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Abstract

Statistical post-processing of ensemble predictions is usually adjusted to a particular
lead time so that several models must be fitted to forecast multiple lead times. To increase
the coherence between lead times, we propose to use standardized anomalies instead of
direct observations and predictions. By subtracting a climatological mean and dividing
by the climatological standard deviation, lead-time-specific characteristics are eliminated
and several lead times can be forecasted simultaneously. The results show that forecasts
between +12 and +120 h can be fitted together with a comparable forecast skill to a
conventional method. Furthermore, forecasts can be produced with a temporal resolution
as high as the observation interval e.g., up to ten minutes.

Keywords: standardized anomalies, non-homogeneous regression, ensemble post-processing,
probabilistic temperature forecasts.

1. Introduction

Weather forecasts are important for many aspects of life whether professional or private. These
weather forecasts rely mainly on numerical weather prediction (NWP) models, which solve
partial di↵erential equations. However, it is impossible to solve these equations exactly and
errors occur, which grow with forecasting horizon. Additionally, due to limited computational
power, the numerical grid of these forecast models has to be coarse and sub-grid processes
have to be parameterized. These parameterizations lead to forecast errors especially over
complex terrain, such as the Alps. Therefore, starting from Glahn and Lowry (1972) statistical
methods are employed to correct these systematic errors. Statistical post-processing learns
the relationship between numerical forecasts and observations from a historical dataset to
correct future forecasts.

Additionally, weather centers are calculating several perturbations of the models with di↵erent
parameterizations and initial conditions to capture uncertainties of the atmosphere (Lorenz
1982; Leutbecher and Palmer 2008). However, not all error sources can be considered so
that ensembles are often still biased and underdispersive. To get unbiased and calibrated
probabilistic forecasts similar methods as Glahn and Lowry (1972) can be applied. Examples
of such models are nonhomogeneous Gaussian regression (Gneiting, Raftery, Westveld, and
Golfman 2005) or Bayesian model averaging (Raftery and Gneiting 2005).

NWP models produce forecasts with typical lead time intervals between one and six hours
for a certain grid location. They are usually post-processed for every lead time and station
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individually, which can be time consuming for several lead times or stations. Scheuerer and
Büermann (2014) proposed a method to forecast several stations and a certain lead time
with anomalies. Stau↵er, Messner, Mayr, Umlauf, and Zeileis (2016) and Dabernig, Mayr,
Messner, and Zeileis (2016) adjusted this method by standardizing the anomalies to produce
spatial forecasts.

Their basic idea is to fit a statistical model on standardized anomalies (Wilks 2011) instead of
the direct observations and ensemble forecasts. Because these standardized anomalies should
not have any station specific characteristics anymore one statistical model can be used for all
locations within a certain region.

We adapt the method of Dabernig et al. (2016) but instead of forecasting several stations si-
multaneously we forecast several lead times simultaneously. Additional to saving computation
time, this approach allows to provide calibrated forecasts in a much higher temporal resolu-
tion as the NWP forecasts. Therefore, only a observation climatology at a high resolution
has to be available which captures all lead-time specific e↵ects.

Another advantage of these standardized anomalies is that they do not only remove lead-
time-specific characteristics but also seasonal specifics. Conventional methods are usually
trained on a sliding window (Gneiting et al. 2005) to account for seasonal di↵erences in the
relationship between forecasts and observations. Standardized anomalies do not contain these
season-specific characteristics any more so that less limited training data sets can be used.

As a result this method has three distinct advantages: All data can be used as training data,
not only a subset, all lead times can be forecasted simultaneously, and forecasts are available
at a higher temporal resolution as provided by the numerical model.

The rest of this article is structured as follows: The data is described in the next chapter,
followed by the methodology. Subsequently, results for a single station and for multiple
stations are presented with a conclusion at the end.

2. Data

The proposed method is tested with measurements from 39 automatic weather stations located
in the province of South Tyrol in northern Italy. Here we use 2 m temperatures that are
available in ten-minute resolution.

The ensemble NWP forecasts are taken from the European Centre for Medium-Range Weather
Forecasts (ECMWF) and are bilinearly interpolated to the measurement sites. Lead times
between +12 and +120 hours are used with an interval of three hours.

The forecast variable (y) is the temperature measured 2 m above ground. The predictor
variable used from the 51 members of the NWP model is also the 2 m temperature. Data
from 2010-02-01 to 2016-01-31 are used with a constant horizontal resolution of 32 km (T639).

