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Random Scaling Factors in Bayesian
Distributional Regression Models with an

Application to Real Estate Data

Alexander Razen Stefan Lang
University of Innsbruck University of Innsbruck

Abstract

Distributional structured additive regression provides a flexible framework for
modeling each parameter of a potentially complex response distribution in depen-
dence of covariates. Structured additive predictors allow for an additive decompo-
sition of covariate effects with nonlinear effects and time trends, unit- or cluster-
specific heterogeneity, spatial heterogeneity and complex interactions between co-
variates of different type. Within this framework, we present a simultaneous es-
timation approach for multiplicative random effects that allow for cluster-specific
heterogeneity with respect to the scaling of a covariate’s effect. More specifically, a
possibly nonlinear function fpzq of a covariate z may be scaled by a multiplicative
cluster-specific random effect p1 � αcq. Inference is fully Bayesian and is based on
highly efficient Markov Chain Monte Carlo (MCMC) algorithms.

We investigate the statistical properties of our approach within extensive sim-
ulation experiments for different response distributions. Furthermore, we apply
the methodology to German real estate data where we identify significant district-
specific scaling factors. According to the deviance information criterion, the models
incorporating these factors perform significantly better than standard models with-
out random scaling factors.

Keywords: iteratively weighted least squares proposals, MCMC, multiplicative
random effects, structured additive predictors

This work was supported by funds of the Oesterreichische Nationalbank (Oesterreichische
Nationalbank, Anniversary Fund, project number: 15309).
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1 Introduction

Classical regression models, such as generalized linear models (GLMs, see McCullagh
and Nelder, 1989), generalized additive models (GAMs, see Hastie and Tibshirani, 1990,
or Wood, 2006) or structured additive regression models (STAR models, see Brezger and
Lang, 2006, or Fahrmeir et al., 2013), assume that the distribution of a response variable y
belongs to an exponential family and relate its mean to a number of covariates. A potential
dependence of other moments of the response distribution, however, is neglected.

Generalized additive models for location, scale and shape (GAMLLS, see Rigby and
Stasinopoulos, 2005) and its Bayesian version of distributional regression (see Klein et al.,
2015) provide a more flexible framework. On the one hand, it is no longer restricted to
the exponential family and on the other hand, it allows for modeling each parameter of
the response distribution – and not only the mean – in dependence of a set of covariates.

In many applications, the data consists of a number of different clusters. In general, it is
not guaranteed that a covariate’s effect on a parameter of the response distribution – be
it its mean or another parameter – is homogeneous across these clusters. In real estate
data, for example, a frequently observed phenomenon is that the price effects of covariates
vary from one spatial unit to another. However, completely different functional forms in
each cluster are not common.

In order to deal with this challenge, Wechselberger et al. (2008) suggest the use of cluster-
specific random scaling factors. In doing so, one still assumes homogeneity for the func-
tional form of the response function but allows for heterogeneity with respect to its scal-
ing. Lang et al. (2015) and Weber et al. (2015) successfully have applied this approach
to store sales models, considerably improving the predictive validity of the models. In a
real estate context, Brunauer et al. (2010) introduced spatial scaling factors to account
for district-specific heterogeneity in rent prices.

Nevertheless, the present method has two drawbacks. On the one hand, the analyses
so far are restricted to modeling the mean in Gaussian response distributions, ignoring
alternative response distributions and covariate effects on other moments. On the other
hand, due to identifiability reasons, one currently has to assume monotonicity for the
response functions of the covariates, which in many applications is not justified a priori.

The aim of this paper is to provide a general framework that allows the use of random
scaling factors for arbitrary response functions in applications that go beyond the modeling
of the response distribution’s mean. For this purpose, we extend the idea of random scaling
factors to distributional regression models and develop identifiability constraints that do
no longer restrict the response functions to be monotone.

We investigate the properties of our approach in comprehensive simulation scenarios in-
cluding Gaussian, Gamma and Binomial models. We then apply the method to a German
real estate dataset with almost 100, 000 observations. We consider and compare different
distributional regression models where house-specific attributes flexibly are estimated us-
ing P-splines that at the same time are scaled according to district-specific random scaling
factors. The results are compared to standard models without scaling factors.

The remainder of the paper is structured as follows: In Section 2 we present the method-
ology that subsequently is tested in different simulation scenarios in Section 3. Section 4
attends to the real estate data and the model specification before we present the results
in Section 5. We conclude in Section 6 with an outlook on future research perspectives.

2



2 Methodology

2.1 Distributional regression models

Suppose we are given data on n observations in the form pyi, zi,xiq, i � 1, . . . , n, with
response y and a number of covariates z and x. Bayesian distributional regression as
introduced in Klein et al. (2015) now assumes an L-parametric distribution of the re-
sponse y, given the covariates, and links its parameters θ1, . . . ,θL to structured additive
predictors ηl via known response functions hl,

θl � hlpηlq,

l � 1, . . . , L. The predictors are defined in terms of (potentially different) subsets of the
covariates,

ηl � f 1lpz1lq � . . .� f qll
pzqllq �X lγ l, (1)

where the functions f jl are possibly nonlinear functions of the covariates zjl and the term
X lγ l comprises the linear effects of the model. For the sake of simplicity, we will suppress
the index discriminating between the L parameters in the following whenever possible.

Using known basis functions Bk, a particular function f can be approximated by

fpzq �
Ķ

k�1

βkBkpzq,

where β � pβ1, . . . , βKq
1 is a vector of unknown regression coefficients to be estimated. A

standard choice for continuous covariates are B-spline basis functions, see below.

