

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Caporale, Guglielmo Maria; Gil-Alaña, Luis A.; Plastun, Alex

Working Paper

Long memory and data frequency in financial markets

DIW Discussion Papers, No. 1647

Provided in Cooperation with:

German Institute for Economic Research (DIW Berlin)

Suggested Citation: Caporale, Guglielmo Maria; Gil-Alaña, Luis A.; Plastun, Alex (2017): Long memory and data frequency in financial markets, DIW Discussion Papers, No. 1647, Deutsches Institut für Wirtschaftsforschung (DIW), Berlin

This Version is available at: https://hdl.handle.net/10419/156139

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Discussion Papers

Deutsches Institut für Wirtschaftsforschung

2017

Long Memory and Data Frequency in Financial Markets

Guglielmo Maria Caporale, Luis Gil-Alana and Alex Plastun

Opinions expressed in this paper are those of the author(s) and do not necessarily reflect views of the institute.

IMPRESSUM

© DIW Berlin, 2017

DIW Berlin German Institute for Economic Research Mohrenstr. 58 10117 Berlin

Tel. +49 (30) 897 89-0 Fax +49 (30) 897 89-200 http://www.diw.de

ISSN electronic edition 1619-4535

Papers can be downloaded free of charge from the DIW Berlin website: http://www.diw.de/discussionpapers

Discussion Papers of DIW Berlin are indexed in RePEc and SSRN: http://ideas.repec.org/s/diw/diwwpp.html
http://www.ssrn.com/link/DIW-Berlin-German-Inst-Econ-Res.html

Long Memory and Data Frequency in Financial Markets

Guglielmo Maria Caporale*

Brunel University London, CESifo and DIW Berlin

Luis Gil-Alana**
University of Navarra

Oniversity of Navarra

Alex Plastun

Sumy State University

February 2017

Abstract

This paper investigates persistence in financial time series at three different frequencies (daily, weekly and monthly). The analysis is carried out for various financial markets (stock markets, FOREX, commodity markets) over the period from 2000 to 2016 using two different long memory approaches (R/S analysis and fractional integration) for robustness purposes. The results indicate that persistence is higher at lower frequencies, for both returns and their volatility. This is true of the stock markets (both developed and emerging) and partially of the FOREX and commodity markets examined. Such evidence against the random walk behavior implies predictability and is inconsistent with the Efficient Market Hypothesis (EMH), since abnormal profits can be made using specific option trading strategies (butterfly, straddle, strangle, iron condor, etc.).

Keywords: Persistence, Long Memory, R/S Analysis, Fractional Integration

JEL Classification: C22, G12

Email: Guglielmo-Maria.Caporale@brunel.ac.uk

^{*}Corresponding author. Research Professor at DIW Berlin. Department of Economics and Finance, Brunel University, London, UB8 3PH.

^{**} Luis A. Gil-Alana gratefully acknowledges financial support from the Ministerio de Ciencia y Tecnología (ECO2014-55236).

1. Introduction

The Efficient Market Hypothesis (EMH), according to which asset prices should follow a random walk and therefore not exhibit long memory (see Fama, 1970) has been for decades the dominant paradigm in financial economics. However, the available empirical evidence is quite mixed. Mandelbrot (1972), Greene and Fielitz (1977), Booth et al. (1982), Helms et al. (1984), Caporale et al. (2014), Mynhardt et al. (2014) among others all provided evidence of long-memory behaviour in financial markets. By contrast, Lo (1991), Jacobsen (1995), Berg and Lyhagen (1998), Crato and Ray (2000), Batten et al. (2005) and Serletis and Rosenberg (2007) did not find long-memory properties in financial series. A possible reason for such different findings is that the degree of persistence might change over time as argued by Corazza and Malliaris (2002), Glenn (2007) and others.

The present study aims to examine this possible explanation by estimating persistence in financial time series at three different frequencies (daily, weekly and monthly. The analysis is carried out for various financial markets (stock markets, FOREX, commodity markets), for both returns and their volatility, over the period from 2000 to 2016 using two different long memory approaches (R/S analysis with the Hurst exponent method and fractional integration) for robustness purposes. The hypothesis to be tested is that persistence is higher at lower frequencies.

