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Estimation of Spatially Correlated
Random Scaling Factors based on

Markov Random Field Priors

Alexander Razen Stefan Lang Judith Santer
University of Innsbruck University of Innsbruck University of Innsbruck

Abstract

Multiplicative random effects allow for cluster-specific scaling of covariate effects.
In many applications with spatial clustering, however, the random effects addition-
ally show some geographical pattern, which usually can not sufficiently be captured
with existing estimation techniques. Relying on Markov random fields, we present a
fully Bayesian inference procedure for spatially correlated scaling factors. The esti-
mation is based on highly efficient Markov Chain Monte Carlo (MCMC) algorithms
and is smoothly incorporated into the framework of distributional regression.

We run a comprehensive simulation study for different response distributions
to examine the statistical properties of our approach. We also compare our re-
sults to those of a general estimation procedure for independent random scaling
factors. Furthermore, we apply the method to German real estate data and show
that exploiting the spatial correlation of the scaling factors further improves the
performance of the model.

Keywords: distributional regression, iteratively weighted least squares proposals,
MCMC, multiplicative random effects, spatial smoothing, structured additive predic-
tors

This work was supported by funds of the Oesterreichische Nationalbank (Oesterreichische
Nationalbank, Anniversary Fund, project number: 15309).
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1 Introduction

Distributional regression as introduced by Klein et al. (2015) assumes a parametric distri-
bution for a response variable y and models some or all of its parameters in dependence
of covariates. By linking the parameters to structured additive predictors the framework
simultaneously can capture nonlinear covariate effects and time trends, unit- or cluster-
specific heterogeneity, spatial heterogeneity and complex interactions between covariates
of different type.

In Razen and Lang (2016), we embedded the concept of multiplicative random effects into
this framework, which allows for cluster-specific scaling of the covariates’ effects. The idea
is applicable in various fields, see e.g. Brunauer et al. (2010) or Weber et al. (2016), and
can considerably improve the predictive ability of a model.

In applications with spatial clustering, the scaling factors are often correlated. For ex-
ample, when analyzing German house price data in Razen and Lang (2016), considerable
differences in the scaling of the covariate effects between Eastern and Western Germany
have been found. The current estimation procedure, however, does not incorporate such
correlations ex ante. Therefore, we usually do not get smooth spatial effects, although in
general some kind of smoothness seems to be reasonable. On the other hand, ignoring
spatial correlation may cause problems in getting reliable estimation results for clusters
where only a few observations are available.

A widely used concept for modeling spatial correlation is given by Markov random fields,
see e.g. Besag et al. (1991), Fahrmeir and Lang (2001) or Rue and Held (2005). Here,
based on some definition of neighborhood, the geographical vicinity of the clusters are
taken into account when estimating a spatial effect, smoothing the respective results.

The aim of this paper is to apply Markov random field priors to multiplicative random
effects within the framework of distributional regression in order to model spatially cor-
related random scaling factors. The proposed estimation procedure is fully Bayesian and
relies on highly efficient Markov Chain Monte Carlo (MCMC) algorithms.

We run extensive simulation experiments for different response distributions and evaluate
the performance of our method. Furthermore, we illustrate the benefits of this approach
by applying it to a German real estate dataset and compare the results to those of our
previous study in Razen and Lang (2016).

The paper is structured as follows: The methodology is introduced in Section 2. Section 3
attends to the simulation experiments before we present the application to the real estate
data in Section 4. Finally, we conclude in Section 5.
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2 Methodology

2.1 Correlated scaling in distributional regression

Suppose we are given data on n observations in the form pyi, zi,xiq, i � 1, . . . , n, with
response y and a number of covariates z and x. Assume further that the data is grouped
into C clusters. Then, Bayesian distributional regression assumes an L-parametric dis-
tribution of the response y, given the covariates, and links its parameters θ1, . . . ,θL to
structured additive predictors ηl via known response functions hl,

θl � hlpηlq,

l � 1, . . . , L, see Klein et al. (2015), for details. Incorporating cluster-specific random
scaling factors, the predictors are given by

ηl �D1lf 1lpz1lq � . . .�Dqllf qll
pzqllq �X lγ l, (1)

where the functions f jl are possibly nonlinear functions of the covariates zjl, Djl �
diagp1 � αjc1l, . . . , 1 � αjcnlq, ci P 1, . . . , C are n� n diagonal matrices including random
scaling factors for the C clusters in the main diagonal and the term X lγ l comprises
the linear effects of the model. For the sake of simplicity, we will suppress the index
discriminating between the L parameters in the following whenever possible.