Defining the n � K design matrix Z with elements Z ri, ks � Bk pziq, the vector f �
pf pz1q , . . . , f pznqq

1 of function evaluations can be written in matrix notation as f � Zβ.
Accordingly, the predictors in (1) can be written as

η � Z1β1 � . . .�Zqβq �Xγ.

In a Bayesian framework, overfitting of a particular function f usually is avoided by
employing a suitable smoothness prior for the regression coefficients β, see e.g. Fahrmeir
et al. (2013). A standard choice is a (possibly improper) Gaussian prior of the form

ppβ|τ 2q9

�
1

τ 2


rkpKq{2

exp

�
�

1

2τ 2
β1Kβ



� IpAβ � 0q, (2)

where Ip�q is the indicator function. The key components of the prior are the penalty
matrix K, the variance parameter τ 2 and the constraint Aβ � 0. Usually the penalty
matrix is rank deficient, i.e. rkpKq   K, resulting in a partially improper prior. The
specific structure of K depends on the covariate type and on prior assumptions about the
smoothness of f .

We apply, for example, a Bayesian version of P-splines when modeling a smooth function
f that depends on a continuous covariate z, see Lang and Brezger (2004). Here, the
columns of the design matrix Z are given by B-spline basis functions evaluated at the
observations zi and we use first or second order random walks as smoothness priors for the
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regression coefficients, i.e. βk � βk�1 � uk, or βk � 2βk�1 � βk�2 � uk, with Gaussian
errors uk � Np0, τ 2q and diffuse priors ppβ1q9const, or ppβ1q and ppβ2q9const, for initial
values. This prior is of the form (2) with penalty matrix given by K � D1D, where D
is a first or second order difference matrix.

The amount of smoothness is governed by the variance parameter τ 2. A conjugate inverse
Gamma prior is employed for τ 2, i.e. τ 2 � IGpa, bq with small values for the hyperparam-
eters a and b resulting in an uninformative prior on the log scale. As a default we choose
a � b � 0.001.

The term IpAβ � 0q imposes required identifiability constraints on the parameter vector.
A straightforward choice is A � p1, . . . , 1q, i.e. the regression coefficients are centered
around zero.

2.2 Multiplicative random effects

As outlined in the introduction, in many applications the data is clustered. Real estate
data, for example, typically is clustered in spatial units (e.g. districts, states, etc.). Usu-
ally, there is no economic reason to assume homogeneous covariate effects across these
units. In contrast, different consumer price sensitivities originating from varying levels
of income, diverse value of land or different ways of construction suggest spatial hetero-
geneity in price response. Indeed, it is reasonable to assume the effects to have the same
functional form but to vary with respect to the scaling of the function. Thus, in order to
account for this kind of heterogeneity, we allow for cluster-specific random scaling factors
for some or all of the nonlinear functions f j in (1). This leads to predictors of the form

ηi � p1 � α1ciq f1pz1iq � . . .� p1 � αqciq fqpzqiq � x
1
iγ, (3)

i � 1, . . . n, where ci P t1, . . . , Cu is the cluster index of the respective observation and
the αjc, j � 1, . . . , q, are independent and normally distributed random effects with mean
0 and variance τ̃j, i.e.

αjc | τ̃
2
j � N p0, τ̃jq , c � 1, . . . , C.

A positive random effect αjc ¡ 0 leads to a scaling up of the function fj indicating an
increased price sensitivity while a negative random effect αjc   0 refers to weaker price
sensitivity. For the variance parameters τ̃ 2

j we assign the usual inverse Gamma priors

τ̃ 2
j � IGpã, b̃q.

A priori, the parameters are not identifiable since there is an arbitrary multiplicative
constant for the functions fj. Thus, previous works (e.g. Lang et al., 2015, or Weber
et al., 2015) assumed the response functions to be monotone and restricted their spread
by assuming

Ķ

k�1

β2
jk � dj.

Typically, the constant dj is chosen such that the squared sum of the coefficients is identical
to that of the corresponding model without scaling factors.

Instead of making assumptions about the coefficients βjk, we propose to assume

Ç

c�1

αjc � 0.
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This assumption is preferable for at least two reasons: First, we do no longer need mono-
tonicity constraints for the response functions fj. Second, the unscaled functions now can
be interpreted as the average effect over all clusters.

2.3 Inference

For the sake of illustration, we consider a Gaussian model with a single predictor for the
mean parameter of the form (3).

The description of posterior inference is facilitated by rewriting the model equation in
matrix notation. We obtain

y �D1Z1β1 � � � � �DqZqβq �Xγ � ε, (4)

where Zj, j � 1, . . . , q is the usual design matrix for the j-th nonparametric term (e.g. P-
spline), Dj � diagp1 � αjc1 , . . . , 1 � αjcnq is an n � n diagonal matrix with the random
scaling factors in the main diagonal, and βj is the j-th vector of regression coefficients.

Each of the q terms DjZjβj is formally in the form of a varying coefficient term (Hastie
and Tibshirani, 1993) with effect modifier matrixZj and (pseudo) values of the interacting
variable stored in the diagonal matrix Dj.

An alternative formulation in terms of the scaling parameter vectors αj � pαj1, . . . , αjCq
1

is given by
y � � � � � f j � D̃jZ̃jαj � � � � , (5)

where f j is a vector of function evaluations at the observed covariate values, D̃j �
diagpfpzj1q, . . . , fpzjnqq is a n � n diagonal matrix with diagonal elements now given by
the function evaluations of the nonlinear effects, and Z̃j is a n � C matrix indicating if
observation i belongs to cluster c (in this case Z̃jpi, cq � 1, otherwise it equals 0). Again,
the expressions D̃jZ̃jαj in (5) are in the form of a varying coefficient term now with
effect modifier matrix Z̃j and values of the interacting variable given in D̃j.

