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Abstract

Raw ensemble forecasts display large errors in predicting precipitation amounts and
its forecast uncertainty, especially in mountainous regions where local e↵ects are often
not captured. Therefore, statistical post-processing is typically applied to obtain au-
tomatically corrected weather forecasts where precipitation represents one of the most
challenging quantities. This study applies the non-homogenous regression framework as a
start-of-the-art ensemble post-processing technique to predict a full forecast distribution
and improves its forecast performance with three statistical tricks. First of all, a novel
split-type approach e↵ectively accounts for perfect ensemble predictions that can occur.
Additionally, the statistical model assumes a censored logistic distribution to deal with the
heavy tails of precipitation amounts. Finally, the optimization of regression coe�cients
for the scale parameter is investigated with suitable link-functions. These three refine-
ments are tested for stations in the European Alps for lead-times from +24h to +48h and
accumulation periods of 24 and 6 hours. Results highlight an improvement due to a com-
bination of the three statistical tricks against the default post-processing method which
does not account for perfect ensemble predictions. Probabilistic forecasts for precipitation
amounts as well as the probability of precipitation events could be improved, especially
for 6 hour sums.

Keywords: non-homogeneous regression, censored logistic distribution, log-link, probabilistic
precipitation forecasts, operational forecasting.

1. Introduction

Physically-based ensemble forecasts define a standard in operational weather forecasting nowa-
days. Decades ago, they were developed to capture atmospheric forecast uncertainty (Leith
1974). Starting from slightly perturbed initial conditions, a dynamic model integrates a cer-
tain number of ensemble members forward in time. The individual ensemble members can
then be seen as a random draw from a future state of the atmosphere. If an ensemble were
perfect, the resulting di↵erences in the member forecasts would only come from di↵erences
in their initial conditions. Hence, the true observation would be a random drawing from an
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Figure 1: Rank histogram for 24-hour precipitation sums of the raw ECMWF ensemble
forecasts for the region of Bolzano, Italy.

underlying distribution as well (Wilks 2011).

This can be analyzed in rank histograms (Hamill and Colucci 1998; Anderson 1995; Talagrand,
Vautard, and Strauss 1997), where studies have shown that ensembles of precipitation fore-
casts have a systematic bias and not enough uncertainty (underdispersion) in their forecasts,
especially in short-range forecasting (Hamill and Colucci 1998; Mullen and Buizza 2002).
This results from the fact, that numerical weather prediction models mainly su↵er from im-
perfect representation of real world physics, a lack of initial observational data, and missing
topographical e↵ects (Bauer, Thorpe, and Brunet 2015).

The European Alps represent a region with an extraordinary complex topography. Due to
insu�cient horizontal grid spacing, unresolved valleys and mountain ridges cause missing local
e↵ects for precipitation that occur in reality. Most of the precipitation is rained out before
it reaches inner alpine valleys, leading to drying ratios of about 35% (Smith, Jiang, Fearon,
Tabary, Dorninger, Doyle, and Benoit 2003).

Therefore, systematic errors and an underdispersion can be observed for this region, as illus-
trated in Figure 1 (see Section 3.3.1). This rank histogram highlights a strong bias due to the
peak at rank 1, where precipitation amounts are strongly overestimated by the raw ensemble.
Additionally, an underdisperison is visible since observations are mostly below the lowest and
above the highest member forecast (on rank 1 and 51).

In order to correct for these errors and to supply automatically-corrected forecasts to weather
services, the raw ensemble has to be post-processed. Numerous approaches for statistically
post-processing ensembles exist that simultaneously correct for ensemble mean and ensemble
dispersion (Roulston and Smith 2003; Gneiting, Raftery, Westveld III, and Goldman 2005;
Raftery, Gneiting, Balabdaoui, and Polakowski 2005; Sloughter, Raftery, Gneiting, and Fraley
2007).