Using known basis functions Bk, a particular function f can be approximated by

fpzq �
Ķ

k�1

βkBkpzq,

where β � pβ1, . . . , βKq
1 is a vector of unknown regression coefficients to be estimated. A

standard choice for continuous covariates are B-spline basis functions, see below.

Defining the n � K design matrix Z with elements Z ri, ks � Bk pziq, the vector f �
pf pz1q , . . . , f pznqq

1 of function evaluations can be written in matrix notation as f � Zβ.
Accordingly, the predictors in (1) can be written as

η �D1Z1β1 � . . .�DqZqβq �Xγ. (2)

In a Bayesian framework, overfitting of a particular function f usually is avoided by
employing a suitable smoothness prior for the regression coefficients β, see e.g. Fahrmeir
et al. (2013). A standard choice is a (possibly improper) Gaussian prior of the form

ppβ|τ 2q9

�
1

τ 2


rkpKq{2

exp

�
�

1

2τ 2
β1Kβ



� IpAβ � 0q, (3)

where Ip�q is the indicator function. The key components of the prior are the penalty
matrix K, the variance parameter τ 2 and the constraint Aβ � 0. Usually the penalty
matrix is rank deficient, i.e. rkpKq   K, resulting in a partially improper prior. The
specific structure of K depends on the covariate type and on prior assumptions about
the smoothness of f .
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Priors for continuous covariate effects

We apply, for example, a Bayesian version of P-splines when modeling a smooth function
f that depends on a continuous covariate z, see Eilers and Marx (1996), Lang and Brezger
(2004) and Eilers et al. (2015). Here, the columns of the design matrix Z are given by
B-spline basis functions evaluated at the observations zi and we use first or second order
random walks as smoothness priors for the regression coefficients, i.e. βk � βk�1 �
uk, or βk � 2βk�1 � βk�2 � uk, with Gaussian errors uk � N p0, τ 2q and diffuse priors
ppβ1q9 const, or ppβ1q and ppβ2q9 const, for initial values. This prior is of the form (3)
with the penalty matrix given by K � D1D, where D is a first or second order difference
matrix.

The amount of smoothness is governed by the variance parameter τ 2. A conjugate inverse
Gamma prior is employed for τ 2, i.e. τ 2 � IGpa, bq with small values for the hyperparam-
eters a and b resulting in an uninformative prior on the log scale. As a default we choose
a � b � 0.001.

The term IpAβ � 0q imposes required identifiability constraints on the parameter vector.
A straightforward choice is A � p1, . . . , 1q, i.e. the regression coefficients are centered
around zero.

Priors for spatially correlated random effects

In a general setting, the random effects αc in the scaling matrix D � diagp1�αc1 , . . . , 1�
αcnq of a particular function f are supposed to be independent and normally distributed
with mean 0 and variance τ̃ 2. If we assume them to be spatially correlated, however, we
instead propose the use of a Markov random field prior:

αc |αr, τ̃
2, r P Npcq � N

�
� 1

|Npcq|

¸
rPNpcq

αr ,
τ̃ 2

|Npcq|

�
,

where |Npcq| is the number of the neighbors Npcq of region c. The joint distribution of
all random effects α � pα1, . . . , αCq

1 then is given by

ppα | τ̃ 2q9

�
1

τ̃ 2


pC�1q{2

exp

�
�

1

2τ̃ 2
α1K̃α



,

with the precision matrix K̃ being defined by

K̃rc, rs �

$'&
'%
�1 if c � r and r P Npcq,

0 if c � r and r R Npcq,

|Npcq| if c � r.

For the variance parameter τ̃ 2 we assign the usual inverse Gamma prior τ̃ 2 � IGpã, b̃q.
Furthermore, we center the random effects around zero, i.e.

Ç

c�1

αc � 0.

Thus, the prior for the random effects again is a smoothing prior of the form (3).
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2.2 Inference

For the sake of illustration, we consider a Gaussian model with a single predictor for the
mean parameter of the form (2):

y �D1Z1β1 � . . .�DqZqβq �Xγ � ε. (4)

Rewriting the model in terms of the random effects α yields

y � f 1 � D̃1Z̃1α1 � � � � � f q � D̃qZ̃qαq �Xγ � ε, (5)

with f j � pfpzj1q, . . . , fpzjnqq, D̃j � diagpfpzj1q, . . . , fpzjnqq and Z̃j being a n�C matrix

indicating if observation i belongs to cluster c (in this case Z̃jpi, cq � 1, otherwise it equals
0).