The varying coefficient representation (5) suggests the following two-stage estimation
procedure:

Stage 1: Assume the covariate effects to be homogeneous over all clusters, i.e. set the
random effects αj to zero, and estimate the model y � f 1� . . .�f q�Xγ�ε
as usual.

Stage 2: Treat the estimated functions f̂ j from stage 1 as a fixed offset and estimate
the random effects from the varying coefficient representation (5).

Conceptually, this two-stage procedure works fine. However, simulations show that ignor-
ing the random effects in stage 1 can raise difficulties in properly estimating the functions
f j, particularly if the variances of the random effects are large. Inappropriate estima-
tions of the functions f j may then lead to peculiar results for the random effects in stage
2. Thus, instead of this two-stage procedure, we propose a simultaneous estimation ap-
proach, where Gibbs updates for the random scaling terms are employed by alternately
obeying the two different varying coefficient representations (4) and (5).

The full conditionals of the regression parameters βj are easily derived from (4) and are
multivariate Gaussian βj | � � N pµj,Σjq with

Σ�1
j �

1

σ2

�
Z 1

jD
2
jZj �

σ2

τ 2
j

Kj



, Σ�1

j µj �
1

σ2
Z 1

jDjpy � ηjq,
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where ηj contains the current predictor except the j-th term.

The full conditionals of the scaling factors are derived from (5) with αj | � � N pµ̃j, Σ̃jq
and

Σ̃
�1

j �
1

σ2

�
Z̃

1

jD̃
2

jZ̃j �
σ2

τ̃ 2
j

I



, Σ̃

�1

j µ̃j �
1

σ2
Z̃

1

jD̃jpy � f j � ηjq �
1

τ̃ 2
j

ηj.

In contrast to “usual” varying coefficients terms, the diagonal matrices Dj and D̃j of
the (pseudo) interacting variables are not constant during the Gibbs sampler. Hence
cross products and other quantities can not be computed and stored in advance and
numerical efficient updating is considerably complicated. However, the methodology for
highly efficient Gibbs updates described in Lang et al., 2014, can be applied.

Finally the full conditionals of the variance parameters are inverse Gamma and are given
by

τ 2
j � IGpa1, b1q, a1 � a� 0.5 rkpKjq, b1 � b� 0.5β1

jKjβj,

τ̃ 2
j � IGpã1, b̃1q, ã1 � ã� 0.5C, b̃1 � b̃� 0.5α1

jαj.

For most updates of regression parameters βj and αj in distributional regression Gibbs
steps are not available because the full conditionals are no longer Gaussian. Then we rely
on the Metropolis Hastings updates with IWLS proposals as described in detail in Klein
et al., 2015, and Klein et al., 2014. The key for updating βj and αj is again the varying
coefficient type notation of the random scaling terms given in (4) and (5).

3 Simulation

3.1 Gaussian models

Setup

In a first step, we simulate models with a normally distributed response y with mean µ
and heteroscedastic variance σ2. The parameters µ and σ are linked to predictors η1 and
η2 via

µ � η1,

σ � exp pη2q .

The predictors are constructed as follows:

η1 � p1 � αc1q f1 pxq ,

η2 � �0.5 � p1 � αc2q f2 pxq ,

where f1 and f2 both are the sine function sinpxq in the interval r�π, πs. These nonlinear
functions are modified by random scaling factors p1�αclq, l � 1, 2, with 20 clusters. The
random effects αcl are independent and normally distributed with mean 0 and variance
τ̃ 2
l ,

αcl � N p0, τ̃ 2
l q.

In order to evaluate the influence of both the number of observations per cluster and the
variance of the random effects we analyze six different models, whose specifications are
summarized in Table 1.

For illustration, the effects p1 � αclqflpxq of Model 2 are shown in Figure 1.
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Model Obs. per cluster Variance of αcl

Model 1 10 0.52

Model 2 50 0.52

Model 3 100 0.52

Model 4 300 0.52

Model 5 50 0.12

Model 6 50 1.02

Table 1: Model specifications

Figure 1: The functions fl, multiplied with the respective random scaling factors.

Results

We generate 250 replications of the six models and carry out the simultaneous estimation
procedure described in the previous section based on a final MCMC run with 120, 000
iterations and a burn in period of 20, 000 iterations. We store every 100th iteration in
order to obtain a sample of 1, 000 draws from the posterior. Figure 2 shows the sampling
paths of the random effects αcl of the first cluster in one of the replications of model 2,
Figure 3 shows the corresponding autocorrelation functions. As we can see, the draws are
practically independent, indicating a good mixing.

Figure 2: Sampling paths of the random effects αcl of the first cluster in one of the
replications of the Gaussian model 2.
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Figure 3: Autocorrelation functions of the random effects αcl of the first cluster in one of
the replications of the Gaussian model 2.

We then calculate the arithmetic mean from the 250 replications. Figures 4 and 5 show
the average estimates of the effects fl as well as of the cluster-specific effects p1 � αclq flpxq
for the smallest and largest random effects αcl (solid). The true effects also are plotted
(dashed) in order to facilitate comparison. As we can see from Figure 4, the scaled effects
almost perfectly can be estimated if we have 50 or more observations per cluster (rows
2-4). Even with only 10 observations per cluster the estimation results are quite well at
least for the µ-parameter. The estimation results for the σ-parameter, in contrast, are
more biased. Furthermore, Figure 5 shows that if the variance of the random effects is too
small, the effects can hardly be separated from the overall noise in the data (first row).
In contrast, the larger the variance gets, the better the estimation results are. Thus, the
estimates are more biased if the random effect is weak, which is a well-known feature of
random effects estimators, see e.g. Gelman and Hill (2007).