These methods have been tested extensively for di↵erent variables (e.g., temperature, mean
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Figure 2: Frequency [%] of ensemble forecasts containing a certain number of members being
zero (0-50), evaluated for the region of Bolzano, Italy for 24-hour sums.

sea level pressure, wind, and precipitation), and appropriate distributions: Gaussian (Gneiting
et al. 2005), truncated normal (Thorarinsdottir and Gneiting 2010), gamma (Wilks 1990),
generalized extreme value (GEV, Scheuerer 2014), or censored Gauss and logistic (Wilks
2009; Messner, Mayr, Zeileis, and Wilks 2014b; Messner, Mayr, Wilks, and Zeileis 2014a).
Gneiting and Katzfuss (2014) nicely review suitable distributions for certain variables, and
statistical ensemble post-processing and verification techniques in general.

However, only a few studies use more than ensemble mean and standard deviation as regressor
variables in their statistical models. For precipitation, the fraction of ensemble members being
zero, used as an additional regressor, can improve the post-processed forecasts (Sloughter et al.
2007; Bentzien and Friederichs 2012; Scheuerer 2014).

A closer look at this fraction for the region of Bolzano in the European Alps illustrates a special
characteristic. Figure 2 tells us, that the complete ensemble is mostly positive (peak at zero)
or all members are zero (peak at 50). In order to produce sharp forecasts for precipitation
occurrence, this is what we suppose from the ensemble to do: forecasting probabilities close
to 0 and 100%. Furthermore, Figure 3 shows the observed precipitation amount conditional
on the fraction of ensemble members being zero, displayed for a representative station. The
forecasts of all ensemble members predicting no precipitation are perfect in the sense that no
precipitation has been observed. This figure also illustrates, that “perfect” cases can occur on
lower split levels for the fraction of zeros as well (fraction larger than 0.1).

In order to account for those existing perfect cases within this Alpine region, we will introduce
a new split-type approach as the first statistical trick and apply it to the non-homogeneous
regression framework (NHR) of Gneiting et al. 2005. As a state-of-the-art post-processing
method, this approach is generally able to provide a full probability distribution for precipi-
tation amounts.

Nevertheless, a classical Gaussian distribution is not appropriate for precipitation data which
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Figure 3: Ensemble mean values against observed precipitation at Bolzano for 24-hour sums:
Columns show cases with a di↵erent fraction of zero EPS-members (0-0.02, 0.02-0.1, 0.1-0.5,
0.5-0.99, 0.99-1). x- and y-axis are in [mm].

have a physical limit at zero. Furthermore, events with large precipitation amounts can be
underestimated on the Gaussian tails that are typically too weak. To overcome this, our sec-
ond statistical trick assumes a heavy-tailed distribution which deals with those precipitation
characteristics.

Additionally, the non-negativity of the distribution’s dispersion parameter has to be ensured.
Numerical optimization of regression coe�cients can lead to negative dispersion parameters
that should be avoided. According to established studies, this requirement can be achieved by
squaring the optimization value (Gneiting et al. 2005), or by applying a link function to the
dispersion sub-model (Messner et al. 2014a). A comparison of these concepts has not been
made so far and will be performed in this study as the third statistical trick.

This article is structured as followed: In Section 2 we will explain our statistical tricks in
detail. Further, Section 3 describes our study area and comparison setup. Section 4 presents
our results, which will be concluded and summarized in Section 5.

2. Tricks

In this section we briefly describe the basic non-homogeneous regression (NHR) framework,
followed by our three statistical tricks: split approach for perfect predictions, heavy tails, and
link functions.