Following Razen and Lang (2016), we can interpret equations (4) and (5) as varying
coefficient models and alternately employ Gibbs updates for the regression coefficients
and the random effects.

The full conditionals of the regression parameters βj are derived from (4) and are multi-
variate Gaussian βj | � � N pµj,Σjq with

Σ�1
j �

1

σ2

�
Z 1

jD
2
jZj �

σ2

τ 2j
Kj



, Σ�1

j µj �
1

σ2
Z 1

jDjpy � ηjq,

where ηj contains the current predictor except the j-th term.

The full conditionals of the random effects αj are derived from (5), now with αj | � �
N pµ̃j, Σ̃jq and

Σ̃
�1

j �
1

σ2

�
Z̃

1

jD̃
2

jZ̃j �
σ2

τ̃ 2j
K̃j



, Σ̃

�1

j µ̃j �
1

σ2
Z̃

1

jD̃jpy � f j � ηjq.

The full conditionals of the variance parameters are inverse Gamma and are given by

τ 2j � IGpa1, b1q, a1 � a� 0.5 rkpKjq, b1 � b� 0.5β1
jKjβj,

τ̃ 2j � IGpã1, b̃1q, ã1 � ã� 0.5 pC � 1q, b̃1 � b̃� 0.5α1
jK̃jαj.

For those distributional regression models where the full conditionals of βj and αj are no
longer Gaussian, we employ Metropolis Hastings updates instead of Gibbs updates, see
Klein et al. (2015) or Klein et al. (2014) for details.
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3 Simulation

3.1 Simulation design

In this section we present an extensive simulation study including models with Gaussian,
gamma or binomial responses. Each parameter of the respective distribution is linked to
a separate predictor via a suitable link function. The precise settings are summarized in
Table 1.

Response distribution Parameter Predictor Link function

Gaussian µ η1 identity function
σ η2 exponential function

Gamma µ η1 exponential function
σ η2 exponential function

Binomial p η1 logistic function

Table 1: Model settings

For l � 1, 2 the parameters are constructed as follows:

ηl � p1 � αclq fl pzq ,

where flpzq � sinpzq in the interval r�π, πs and p1 � αclq are spatially correlated random
scaling factors for the districts of Western Germany. The random effects αcl have mean 0
and variance τ̃ 2l and are defined by the normalized centroid coordinates xc and yc of the
individual districts c as follows:

αc1 � 0.4 � pxc � ycq,

αc2 � 2.5 � xc � 0.5 � yc.

We additionally scale them in three different ways, so that their variance τ̃ 2l is either 0.12,
0.52 or 1.02, in order to evaluate the influence of τ̃ 2l . Furthermore, we vary the number of
observations per district. In total, for each response distribution we analyze five different
models, whose specifications are summarized in Table 2.

Model Obs. per district Variance of αcl

Model 1 10 0.52

Model 2 25 0.52

Model 3 50 0.52

Model 4 25 0.12

Model 5 25 1.02

Table 2: Model specifications

For illustration, the geographical maps of the random effects αcl of Model 1 are depicted
in Figure 1, the corresponding effects p1 � αclqflpzq are shown in Figure 2.
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Figure 1: Maps of the random effects αcl with variance τ̃ 2l � 0.52.

Figure 2: The functions flpzq, multiplied with the respective random scaling factors.

3.2 Results

For each model, we generate 250 replications and carry out the estimation procedure
described in Section 2 based on a final MCMC run with 120, 000 iterations and a burn in
period of 20, 000 iterations. We store every 100th iteration in order to obtain a sample of
1, 000 draws from the posterior. For illustration, Figure 3 depicts the sampling paths of
the random effects αcl of the district of Munich in one of the replications of the Gaussian
Model 1, the corresponding autocorrelation functions are shown in Figure 4. As we can
see, the draws are practically independent, indicating a good mixing.

We then calculate the arithmetic mean from the 250 replications. In the following, we
present the respective results for each response distribution separately.
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Figure 3: Sampling paths of the random effects αcl of the district of Munich in one of the
replications of the Gaussian Model 1.

Figure 4: Autocorrelation functions of the random effects αcl of the district of Munich in
one of the replications of the Gaussian Model 1.