The layout of the paper is the following. Section 2 describes the data and outlines the empirical methodology. Section 3 presents the empirical results. Section 4 provides some concluding remarks.

2. Data and Methodology

The R/S method was originally applied by Hurst (1951) in hydrological research and improved by Mandelbrot (1972), Peters (1991, 1994) and others analysing the fractal

nature of financial markets. Compared with other approaches it is relatively simple and suitable for programming as well as visual interpretation.

For each sub-period range R (the difference between the maximum and minimum index within the sub-period), the standard deviation S and their average ratio are calculated. The length of the sub-period is increased and the calculation repeated until the size of the sub-period is equal to that of the original series. As a result, each sub-period is determined by the average value of R/S. The least square method is applied to these values and a regression is run, obtaining an estimate of the angle of the regression line. This estimate is a measure of the Hurst exponent, which is an indicator of market persistence. More details are provided below.

We start with a time series of length M and transform it into one of length N
 M - I using logs and converting prices into returns (or volatility):

$$N_i = \log\left(\frac{Y_{t+1}}{Y_t}\right), \quad t = 1, 2, 3, \dots (M-1)$$
 (1).

2. We divide this period into contiguous A sub-periods with length n, so that $A_n = N$, then we identify each sub-period as I_a , given the fact that $a = 1, 2, 3, \ldots, A$. Each element I_a is represented as N_k with $k = 1, 2, 3, \ldots, N$. For each I_a with length n the average e_a is defined as:

$$e_a = \frac{1}{n} \sum_{k=1}^{n} N_{k,a}, \quad k = 1,2,3,...N, \quad a = 1,2,3...,A$$
 (2).

3. Accumulated deviations $X_{k,a}$ from the average e_a for each sub-period I_a are defined as:

$$X_{k,a} = \sum_{i=1}^{k} (N_{i,a} - e_a).$$
 (3)

The range is defined as the maximum index $X_{k,a}$ minus the minimum $X_{k,a}$, within each sub-period (I_a):

$$R_{Ia} = \max(X_{k,a}) - \min(X_{k,a}), \quad 1 \le k \le n.$$
 (4)

4. The standard deviation S_{Ia} is calculated for each sub-period I_a :

$$S_{Ia} = \left(\left(\frac{1}{n} \right) \sum_{k=1}^{n} (N_{k,a} - e_a)^2 \right)^{0.5}.$$
 (5)

5. Each range R_{Ia} is normalised by dividing by the corresponding S_{Ia} . Therefore, the re-normalised scale during each sub-period I_a is R_{Ia}/S_{Ia} . In the step 2 above, we obtained adjacent sub-periods of length n. Thus, the average R/S for length n is defined as:

$$(R/S)_n = (1/A) \sum_{i=1}^{A} (R_{Ia}/S_{Ia}).$$
 (6)

- 6. The length n is increased to the next higher level, (M 1)/n, and must be an integer number. In this case, we use n-indexes that include the initial and ending points of the time series, and Steps 1 6 are repeated until n = (M 1)/2.
- 7. Now we can use least square to estimate the equation log(R/S) = log(c) + Hlog(n). The angle of the regression line is an estimate of the Hurst exponent H. This can be defined over the interval [0, 1], and is calculated within the boundaries specified below (for more detailed information see Appendix C):
- $0 \le H < 0.5$ the data are fractal, the EMH is not confirmed, the distribution has fat tails, the series are anti-persistent, returns are negatively correlated, there is pink noise with frequent changes in the direction of price movements, trading in the market is riskier for individual participants.
- H = 0.5 the data are random, the EMH is confirmed, asset prices follow a random Brownian motion (Wiener process), the series are normally distributed, returns are uncorrelated (no memory in the series), they are a white noise, traders cannot «beat» the market using any trading strategy.
- $0.5 < H \le 1$ the data are fractal, the EMH is not confirmed, the distribution has fat tails, the series are persistent, returns are highly correlated, there is black noise and a trend in the market.