2.1. Non-homogeneous regression

Non-homogenous regression (NHR) was initially developed for a Gaussian response, e.g.,
temperature (Gneiting et al. 2005). This approach uses a linear model framework, where two
linear equations are defined to correct for the location part (Eq. 1) and the scale part (Eq. 2),
respectively. Typically, the Gaussian parameters for location and scale (µi, �i) are linearly
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linked to ensemble mean (ensi) and ensemble standard deviation (SDens,i) for each event i:

µi = �0 + �1 · ensi (1)

�i = �0 + �1 · SDens,i (2)

The four coe�cients (�0,�1, �0, �1) can be estimated simultaneously by numerically optimizing
the log-likelihood function:

logLik =
NX

i=1

log(f(precipi)) (3)

which is defined as the sum over the logarithmic densities of the probability density function
(PDF) f , evaluated at the observed value precipi. Concerning the classical NHR approach,
f defines the Gaussian PDF.

Since precipitation data are non-negatively defined and skewed to the right, this Gaussian
NHR has to be modified. A simple approach is given by the concept of censoring at a certain
threshold (Cohen 1959). Regarding precipitation, this threshold is typically defined at zero.
Similar to the classical NHR, we assume a latent Gaussian process y which is allowed to
become negative. As a result, this latent process has to be censored at zero to obtain sensible
values for precipitation:

precip

i

=

(
0 yi  0

yi yi > 0
(4)

The log-likelihood function which has to be optimized di↵ers to Eq. 3 by distinguishing be-
tween events on the censoring level (precipi = 0) and above the censoring level (precipi > 0):

logLik

i

=

(
log(F (0)) precipi = 0

log(f(precipi)) precipi > 0
(5)

where F represents the cumulative distribution function (CDF) and f the PDF, evaluated at
the censoring level zero or the observed value precipi, respectively.

2.2. Split approach

In the introduction we have already implied the importance to use the fraction of ensemble
members being zero. Scheuerer (2014) already used this information for probabilistic precipi-
tation forecasts in Germany. He added a new regressor variable frac into the location part of
Eq. 1, which accounts for the fraction of K members being zero: frac = 1

K

PK
k=1 1memberk=0.

Defined as a numeric value between 0 and 1, this additional regressor could improve the
forecasts.

Concerning the European Alps, some specialities can be observed for frac: Figure 3 suggests
that if (nearly) all ensemble members are zero (i.e., frac is high), precipitation may take very
low (or even zero) values and the regression relationship almost collapses. Therefore, the
influence of frac is better not captured by an additive regressor (as in Scheuerer 2014) but by
an interaction term that can also be interpreted as splitting the data at a certain split level
⌫, further referred as “split approach”.
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More specifically we derive a binary variable zi indicating whether (almost) all ensemble
members are zero:

zi =

(
1 if frac � ⌫

0 otherwise
(6)

If ⌫ = 1 then zi indicates whether all ensemble members are zero but choosing lower split
levels might also be useful (see below).

Subsequently, this new regressor enters the NHR equations in form of an interaction:

µi = �0 + �1 · ensi · (1� zi) + �2 · zi (7)

�i = �0 + �1 · SDens,i · (1� zi) (8)

which can be interpreted as follows: The usual censored NHR with slopes �1 and �1, respec-
tively, is only estimated for the cases with zi = 0, i.e., where at least a certain fraction (1�⌫)
of ensemble members indicate precipitation. Conversely if zi = 1, i.e., (almost) all ensemble
members indicate no precipitation, the regression collapses to a simple climatological mean
µi = �0 + �2 and standard deviation �i = �0.

Typically, the coe�cient �2 will be negative leading to lower predicted precipitation. Note
that due to the censoring, the probability for positive precipitation may become arbitrary
small if �2 becomes increasingly negative. For this reason �i = �0 is also kept fixed to avoid
that both mean and standard deviation collapse to zero.

The choice for the “best” split point between the NHR regression and simple climatological fit
is not obvious and explored in more detail below. Considering Figure 2 it seems that ⌫ = 1
should be su�cient because there are only few observations with large fractions but below 1.
However, from Figure 3 for station Bolzano it might also be reasonable to switch from the
proper NHR regression to the climatological mean at a lower split point, e.g., ⌫ = 0.5 or even
⌫ = 0.1.