3. Method

3.1. Nonhomogeneous Gaussian regression

Gneiting et al. (2005) introduced nonhomogeneous Gaussian regression (NGR) for statistically
post-processing of ensemble forecasts. The observations are assumed to follow a normal
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Figure 1: Annual cycle of the observations with the climatological mean (thick line) and the
climatological standard deviation (thin lines) for (a) 6 UTC and (b) 15 UTC. (c) Annual cycle
of the standardized observation anomalies for 6 UTC (d) and 15 UTC.

distribution with regression equations for both, the mean (µ) and the standard deviation (�):

y ⇠ N(µ,�), (1)

µ = b0 + b1m, (2)

log(�) = c0 + c1 log(s), (3)

with regression coe�cients b0, b1, c0 and c1. µ depends on the ensemble mean (m), and � on
the ensemble spread (s). We adapted the method of Gneiting et al. (2005) slightly by using the
logarithmic link function in Equation 3 to ensure positive values for the standard deviation �.
Another adaption is that we fit Equation 1 with a maximum likelihood estimation provided
by the R package crch (Messner, Mayr, and Zeileis 2016) instead of CRPS minimization.

3.2. Standardized anomalies

The basic idea of using standardized anomalies is visualized in Figure 1. Whereas the annual
cycles clearly di↵er for two di↵erent lead times (top), the standardized anomalies for both
lead times are centered around zero and have no pronounced annual cycle anymore (bottom
panel). This may allow to use the same coe�cients for both lead times and to fit only one
statistical model.

To obtain standardized anomalies, the climatological mean (µy) is subtracted from the obser-
vations and divided by a climatological standard deviation (�y):

ey =
y � µy

�y
. (4)
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The standardized anomalies em and the corresponding es are calculated as follows:

em = mean

✓
ens� µens

�ens

◆
(5)

and

es = sd

✓
ens� µens

�ens

◆
, (6)

where ens is the 51 ensemble member forecast and µens and �ens are the climatological mean
and standard deviation, respectively. The members of the ensemble forecasts are exchangeable
and therefore µens is the same for all members. em is then the mean of all 51 standardized
ensemble member anomalies and es their standard deviation. The details for computing µy,
µens, �y, and �ens will be shown in Subsection 33.4.

3.3. Standardized anomaly model output statistics (SAMOS)

Standardized anomalies remove seasonal and lead-time-specific characteristics and as a result
several lead times of the same station can be fitted and forecasted together, if the climatology
is able to capture these di↵erent characteristics. Therefore, Equation 1 is fitted with stan-
dardized anomalies (ey, em and es) instead of direct observations and predictions. The fitted
coe�cients are then representative for all fitted lead times and since the coe�cients (b01, b1,
c0 and c1) are fitted on data without lead-time specifics they are also representative for every
lead time. However, the ensemble spread has to provide the information to capture di↵er-
ences in the forecast uncertainty. Otherwise, the model can not adapt to e.g., higher forecast
uncertainties at longer lead times.

To use this fitted model for forecasting, Equation 2 and 3 have to be restructured into:

µ̂ = (b0 + b1 em) · �y + µy (7)

and
�̂ = exp(c0 + c1 log(es)) · �y. (8)

Since the coe�cients do not depend on any lead time, the use of these equations are not
restricted to the lead times of the NWP forecasts. By using a higher temporal resolution of
the observation climatology (µy and �y) and bilinear interpolated ensemble forecasts (em, es)
forecasts for any lead time can be computed.

3.4. Climatology

To obtain forecasts with a high temporal resolution, a temporally highly resolved climatology
is necessary. It can be produced with generalized additive models for location, scale and shape
(GAMLSS, Rigby and Stasinopoulos 2005; Stasinopoulos and Rigby 2007)) as in Dabernig
et al. (2016). With GAMLSS one model for climatological mean and standard deviation for
all lead times and all points in between can be calculated simultaneously. GAMLSS is similar
to NGR but can also include nonlinear e↵ects,

y ⇠ N(µy,�y). (9)

1
Due to the centering of the standardized anomalies b0 is not significant and could be left out.
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Figure 2: (a) All observations are plotted against the day of the year with climatological
mean for di↵erent lead times from +6 (brightest, morning) to +15 h (darkest line, afternoon).
(b) All observations against the minute of the day with climatological mean for mid January
(brightest) to mid July (darkest line).

To calculate a climatology the daily, variation has to be considered as well as the seasonal
change. The nonlinear models for µy and �y are therefore:

µy = �0 + f(yd, dm) and �y = �0 + g(yd, dm), (10)

with �0 and �0 as regression coe�cients and f and g as smooth functions which capture the
interaction between the day of the year (yd) and the minute of the day (dm, 0–1439) with a
cyclic cubic regression spline (fitted with the R package gamlss). The degree of freedom for
the day of the year is eight and ten for the minute of the day.

The resulting e↵ects of the fitted climatological mean based on ten minute measurements are
illustrated in Figure 2. Figure 2a shows the seasonal e↵ect for four di↵erent times of the
day with colder temperatures in the winter than in the summer. The colors indicate that
di↵erent lead times have di↵erent seasons. The season at the morning hours (bright colors)
has a smaller amplitude than during the day (darker colors).