There are different approaches to calculate the Hurst exponent (see Appendix A). In most cases de-trended fluctuation analysis (DFA) produces the best results (Weron, 2002; Grech and Mazur, 2004), but for financial series the R/S analysis seems to be the most appropriate (see Appendix B), and therefore is used here. The interpretation of the Hurst exponent is as follows: the higher it is, the lower the efficiency of the market is (Cajueiro and Tabak, 2005).

In order to analyse persistence, we also estimate parametric/semiparametric fractional integration or I(d) models. This type of models were originally proposed by Granger (1980) and Granger and Joyeux (1980); they were motivated by the observation that the estimated spectrum in many aggregated series exhibits a large value at the zero frequency, which is consistent with nonstationary behaviour; however, this becomes close to zero after differencing, which suggests over-differentiation. Examples of applications of fractional integration to financial time series data can be found in Barkoulas and Baum (1996), Barkoulas et al. (1997), Sadique and Silvapulle (2001), Henry (2002), Baillie et al. (2007), Caporale and Gil-Alana (2004, 2014) and Al-Shboul and Anwar (2016) among many others.

In this study we adopt the following specification:

$$(1 - L)^d x_t = u_t, \quad t = 0, \pm 1, ...,$$
 (7)

where d can be any real value, L is the lag-operator ($Lx_t = x_{t-1}$) and u_t is I(0), defined for our purposes as a covariance stationary process with a spectral density function that is positive and finite at the zero frequency. Note that H and d are related through the equality H = d - 0.5.

In the semiparametric model no specification is assumed for u_t. The most common approach is based on the log-periodogram (see Geweke and Porter-Hudak, 1983). This method was later extended and improved by many authors including Künsch (1986), Robinson (1995a), Hurvich and Ray (1995), Velasco (1999a, 2000) and Shimotsu and

Phillips (2002). In this paper, however, we will employ instead another semiparametric method, which is essentially a local 'Whittle estimator' defined in the frequency domain using a band of high frequencies that degenerates to zero. The estimator is implicitly defined by:

$$\hat{d} = \arg\min_{d} \left(\log \ \overline{C(d)} - 2 d \ \frac{1}{m} \sum_{s=1}^{m} \log \lambda_{s} \right), \tag{8}$$

$$\overline{C(d)} = \frac{1}{m} \sum_{s=1}^{m} I(\lambda_s) \lambda_s^{2d}, \qquad \lambda_s = \frac{2 \pi s}{T}, \qquad \frac{m}{T} \to 0,$$

where m is a bandwidth parameter, and $I(\lambda_s)$ is the periodogram of the raw time series, x_t , given by:

$$I(\lambda_s) = \frac{1}{2\pi T} \left| \sum_{t=1}^{T} x_t e^{i\lambda_s t} \right|^2,$$

and $d \in (-0.5, 0.5)$. Under finiteness of the fourth moment and other mild conditions, Robinson (1995b) proved that:

$$\sqrt{m} (\hat{d} - d_o) \rightarrow_d N(0, 1/4)$$
 as $T \rightarrow \infty$,

where d_o is the true value of d. This estimator is robust to a certain degree of conditional heteroscedasticity and is more efficient than other more recent semiparametric competitors. Recent refinements of this procedure can be found in Velasco (1999b), Velasco and Robinson (2000), Phillips and Shimotsu (2004, 2005) and Abadir et al. (2007).

Estimating d parametrically along with the other model parameters can be done in the frequency domain or in the time domain. In the former, Sowell (1992) analysed the exact maximum likelihood estimator of the parameters of the ARFIMA model, using a recursive procedure that allows a quick evaluation of the likelihood function. Other parametric methods for estimating d based on the frequency domain were proposed, among others, by Fox and Taqqu (1986) and Dahlhaus (1989) (see also Robinson, 1994)

and Lobato and Velasco, 2007 for Wald and LM parametric tests based on the Whittle function).

We analyse both returns and their volatility. Returns are computed as follows:

$$R_i = \left(\frac{\text{Close}_i}{\text{Open}_i} - 1\right) \times 100\% , \qquad (9)$$

where R_i - returns on the *i-th*day inpercentage terms;

 $Open_i$ – open price on the *i-th*day;

 $Close_i$ – close price on the *i-th*day.