2.3. Heavy tails

Although the censored Gaussian distribution is able to capture precipitation characteristics
(non-negativity, many observations at zero), more suitable distributions regarding rare events
with large amounts of precipitation exist.

In this work we will additionally investigate the censored logistic distribution. By having a
more pronounced tail than the Gaussian, the logistic distribution possibly accounts better
for extreme cases on those tails and was found to be meaningful (Messner et al. 2014b).
Censoring and log-likelihood maximization can be performed as in the Gaussian case described
previously, but using the logistic PDF (Eq. 9) and CDF (Eq. 10). Note that � defines the
scale parameter, and µ the location parameter of the logistic distribution to be consistent
with the censored NHR framework of Eq. 7 and 8.

f(y, µ,�) =
e

� y�µ
�

� · (1 + e

� y�µ
� )2

(9)

F (y, µ,�) =
1

1 + e

� y�µ
�

(10)
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Clearly, there might be other suitable distributions accounting for rare events, e.g., generalized
extreme value (GEV, Scheuerer 2014), censored shifted Gamma (Scheuerer and Hamill 2015),
that can be used within this split approach as well.

Until now, we have defined a censored NHR-framework using the new split approach for a
certain split level ⌫. Our third, and last refinement will now focus on the dispersion sub-model
in Eq. 8.

2.4. Link functions

Since the scale parameter in Eq. 8 is non-negatively defined, we have to ensure that individual
predictions are kept non-negative during optimization. This can be achieved in two ways: by
parameter constraints for �0, �1 (e.g. squaring these coe�cients, Gneiting et al. 2005), or
by using a suitable link function (e.g. log-link, Messner et al. 2014b). Therefore, we will
investigate possible di↵erences of using di↵erent link-functions g for the scale sub-model:

g(�) = �0 + �1 · g(SDens) · (1� z) (11)

In this study we compare the logarithmic-link (Messner et al. 2014b) and two other link-
functions that use the parameter constraint of Gneiting et al. (2005):

• quadratic (quad): g(�) = �

2 (Gneiting et al. 2005)

• logarithmic (log:) g(�) = log(�) (Messner et al. 2014b)

• identity (id): g(�) = � (Scheuerer 2014)

Additionally, we use the same transformation g for the standard deviation on the right site
of Eq. 11. Those link-functions mentioned here will be applied in our split approach.

3. Data and setup

This section defines the data for our research area and the comparison setup for the statistical
models.

3.1. Data

As mentioned in the introduction, raw ensemble forecasts for precipitation amounts su↵er from
large location and dispersion errors (Figure 1). In order to correct for errors in a complex
environment, our region of interest is embedded in the Central European Alps, in the North of
Italy (Figure 4). A special concern for this region focuses on accurate probabilistic forecasts
of precipitation amounts and the probability of precipitation for agricultural purposes. This
region is famous for wine and fruit growing, where precipitation events and precipitation
amounts can highly influence the evolution of plant pathogens (Löpmeier, Wittich, Frühauf,
and Schittenhelm 2013; Carisse, Bacon, Lefebvre, and Lessard 2009).

The ensemble forecasts we want to correct for this region, are based on the operational
ensemble prediction system (EPS) of the ECMWF, which consists of 50 ensemble members
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Figure 4: Region of interest: the bold area defines the region of Bolzano, Italy. Triangles
represent our station sites, where the filled triangle denotes the station in Bolzano, that is
used for demonstrative examples.

with a horizontal grid size of 32 km. The model output is then bilinearly interpolated to 10
station sites of interest.

Observed precipitation amounts are based on 10 minute measurements of automated weather
stations, which are owned by the local weather service. The datasets cover the period from
2011-01-01 to 2014-01-01.

The forecast horizon of interest is for the second day from +24 h to +48 h, and based on
the 00 UTC run of the ECMWF EPS. In this study, we will focus on di↵erent aggregation
periods of 6- and 24-hour precipitation amounts.

