When examining

the effects of a variation in σ on the derived curve, it is useful to recapitulate the

meaning of 1/σ. The IES measures the strength of the relationship between it and

ŷt+1/ŷt (also yt+1/yt and Ct+1/Ct). A positive IES implies a positive relationship.

Also, if it rises, there is a negative effect on ŷt due to the substitution effect. If the
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IES increases (decreases) the relationship gets stronger (weaker) and the IS curve’s

slope should be flatter (steeper). Hence, increasing σ should lead to a steeper IS

curve. The effect is indeed a more concave and steeper curve. Additionally, it shifts

to the left (right) if the uncertainty is relatively high (low) in comparison to the

expected values.

2.3 Targeting Rule under Discretion

The central bank takes NKPC and IS curve as given and wants to optimally set the

interest rate for period t. Therefore, the central bank’s targeting rule will be derived

by minimizing the discounted loss function over all periods25

min
π, ŷ

{
Et

[
∞∑
s=t

βs−t
(
(πs − π∗)2 + δŷs

2
)]}

(29)

resulting in the standard targeting rule under discretion:26

δŷt = −κπt ⇔ ŷt = −κ
δ
πt. (30)

Every difference between the inflation rate and the central bank’s target π∗

results in a loss.27 Also, every output gap leads to a loss but is reduced by a weighting

factor δ, normally smaller than one. Squaring ensures that higher deviations yield

disproportionately higher losses and the optimized variables will not vanish in the

derivatives. Moreover, it makes the loss function symmetrical.28

Although the optimal interest rate is not explicitly given, all relationships be-

tween the macroeconomic variables are derived. The process is as follows: the

nominal interest rate has an effect on the output gap (IS curve), which in conse-

quence affects the inflation rate (NKPC). Furthermore, Eq.(30), the “leaning against

the wind” condition, implies a countercyclical monetary policy, that is, to stabilize

prices and eventually contract the economy. The degree of this contraction increases

in κ and decreases in δ, the weight on output stabilization.

Finally, (16), (25), and (30) can lead to a forward-looking Taylor type rule (with

25The loss function can be derived by a second order approximation of the households’ welfare
loss, first introduced by Rotemberg and Woodford (1999, 54–61). It can also be found in the
textbooks by Gaĺı (2015), Walsh (2010), and Woodford (2003b).

26See Appendix A.12 for the missing steps.
27Note that π∗ = 0 as it does not change the essential findings.
28See Nobay and Peel (2003, 661) for an asymmetric loss function (Linex form) that becomes

quadratic in a special case.
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uncertainty added). Plugging (30) into (16) gives

− δ
κ
ŷt = βEtπt+1 + κŷt ⇔ ŷt = − κ

δ + κ2
· βEtπt+1, (31)

which can be utilized for (25):

it = r +

(
1 +

βκσ

δ + κ2

)
Etπt+1 + σEtŷt+1 −

1

2
V artπt+1 −

σ

2
V artŷt+1

− 1

2
(Etπt+1)

2 − σ

2
(Etŷt+1 − ŷt)2. (32)

When examining the coefficients on first and second moments, the parameters

β, δ, κ, and σ have to be taken into account. Larger values for β and κ29 increase

the weight on expected inflation, whereas larger values for σ increase the weight

on expected inflation, as well as expectation and uncertainty concerning the output

gap growth. Following Bauer and Neuenkirch (2015), the squared expected inflation

rate and the squared expected output gap growth rate should not be overinterpreted

here, as it takes very small values for advanced economies.

The difference to conventionally derived Taylor rules ultimately lies in the nega-

tive variance term that Bauer and Neuenkirch (2015, 15–17) empirically confirmed

for uncertainty in future inflation rates where central banks lower the interest rate

for higher values of V artπt+1. Branch (2014, 1042–1044) also adds variances in an

empirical model for a Taylor rule. He estimates negative coefficients with a more

significant (and more negative) value for the coefficient on the inflation variance.

The NKPC, the IS curve, and the targeting rule were all derived by second-

order approximations. However, this implements uncertainty only in the IS curve

since Pt+1 and Yt+1 are non-t-measurable. Thus, besides the IS’ quadratic terms, all

derivations follow standard approaches.

3 Persistent Shocks and Equilibrium Condition

This section adds stochastic terms to the derived curves and solves these forward to

a reduced form solution for the nominal interest rate.

29The increasing relationship holds for δ = 0.25 (independent of β and σ) if κ < 0.5, which can
be assumed (see Appendix A.15).
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3.1 Adding Persistent Stochastic Shocks

Given the possibility that unforseen events might interrupt the normal economic

process (e.g., inventions, cold winters, higher oil prices, wars), stochastic shocks can

be added to the existing relationships. The realistic feature of a certain duration of

the event that will dwindle over time can be modelled by means of stationary AR(1)

processes:30

et = µet−1 + ζt, (33.1)

ut = νut−1 + ηt. (33.2)

The coefficients on the shocks in period (t − 1), µ, ν ∈ ]0, 1[, declare the per-

centage impact of shocks that carries over to the subsequent period. Additional

assumptions are normally distributed error terms with an expected value equal to

zero, that is, ζt ∼ N (0, σ2
e) and ηt ∼ N (0, σ2

u), which are also serially uncorrelated.

Adding Eq.(33.1) to the NKPC, Eq.(16), can be described as a cost shock, a

cost-push shock or an inflation shock and adding Eq.(33.2) to the IS curve, Eq.(25),

indicates a taste shock, a demand shock or fluctuations in the flexible-price equilib-

rium output level (Walsh 2010, 352):31

πt = βEtπt+1 + κŷt + et, (34.1)

ŷt = Etŷt+1 −
1

σ
(it − r − Etπt+1)−

1

2σ
Etπ

2
t+1 −

1

2
Etỹt+1

2 + ut. (34.2)

3.2 Equilibrium Condition

A standard approach is chosen to substitute expectations through forward solving.