Figure 2b shows the diurnal variation for four di↵erent months. Whereas all lines show a
minimum in the morning hours and a maximum during day, the minimum is in January
(brightest line) at around 9 UTC whereas in July (darkest line) it is at around 6 UTC. The
interaction is necessary to capture the changing diurnal cycles over the year and on the other
hand the changing annual cycles over the day. With these e↵ects a climatology for every day
of the year and every minute of the day is available.

Additional to observation climatologies, climatologies of the ensemble forecasts are required.
Forecasts are only available at a much lower temporal resolution (i.e., 3 hours) and there
is no information in between these lead times. Therefore, it makes little sense to compute
a full climatology for all lead times. Instead, simpler climatologies without interactions are
calculated at each lead time individually. To get forecasts in between these lead times, the
standardized anomalies are simply linearly interpolated. For these ensemble climatologies,
Equation 10 reduces to

µens = �0 + f(yd) and �ens = �0 + g(yd), (11)

where only one nonlinear e↵ect for the day of the year is necessary using eight degrees of
freedom.
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Figure 3: SAMOS full forecast for a certain initial day (2011-01-25) with lead times from +12
to +120 h compared to the observations (y) at the station in Auer. Additionally, the ensemble
forecasts.

4. Di↵erent models

Three di↵erent models with standardized anomalies are compared against a reference to in-
vestigate the advantages of SAMOS. As reference, an individual NGR (EMOS, Gneiting et al.
2005) is fitted for each three-hourly lead time with a sliding window of the previous 30 days
as training data.

The SAMOS variations di↵er in the calculation of the observation climatology and NGR.
The observation climatology can either be calculated at every lead time individually as in
Equation 11 or at all lead times simultaneously as in Equation 10. As second di↵erence,
Equation 7 and 8 can either be calculated at all lead times individually or simultaneously.
The three SAMOS variations are:

• SAMOS lead-time-wise (SAMOS ltw), where the climatologies and the NGR equations
are calculated at every three-hourly lead time individually. This model shows the dif-
ference between an NGR with standardized anomalies and without.

• For the second model SAMOS lead-time-wise simultaneous (SAMOS ltw-S ) the clima-
tology is also fitted on all lead times individually but the NGR equation is calculated
for all lead times simultaneously. This model gives insight if fitting all lead times with
on NGR gives a similar result to lead-time-wise forecasts.

• The third model is SAMOS full as described in the methods section with one climatology
over all available observations and one NGR for all three-hourly lead times simultaneous.

A forecast example of SAMOS full for a particular initial day is shown in Figure 3. Whereas
conventional methods such as EMOS only produce forecasts at the three-hourly lead times,
SAMOS full also provides forecasts in between. The forecasts in between the three-hourly
lead times follow the shape of the observation climatology (dashed line in Figure 3). Ad-
ditionally, SAMOS full inflates the uncertainty of the raw NWP ensemble to correct for its
underdispersion (Hopson 2014; Möller and Groß 2016; Dabernig et al. 2016).

The performance of these forecasts is evaluated in the next section.
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5. Results

To use all available data, ten-fold cross-validation is performed on the time series for the
SAMOS models resulting in training data sets of approximately 5.5 years. In contrast, EMOS
is fitted daily with 30 days prior to the forecast day. Additionally, every station has been
forecasted individually.

The mean absolute error (MAE) is used as deterministic measure while the continuous rank
probability scores (CRPS) is used to test the probabilistic performance. Both are calculated
for every lead time and model individually. For a better comparison, a skill score is used,

skill score = 1� score

scoreref
, (12)

where the score of one model is compared with a reference model.

To investigate calibration, the root mean squared error (RMSE) is compared to the standard
deviation.

In the following, we first show results for a single station (Auer) before aggregating results of
all stations.

5.1. Single station

To evaluate how well the models are calibrated, the RSME and the standard deviation of
the forecasts are compared in Figure 4. A well calibrated forecasted should have a similar
predicted standard deviation as the RMSE of the predicted mean. Whereas EMOS is under-
dispersive at all lead times, SAMOS lead-time-wise (Figure 4b) is almost perfectly calibrated.
SAMOS full seems also to be well calibrated but is slightly overdispersive in the afternoons of
the first four days.This pattern of overdispersion is also apparent for SAMOS lead-time-wise
simultaneous.