3.2. Comparison setup

Table 1 gives an overview about the statistical models used in this article. In order to quantify
the quality of our new split approach, we will use a reference model. The reference approach
uses the quadratic link with a parameter constraint for the estimated scale coe�cients (quad),
as used by Gneiting et al. (2005) for temperature forecasts. This model is extended by using
the fraction of members being zero (quad frac), as proposed by Scheuerer 2014. Finally, we use
our split approach with the quadratic-link (quad split), the logarithmic-link (log split), and
the identity-link (id split). Except for the log-link split model, all models use the parameter
constraint of squaring the coe�cients in the scale sub-model.

To have a fair comparison, a ten-fold cross-validation is performed for each individual case
and results are evaluated on the left-out data.

The optimization itself is performed in R by using the crch package, which performs maximum



Manuel Gebetsberger, Jakob W. Messner, Georg J. Mayr, Achim Zeileis 9

Model name Zero information Link function in scale-sub-model Parameter constraint on �0, �1

quad - quadratic power of 2
quad frac frac quadratic power of 2
quad split approach z quadratic power of 2
log split z logarithmic -
id split z identity power of 2

Table 1: Overview of statistical models used for comparison: zero information describes if the
fraction of members being zero (frac) is used, the split approach with the z regressor, or no
information used.

likelihood optimization (R Core Team 2016; Messner, Mayr, and Zeileis 2016).

4. Results

This section is structured as followed: first, we will briefly compare the statistical models
to the raw ensemble, followed by the quantification of our three statistical tricks against the
reference post-processing method.

4.1. Comparison to raw ensemble forecasts

It is essential that post-processing has to improve the raw ensemble forecasts. We therefore
perform a brief ensemble evaluation with the continuous ranked probability score (CRPS,
Hersbach 2000; Gneiting et al. 2005; Wilks 2011) for the probabilistic forecasts, and the Brier
score (BS, Brier 1950) to check the probability of precipitation (PoP), both described in the
following. Model performance is evaluated on the CRPS:

CRPS =
1

n

nX

i=1

1Z

�1

(F fcst

i � F

obs

i )2 (12)

by comparing the forecasted and observed cumulative distribution function F .

In order to compare the performance of di↵erent statistical models (Table 1), we further
compute the continuous ranked probability skill score (CRPSS):

CRPSS = 1� CRPS

mod

/CRPS

ref

(13)

where CRPS

mod

is each model score and CRPS

ref

our reference approach. Since the reference
has no skill against itself, the CRPSS is zero.

Furthermore, our needed forecasts for PoP in our region are analyzed by the BS:

BS =
1

n

nX

i=1

(pi � oi)
2 (14)

which is a mean squared di↵erence between the forecast probabilities pi and the binary value
of precipitation yes or no oi.

Although the ensemble does not provide a full continuous probability distribution, it is possible
to verify the empirical CDF due to Hersbach (2000). Additionally, the percentage of ensemble
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CRPS BS

Type name 24-h 6-h 24-h 6-h
Raw ensemble EPS 1.53907 0.52670 0.46050 0.43435

Gaussian models

quad 1.17707 0.40141 0.10704 0.08531
quad frac 1.17659 0.39179 0.10679 0.08447
quad split 1.17685 0.40099 0.10681 0.08528
log split 1.16565 0.38180 0.10723 0.08430
id split 1.17077 0.39816 0.10639 0.08444

Logistic models

quad 1.16456 0.39369 0.10277 0.08319
quad frac 1.16462 0.38085 0.10278 0.08272
quad split 1.16439 0.39148 0.10284 0.08323
log split 1.16257 0.37852 0.10290 0.08270
id split 1.16136 0.38371 0.10246 0.08245

Table 2: Median CRPS and Brier scores (BS) for the raw ensemble, Gaussian and logistic
models, evaluated separately for di↵erent accumulation periods (24,6 hour) over the research
area.

members predicting precipitation can be used to verify the probability of precipitation (PoP).
CRPS and BS values are summarized in Table 2.