Gaussian Models

Figures 5 and 6 show the average estimates of the effects flpzq as well as of the district-
specific effects p1 � αclq flpzq for the smallest and largest random effects αcl (solid) of
the Gaussian models. The true effects also are plotted (dashed) in order to facilitate
comparison. The first column refers to the µ-parameter, the second column to the σ-
parameter.

As we can see from Figure 5, the scaled effects almost perfectly can be estimated for both
parameters, even with just 10 observations per district. With respect to the variance of
the random effects, Figure 6 shows that we get good estimation results even for a small
variance.

For illustration, Figure 7 shows the geographical maps of the estimated random effectsxαcl of the Gaussian Model 4 with 25 observations per district and the smallest variance
of the random effects τ̃ 2l � 0.12 (left column). The first row refers to the µ-parameter,
the second row to the σ-parameter. For comparison, the true effects αcl are plotted in the
middle column. We only detect minor differences so that the biases, defined as xαcl � αcl

and depicted in the right column, are rather small. This reflects the great performance
of our method in identifying correlated random effects, even if their variance is small.
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Figure 5: The average estimates of the functions flpzq as well as of the smallest and largest
cluster-specific effects p1 � αclq flpzq (solid) and the respective true effects (dashed) for the
Gaussian Models 1 to 3. The first column shows the effects of the µ-parameter, the second
column those of the σ-parameter.

Gamma Models

The main findings for the Gamma models are very similar to those of the Gaussian models.
Even with only 10 observations per district the estimation results for both parameters
are still very good, see Figure 8. If we increase the number of observations, then we are
again able to estimate the scaled effects almost perfectly. Furthermore, as we can see from
Figure 9, we also get reasonable results even for a small variance of the random effects.

The geographical maps of the estimated random effects xαcl of Model 4 shown in Figure
10 confirm this finding. Despite the low variance of the random effects in this model,
their spatial structure can be identified very well, even though the effects themselves are
somewhat underestimated in their magnitude, leading to slightly larger biases.
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Figure 6: The average estimates of the functions flpzq as well as of the smallest and largest
district-specific effects p1 � αclq flpzq (solid) and the respective true effects (dashed) for
the Gaussian Models 4, 2 and 5. The first column shows the effects of the µ-parameter,
the second column those of the σ-parameter.

Binomial Models

Even in Binomial models we already get reasonable estimation results for the scaled effects
with just 10 observations per district, see Figure 11. Again, the results further improve
if we increase the number of observations. With respect to the variance of the random
effects, we underestimate the scaling of the effects for a small variance but get appropriate
results if the variance is higher (Figure 12).

The first row of Figure 13 reflects the difficulty in estimating the magnitude of the random
effects properly if their variance is too small, even though the spatial structure is already
recognizable. For larger variances (e.g. τ̃ 2l � 0.52), the results considerably improve and
we only detect minor biases between the estimated and the true random effects (second
row of Figure 13).
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Figure 7: Maps of the random effects αcl of the Gaussian Model 4. The first column
shows the estimated effects, the second column shows the true effects, the third column
shows the biases.

The results of the Binomial models perfectly illustrate the advantage of our method for
estimating correlated scaling factors based on Markov random field priors, which we will
call Correlated Method. If we would neglect their spatial correlation and instead apply
the estimation procedure for independent random scaling factors described in Razen and
Lang (2016), referred to as Uncorrelated Method, then we would hardly be able to identify
any random effects in the Binomial Models 1 or 4, i.e. in models where we only have a
small number of observations per district or a low variance of the random effects. Even in
Model 3 with 50 observations per district and a moderate variance of the random effects,
the estimates of the Uncorrelated Method still would be much worse. Figure 14 compares
the random effects estimated with and without Markov random field priors for the Models
1 (first row), 4 (second row) and 3 (third row), respectively.
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Figure 8: The average estimates of the functions flpzq as well as of the smallest and largest
district-specific effects p1 � αclq flpzq (solid) and the respective true effects (dashed) for
the Gamma Models 1 to 3. The first column shows the effects of the µ-parameter, the
second column those of the σ-parameter.

3.3 Model evaluation

We evaluate the performance of our approach, the Correlated Method, using mean squared
errors (MSEs). In each replication of our models, we calculate the MSE for the l different
parameters as follows

MSEl �
1

n
pη̂l � ηlq

1 pη̂l � ηlq .