Volatility is defined as follows:

$$R_i = \left(\frac{\text{High}_i}{\text{Low}_i} - 1\right) \times 100\% , \tag{10}$$

where R_i - returns on the *i-th*day in percentage terms;

 $High_i$ — maximum price on the *i-th*day;

 Low_i – minimum price on the *i-th*day.

Data from different financial markets (stock markets, FOREX and commodity markets) are used for the empirical analysis. Specifically, the following financial series are analysed: Dow Jones Index, FTSE index, NIKKEI for the developed stock markets (USA, Great Britain and Japan respectively) and MICEX and PFTS for the emerging ones (Russian and Ukraine respectively); the EUR/USD and USD/JPY exchange rates for the FOREX; Gold and Oil futures for the commodity markets). The sample period goes from 2000 to 2016 (in some cases it differs because of data unavailability).

3. Empirical Results

The results of the R/S analysis for the various financial markets are presented in Appendix D. As can be seen, in the case of stock markets returns are more persistent the lower the frequency is. The results for the commodity markets are more mixed. In the case of gold

higher persistence is still found at lower frequencies, but in the case of oil the Hurst exponent is the same at the daily and monthly frequency, whilst it is higher at the weekly frequency, suggesting an increase in the degree of persistence at lower frequencies. In the FOREX, persistence of returns is the same across frequencies, except for the USDJPY exchange rate, whose monthly returns are much more persistent then daily ones.

Overall it appears that the evidence for returns is most consistent with the EMH in the case of the FOREX and least so in the case of stock markets. The observation that persistence is higher at lower frequencies suggests that for prediction purposes using data at such frequencies is most useful. Whilst most daily series follow a random walk, monthly ones exhibit long-memory properties seemingly inconsistent with the EMH. Concerning the results for volatility, we find that the daily series also follow a random walk, whilst the weekly and monthly ones have long memory and are persistent, this being true of the stock and FOREX markets, whilst in the case of the commodity markets persistence at the daily frequency is replaced by anti-persistence at the weekly and monthly ones. This suggests that markets are noisy and that abnormal profits can be made through volatility trading by using specific option trading strategies (butterfly, straddle, strangle, iron condor etc.).

The results for the fractional integration methods are presented in Appendix E. First, we display in Table E.1 the estimates of d along with their corresponding 95% confidence interval using a parametric method (Robinson, 1994). As before, the hypothesis that persistence is higher at lower frequencies cannot be rejected for the stock market series, since the estimated value of d increases as one moves from daily to weekly and monthly data. By contrast, no significant differences across frequencies emerge for the FOREX and commodity markets. As for the volatility series, there is evidence of long memory (i.e., d > 0) in all cases but no evidence of a higher degree of persistence at lower frequencies.

Appendix F focuses on the semi-parametric approach, first for the return series (Table F.1) and then for their volatilities (Table F.2). We find again higher persistence at lower frequencies for the stock markets considered, but not the FOREX and the commodity ones.

4. Conclusions

This paper uses both the Hurst exponent and parametric/semiparametric fractional integration methods to analyse the long-memory properties of financial data at different frequencies. The hypothesis of interest is that lower frequencies correspond to higher persistence. Daily, weekly and monthly (return and volatility) series from different financial markets (stock markets, FOREX and commodity markets) are analysed for the period from 2000 to 2016.

The findings suggest that in the case of returns daily data usually follow a random walk, consistently with the EMH, whilst at lower frequencies persistence is higher, which implies predictability and the possibility of making abnormal profits using appropriate trading strategies. This is true for the stock markets (both developed and emerging) and partially for the FOREX and commodity market considered. The results for the volatility series in the case of stock market are similar to those for returns, namely lower frequencies are associated to higher persistence, whilst in the commodity markets lower-frequency data are characterised by anti-persistence.

Very similar results are obtained when using fractional integration methods, be they parametric or semi-parametric: for returns the estimated value of d is higher at lower frequencies for the stock markets analysed, though basically the same across frequencies for the other markets examined. However, for the FOREX and commodity markets, we do not find significant differences across frequencies. For the volatility series, the observed long-memory properties (i.e., d > 0) are also unaffected by the data frequency. Obviously

in all cases when persistence is higher at lower frequencies there exist profit opportunities (through appropriately designed trading strategies) that are inconsistent with market efficiency.