Clearly, censored Gaussian and censored logistic models show lower CRPS values than the
raw ensemble, both improving the raw forecasts significantly by a value of 25% on median.
The CRPS is generally smaller for 6-hour sums, resulting from smaller precipitation amounts
that are observed.

Regarding the PoP, the raw ensemble could also be improved significantly by all statistical
models. 24-hour sums obtain a Brier score of 0.46 on median, and 6-hour sums a score of
0.42 on median. Compared to the raw ensemble, the post-processed forecasts of all statistical
models improve about 75%.

4.2. Split approach and split levels

Since we have clarified a clear improvement against the raw ensemble, we will focus on the
statistical models in the following.

Figure 5 summarizes CRPSS values for censored Gaussian and logistic models, relative to
our reference approach where the squared scale parameter is optimized without additional
information of members being zero (quad). The boxplots represent individual cases (lead-
times) for each station, which are between +24h and +48h forecasts in advance : 24-hour
sums include 10, and 6-hour 40 CRPSS values.

All split models (using ⌫ = 1) show an increased forecast skill which is even more dominant
for 6-hour accumulation periods. Median values are highest for split models using the log-link.
This pattern is similar for censored logistic models , especially for 6-hour sums. The model,
which uses the fraction of zeros (quad frac) leads to a similar magnitude of improvement as
the split model with id-link, both for censored Gaussian and logistic simulations.

The previously described split models have all been performed on the split level of ⌫ = 1,
where all members are zero. Since split models using the log-link performed best in the
previous validation, we refitted this split model for di↵erent split levels (⌫ = 0.02, 0.1, 0.5).
The validation shows a decreasing CRPSS median for split models that perform the split at
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Figure 5: Continuous ranked probability skill score (CRPSS) for censored Gaussian and
logistic models in reference to the quad -model without splitting. Results from ten-fold cross-
validation of data for 10 stations and di↵erent lead-times (+24h to +48h), evaluated separately
for di↵erent accumulation periods.
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Results from ten-fold cross-validation of data for 10 stations and di↵erent lead-times (+24h
to +48h), evaluated separately for di↵erent accumulation periods. The reference model in
each accumulation period has a skill of zero.
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Figure 7: Probability Integral Transform (PIT) analysis for log-link models with censored
Gaussian predictions (left column) and censored logistic predictions (right column), respec-
tively. Results from ten-fold cross-validation over 10 stations and di↵erent lead-times (+24h
to +48h), evaluated separately for di↵erent accumulation periods (24, 6 hour). Bin-width is
0.025.

⌫ = 0.02 (Figure 6). Higher split levels, e.g. 0.5, illustrate no skill on median.

This result is equal for censored Gaussian and censored logistic split models using the log-
link. Although an optimum split level could be found on split levels in between, we could not
identify a significant benefit of using other split levels for validation data (results not shown).

4.3. Heavy tails

Calibration is one of the most important characteristics which should be achieved by prob-
abilistic forecasts. We therefore compute the probability integral transform (PIT), which is
similar to rank histograms (Hamill and Colucci 1998; Anderson 1995; Talagrand et al. 1997).
It bins the forecasted cumulative probability density function and counts where the observed
value falls into. If the model is well calibrated, the bins should all have the same number of
observations.

Figure 7 shows PIT histograms for di↵erent accumulation periods. For simplicity, only split-
ted log-link models are shown, since they performed best in terms of CRPSS values. The
remaining models generate very similar histograms (results not shown). Both, Gaussian and
logistic models are more calibrated if short accumulation periods are forecasted. Logistic
models generally produce histograms that are more uniformly distributed.