Inserting the targeting rule (30) into the stochastic NKPC yields

πt = βEtπt+1 −
κ2

δ
πt + et ⇔ πt =

βδ

δ + κ2
Etπt+1 +

δ

δ + κ2
et. (35)

Devising the same formula for t+ 1 and substituting πt+1 gives

πt =
βδ

δ + κ2
Et

[
βδ

δ + κ2
Et+1[πt+2] +

δ

δ + κ2
et+1

]
+

δ

δ + κ2
et. (36)

30For instance Clarida et al (2000, 170) are also assuming a stationary AR(1) process in the
context of a NKM.

31See Gaĺı (2015, 128) for a further discussion of cost shocks, the type that is will be most
important throughout the remainder of the paper.
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With Et[Et+n[π]] = Et[π] and Et[et+n] = µnet, future expectations and shocks

will leave the equation:

πt =

(
βδ

δ + κ2

)2

Et[πt+2] +
βδµ

δ + κ2
· δ

δ + κ2
et +

δ

δ + κ2
et. (37)

After (n− 1) iterations, the equation converts to

πt =

(
βδ

δ + κ2

)n
Et[πt+n] +

δ

δ + κ2
et

n−1∑
j=0

(
βδµ

δ + κ2

)j
. (38)

Developing n towards infinity and making use of the formula for the infinite

geometric series leaves parameters and the cost shock only:

πt =
δ

δ + κ2
et ·

δ + κ2

δ + κ2 − βδµ
. (39)

Rearranging and setting θ = (κ2 + (1 − βµ)δ)−1 as auxiliary parameter results

in the equilibrium conditions32 for πt and ŷt:

πt =
δ

κ2 + (1− βµ)δ
· et = δθet (40.1)

and ŷt =
−κ

κ2 + (1− βµ)δ
· et = −κθet. (40.2)

Determine the expectation values33 analogously:

Etπt+1 = δθEtet+1 = δµθet (41.1)

and Etŷt+1 = −κθEtet+1 = −κµθet. (41.2)

Solution without Uncertainty

In a first step, I solve for the target interest rate

it = r − σŷt + σEtŷt+1 + Etπt+1 + σut, (42)

which can be rewritten with the equilibrium conditions (40.2), (41.1), and (41.2):

32See also Clarida et al (1999, 1680) for a comparison of these results to those under commitment.
33Etet+1 = Et [µet + ζt+1] = µEtet + Etζt+1︸ ︷︷ ︸

=0

= µet.
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it = r + σκθet − σκµθet + δµθet + σut. (43)

Simplifying results in

it = r + ((1− µ)σκ+ µδ)θet + σut (44)

and finally setting αµ > 0 as a summarizing parameter gives

it = r + αµet + σut, (45)

a reduced-form solution for the nominal interest rate that describes the equilib-

rium behavior under optimal discretion. The central bank’s optimized interest rate

in period t can be expressed through the long-run real interest rate and both shocks

which are weighted by a composition of parameters. Since these coefficients are pos-

tive, larger shocks correspond to higher interest rates.34 Gaĺı (2015, 133–134) refers

to this equation type as instrument rule. In contrast to targeting rules (see Eq.(30),

“practical guides for monetary policy”), Eq.(45) is not easy to implement.35 It re-

quires real-time observation of variations in the cost-push shock and the knowledge

of the model’s parameters, including the efficient interest rate r.

Model with Uncertainty

After including the second order terms however, Eq.(45) will be examined in a

theoretical way in order to understand how shocks and persistence correspond to it

in the equilibrium.

Basically, the further procedure is solving the IS curve for the interest rate and

replacing all variables with shocks. The difference to standard approaches are the

quadratic terms, thus lower interest rates should be expected. To start with the

expected value of the squared inflation (Etπ
2
t+1), Eq.(40.1) in period t+ 1 gives

πt+1 = δθet+1 = δθ (µet + ζt+1) , (46)

by using the former shock definition with persistence and a normally distributed

34See also Walsh (2010, 364) for a more detailed discussion.
35The paper by Svensson and Woodford (2005) discusses the “targeting” vs. “instrument” topic

in more detail.
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error term. Therefore,

Etπ
2
t+1 = Et

[
(δθ)2 (µet + ζt+1)

2] = (δθ)2Et
[
µ2e2t + 2µetζt+1 + ζ2t+1

]
, (47)

where the middle term equals zero, since et can be treated as a constant in Et

and Etζt+1 = 0. Inserting the variance, again with Eq.(23), yields

(δθµ)2e2t + (δθ)2
(
V artζt+1 + (Etζt+1)

2) . (48)

The variance is defined as σ2
e and hence,

Etπ
2
t+1 = (δθ)2

(
µ2e2t + σ2

e

)
. (49)

Doing the same for the expected value of the squared output growth rate36

(Etỹt+1
2 = Et(ŷt+1 − ŷt)2), Eq.(40.2) in period t+ 1 gives

ŷt+1 = −κθet+1 = −κθ (µet + ζt+1) (50)

and therefore,

Et(ŷt+1 − ŷt)2 = (κθ)2
(
(1− µ)2e2t + σ2

e

)
. (51)

The equilibrium condition under uncertainty is now

it = r + αµet −
1

2

((
(1− µ)2σκ2 + µ2δ2

)
θ2e2t +

(
σκ2 + δ2

)
θ2σ2

e

)
+ σut (52)

and finally setting αe > 0 and ασ > 0 as summarizing parameters gives

it = r + αµet −
1

2

(
αee

2
t + ασσ

2
e

)
+ σut, (53)

a reduced-form solution for the nominal interest rate that describes the equi-

librium behavior under uncertainty.37 Compared to the approach in Clarida et al
36Note that the output gap can also be replaced by the inflation rate with the standard targeting

rule (30) to obtain the same results. See Appendix A.14 for the missing steps.
37Going one step further, et and ut could be replaced by the error terms:

it = r + αµ

∞∑
k=0

µkζt−k −
1

2

αe( ∞∑
k=0

µkζt−k

)2

+ ασσ
2
e

+ σ
∞∑
k=0

νkηt−k.