3.2 Gamma models

Setup

In a next step, we consider models with a gamma distributed response y with mean µ and
shape σ. Here, both parameters are linked to predictors η1 and η2 via the exponential
function:

µ � exp pη1q ,

σ � exp pη2q .

We set up the same predictors as for the Gaussian models using again independent and
normally distributed random effects αcl with 20 clusters:

η1 � p1 � αc1q f1 pxq ,

η2 � �0.5 � p1 � αc2q f2 pxq ,

with f1 and f2 being the sine function sinpxq in the interval r�π, πs. We again vary the
number of observations per cluster as well as the variance of the random effects according
to Table 1. So the effects p1�αclqflpxq are the same as in the Gaussian models, see Figure
1 for illustration.
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Figure 4: The average estimates of the functions fl as well as of the smallest and largest
cluster-specific effects p1 � αclq flpxq (solid) and the respective true effects (dashed) for
the Gaussian models 1 to 4. The first column shows the effects of the µ-equation, the
second column those of the σ-equation.

Results

We again generate 250 replications of the six models and do the same MCMC runs as for
the Gaussian models. As we can see from Figures 6 and 7, showing the sampling paths
of the random effects αcl of the first cluster in one of the replications of model 2 and the
corresponding autocorrelation functions, the draws again are practically independent.
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Figure 5: The average estimates of the functions fl as well as of the smallest and largest
cluster-specific effects p1 � αclq flpxq (solid) and the respective true effects (dashed) for
the Gaussian models 5, 2 and 6. The first column shows the effects of the µ-equation, the
second column those of the σ-equation.

Figure 6: Sampling paths of the random effects αcl of the first cluster in one of the
replications of the Gamma model 2.
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Figure 7: Autocorrelation functions of the random effects αcl of the first cluster in one of
the replications of the Gaussian model 2.

In contrast to the Gaussian model, it is hardly possible in the Gamma model to identify
any random effect when having only 10 observations per cluster (first row of Figure 8).
However, if we increase the number of observations per cluster, the results for both pa-
rameters significantly get better with almost perfect results for 100 or more observations
per cluster. The impact of the variance of the random effects is similar to the Gaussian
models. While the effects cannot be separated from the overall noise in the data for a
small variance, the estimates gets better the larger the variance is (see Figure 9).

3.3 Binomial models

Setup

Finally, we analyze models with a binomial distributed response y with probability p:

y � Bp1, pq.

The parameter p is linked to a predictor η via the logistic distribution function,

p �
exp pηq

1 � exp pηq
.

We set up the same predictor as for the µ-parameter in the Gaussian models using again
independent and normally distributed random effects αc with 20 clusters:

η � p1 � αcq f pxq ,

with f being the sine function sinpxq in the interval r�π, πs. We again vary the number of
observations per cluster as well as the variance of the random effects according to Table
1. So the effects p1�αcqfpxq are the same as for the µ-parameter in the Gaussian models,
see Figure 1 (left column) for illustration.

Results

We again generate 250 replications of the six models and do the same MCMC runs as for
the Gaussian models. As we can see from Figures 10 and 11, showing the sampling paths
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Figure 8: The average estimates of the functions fl as well as of the smallest and largest
cluster-specific effects p1 � αclq flpxq (solid) and the respective true effects (dashed) for
the Gamma models 1 to 4. The first column shows the effects of the µ-equation, the
second column those of the σ-equation.

of the random effects αc of the first cluster in one of the replications of model 2 and the
corresponding autocorrelation functions, the draws are again practically independent.

Compared to the Gaussian and the Gamma models, we now need much more observa-
tions per cluster to estimate the random effects properly (see Figure 12). Even with 300
observations per cluster there is still a (small) bias. When analyzing the impact of the
variance of the random effects, we again find that the estimation results get better the
larger the variance is (see Figure 13).
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Figure 9: The average estimates of the functions fl as well as of the smallest and largest
cluster-specific effects p1 � αclq flpxq (solid) and the respective true effects (dashed) for
the Gamma models 5, 2 and 6. The first column shows the effects of the µ-equation, the
second column those of the σ-equation.

Figure 10: Sampling path of the random effect αc of the first cluster in one of the repli-
cations of the Binomial model 2.
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Figure 11: Autocorrelation function of the random effect αc of the first cluster in one of
the replications of the Binomial model 2.

Figure 12: The average estimates of the function f as well as of the smallest and largest
cluster-specific effects p1 � αcq fpxq (solid) and the respective true effects (dashed) for the
Binomial models 1 to 4.

3.4 Model evaluation

In order to evaluate the performance of our simultaneous estimation approach, we refer
to mean squared errors (MSEs). In each replication of our models, we calculate the MSE
for the l different parameters as follows

MSEl �
1

n
pη̂l � ηlq

1 pη̂l � ηlq .

We then reestimate all replications using the two-stage estimation procedure sketched in
Section 2.3 and again calculate the corresponding MSEs.