This improvement by the logistic tail is also visible for PoP forecasts, where we addition-
ally compute the BS decomposition based on Murphy and Winkler (1987). The BS and its
probabilistic attributes of reliability, resolution, and sharpness are illustrated in Figure 8.
Brier scores are very similar among the models and decrease for short observation intervals
in general. This is related to the number of zeros, which increases for shorter accumulation
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Figure 8: Brier score and its decomposition into reliability, resolution, and sharpness for
probability of precipitation (PoP): Results from ten-fold cross-validation over 10 stations and
di↵erent lead-times (+24h to +48h), evaluated separately for di↵erent accumulation periods.
Each boxplot illustrate the 5 models (Table 1), both for censored Gaussian (right boxplot)
and logistic models (left boxplot) respectively.

periods. Clearly, logistic models obtain the smallest scores for all periods. The decomposition
also clarifies a smaller reliability, slightly larger resolution, and larger sharpness of censored
logistic forecasts. An additional overview about the numerical values of this decomposition
for each individual model can be found in the appendix (Table 3).

4.4. Link functions

So far we have seen an improved skill of split models and by using the logistic tail. CRPS
di↵erences in the split models (Figure 5) might be understood by looking at the regression
fits for di↵erent link-functions. Figure 9 gives an example fit for censored Gaussian models
for cases where the raw standard deviation was larger than 0. Although the linear fits for
the latent mean value (left graphic) do not vary a lot, the fit for the scale parameter (right
graphic) highlights larger di↵erences. If the ensemble would already be perfect, the fitted
curves would follow the dashed black line. Since this is not the case, ensemble mean values
are corrected to lower values (fits below the black line) and ensemble standard deviations to
higher values (fits above the black line).

Furthermore, di↵erences in the predicted scale parameter can be seen for small values of the
ensemble standard deviation (e.g., SD

ens

= 0.5), where the log-link predictions are largest.
This pattern was found for other cases as well (results not shown).
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Figure 9: Link-functions for censored Gaussian models showing location- and scale predic-
tions at Bolzano, 6-hour sum for lead-time +36h: identity-link (circle), log-link (triangle),
quadratic-link (cross); x-axis denotes the ensemble mean ens for location-models and the
ensemble standard deviation ens SD for scale-models. The rug bars on the x-axis illustrate
the raw ensemble values used for fitting. Y-axis describe the predictions of latent mean and
standard deviation.

5. Summary and conclusion

In this study we have refined the non-homogeneous regression (NHR) approach (Gneiting
et al. 2005) for precipitation forecast and applied it to a study area in the European Alps.
A combination of three statistical tricks is able to improve post-processed probabilistic fore-
casts for precipitation amounts, and the probability of precipitation: a new split approach
accounting for perfect cases in the raw ensemble, the censored logistic distribution for heavy
tails of precipitation data, and a suitable link-function for uncertainty predictions.

Our newly introduced split approach is able to account for perfect ensemble forecasts that can
occur. Especially for non-precipitation events, the raw ensemble was found to be perfect if all
members are zero. The estimation of a separate climatological mean for cases where a certain
fraction of zeros occur could clearly outperform the reference method, that does not make
use of the information of zeros. Additionally, the general expression of the split approach
allows us to use other split levels, which were found to be worse for the lowest split-level (0.1)
and skillful for higher levels (larger than 0.5). It is also possible to use the split approach
for di↵erent definitions of frac, which we have defined as the number of members being zero.
Contrary, frac can be also the number of members below a certain value (e.g. 0.001) to
overcome the problem of noise in the bilinear interpolation of ensemble data for instance.

Furthermore, using the censored logistic distribution increased the forecast skill compared
to censored Gaussian models. The pronounced tail of the logistic distribution was able to
capture rare events, and produced improved CRPS and BS values, as well as calibration
verified in PIT histograms. Clearly, distributions with skewness or an even more pronounced
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tail, e.g. Gamma or GEV, represent another good distribution assumption as well (Wilks
1990; Scheuerer 2014; Scheuerer and Hamill 2015), since a peak of very extreme events was
still visible in the PIT evaluation.