This visualizes the past (known) shocks that are discounted by µ and ν.
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(1999), a negative term and an additional parameter (σ2
e) enters the condition. The

term entails a generally lower interest rate level. Moreover, a larger cost shock

variance also corresponds to lower values for it, an essential result.38

4 Numerical Simulation

Table 1 shows the baseline (BL) values and the overall range used when taking

all simulations into account.39 Every value is assumed to be obtained on a quarter-

yearly basis. In order to cover even extreme scenarios, et initially ranges from −0.5%

to 2.5%.

Table 1: Overview of all Parameters

Parameter BL Calibration Applied Range Description

β 0.99 0.99 Discount factor

κ 0.04 0.01 - 0.25 Slope of the NKPC

σ 1 0.5 - 5 Reciprocal value of the IES

δ 0.25 0.25 Weight on output fluctuations

µ 0.6 - 0.8 0.6 - 0.85 Cost shock persistence

σ2
e 0.0001 0.00005 - 0.0005 Cost shock variance

et −0.005 - 0.025 −0.005 - 0.025 Cost shock

ut 0 0 Demand shock

4.1 Equilibrium Condition

In the baseline calibration, as shown in Table 1, β = 0.99, κ = 0.04, σ = 1, δ = 0.25,

σ2
e = 0.0001, µ reaches from 0.6 to 0.8 and et from −0.5% to 2%. Since ν and σ2

u play

no role when the central bank acts under discretion, ut is assumed to be zero. The

optimal interest rate would react one-to-one and there would be no gain of further

insights.

Figure 2 shows the results for the model with uncertainty with a variety of

persistence and cost shock combinations. The interest takes values from −1.1%

38The equation in its static form does not directly contain ν and σ2
u. This is due to the simplified

targeting rule and the resulting assumption that ŷ and π can be represented only through cost
shocks.

39See Appendix A.15 for parameter discussion and literature review.
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Figure 2: Corresponding interest rate in the equilibrium condition. Horizontal
axes: Persistence µ and cost shock et. Vertical axis: Interest rate it.

to 10.2%. It is assumed that negative interest rates are possible and that the zero

lower bound does not represent an obstacle. Central banks can indeed raise a tax on

deposits made by commercial banks.40 When the model calibrates negative values

for it, it could also be interpreted as an unconventional policy (i.e., quantitive easing)

by the monetary authorities.41 The lowest interest rates occur hand in hand with

highly persistent negative cost shocks, a fairly extreme scenario since the only major

developed country to have faced deflationary tendencies over a prolonged period of

time is Japan. But even in the latter case, the negative cost shocks were closer

to zero. As expected, the highest values come with large cost shocks. For a low

persistence, regardless of the shocks, the resulting interest rate varies very litte.

Model Comparison

To isolate the partial effect of the parameters, the interest rate differences after

subtracting the values with (see Figure 2) and without uncertainty are shown. Due

to small interest rate differences, the vertical axis in the following diagrams is scaled

in basis points (100 basis points = one percentage point).

Figure 3 gives a broad overview on the effect of uncertainty. There is a significant

40The concise paper by Bassetto (2004) derives a framework in which the central bank commits
to negative nominal interest rates and discusses the equilibrium condition in such a situation.

41The Wu-Xia shadow rate does exactly that (see Wu and Xia (2016)) and is negative since mid
2009 for the federal funds rate.
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Figure 3: Differences between both cases (with and without uncertainty) in the
equilibrium condition. Horizontal axes: Persistence µ and cost shock et. Vertical
axis: Difference of interest rate it in basis points.

Figure 4: Differences between both cases (with and without uncertainty) in the
equilibrium condition (µ = 0.8). Horizontal axis: Cost shock et. Vertical axis:
Difference of interest rate it in basis points.

amount of persistence/shock combinations that support the estimations by Bauer

and Neuenkirch (2015). In particular, highly persistent shocks affect the interest

rate outcome in the equilibrium behavior. In this case, the interest rate difference

reaches from 10 to 60 basis points. Figure 4 can be understood as a cross section of

Figure 3 with µ = 0.8, a realistic assumption when reviewing the literature such as

Smets and Wouters (2003). It reveals, as one of the main findings from a theoretical
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point of view, that accounting for uncertainty results in lower policy rates, even

during tranquil times. A black line is drawn at 25 basis points to show the empirical

conclusion by Bauer and Neuenkirch (2015, 21).42

4.2 Impulse Response Analysis

First, I examine the macro variables’ short- and medium-term adjustments in the

newly derived framework. In a subsequent step, the latter will be compared to the

basic NKM.

Figure 5: Dynamic responses to a cost shock by 100 basis points. Horizontal axes:
Timeline in quarters. Vertical axes: Responses of it, et, πt, Etπt+1, ŷt, and Etŷt+1

for µ ∈ {0.6, 0.7, 0.8} in basis points.

Figure 5 shows the adjustment over time to the steady state in the baseline case

(see Table 1). The dashed lines comprise the scenarios of (relatively) high and low
42Note that Bauer and Neuenkirch (2015) have no assumption regarding the level of shock

persistence.
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persistent shocks. Here, the upper (lower) course corresponds to the high (low)

persistence for the nominal interest rate, the shock strength, and the (expected)

inflation rate. The opposite is the case with regard to the (expected) output gap.