The MAE/CRPS results are illustrated in Figure 5. Forecasts in between the three-hourly
lead times for EMOS, SAMOS lead-time-wise and SAMOS lead-time-wise simultaneous are
interpolated with a natural spline function to the ten-minute resolution. A natural spline was
used instead of a linear interpolation to better capture the diurnal cycle of the temperature. A
distinct daily oscillating pattern is shown by all the models where during the day the forecasts
are worse than during night. However, all three SAMOS models have similar MAE and CRPS
whereas EMOS is slightly worse at almost all lead times.

The advantage of SAMOS full is better shown by the bottom panel in Figure 5, where the
skill score of SAMOS full with SAMOS lead-time-wise as reference is visualized. Whereas the
reference model is almost always better at the lead times provided by the ECMWF model
(red dots), the skill of the SAMOS full model in between increases the further away the points
are from a provided three-hourly lead time.

So far, we have only regarded the performance at a single forecast location (Auer). To get
more general results, in the following we aggregate the results of the 39 stations in the region
of South Tyrol.

5.2. All stations

For these results one MAE/CRPS at every lead time averaged over all stations is calculated
and compared with a skill score. One set of skill scores are only aggregated over the three-
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Figure 4: RMSE/standard deviation at the three-hourly lead times for (a) EMOS, (b) SAMOS
lead-time-wise and (c) SAMOS full.

hourly ECMWF lead times and the other skill scores are computed for all forecasts at a ten
minutes resolution. The results are shown in Figure 6.

Regarding the three-hourly MAE, SAMOS lead-time-wise, and SAMOS lead-time-wise simul-
taneous are slightly, but not significantly, better than the reference and SAMOS full is slightly
worse than EMOS. In contrast, the CRPS of all SAMOS models on the three-hourly lead times
is clearly better than that of EMOS. This di↵erence between MAE and CRPS shows that the
SAMOS models capture the forecast uncertainty better than EMOS which can also be seen
in Figure 4. SAMOS full is still slightly worse than the other SAMOS variations.

In contrast, SAMOS full performs as good as the other SAMOS variants when regarding not
only the three-hourly lead times but all forecasts at ten-minute resolution. In other words,
the better performance of SAMOS full in between the three-hourly ECMWF lead times can
compensate its worse performance at the lead times.

6. Conclusion

Statistical post-processing with standardized anomalies allows to use one single statistical
model for several lead times. Furthermore, this approach allows to provide calibrated proba-
bilistic forecasts at a much higher temporal resolution than the raw ensemble forecasts.

Additionally, these standardized anomalies are without season-specific characteristics so that
the training data is not limited to similar seasons. Instead a of 30 days moving training
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Figure 5: (a) MAE and CRPS for di↵erent models and lead times +12 to +120 h at ten
minutes resolution. (b) CRPS skill score for SAMOS full with SAMOS lead-time-wise as
reference at ten minutes resolution. The red dots mark the three-hourly lead times of the
ensemble forecasts.

window that has been used frequently in the literature (Gneiting et al. 2005) we could use 6
years of available data for training. The training data could be expanded even further with
reforecasts as shown by Stau↵er et al. (2016).

The results showed using a single model for all lead times provides similar good forecasts
as separate models for each lead time. Compared to EMOS, with the sliding window, the
SAMOS variations with all available training data are better calibrated and perform better
in terms of MAE and CRPS.

Compared to simpler approaches for interpolating forecasts between lead times, the full
SAMOS model shows clear advantages in between the lead times provided by the ECMWF.
Overall, this better performance between the ensemble lead times compensates the slightly
worse performance at the lead times themselves.
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Universitätsstraße 15
6020 Innsbruck, Austria
E-mail: Jakob.Messner@uibk.ac.at, Achim.Zeileis@uibk.ac.at

http://dx.doi.org/10.1002/qj.2741
http://doi.wiley.com/10.1002/qj.2741
http://doi.wiley.com/10.1002/qj.2741
http://dx.doi.org/10.1175/MWR2906.1
http://dx.doi.org/10.1111/j.1467-9876.2005.00510.x
http://dx.doi.org/10.1111/rssc.12040
http://dx.doi.org/10.18637/jss.v023.i07
http://dx.doi.org/10.18637/jss.v023.i07
http://EconPapers.repec.org/RePEc:inn:wpaper:2016-21


University of Innsbruck - Working Papers in Economics and Statistics
Recent Papers can be accessed on the following webpage:

http://eeecon.uibk.ac.at/wopec/

2016-31 Markus Dabernig, Georg J. Mayr, Jakob W. Messner, Achim Zeileis:
Simultaneous ensemble post-processing for multiple lead times with standar-
dized anomalies

2016-30 Alexander Razen, Stefan Lang: Random scaling factors in Bayesian dis-
tributional regression models with an application to real estate data

2016-29 Glenn Dutcher, Daniela Glätzle-Rützler, Dmitry Ryvkin: Don’t hate
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Abstract
Statistical post-processing of ensemble predictions is usually adjusted to a particular
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