Figure 14 shows boxplots of the MSEs of the 250 replications in the Gaussian models 1-4
with 10, 50, 100 and 300 observations per cluster and a variance of the scaling factors
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Figure 13: The average estimates of the function f as well as of the smallest and largest
cluster-specific effects p1 � αcq fpxq (solid) and the respective true effects (dashed) for the
Binomial models 5, 2 and 6.

of τ̃ 2
l � 0.52. As we can see, the simultaneous estimation approach (“1”) yields lower

MSEs than the two-stage procedure (“2”) for all models and both parameters. Especially
for the σ-parameter, the estimation results are considerably better with our simultaneous
approach. The continuous decrease of the MSEs for both parameters in our simulta-
neous estimation approach for models with a larger number of observations per cluster
corresponds to the improving estimation results that we have seen in Figure 4.

Figure 14: MSEs for the µ- and σ-parameter in the Gaussian models with τ̃ 2
l � 0.52 from

the simultaneous estimation approach (“1”) and the two-stage procedure (“2”).

With respect to the variance of the random scaling factors, we find that the performance of
the simultaneous estimation approach compared to the two-stage procedure substantially
gets better the higher the variance is, see Figure 15 that depicts boxplots of the MSEs
for the Gaussian models 5, 2 and 6 with variances τ̃ 2

l � 0.12, τ̃ 2
l � 0.52 and τ̃ 2

l � 1.02,
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each with 50 observations per cluster. Particularly for large variances (e.g. τ̃ 2
l � 1.02) the

two-stage procedure yields peculiar estimation results that cause huge MSEs.

Figure 15: MSEs for the µ- and σ-parameter in the Gaussian models with 50 observations
per cluster from the simultaneous estimation approach (“1”) and the two-stage procedure
(“2”).

For the Gamma models, we are again able to reduce the MSEs for both parameters
with the simultaneous estimation approach (see Figure 16 and Figure 17). However, the
improvement for the σ-parameter is not as marked as in the Gaussian models. We again
find that the performance of the simultaneous estimation approach compared to the two-
stage procedure substantially gets better the higher the variance of the random scaling
factors is, see Figure 17.

Eventually, there are only minor differences with respect to the MSE between the si-
multaneous estimation approach and the two-stage procedure for the p-parameter in the
Binomial models, as we can see from Figure 18.

We additionally analyze if the MSE is related to the magnitude of the scaling in the
respective cluster. For this purpose, we calculate the average MSE in each of the 20
clusters over all observations and all replications and plot it against the corresponding
random effect (which is fixed over all replications). Figure 19 shows the resulting scatter
plots for the different parameters of our three models, each with 300 observations per
cluster. For all models and all parameters, we find that the MSE increases the larger the
size of the scaling is.
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Figure 16: MSEs for the µ- and σ-parameter in the Gamma models with τ̃ 2
l � 0.52 from

the simultaneous estimation approach (“1”) and the two-stage procedure (“2”).

Figure 17: MSEs for the µ- and σ-parameter in the Gamma models with 50 observations
per cluster from the simultaneous estimation approach (“1”) and the two-stage procedure
(“2”).

4 Data description and model specification

We apply our methodology to a dataset of almost 100, 000 single family homes all over
Germany. The data was provided by F+B Research and Consulting for Habitation, Real
Estate and Environment Ltd, a business consultancy in Hamburg, Germany.
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Figure 18: MSEs for the p-parameter in the Binomial models.

Since the raw data initially was supply data, prices obviously were upward biased. Thus,
F+B adjusted these prices by a transaction discount estimated from a regression model
in order to provide realistic purchase prices. Dividing these adjusted prices by the floor
area of the houses leads to the prices per square meter (pqm), which we use as the de-
pendent variable in our analysis. The set of explanatory variables include continuous and
categorical covariates that characterize the building and its location:

• Continuous covariates: The floor area of the building (area) is expected to have
a decreasing effect on the price per square meter due to the law of diminishing
marginal utility, while the plot area where the house is built on (plot area) should
have a positive effect. Due to depreciation over time the year of construction (year)
in general should also have an increasing effect on house prices per square meter.
Besides from these structural covariates, an expert rating (rating) is included that
characterizes the area in which the building is situated. Since the rating ranges from
1 (excellent) to 9 (bad), we expect a negative effect on the prices.

• Categorical covariates: The equipment of the house (equipment) is classified by
four categories. Obviously, we expect an increasing effect for better equipments. In
order to control for state-specific price differences, we include dummy variables for
the states in which the buildings are located in.

As the most basic model we set up a Gaussian model with parameters µ and σ, which we
link to predictors η1 and η2 via

µ � η1,

σ � exp pη2q .

For l � 1, 2, the predictors are constructed as follows:

ηl � D1lf 1lpareaq �D2lf 2lpplot areaq
�D3lf 3lpyearq � f 4lpratingq �Xγ l.

(6)

f 1l, . . . ,f 4l are possibly nonlinear functions of the continuous covariates and will be mod-
eled with P-splines. Djl � diag p1 � αjc1l, . . . , 1 � αjcnlq, ci P t1, . . . , Cu, contain random
scaling factors for the C districts that allow for regional heterogeneity in the respective
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Figure 19: MSE in dependence of the size of the random effect.

price response functions. Here, we particularly expect spatial differences between Eastern
and Western Germany. The intercept as well as the dummy variables for the equipment
of the houses and the states where the buildings are located in are subsumed in the design
matrix X with parameters γ l.

Since house prices typically are skewed we additionally set up a Loggaussian model (with
location parameter µ and scale parameter σ) as well as a Gamma model (with mean
parameter µ and shape parameter σ). In both cases, we link these parameters to predictors
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η1 and η2, which again are constructed according to (6), via

µ � η1,

σ � exp pη2q ,

in the Loggaussian model and via

µ � exp pη1q ,

σ � exp pη2q ,

in the Gamma model.