We then reestimate all replications using the estimation approach for independent random
scaling factors described in Razen and Lang (2016), the Uncorrelated Method, and again
calculate the corresponding MSEs.

The first row of Figure 15 depicts the boxplots of the MSEs of the 250 replications for
the Gaussian Models 1-3 with 10, 25 and 50 observations per district and a variance of
the random effects τ̃ 2l � 0.52. The second row shows the corresponding boxplots for the
Gaussian Models 4, 2 and 5 with variances τ̃ 2l � 0.12, τ̃ 2l � 0.52 and τ̃ 2l � 1.02, each with 25
observations per cluster. We can see that our estimation approach for correlated random
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Figure 9: The average estimates of the functions flpzq as well as of the smallest and largest
district-specific effects p1 � αclq flpzq (solid) and the respective true effects (dashed) for
the Gamma Models 4, 2 and 5. The first column shows the effects of the µ-parameter,
the second column those of the σ-parameter.

scaling factors based on Markov random field priors consistently reduces the MSEs. With
respect to the number of observations per district, we find that the Correlated Method
is even better with just 10 observations per district than the Uncorrelated Method with
50 observations per district. Regarding the variance of the random effects, we see only a
moderate increase in the MSEs for higher variances when using the Correlated Method,
whereas the increase is much larger when using the Uncorrelated Method.

Our results are consistent over the different response distributions. For the Gamma models
(Figure 16) and the Binomial models (Figure 17) we are also able to considerably reduce
the MSEs for all model specifications, confirming the better results of our new estimation
approach that we have seen in Figure 14. The largest improvements with respect to the
MSEs again can be achieved in settings with either a low number of observations per
district or a high variance of the random effects.

13



Figure 10: Maps of the random effects αcl of the Gamma Model 4. The first column shows
the estimated effects, the second column shows the true effects, the third column shows
the biases.

4 Application

4.1 Model specification

We demonstrate the benefits of our method in an application to real estate valuation.
Our dataset consists of almost 100, 000 single family homes all over Germany and includes
information about the buildings and their location. The buildings are characterized by
their floor area (area), the plot area where they are built on (plot area), the year of
construction (year) and their equipment, which is classified by four categories. Regarding
the location, we know the districts and the states where the houses are located in and have
an expert rating (rating) available that evaluates the respective surrounding. Of course,
we are also given the house price per square meter (pqm), which will be the dependent
variable in our analysis. A more detailed description of the data can be found in Razen
and Lang (2016).

Based on our findings in Razen and Lang (2016), we set up a Gamma model for the house
price per square meter with mean parameter µ and shape parameter σ, which we link to
predictors η1 and η2 via

µ � exp pη1q ,

σ � exp pη2q .
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Figure 11: The average estimates of the functions f1pzq as well as of the smallest
and largest cluster-specific effects p1 � αc1q f1pzq (solid) and the respective true effects
(dashed) for the Binomial Models 1 to 3.

Figure 12: The average estimates of the functions f1pzq as well as of the smallest
and largest cluster-specific effects p1 � αc1q f1pzq (solid) and the respective true effects
(dashed) for the Binomial Models 4, 2 and 5.

For l � 1, 2, the predictors are constructed by

ηl � D1lf 1lpareaq �D2lf 2lpplot areaq
�D3lf 3lpyearq � f 4lpratingq �Xγ l,

15



Figure 13: Maps of the random effects αc1 of the Binomial Models 4 (first row) and 2
(second row). The first column shows the estimated effects, the second column shows the
true effects, the third column shows the biases.

where f 1l, . . . ,f 4l are possibly nonlinear functions of the respective continuous covariates
and will be modeled with P-splines. Djl � diag p1 � αjc1l, . . . , 1 � αjcnlq, ci P t1, . . . , Cu,
contain random scaling factors for the C districts that allow for regional heterogeneity in
the respective price response functions and will be modeled with Markov random fields.
The intercept as well as the dummy variables for the equipment of the houses and the
states where the buildings are located in are subsumed in the design matrix X with
parameters γ l.

4.2 Results

The estimation results are based on a final MCMC run with 270, 000 iterations and a
burn in period of 20, 000 iterations. We stored every 250th iteration, leading to a sample
of 1, 000 practically independent draws from the posterior.