All values adjust normally but with quantitative differences when varying the level of

persistence. In the median case, the nominal interest rate has to be raised by almost

2.5% and should then adjust to the steady state (depending on the real interest

rate) in a sluggish manner. Inflation rate and output gap follow their respective

expectation values. The inflation rate is initially ranged between 2.5% and 5%, and

on the other hand, the output gap starts at around −0.5%.

Model Comparison

Similar to Section 4.1 the following graphics show the “gap” in it when accounting

for uncertainty.

Figure 6: Comparing dynamic responses to a cost shock by 100 basis points with
µ = 0.75. Horizontal axes: Timeline in quarters. Vertical axes: Difference of interest
rate it (with and without uncertainty) in basis points.

Figure 6 compares the NKM with and without uncertainty and shows the re-

sulting differences of the nominal interest rate in each case. In addition, different

scenarios are positioned opposite each other: Slope of the NKPC with 0.01 (black

dotted) and 0.25 (dashed), IES with 0.5 (black dotted) and 5 (dashed), shock persis-

tence with 0.85 (black dotted) and 0.6 (dashed), shock variance with 0.0005 (black
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dotted) and 0.00005 (dashed). Both latter cases play a very important role with a

difference up to 30 and 40 basis points respectively. Also, with a very flat Phillips

curve (in contrast to a steep NKPC) an effect comes to light (around 10 basis points).

Comparable effects can be observed in the different IES cases but variations in the

elasticity hardly play a role. The examples show that there is no obligatory dif-

ference but (highly) persistent shocks and increasing uncertainty in particular can

make a distinction between the model with and without uncertainty.

5 Conclusion

First, the paper derived a reduced-form solution for the nominal rate of interest

out of a three-equation New Keynesian model with persistent stochastic shocks.

Since these shocks behave like an AR(1) process and the central bank’s standard

targeting rule is applied, this equation describes the equilibrium behavior of the

nominal interest rate under optimal discretion. Secondly, the extended model with

a quadratically approximated IS curve (therefore with uncertainty) was simulated

with the focus on persistence parameters and compared to the model containing

the certainty equivalence. In a next step, impulse response analysis is used to

examine the adjustment over time. The results give important insights into how the

equilibrium behaves when confronted with a wide range of parameter values:

(i) Interest rates are generally lower when accounting for uncertainty. (ii) This

difference increases with higher persistencies and higher cost shocks (positive or

negative). (iii) A steeper NKPC decreases the effect of uncertainty. (iv) Over time,

the impact on the nominal interest rate decreases and the adjustment highly depends

on the degree of persistence. (v) Finally, and most importantly, the essential result

of Bauer and Neuenkirch (2015) can be confirmed from a theoretical point of view.

Under sensible assumptions, accounting for uncertainty leads to lower interest rates

of roughly 25 basis points.

This paper leaves some open avenues for future research. First, a targeting rule

derived under commitment could be taken into account to be further built upon.

Second, due to the negative interest rate in the equilibrium and because of the

more prominent role of unconventional monetary policy in recent years, the model

could include a zero lower bound while incorporating this kind of policy. Third,

calibrating the shock variance and the underlying distribution, which is essential for

the resulting uncertainty, can also be considered as a further topic.
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Appendix

A.1 Consumers – Calculation Steps

∂L /∂Cτ can be obtained by using the chain rule:

Pτ − λ
ε

ε− 1

(∫ 1

0

C
ε−1
ε

ξ dξ

) ε
ε−1
−1

· ε− 1

ε
C

ε−1
ε
−1

τ︸ ︷︷ ︸
derivative of sub-function

= 0 (A1.1)

⇔ Pτ − λ
(∫ 1

0

C
ε−1
ε

ξ dξ

) 1
ε−1

· C−
1
ε

τ = 0. (A1.2)

First, exponentiate the integral with ε and 1/ε for rearranging the first-order

condition. Then insert C from the constraint. It follows that

Pτ = λC
− 1
ε

τ C
1
ε ⇔ Pτ = λ

(
C

Cτ

) 1
ε

(A2.1)

⇔ Pτ
λ

=

(
Cτ
C

)− 1
ε

⇔
(
Pτ
λ

)−ε
=
Cτ
C
. (A2.2)

To obtain Eq.(5), solve Eq.(4) for Cτ and insert the result for all firms in the

constraint, Eq.(1):

C =

∫ 1

0

((
Pξ
P

)−ε
C

) ε−1
ε

dξ


ε
ε−1

⇔ C =

(
1

P

)−ε
C

(∫ 1

0

P 1−ε
ξ dξ

) ε
ε−1

(A3.1)

⇔ P−ε =

(∫ 1

0

P 1−ε
ξ dξ

) ε
ε−1

⇔ P =

(∫ 1

0

P 1−ε
ξ dξ

) 1
1−ε

. (A3.2)

A.2 Firms – Calculation Steps

Eq.(6) can be written in more detail. Using Eq.(4) with Y and rearranging leads to

max
Pτ

{(
Pτ
P

)1−ε

Y −K

((
Pτ
P

)−ε
Y

)}
. (A4)

The first-order condition is now straightforward, using the chain rule:

∂

∂Pτ
= (1− ε)

(
Pτ
P

)−ε
· Y
P
−K ′(Yτ ) · (−ε)

(
Pτ
P

)−ε−1
· Y
P

= 0. (A5)
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Simplifying and denoting the optimal price with P ∗τ yields

(ε− 1)

(
P ∗τ
P

)−ε
= K ′(Yτ ) · ε

(
P ∗τ
P

)−ε−1
(A6.1)

⇔ 1 =

(
ε

ε− 1

)
K ′(Yτ )

(
P ∗τ
P

)−1
(A6.2)

⇔ P ∗τ =

(
ε

ε− 1

)
K ′(Yτ ) · P. (A6.3)