References

Abadir, K.M., W. Distaso and L. Giraitis, 2007, Nonstationarity-extended local Whittle estimation, Journal of Econometrics 141, 1353-1384.

Al-Shboul, M. and S. Anwar, 2016, Fractional integration and daily stock market indices at Jordan's Amman stock exchange, North American Journal of Economics and Finance, forthcoming.

Baillie, R.T., Y.W. Han, R.J. Myers and J. Song, 2007, Long memory models for daily and high frequency commodity future returns, Journal of Future Markets 27, 643-668.

Barkoulas, J.T. and C.F. Baum, 1996, Long term dependence in stock returns, Economics Letters 53, 253-259.

Barkoulas, J.T., W.C. Labys and J. Onoche, 1997, Fractional dynamics in international commodity prices, Journal of Future Markets 17, 161-189.

Barunik, J,Kristoufek, L,.2010, On Hurst exponent estimation under heavy-tailed distributions, Physica A: Statistical Mechanics and its Applications, Elsevier, 389(18), 3844-3855.

Batten, J., Ellis, C. and Fetherston, T., 2005, Return Anomalies on the Nikkei: Are They Statistical Illusions? Chaos Solitons and Fractals 23 (4), 1125-1136.

Berg, L. and Lyhagen, J., 1998, Short and Long Run Dependence in Swedish Stock Returns, Applied Financial Economics 8 (4), 435-443.

Booth, G. G., Kaen, F. R. and Koveos, P. E., 1982, R/S analysis of foreign exchange rates under two international monetary regimes, Journal of Monetary Economics 10(3), 407-415.

Cajueiro, D. and Tabak, B., 2005, Ranking efficiency for emerging equity markets II. Chaos, Solitons and Fractals 23, 671-675.

Caporale, G.M. and L.A. Gil-Alana, 2004, Fractional cointegration and tests of prestng value models, Review of Financial Economics 13, 245-258.

Caporale, G.M. and L.A. Gil-Alana, 2014, Fractional integration and cointegration in US.financial time series data, Empirical Economics 47, 4, 1389- 1410.

Caporale, Guglielmo Maria and Gil-Alana, Luis and Plastun, Alex and Makarenko, Inna, 2014, Long memory in the Ukrainian stock market and financial crises. Journal of Economics and Finance. 40, 2, 235-257.

Corazza, M. and Malliaris, A. G., 2002, Multifractality in Foreign Currency Markets, Multinational Finance Journal 6, 387-401.

Couillard, M. and M. Davison, 2005, A comment on measuring the hurst exponent of financial time series, Physica A:Statistical Mechanics and its Applications, 348, 404-418.

Crato, N. and Ray, B., 2000, Memory in Returns and Volatilities of Commodity Futures' Contracts, Journal of Futures Markets 20(6), 525-543.

Dahlhaus, R., 1989, Efficient parameter estimation for self-similar process. Annals of Statistics 17, 1749-1766.

Ding, Z., Granger, C., and Engle, R. F., 1993, A long memory property of stock market returns and a new model, Journal of Empirical Finance, 1, 83-106.

Fama, E (1970), "Efficient Capital Markets: A Review of Theory and Empirical Evidence", Journal of Finance, No. 25, pp. 383-417.

Fox, R. and Taqqu, M., 1986, Large sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Annals of Statistics 14, 517-532.

Geweke, J. and S. Porter-Hudak, 1983, The estimation and application of long memory time series models, Journal of Time Series Analysis 4, 2221-238.

Glenn, L. A., 2007, On Randomness and the NASDAQ Composite, Working Paper, Available at SSRN: http://ssrn.com/abstract=1124991.

Granger, C.W.J., 1980, Long memory relationships and the aggregation of dynamic models, Journal of Econometrics 14, 227-238.

Granger, C.W.J. and R. Joyeux, 1980, An introduction to long memory time series and fractionally differencing, Journal of Time Series Analysis 1, 15-29.