For the sake of illustration, we compare the results of the estimation procedure proposed
in Section 2 (Correlated Method) to those of the estimation procedure for independent
random scaling factors (Uncorrelated Method) described in Razen and Lang (2016). As
we can see from Figure 18, the mean effects of the covariates, averaged over all districts,
almost coincide for the two methods. Here, the other continuous covariates are always
held constant at mean level of attributes and the categorical variables are held at their
mode level.
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Figure 14: Maps of the random effects αc1 of the Binomial Model 1 with 10 observations
per district and τ̃ 2l � 0.52 (first row), of Model 4 with 25 observations per cluster and
τ̃ 2l � 0.12 (second row) and of Model 3 with 50 observations per district and τ̃ 2l � 0.52

(third row). The first column shows the estimates of the Correlated Method, the second
column those of the Uncorrelated Method.
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Figure 15: MSEs for the µ- and σ-parameter in the Gaussian models using the Correlated
Method (“1”) and the Uncorrelated Method (“2”) for estimation. The first row shows the
results for the different numbers of observations, the second row those for the different
variances.

With respect to the scaling factors, however, the results slightly deviate. On the one
hand, their variation is somewhat higher if the estimation is based on Markov random
fields (Correlated Method), as can be seen from Table 3, showing the summary statistics
of the random scaling factors of the floor area for both the µ- and the σ-parameter. On the
other hand, as expected, the spatial distribution of the scaling factors is much smoother
when using the Correlated Method. The geographical maps of the scaling factors of
the floor area are depicted in Figure 19. For the µ-parameter, we see a clear difference
between Western and Eastern Germany that is more marked when using Markov random
field priors for the random effects. For the σ-parameter, the Correlated Method provides
a distinct north-south divide that is not that pronounced when using the Uncorrelated
Method.

Parameter Method Min. 1st Quart. Mean 3rd Quart. Max.
µ Correlated Method 0.04 0.88 1.00 1.14 1.56
µ Uncorrelated Method 0.49 0.90 1.00 1.11 1.60

σ Correlated Method �4.00 0.48 1.00 1.75 4.01
σ Uncorrelated Method �2.16 0.58 1.00 1.50 3.04

Table 3: Random scaling factors of the floor area for the µ- and the σ-parameter.
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Figure 16: MSEs for the µ- and σ-parameter in the Gamma models using the Correlated
Method (“1”) and the Uncorrelated Method (“2”) for estimation. The first row shows the
results for the different numbers of observations, the second row those for the different
variances.

Figure 17: MSEs for the p-parameter in the Binomial models using the Correlated Method
(“1”) and the Uncorrelated Method (“2”) for estimation. The left panel shows the results
for the different numbers of observations, the right one those for the different variances.

For the plot area, we get similar results. The ranges of the scaling factors are slightly
higher when estimating them using Markov random fields. For the µ-parameter, for
example, the scaling factors go from �0.46 to 2.11 according to the Correlated Method,
while they only range from �0.08 to 2.05 when using the Uncorrelated Method, see Table
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Figure 18: Mean effects of the covariates for the two estimation methods. [a]: Average
effect of the floor area. [b]: Average effect of the plot area. [c]: Average effect of the year
of construction.

4 for details. Again, the spatial distribution of the scaling factors is smoother when using
the Correlated Method, which is particularly apparent for the σ-parameter, shown in the
second row of Figure 20.

Parameter Method Min. 1st Quart. Mean 3rd Quart. Max.
µ Correlated Method �0.46 0.73 1.00 1.32 2.11
µ Uncorrelated Method �0.08 0.74 1.00 1.25 2.05

σ Correlated Method �1.91 0.51 1.00 1.46 3.19
σ Uncorrelated Method �0.50 0.58 1.00 1.38 3.30

Table 4: Random scaling factors of the plot area for the µ- and the σ-parameter.

Finally, the estimated scaling factors of the year of construction are summarized in Table
5. Once more, we see a slightly higher variation in the results coming from the Correlated
Method, even though the differences are smaller than for the other covariates. With
respect to the spatial distribution of the scaling factors, we again get much smoother
effects when using Markov random fields, see Figure 21.
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Figure 19: Random scaling factors of the floor area. [a]: Estimation results for the µ-
parameter using the Correlated Method. [b]: Estimation results for the µ-parameter
using the Uncorrelated Method. [c]: Estimation results for the σ-parameter using the
Correlated Method. [d]: Estimation results for the σ-parameter using the Uncorrelated
Method.