Our third refinement has been the investigation of di↵erent link-functions for the dispersion
sub-model in the NHR-approach. Depending on the used forecast distribution, distribution
parameters can require positive values during numerical optimization. We could find notable
di↵erences in forecast skill for di↵erent link-functions, especially for short accumulation peri-
ods of 6-hour sums. The best performance has been achieved by usage of the log-link (log)
for the scale sub-models, which optimizes the logarithmic standard deviation (Messner et al.
2014a). This approach outperformed simulations where the squared scale (quad) or scale
parameter (id) is estimated and is an attractive candidate for this optimization issue. Di↵er-
ences are visible if the estimated scale parameters are back-transformed into the scale of the
original standard deviation. Although all link-functions could correct for the raw ensembles
underdispersion, id - and quad -models produced too less uncertainty. This especially takes
place in the range for smaller regressor values of ensemble standard deviation, where most of
the cases occurred. Additionally, the combination of log-link and the split approach allows us
to use the logarithmic standard deviation as regressor. Otherwise, the logarithmic standard
deviation could not be used (due to infinities occurring if there is no standard deviation in
the ensemble).

To summarize the overall forecast performance for our study area, all statistical models could
improve the raw ensemble forecasts by 25% on median, in terms of CRPSS. Our results imply
that an untransformed censored logistic assumption is adequate for short accumulation periods
and in predicting the probability of precipitation. Our proposed split models highlight the
importance of using the information of zeros predicted by the raw ensemble. The di↵erences
in daily sums seemed to be negligible small. Results also showed di↵erences in link-functions
where the logarithmic-link performed best. Our three statistical tricks illustrate the largest
benefit for short accumulation periods (6h).
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Appendix

Gaussian models Logistic models

quad quad frac quad split log split id split quad quad frac quad split log split id split
24-REL 0.00694 0.00635 0.0069 0.00836 0.00666 0.00325 0.00321 0.00327 0.00418 0.00332
6-REL 0.00176 0.00175 0.0018 0.00257 0.00203 0.0011 0.00102 0.00105 0.00159 0.00122

24-RES 0.12348 0.12314 0.12367 0.12471 0.12385 0.12406 0.12401 0.12402 0.12486 0.12444
6-RES 0.05253 0.05335 0.05259 0.05434 0.05367 0.05398 0.05438 0.0539 0.05497 0.05484

24-SHARP 2.97099 2.93331 2.96455 2.89358 2.95825 3.11742 3.10234 3.11576 3.05869 3.10605
6-SHARP 1.94735 1.94153 1.93967 1.9173 1.9342 2.04687 2.04229 2.04243 2.02699 2.03926

Table 3: Brier score decomposition for probability of precipitation as illustrated in Figure
8. Rows show values for reliability (REL), resolution (RES), and sharpness (SHARP) for
di↵erent accumulation periods (24, 6 hour) for censored Gaussian and logistic models as
described in Table 1.
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Abstract
Raw ensemble forecasts display large errors in predicting precipitation amounts and
its forecast uncertainty, especially in mountainous regions where local e↵ects are
often not captured. Therefore, statistical post-processing is typically applied to ob-
tain automatically corrected weather forecasts where precipitation represents one
of the most challenging quantities. This study applies the non-homogenous regres-
sion framework as a start-of-the-art ensemble post-processing technique to predict
a full forecast distribution and improves its forecast performance with three stati-
stical tricks. First of all, a novel split-type approach e↵ectively accounts for perfect
ensemble predictions that can occur. Additionally, the statistical model assumes a
censored logistic distribution to deal with the heavy tails of precipitation amounts.
Finally, the optimization of regression coe�cients for the scale parameter is investi-
gated with suitable link-functions. These three refinements are tested for stations in
the European Alps for lead-times from +24h to +48h and accumulation periods of
24 and 6 hours. Results highlight an improvement due to a combination of the three
statistical tricks against the default post-processing method which does not account
for perfect ensemble predictions. Probabilistic forecasts for precipitation amounts
as well as the probability of precipitation events could be improved, especially for 6
hour sums.
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