5 Results

The estimation results for the models described in the previous section are based on a final
MCMC run with 270, 000 iterations and a burn in period of 20, 000 iterations. We stored
every 250th iteration, leading to a sample of 1, 000 draws from the posterior. Compre-
hensive MCMC diagnostics show that they are practically independent. For illustration,
Figures 20 and 21 show the sampling paths of the random effects αcl of the floor area
of one of the districts and the corresponding autocorrelation functions for both the µ-
and the σ-parameter in the Gamma model (which turned out to be the best model, see
Section 5.2).

When analyzing the results, one has to be aware that the parameters of the distributions
do not exactly correspond to each other. For example, the mean of the Gaussian and the
Gamma model immediately is given by the respective µ-parameter, while it is given by
exppµ�σ2{2q in the Loggaussian model. Therefore, a simple comparison of the parameters
(or of the involved scaling factors) is not reasonable. Instead, we always derive the mean
effects of the three models and compare them to each other. However, we additionally
present the results of the individual scaling factors at least for the best model (the Gamma
model).

Figure 20: Sampling paths of the random effects αcl of the floor area of one district in the
Gamma model.
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Figure 21: Autocorrelation functions of the random effects αcl of the floor area of one
district in the Gamma model.

5.1 Effect estimates

For the sake of illustration, we restrict the presentation of the results to the covariates
being multiplied by random scaling factors, i.e. the floor area, the plot area and the year
of construction.

As expected, the mean effect of the floor area on house prices per square meter, averaged
over all districts, is monotonically decreasing in all our models (see panel [a] of Figure
22). Here, in order to get an impression of the magnitude of the effects and to make the
results comparable, the other continuous covariates are held constant at mean level of
attributes and the categorical variables are held at their mode level (which we will call
the mean level). As we can see, the results of the Loggaussian and the Gamma model
almost coincide, while the effect estimated by the Gaussian model is consistently lower.

With respect to the scaling, we find that the effect of the floor area considerably differs
between the districts. Panels [b] to [d] of Figure 22 show the scaled effects of the different
districts for the three models together with the respective average effect. In the Gamma
model, for example, the effect of the floor area accounts for a variation between 350 Euro
per square meter in the district with the smallest scaling factor and 1, 200 Euro per square
meter in the district with the largest scaling factor.

For illustration, we now have a closer look to the scaling factors of the floor area in the
Gamma model. According to Table 2, the scaling factors of the mean parameter range
from 0.49 to 1.60, those of the shape parameter go from �2.16 to 3.04.

Parameter Min Mean Max
µ 0.49 1.00 1.60
σ -2.16 1.00 3.04

Table 2: Random scaling factors of the floor area in the Gamma model

With respect to the geographic distribution, the scaling factors of the mean parameter
tend to be higher in Western Germany, while they are considerably lower in Eastern
Germany (panel [a] of Figure 23). In order to verify the significance of these differences,
we refer to the posterior probabilities based on a nominal level of 80%. If the 80% credible
interval of a random effect α is strictly positive or negative we assign the corresponding
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Figure 22: Mean effect of the floor area evaluated at the mean level. [a]: Average effect
over all districts for the three different models. [b] – [d]: Scaled effects of the individual
districts for the three models together with the respective average effect.

district a value of 1 or �1, respectively. If the credible interval contains zero, we record a
value of 0 for this district. As panel [b] of Figure 23 shows, the scaled effects of the floor
area significantly differ from the average effect in about one fourth of the districts.

For the shape parameter σ, the marginal effect of the floor area, averaged over all districts,
is increasing up to an area of about 120 square meters and then levels off (see Figure 24).
However, as can be seen from the simultaneous 95% confidence bands, the effect is not
significant for a wide range of the floor area. Accordingly, the majority of the respective
scaling factors are not significant either, nor do we find a clear geographic pattern (see
Figure 25).

For the plot area, the average mean effect over all districts is monotonically increasing up
to an area of 1, 900 square meters and then slightly reverses for all three models (panel [a]
of Figure 26). However, this minor decrease for very large plots is not significant according
to the simultaneous 95% confidence bands (not depicted in the figure).

There is again considerable variation in the effects for the different districs (panels [b] –
[d] of Figure 26). In the Gamma model, for example, the respective scaling factors of the
mean parameter range from �0.08 to 2.05, see Table 3.

Parameter Min Mean Max
µ -0.08 1.00 2.05
σ -0.50 1.00 3.30

Table 3: Random scaling factors of the plot area in the Gamma model
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Figure 23: Panel [a]: Random scaling factors of the floor area for the mean parameter in
the Gamma model. [b]: 80% posterior probabilities.

Figure 24: Average marginal effect of the floor area for the shape parameter in the Gamma
model together with simultaneous 95% confidence bands.

According to these scaling factors, the magnitude of the mean effect of the plot area is
much more pronounced in the southwestern states as well as in the surroundings of Berlin
and Hamburg than in the remaining parts of Germany (panel [a] of Figure 27). This
coincides with the regions that have a higher population density and where land therefore
is a scarcer resource. The deviation from the average effect is significant in about half of
the districts, see panel [b] of Figure 27.

For the shape parameter of the Gamma model, the average marginal effect of the plot
area is slightly decreasing, see Figure 28. Again, there are considerable differences in the
scaling of the effect over the districts with the corresponding scaling factors ranging from
�0.50 to 3.30.

The largest scaling factors can be found in the most western states of Germany (panel [a]
of Figure 29). However, especially in the eastern half of Germany, there are hardly any
districts where the scaled effects significantly differ from the average effect, see panel [b]
of Figure 29.
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Figure 25: Panel [a]: Random scaling factors of the floor area for the shape parameter in
the Gamma model. [b]: 80% posterior probabilities.