However, perfect substitutes let the monopolistic structure vanish and show the

typical polypolistic result:

lim
ε→∞

(
ε

ε− 1

)
K ′(Yτ ) · P = K ′(Yτ ) · P = P ∗τ . (A7)

Now, with a cost function in real terms of quantities Yτ defined as

K(Yτ ) =
cvar
γ + 1

Y γ+1
τ + cfix, (A8)

where cfix are the fix costs, cvar is a measure for the variable costs and γ repre-

sents the elasticity of marginal costs, Eq.(7) becomes a micro-funded AS curve that

takes the form of a power function:

P ∗τ =

(
ε

ε− 1

)
cvarY

γ
τ · P. (A9)

A.3 Log-Linearization

It is convenient to use log-linearized variables instead of level variables to be able

to solve the model analytically. Also, some interpretations of the results, in terms

of elasticity and growth rates, become quite useful. So both Eq.(4) and Eq.(A9)

can be approximated through log-linearization around the steady state. Thus, the

approximation becomes more precise with smaller growth rates, that is exactly what

the steady state can offer. But first some preparation is necessary. Let Z be a state

variable that can change over time and Zss its long-term value. When defining

z ≡ lnZ − lnZss, (A10)

z becomes a good approximation of ẑ, the growth rate around the steady state.

Also, a first-order Taylor approximation “in reverse” shows the relationship between
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z and ẑ:

ẑ ≈ ln(1 + ẑ) = ln

(
1 +

Z − Zss
Zss

)
= lnZ − lnZss. (A11)

Furthermore, in the steady state, long-term values for individual variables are

by definition the same as for those on aggregated level, thus Zτss = Zss. The state

would otherwise include endogenous forces. And finally, the long-run marginal costs

equal the multiplicative inverse of the firms’ mark-up:43

cvarY
γ
ss =

ε− 1

ε
. (A12)

An explanation for that would be the long-run version of Eq.(A9) and hence

Pτss = Pss. Now this can be applied to the previous results. First, Eq.(4), the AD

curve will be log-linearized. Taking logs, expanding with the log long-term values,

and using (A10) gives

lnYτ = lnY + ε(lnP − lnPτ ) (A13.1)

⇔ lnYτ − lnY = −ε(lnPτ − lnP ) (A13.2)

⇔ lnYτ − lnYss − (lnY − lnYss) = −ε(lnPτ − lnPss − (lnP − lnPss)) (A13.3)

⇔ yτ − y = −ε(pτ − p) (A13.4)

⇔ yτ = −εpτ + εp+ y, (A13.5)

a linearized AD curve in terms of growth rates with the slope of −1/ε. A higher

elasticity of substitution would result in a flatter curve, so a change in the firm’s

price growth pτ would have a stronger effect on production growth yτ .

Next, with the use of (A12), the AS curve type Eq.(A9), can be rewritten in a

similar way:

lnP ∗τ = ln

(
ε

ε− 1

)
+ ln cvar + γ lnYτ + lnP (A14.1)

⇔ lnP ∗τ − lnP = ln

(
ε

ε− 1

)
+ ln cvar + γ (lnYτ − lnYss + lnYss) (A14.2)

⇔ p∗τ − p = γyτ + ln

(
ε

ε− 1

)
+ ln cvar + γ lnYss (A14.3)

⇔ p∗τ − p = γyτ + ln (cvarY
γ
ss)− ln

(
ε− 1

ε

)
(A14.4)

43Other authors simply define this property, see e.g. (Gaĺı 2015, 57).
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⇔ p∗τ − p = γyτ + ln

(
cvarY

γ
ss

(ε− 1)/ε

)
︸ ︷︷ ︸

=0

. (A14.5)

The latter expression shows the assumption that the log deviations of marginal

costs from their long-run trend values are linear in the amount of γ. When the firm’s

optimized price growth p∗τ is equal to the aggregated price growth p, then there is

no growth in the firm’s production.

Having log-linearized both demand and supply side, Figure A1 sums up.

yτ

pτ

p

slo
pe:

γ

p+
y

ε

εp+ y

slope: −1/ε

γy

1 + εγ
+ p

y

1 + εγ

Figure A1: Graphical results of households’ and firms’ static optimization.

Finally, inserting (A13.5) in (A14.5) combines all the results and gives

p∗τ − p = γ(−εp∗τ + εp+ y) (A15.1)

⇔ p∗τ − p = −γε(p∗τ − p) + γy (A15.2)

⇔ (1 + γε)(p∗τ − p) = γy (A15.3)

⇔ p∗τ − p =

(
γ

1 + γε

)
y. (A15.4)
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A.4 Expected Duration of Resetting the Price (Calvo)

1 · (1− φ) + 2 · φ(1− φ) + 3 · φ2(1− φ) + . . . =
∞∑
j=0

(j + 1) · φj(1− φ)

= (1− φ)
∞∑
j=0

(
φj+1

)′
φ

= (1− φ)

(
∞∑
j=0

φj+1

)′
φ

= (1− φ)

(
φ
∞∑
j=0

φj

)′
φ

= (1− φ)

(
φ

1− φ

)′
φ

= (1− φ) · (1− φ) + φ

(1− φ)2
=

1

1− φ
. (A16)

A higher share of firms unable to reset their price (in a certain period) increases

the expected duration.