Grech D. and Mazur Z., 2004, Can one make any crash prediction in finance using the local Hurst exponent idea?, Physica A: Statistical Mechanics and its Applications 336, 133-145.

Greene, M.T. and Fielitz, B.D., 1977, Long-term dependence in common stock returns. Journal of Financial Economics 4, 339-349.

Helms, B. P., Kaen, F. R. and Rosenman, R. E., 1984, Memory in commodity futures contracts, Journal of Futures Markets 4, 559-567.

Henry, O.T., 2002, Long memory in stock returns. Some international evidence, Applied Financial Economics 12, 725-729.

Hja, S., Lin, Y., 2003, R/S Analysis of China Securities Markets, Tsinghua Science and Technology, 8,5, 537 – 540.

Hurst H. E., 1951.Long-term Storage of Reservoirs.Transactions of the American Society of Civil Engineers, 799 p.

Hurvich, C.M. and B.K. Ray, 1995, Estimation of the memory parameter for nonstationary or noninvertible fractionally integrated processes. Journal of Time Series Analysis 16, 17-41.

Jacobsen, B., 1995, Are Stock Returns Long Term Dependent? Some Empirical Evidence, Journal of International Financial Markets, Institutions and Money 5 (2/3), 37-52.

Kantelhardt, J., S. Zschiegner, E. Koscielny-Bunde, A. Bunde, S. Havlin, and E. Stanley, 2002, Multifractaldetrended fluctuation analysis of nonstationary time series, Physica A: Statistical Mechanics and its Applications, 316, 1-4.

Künsch, H., 1986, Discrimination between monotonic trends and long-range dependence, Journal of Applied Probability 23, 1025-1030.

Lento, C., 2013, A Synthesis of Technical Analysis and Fractal Geometry - Evidence from the Dow Jones Industrial Average Components, Journal of Technical Analysis 67, 25-45.

Lo, A.W., 1991, Long-term memory in stock market prices, Econometrica 59, 1279-1313.

Lobato, I.N. and C. Velasco, 2007, Efficient Wald tests for fractional unit root. Econometrica 75, 2, 575-589.

Mandelbrot B., 1972, Statistical Methodology ForNonperiodic Cycles: From The Covariance To Rs Analysis, Annals of Economic and Social Measurement 1, 259-290.

Mynhardt, Ronald Henry, Plastun Alexey, Makarenko Inna, 2014, Behavior of financial markets efficiency during the financial market crisis: 2007 – 2009. Corporate Ownership and Control 11, 2, 473-488.

Onali, E. and Goddard, J., 2011, Are European Equity Markets Efficient? New Evidence from Fractal Analysis, International Review of Financial Analysis 20 (2), 59–67.

Peters E. E., 1991, Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility, NY.: John Wiley and Sons, Inc, 228 p.

Peters E. E., 1994, Fractal Market Analysis: Applying Chaos Theory to Investment and Economics, NY.: John Wiley & Sons, 336 p.

Phillips, P.C. and Shimotsu, K., 2004, Local Whittle estimation in nonstationary and unit root cases. Annals of Statistics 32, 656-692.

Phillips, P.C. and Shimotsu, K., 2005, Exact local Whittle estimation of fractional integration. Annals of Statistics 33, 1890-1933.

Robinson, P. M., 1994, Efficient tests of nonstationary hypotheses. Journal of the American Statistical Association 89, 1420-1437.

Robinson, P.M., 1995a, Log-periodogram regression of time series with long range dependence. Annals of Statistics 23, 1048-1072.

Robinson, P.M., 1995b, Gaussian semi-parametric estimation of long range dependence, Annals of Statistics 23, 1630-1661.

Sadique, S. and P. Silvapulle, 2001, Long term memory in stock market returns. International evidence, International Journal of Finance and Economics 6, 59-67.

Serletis, A. and Rosenberg, A., 2007, The Hurst exponent in energy futures prices. Physica A 380, 325-332.

Serletis A., Rosenberg A. A., 2009, Mean reversion in the US stock market. Chaos, solitons and fractals, 40, 2007-2015.

Shimotsu, K. and P.C.B. Phillips, 2002, Pooled Log Periodogram Regression. Journal of Time Series Analysis 23, 57-93.