Figure 26: Mean effect of the plot area evaluated at the mean level. [a]: Average effect
over all districts for the three different models. [b] – [d]: Scaled effects of the individual
districts for the three models together with the respective average effect.

In general, the results for the year of construction show an increasing effect on the mean
of the house prices per square meter (panel [a] of Figure 30). However, there are three
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Figure 27: Panel [a]: Random scaling factors of the plot area for the mean parameter in
the Gamma model. [b]: 80% posterior probabilities.

Figure 28: Average marginal effect of the plot area for the shape parameter in the Gamma
model together with simultaneous 95% confidence bands.

periods where the effect is negative: during and shortly after World War One construction
naturally was cheaper. The same holds for the time of World War Two. The third period
showing a negative effect is the time after the latest financial crisis when the real estate
market in Germany was in trouble. Indeed, a recovery started in recent years, but this
is not yet covered by our data ending in 2012. Again, the scaling factors, which for
the Gamma model vary between 0.14 and 1.66 (see Table 4), reveal considerable spatial
heterogeneity in the magnitude of the effects (panels [b] – [d] of Figure 30).

Parameter Min Mean Max
µ 0.14 1.00 1.66
σ -0.10 1.00 2.38

Table 4: Random scaling factors of the year of construction in the Gamma model
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Figure 29: Panel [a]: Random scaling factors of the plot area for the shape parameter in
the Gamma model. [b]: 80% posterior probabilities.

Figure 30: Mean effect of the year of construction evaluated at the mean level. [a]:
Average effect over all districts for the three different models. [b] – [d]: Scaled effects of
the individual districts for the three models together with the respective average effect.

With the exception of the surrounding of Berlin, the mean effect of the year of construction
is more pronounced in Eastern Germany than in most parts of Western Germany, see panel
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[a] of Figure 31. The main reason is that the construction industry in Eastern Germany
was much more affected by the reunification of 1990, causing at first a huge boom in the
eastern states followed by a severe downturn afterwards. Thus, the year of construction
has more influence on house prices in Eastern than in Western Germany. Overall, the
scaled effects significantly differ from the average effect in about two-thirds of the districts
(panel [b] of Figure 31).

Figure 31: Panel [a]: Random scaling factors of the year of construction for the mean
parameter in the Gamma model. [b]: 80% posterior probabilities.

Except for the last few years, the effect of the year of construction for the shape parameter
in the Gamma model looks similar to the one for the mean parameter (Figure 32). The
corresponding scaling factors range from �0.10 to 2.38, see Table 4.

Figure 32: Average marginal effect of the year of construction for the shape parameter in
the Gamma model together with simultaneous 95% confidence bands.

The effect is more pronounced in Eastern Germany than in the western parts, see panel
[a] of Figure 33, with significant differences from the average effect in at least one third
of the districts (panel [b] of Figure 33).
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Figure 33: Panel [a]: Random scaling factors of the year of construction for the shape
parameter in the Gamma model. [b]: 80% posterior probabilities.

5.2 Model comparison

First of all, we want to compare our models to standard Gaussian, Loggaussian and
Gamma models without scaling factors. In such models, the predictors for the respective
µ- and σ-parameters are given by

ηl � f 1lpareaq � f 2lpplot areaq � f 3lpyearq
�f 4lpratingq �Xγ l.

For illustration, Figure 34 shows the marginal mean effects of the standard Gamma model
(solid lines). For comparison, the average effects of the extended Gamma model with
scaling factors are displayed as well (dotted lines). We see that for all covariates the
estimated effects of the two models are very similar.

In order to evaluate the performance of the models we refer to the deviance information
criterion (DIC) of Spiegelhalter et al. (2002), which takes into account both the fit of the
data and the model complexity. If we denote by θ the vector of model parameters and
by θp1q, . . . ,θpT q an MCMC sample from the posterior distribution of model parameters,
then the deviance of a model with response y is given by

Dpθq � �2 � log pppy|θqq .

Furthermore, the effective number of parameters in the model, pD, is given by

pD � �Dpθq �Dpsθq
where

�Dpθq � 1

T

Ţ

t�1

D
�
θptq
	

and sθ � 1

T

Ţ

t�1

θptq.
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Figure 34: Mean effects of the standard Gamma model (solid) together with average
effects of the extended Gamma model with scaling factors (dotted). [a]: Effect of the
floor area. [b]: Effect of the plot area. [c]: Effect of the year of construction.

Then, the DIC is defined as

DIC � �Dpθq � 2 � pD � 2 � �Dpθq �Dpsθq.
Models with a lower DIC are superior compared to models with a higher DIC, where
differences of 10 or more usually are considered to be significant. As we can see from
Table 5, the DIC of the models with scaling factors are by far lower than the DIC of
the standard models, showing that the inclusion of random scaling factors leads to a
significant improvement of the results.

DIC Gaussian Loggaussian Gamma
Standard model 68, 267 62, 543 62, 878
Model with scaling factors 56, 013 50, 886 50, 753

Table 5: DIC of the standard models and the extended models with random scaling factors

Furthermore, Klein et al. (2015) have shown that the DIC also can be used to discrimi-
nate between different types of response distributions in distributional regression. Thus,
the previous results additionally suggest that within the models with scaling factors the
Gamma model is the best one. In order to verify this finding, we further calculate the
scores proposed by Gneiting and Raftery (2007), which are suited to compare the predic-
tive ability of parametric models in terms of probabilistic forecasts based on the predictive
distribution of the actual realizations.
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In order to evaluate the scores for our three models we do a five-fold cross validation,
i.e. we randomly divide the data set into five subsets Ω1, . . . ,Ω5 of virtually equal size and
estimate the models based on four of those subsets. For the remaining subset, without
loss of generality Ω1 � ty1, . . . , yRu, we derive the predictive distributions with densities
p1, . . . , pR based on the predictive parameters µ1, . . . , µR and σ1, . . . , σR. A proper scoring
rule S then leads to a score SΩ1 for this subset by summing up the individual contributions

SΩ1 �
1

R

Ŗ

r�1

Sppr, yrq.