A.5 Calvo Pricing – Calculation Steps

Dividing the first-order condition by 2k, using the fact that xt is t-measurable, and

expanding the sum gives

∞∑
j=0

(βφ)jxt −
∞∑
j=0

(βφ)jEtp
∗
t+j = 0. (A17)

Excluding xt from the sum, using the formula for an infinite geometric series,

and multiplying by (1− βφ) gives

xt = (1− βφ)
∞∑
j=0

(βφ)jEtp
∗
t+j. (A18)

Again, using t-measurability (Etp
∗
t = p∗t ) and excluding the first summand pro-

vides a sum from j = 1 to infinity that can be substituted in a subsequent step:

xt = (1− βφ)

[
∞∑
j=1

(βφ)jEtp
∗
t+j + p∗t

]
. (A19)

Furthermore, Eq.(A18) can be rewritten for t + 1 (since firms optimize in each

period),

Etxt+1 = (1− βφ)
∞∑
j=1

(βφ)j−1Etp
∗
t+j (A20.1)

⇔ βφEtxt+1 = (1− βφ)
∞∑
j=1

(βφ)jEtp
∗
t+j, (A20.2)
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for eliminating the sum in (A19):

xt = βφEtxt+1 + (1− βφ)p∗t . (A21)

Inserting condition (11) leads to the expression

pt − φpt−1
1− φ

= βφ
Etpt+1 − φpt

1− φ
+ (1− βφ)p∗t (A22.1)

⇔ pt − φpt−1 = βφ(Etpt+1 − φpt) + (1− φ)(1− βφ)p∗t , (A22.2)

that only contains parameters and variants of the variable p. Then, with the

definition of (A10) and first-order Taylor expansion, the inflation rate π can be

expressed through differences of p. In the same way, the conditional expectation

value for period t+ 1 can be expressed with

Etpt+1 − pt ≈ Etπt+1. (A23)

Since this approximation is sufficiently exact for small values of π, an equality

sign will be used for all following calculations. Now (A22.2) can be rearranged to

insert approximations π and Eq.(A23):

φ(pt − pt−1) = βφ(Etpt+1 − φpt) + (1− φ)(1− βφ)p∗t − (1− φ)pt (A24.1)

⇔ πt = βEtπt+1 +
(1− φ)(1− βφ)

φ
p∗t −

1− φ
φ

pt + β(1− φ)pt. (A24.2)

A.6 Examining the NKPC’s Slope

The parameters defining κ determine the influence of ŷt on πt in the NKPC, where

the term influence accounts for both scenarios, an inflationary and a recessionary

gap. The following applies: ε > 1 (elasticity of substitution), γ > 0 (cost parameter,

i.e. the slope of marginal costs’ log deviations from their long-run trend values),

0 < β < 1 (discount parameter, i.e. time preference), and 0 < φ < 1 (share of sticky

prices). Recalling κ = γ(1−φ)(1−βφ)/((1 + εγ)φ) > 0, the partial derivatives are

∂κ

∂ε
= − γ

1 + εγ
κ < 0 (A25.1)

∂κ

∂γ
=

1

1 + εγ
κ > 0 (A25.2)
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∂κ

∂β
= − φ

1− βφ
κ < 0 (A25.3)

∂κ

∂φ
= −1− βφ2

1− βφ
κ < 0. (A25.4)

Higher values for ε, β, and φ have a negative impact on the NKPC’s slope,

whereas higher values for γ have a positive impact.

Competitive markets, product variety, and substitutes (large ε) slow down infla-

tion but monopolies (small ε) favor price increases. High production costs (large γ)

will be passed on through price increases by the firms. Due to the importance of

future losses (large β), firms choose a price path (xt) with higher deviations from

the optimal price path (p∗t ). β also has an effect through the expected inflation term

(Etπt+1). A high importance attached to the future (large β) results in a higher

impact of Etπt+1 on today’s inflation. In addition, the influence of changes in β

through expectations is larger than through the output gap since
∂κ

∂β
∈]−1, 0[ (with

(A25.3)):

0 >
γ(φ− 1)

1 + εγ
> lim

ε→1
lim
φ→0

γ(φ− 1)

1 + εγ
=
−γ

1 + γ
> lim

γ→∞

−γ
1 + γ

= −1. (A26)

When a small number of firms have the possibility to adjust the price in period t

(large φ), there is only a small chance to belong to this share. For this reason, firms

choose a price path (xt) with higher deviations from the optimal price path (p∗t ).

A.7 Intertemporal Optimization – Calculation Steps

The optimization problem has the constraint

Ct · Pt +Bt+1 = Wt + (1 + it−1) ·Bt, (A27)

where W is the nominal wage and B the amount of bonds. The latter provides

the link between two periods. Depending on the definition of the interest rate, the

period can vary. Here it has been chosen in a way so that the interest from period t

enters the Euler condition. The Lagrangian combines objective function and budget

constraint:

L = Et

[
∞∑
s=t

βs−tU(Cs)− λs(CsPs +Bs+1 −Ws − (1 + is−1)Bs)

]
. (A28)
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Here, the control variable is s, while t always designates the starting period. Let

W be exogenous, then the households’ first-order conditions are

∂L

∂Ct
= U ′(Ct)− λtPt = 0 (A29.1)

∂L

∂Ct+1

= βEt[U
′(Ct+1)]− λt+1Et[Pt+1] = 0 (A29.2)

∂L

∂Bt+1

= −λt + λt+1(1 + it) = 0, (A29.3)

Differentiating with respect to Ct+1 is possible because of linearity and Fatou’s

lemma regarding the conditional expectation. Inserting (A29.1) and (A29.2) in

(A29.3) yields

βEt[U
′(Ct+1)]

Et[Pt+1]
(1+it) =

U ′(Ct)

Pt
⇔ U ′(Ct) = β·(1+it)·

Pt
Et[Pt+1]

Et[U
′(Ct+1)]. (A30)

A.8 Intertemporal Elasticity of Substitution in Eq.(19)

The IES is defined as the percentage change of the intertemporal consumption ratio

(Ct+1/Ct) to a one percentage increase of the accumulation factor (1+it). The latter

corresponds to the interest rate’s increase of one percentage point for small values of

it. Plugging the marignal utility in the Euler equation, solving for the consumption

ratio, and setting Y = C gives 1/σ as the elasticity:

Yt+1

Yt
= (1 + it)

−σ
(
β

Pt
E[Pt+1]