Model comparison

So far, we have seen that the estimation method for correlated random scaling factors
based on Markov random field priors indeed leads to smoother spatial effects than the
method for independent random scaling factors. Using different criteria, we now want to
evaluate which results are preferable.

Accounting for both the fit of the data and the model complexity, we first investigate
the performance of the two estimation methods with respect to the deviance information
criterion (DIC) of Spiegelhalter et al. (2002), which we easily can compute from the
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Figure 20: Random scaling factors of the plot area. [a]: Estimation results for the µ-
parameter using the Correlated Method. [b]: Estimation results for the µ-parameter
using the Uncorrelated Method. [c]: Estimation results for the σ-parameter using the
Correlated Method. [d]: Estimation results for the σ-parameter using the Uncorrelated
Method.

MCMC outputs. As we can see from Table 6, exploiting the spatial correlation of the
scaling factors by Markov random fields increases the performance of the model.

In order to evaluate the predictive ability of the models, we refer to the scores proposed
by Gneiting and Raftery (2007). In particular, we consider the logarithmic score, the
quadratic score, the spherical score as well as the continuous ranked probability score
(CRPS). According to Table 7, the model based on the estimation procedure with Markov
random fields has consistently higher scores, confirming the better performance of the
model.
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Parameter Method Min. 1st Quart. Mean 3rd Quart. Max.
µ Correlated Method 0.18 0.81 1.00 1.18 1.78
µ Uncorrelated Method 0.14 0.84 1.00 1.17 1.66

σ Correlated Method �0.09 0.66 1.00 1.29 2.69
σ Uncorrelated Method �0.10 0.73 1.00 1.27 2.38

Table 5: Random scaling factors of the year of construction for the µ- and the σ-parameter.

Figure 21: Random scaling factors of the year of construction. [a]: Estimation results for
the µ-parameter using the Correlated Method. [b]: Estimation results for the µ-parameter
using the Uncorrelated Method. [c]: Estimation results for the σ-parameter using the
Correlated Method. [d]: Estimation results for the σ-parameter using the Uncorrelated
Method.
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Method DIC
Correlated Method 50, 560
Uncorrelated Method 50, 753

Table 6: DIC based on the two different estimation methods.

Method Log. score Quadratic score Spherical score CRPS
Correlated Method �0.2608 0.9778 0.9766 �0.1884
Uncorrelated Method �0.2621 0.9759 0.9759 �0.1885

Table 7: Comparison of average score contributions of the two estimation methods.

5 Conclusion

Random scaling factors are a useful tool to model cluster-specific differences in covari-
ate effects. In the case of spatial clustering, one often observes geographical patterns
in the distribution of the scaling factors. For such situations, this paper provides infer-
ence based on Markov random field priors that allows for estimating spatially correlated
scaling factors within the framework of distributional regression. In extensive simulation
experiments we show that

• the estimation procedure works well for different response distributions,

• we need much less observations per cluster to get accurate results compared to
estimating the scaling factors without incorporating their spatial correlation and

• our approach even allows for identifying scaling factors whose variance is small.

Applying the proposed methodology to German real estate data enhances the performance
of the model with respect to both model fit and predictive ability.

For the future, several directions for further research are conceivable. First, we plan
to provide other spatial smoothing techniques (e.g. Kriging) for estimating correlated
scaling factors. Second, we aim to implement structured additive predictors for the scaling
factors themselves, which would allow us to explain them, for example, by cluster-specific
covariates. Third, in our application example, we have obtained negative scaling factors
for some districts. Notwithstanding that they have occurred only occasionally, negative
scaling factors seem rather unlikely in most applications from an economic perspective.
Thus, we intend to provide alternative scaling factors that are positive by default, e.g. by
defining them by exppαcq or by implementing truncated factors.
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Abstract
Multiplicative random effects allow for cluster-specific scaling of covariate effects. In
many applications with spatial clustering, however, the random effects additionally
show some geographical pattern, which usually can not sufficiently be captured with
existing estimation techniques. Relying on Markov random fields, we present a fully
Bayesian inference procedure for spatially correlated scaling factors. The estimation
is based on highly efficient Markov Chain Monte Carlo (MCMC) algorithms and is
smoothly incorporated into the framework of distributional regression.

We run a comprehensive simulation study for different response distributions to
examine the statistical properties of our approach. We also compare our results to
those of a general estimation procedure for independent random scaling factors. Fur-
thermore, we apply the method to German real estate data and show that exploiting
the spatial correlation of the scaling factors further improves the performance of the
model.
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