The conclusive score S is then given by the average score of the five subsets

S �
1

5

5̧

i�1

SΩi
.

Following Gneiting and Raftery (2007), we consider the logarithmic score (LogS), the
quadratic score (QuadS) and the spherical score (SpherS), which are defined by

LogSppr, yrq � log pprpyrqq ,

QuadSppr, yrq � 2prpyrq �

»
prpωq

2dω,

SpherSppr, yrq �
prpyrq�³

prpωq2dω
�1{2

,

as well as the continuous ranked probability score (CRPS)

CRPSppr, yrq � �

» 8

�8

�
Frpxq � 1tx¥yru

�2
dx,

with predictive cumulative distribution function Frpxq �
³x
�8

prpuqdu. Since all of these
scores are proper, higher scores correspond to better probabilistic forecasts when compar-
ing different models.

As we can see from Table 6, the scores of the Gaussian model are consistently lower
than those of the Loggaussian and the Gamma model. The latter are almost identical,
reflecting the similar results that we have seen for these two models. Strictly speaking,
however, the scores slightly favor the Gamma model, confirming the results of the DIC.

Model Logarithmic score Quadratic score Spherical score CRPS
Gaussian -0.2931 0.9594 0.9680 -0.1901
Loggaussian -0.2622 0.9754 0.9754 -0.1886
Gamma -0.2621 0.9759 0.9759 -0.1885

Table 6: Comparison of average score contributions of the three models
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6 Conclusion

This paper presents a simultaneous estimation approach for Bayesian distributional re-
gression models with random scaling factors and provides a comprehensive simulation
study showing the accuracy of this approach. A comparison to an ordinary two-stage
estimation procedure reveals considerable improvement particularly for models where the
response distribution depends on more than one parameter as well as for models where
the variance of the random scaling factors is large.

We apply our methodology to real estate data from Germany and identify district-specific
random scaling factors that are significant in up to two-thirds of the districts. The results
confirm expected spatial heterogeneity in the covariates’ effects and provide new insights
into the valuation of house prices. Furthermore, allowing for district-specific random
scaling factors significantly improves the performance of the models with respect to their
DIC.

The spatial structure in the scaling factors that we found for the different covariates
suggest a conceivable starting point for further research we are already working on. Instead
of using spatially uncorrelated random scaling factors we plan to introduce correlated
factors. Another direction for further research could be an automated variable selection
for random scaling factors, which would be of interest especially for more complex models.
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the player, hate the game: Uncovering the foundations of cheating in contests

2016-28 Manuel Gebetsberger, Jakob W. Messner, Georg J. Mayr, Achim
Zeileis: Tricks for improving non-homogeneous regression for probabilistic
precipitation forecasts: Perfect predictions, heavy tails, and link functions

2016-27 Michael Razen, Matthias Stefan: Greed: Taking a deadly sin to the lab

2016-26 Florian Wickelmaier, Achim Zeileis: Using recursive partitioning to ac-
count for parameter heterogeneity in multinomial processing tree models

2016-25 Michel Philipp, Carolin Strobl, Jimmy de la Torre, Achim Zeileis:
On the estimation of standard errors in cognitive diagnosis models

2016-24 Florian Lindner, Julia Rose: No need for more time: Intertemporal alloca-
tion decisions under time pressure

2016-23 Christoph Eder, Martin Halla: The long-lasting shadow of the allied oc-
cupation of Austria on its spatial equilibrium

2016-22 Christoph Eder: Missing men: World War II casualties and structural change

2016-21 Reto Stauffer, Jakob Messner, Georg J. Mayr, Nikolaus Umlauf,
Achim Zeileis: Ensemble post-processing of daily precipitation sums over
complex terrain using censored high-resolution standardized anomalies

2016-20 Christina Bannier, Eberhard Feess, Natalie Packham, Markus Walzl:
Incentive schemes, private information and the double-edged role of competi-
tion for agents

2016-19 Martin Geiger, Richard Hule: Correlation and coordination risk

2016-18 Yola Engler, Rudolf Kerschbamer, Lionel Page: Why did he do that?
Using counterfactuals to study the effect of intentions in extensive form games

2016-17 Yola Engler, Rudolf Kerschbamer, Lionel Page: Guilt-averse or recipro-
cal? Looking at behavioural motivations in the trust game

http://eeecon.uibk.ac.at/wopec/
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-30
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-30
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-29
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-29
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-28
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-28
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-27
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-26
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-26
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-25
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-24
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-24
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-23
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-23
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-22
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-21
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-21
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-20
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-20
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-19
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-18
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-18
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-17
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-17


2016-16 Esther Blanco, Tobias Haller, James M. Walker: Provision of public
goods: Unconditional and conditional donations from outsiders

2016-15 Achim Zeileis, Christoph Leitner, Kurt Hornik: Predictive bookmaker
consensus model for the UEFA Euro 2016

2016-14 Martin Halla, Harald Mayr, Gerald J. Pruckner, Pilar Garćıa-Gómez:
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