)−σ
. (A31)

A.9 Jensen’s Inequality – Calculation Steps

f(EX) ≥ E[f(X)] holds for concave functions, i.e. the logarithm and Jensen’s in-

equality still holds for the conditional expected value. Since the function’s curvature

is sufficiently small, the accuracy is comparable to log-linearization for small growth

rates. Moreover, the exactness increases for larger values because of (ln(x))′′ → 0

for increasing x. However, resulting values will always be underestimated.

lnEt

[
Zt+1

Zt

]
= lnEt

[
exp

(
ln

(
Zt+1

Zt

))]
≈ lnEt

[
1 + ln

(
Zt+1

Zt

)]
(A32.1)

= ln

(
1 + Et

[
ln

(
Zt+1

Zt

)])
≈ Et

[
ln

(
Zt+1

Zt

)]
. (A32.2)

33



A.10 Growth Rates in Period t:

zt = lnZt − lnZss = lnZt − lnZt−1 + lnZt−1 − lnZss

= ln(1 + z̃t) + ln(1 + ẑt−1) =
∞∑
s=0

ln(1 + z̃t−s) = ln

(
∞∏
s=0

(1 + z̃t−s)

)
.

⇒ ẑt =
∞∏
s=0

(1 + z̃t−s)− 1, (A33)

that is, with regard to GDP, the current output gap is the product of all GDP

growth rates to date. The result shows that the iterated version of the output gap

accounts for a cumulative growth. Thus

ln(1 + ŷt) = ln(1 + ỹt) + ln(1 + ŷt−1) (A34.1)

⇔ 1 + ŷt = (1 + ỹt)(1 + ŷt−1) (A34.2)

⇒ ŷt ≈ ỹt + ŷt−1 (A34.3)

and

ln(1 + ŷt+1) = ln(1 + ỹt+1) + ln(1 + ŷt) (A35.1)

⇔ 1 + ŷt+1 = (1 + ỹt+1)(1 + ŷt) (A35.2)

⇒ ŷt+1 ≈ ỹt+1 + ŷt, (A35.3)

so the current GDP growth rate can be approximated through the “gap” between

the output gaps of current and previous periods.

A.11 Second-Order Taylor Approximation

The Taylor series (in R) helps in finding a polynomial to substitute a certain function

f(x) (i.e. exponential, logarithm, etc.) around a point x0. The generalized formula

of the degree n in the compact sigma notation is

Taylor(n) =
n∑
j=0

f (j)(x0)

j!
(x− x0)j, (A36)

where f (j) denotes the jth derivative with f (0) = f as a special case. Thereby,

larger values for n give better approximations of the original function f(x). In
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(23.1), f(x) = ln(1 + x) and n = 2. Formula (A36) simplifies to

Taylor(2) = ln(1 + x0) +
1

1 + x0
(x− x0)−

1

2(1 + x0)2
(x− x0)2. (A37)

The result in (23.1) appears with x0 = 0 and ỹt+1 (πt+1 respectively) as the

argument of the function:

ln(1 + ỹt+1) ≈ ỹt+1 −
1

2
ỹt+1

2. (A38)

A.12 Standard Targeting Rule – Calculation Steps

The Lagrangian has to be differentiated with respect to ŷt, πt, and it, since the

central bank sets the nominal interest rate:

L (πt, ŷt, it) = Et

[
∞∑
s=t

βs−t
(
π2
s + δŷs

2
)
− χs(πs − βπs+1 − κŷs)

−ψs
(
ŷs − ŷs+1 +

1

σ
(is − r − πs+1) +

1

2σ
π2
s+1 +

1

2
ỹs+1

2

)]
. (A39)

First-order conditions:

∂L

∂πt
= 2πt − χt = 0 (A40.1)

∂L

∂ŷt
= 2δŷt + χtκ− ψt(1 + ŷt − Etŷt+1) = 0 (A40.2)

∂L

∂it
= −ψt

σ
= 0. (A40.3)

Condition (A40.2) follows with Eq.(27). From condition (A40.3) follows that

ψt = 0, hence the minimized loss will not change if the IS curve shifts, as the

central bank can counteract it one by one through resetting the nominal interest

rate. Combining (A40.1) and (A40.2), the standard targeting rule under discretion

arises.

A.13 Optimal Interest Rate for Positive Inflation Targets

When the Lagrangian attaining the “leaning against the wind” condition, is ex-

tended with π∗ (as in (29), the loss function), the standard targeting rule changes
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to

πt − π∗ = − δ
κ
ŷt, (A41)

whereby the optimal output gap,

ŷt = − βκ

δ + κ2
Etπt+1 +

π∗κ

δ + κ2
, (A42)

comprises an additional term. After inserting in the IS curve, the interest rule

also has an additional (negative) term. This would lead to a generally lower interest

level.

A.14 Equilibrium Condition – Calculation Steps

Eq.(51) and Eq.(52) in more detail:

Et(ŷt+1 − ŷt)2 = Et
[
((−κθ) (µet + ζt+1)− (−κθ)et)2

]
(A43.1)

= Et
[
(−κθ)2 (µet + ζt+1 − et)2

]
(A43.2)

= (−κθ)2Et
[
((µ− 1)et + ζt+1)

2] (A43.3)

= ((−κθ)(µ− 1))2 e2t + (−κθ)2
(
V artζt+1 + (Etζt+1)

2) (A43.4)

= κ2θ2(µ− 1)2e2t + κ2θ2σ2
e (A43.5)

= (κθ)2
(
(1− µ)2e2t + σ2

e

)
(A43.6)

and

it = r + αµet −
1

2
(δθ)2

(
µ2e2t + σ2

e

)
− σ

2
(κθ)2

(
(1− µ)2e2t + σ2

e

)
+ σut (A44.1)

= r + αµet −
1

2

(
(δθ)2µ2e2t + (δθ)2σ2

e + σ(κθ)2(1− µ)2e2t + σ(κθ)2σ2
e

)
+ σut (A44.2)

= r + αµet −
1

2

((
(1− µ)2σκ2 + µ2δ2

)
θ2e2t +

(
σκ2 + δ2

)
θ2σ2

e

)
+ σut. (A44.3)

A.15 Parameter Discussion

Eq.(45) includes all parameters of the model.44 This subsection gives a brief overview

over possible values, which are used to graphically depict the equilibrium conditions.

44Note that variances σ2
e and σ2

u are only indirectly included.
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The discount parameter β is typically close to 1. Gaĺı (2015, 67) and Rotemberg

and Woodford (1997, 321) set β equal to 0.99 (quarterly), whereas Jensen (2002,

939) uses this under an annual interpretation. Walsh (2010, 362) also sets it to 0.99.

Gaĺı and Gertler (1999, 207) estimate a value of 0.988. To keep the framework close

to the actual interest setting of the central bank, all calculations are carried out

quarterly and β will be set to 0.99.

The slope of the NKPC κ takes values close to zero and usually lower than 1.

Roberts (1995, 982) estimates in his original NKPC article κ ≈ 0.3. On a quarterly

basis, Walsh (2010, 362) sets 0.05, Gaĺı and Gertler (1999, 13) estimate 0.02, and

McCallum and Nelson (2004, 47) suggest 0.01− 0.05. Jensen (2002, 939) calibrates

an annual value of 0.142, whereas Clarida et al (2000, 170) set 0.3 (yearly) and give

a range of 0.05 to 1.22 in the literature. In the baseline simulation, κ is set to 0.04.45

Woodford (2003a, 165) states that a value of 1 is customary in the RBC literature

for σ, the multiplicative inverse of the IES (see, e.g. Clarida et al (2000, 170), Gaĺı

(2015, 67), Yun (1996, 359)). A slightly larger value (1.5) is set by Jensen (2002,

939), and Smets and Wouters (2003, 1143) estimates 1.4. An insightful metadata

study by Havranek et al (2015) estimates a mean IES of 0.5 (σ = 2) across all

countries. However, they report that higher developed countries have a higher IES

(lower σ). Therefore, σ will be set to 1.

The weight on output fluctuations δ is set to 0.25 in almost all the literature

(see, e.g. Walsh (2010, 362), 939), McCallum and Nelson (2004, 47), Jensen (2002,

939)). The latter reports values from 0.05 to 0.33 in other papers. Thus, δ = 0.25

will also be assumend for the simulation.

Walsh (2003, 275) allows values up to 0.7 for µ, the cost shock persistence.

Clarida et al (2000, 170) set 0.27 (yearly) and Gaĺı and Rabanal (2004, 48) estimate

0.95. Generally, Smets and Wouters (2003, 1142–1143) estimate persistencies of

0.8 and higher, which is confirmed by Smets and Wouters (2007). Thus, µ will be

treated as a variable in the range of 0.6−0.85. The smallest value 0.6 implies 0.1296

on an annual basis.

For the standard deviation of a cost shock, Sims (2011, 17) sets 0.01 (σ2
e =

0.0001), Jensen (2002, 939) sets 0.015 (σ2
e = 0.000225), and Gaĺı and Rabanal

(2004, 48) estimate 0.011 (σ2
e = 0.000121). McCallum and Nelson (2004, 47) set

an annualized standard deviation of 0.02 (σ2
e = 0.0004). The conservative value of

0.0001 will be taken for the simulation.

45Note that this implies κ = 0.16 on a yearly basis.
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Table A1: Symbols

Letter Description

α Summarizing parameters (αγ, αy, απ, αµ, αe, ασ)

β Discount factor (time preference)

γ Parameter in cost function

δ Weighting on output gap in loss function

ε Elasticity of substitution

ζ Error term of cost shock

η Error term of demand shock

θ Auxiliary parameter

κ Slope of NKPC

µ Cost shock persistence

ν Demand shock persistence

π Inflation

σ Reciprocal value of the IES

τ Firm index

φ Price stickiness

c Constants in cost function (cfix, cvar)

e Cost shock

i Nominal interest rate

k Cost parameter in Calvo pricing

p Log-linearized price around the steady state

r Long-run real interest rate

u Demand shock

x Calvo price

y Log-linearized output growth rate around the steady state

ŷ Growth rate of output gap around the steady state

ỹ Output growth rate

B Bonds

C Consumption

K(.) Cost function

P Price; Price level

U(.) Utility function

W Wage

Y Output

38


	Cover
	Abstract
	Introduction
	New Keynesian Model with Uncertainty
	New Keynesian Phillips Curve
	Demand and Supply Side
	Calvo Pricing

	The Quadratic IS Curve
	Targeting Rule under Discretion

	Persistent Shocks and Equilibrium Condition
	Adding Persistent Stochastic Shocks
	Equilibrium Condition
	Solution without Uncertainty
	Model with Uncertainty


	Numerical Simulation
	Equilibrium Condition
	Model Comparison

	Impulse Response Analysis
	Model Comparison


	Conclusion
	References
	Appendix
	Consumers – Calculation Steps
	Firms – Calculation Steps
	Log-Linearization
	Expected Duration of Resetting the Price (Calvo)
	Calvo Pricing – Calculation Steps
	Examining the NKPC's Slope
	Intertemporal Optimization – Calculation Steps
	Intertemporal Elasticity of Substitution in Eq.(19)
	Jensen's Inequality – Calculation Steps
	Growth Rates in Period t:
	Second-Order Taylor Approximation
	Standard Targeting Rule – Calculation Steps
	Optimal Interest Rate for Positive Inflation Targets
	Equilibrium Condition – Calculation Steps
	Parameter Discussion

	List of Symbols