Sowell, F., 1992, Maximum likelihood estimation of stationary univariate fractionally integrated time series models. Journal of Econometrics 53, 165-188.

Taqqu, M., W. Teverosky, and W. Willinger, 1995, Estimators for long-range dependence: an empirical study, Fractals, 3, 4, 785-788.

Teverovsky, V. Taqqu, M. S., Willinger W., 1999, A critical look at Lo's modified R=S statistic, Journal of Statistical Planning and Inference, 80, 211-227.

Velasco, C. and P.M. Robinson, 2000, Whittle pseudo maximum likelihood estimation for nonstationary time series. Journal of the American Statistical Association 95, 1229-1243.

Velasco, C., 1999a, Nonstationary log-periodogram regression. Journal of Econometrics 91, 299-323.

Velasco, C., 1999b, Gaussian semiparametric estimation of nonstationary time series. Journal of Time Series Analysis 20, 87-127.

Velasco, C., 2000, Non-Gaussian log-periodogram regression. Econometric Theory 16, 44-79.

Weron, R., 2002, Estimating long-range dependence: finite sample properties and confidence intervals. Physica A: Statistical Mechanics and its Applications, 312(1), 285-299.

Appendix A

Table A.1: Methodology for the Hurst exponent calculations: general review

Author(s)	Methodology*	Results
Taqquetal., (1995)	R/S, DFA	R/S overestimates the Hurst exponent, DFA underestimates it.
Weron, R. (2002)	R/S, DFA	DFA exceeds R/S
Kantelhardtetal., (2002)	MF -DFA	MF -DFA estimations are better than those from the R/S – analysis
Couillard and Davison, (2005)	R/S analysis	No long memory in financial data is detected.
Grechand Mazur, (2004)	DFA, DMA	DFA exceeds DMA
Teverovsky, Taqqu, Willinger (1999)	R/S	A variety of shortcomings in the R/S methodology are detected
Lo (1991)	R/S (modified)	Using the modified R/S analysis short-term memory is detected instead of long-term memory. In general the results provide evidence in favour of the EMH.

^{*} rescaled range analysis (R/S), generalized Hurst exponent approach (GHE), detrended moving average (DMA), detrended fluctuation analysis (DFA), multifractal generalization (MF-DFA)

Appendix B

Hurst exponent in financial data: general overview

Table B.1: Hurst exponent calculation methodology applied for financial data

Author Methodolo gy Barunik, Jozef & Kris GHE, S&P 500 Index Kristoufek, Ladislav, (2010) DFA, MF-DFA Hja Su, Lin Yang (2003) R/S Chinese Stock Market (1991-2001) Greene and Fielitz R/S US Stock Market (1991-901) and Peters (1994) R/S (1950 – 1988) Groazza and R/S FOREX Hurst exponent equals 0.78 for the monthly returns in S&P 500 data. Evidence in favour of persistence in data and Purst exponent can identify the persistence (2013) DJIA (1998-2008) Glenn (2007) R/S Mibtel (Italy) and PX-Glob (Zeech Republic). Serletis and R/S US Stock Market (1980-1995) Batten, Elli, and Ferrica and Lyhagen, Johan (1998) Lo (1991) R/S US Stock Market (1990) R/S S&P 500 Index (1980-1995) Lo (1991) R/S SWESTOR (1980-1995) Lo (1991) R/S SWESTOR (1980-1995) Lo (1991) R/S SWESTOR (1980-1995) Lo (1993) R/S S&P 500 Index (1980-1998) R/S US Stock Market (1980-1995) R/S Wasish Stock Market (1980-1995) R/S Wasish Stock Market (1872-1986) Barkoulas, Labys, and Onochie (1997) Crato and Ray (R/S Commodities (1997-1997) Crato and Ray (R/S Commodities (1997-1997) Crato and Ray (R/S Commodities (1997-1997) Glenn (2000) R/S SWESTOR (1997-1997) R/S Commodities (1997) R/S Onlinex (1980-2000) R/S SWESTOR (1980-2000)	Table B.1: Hurst exponent calculation methodology applied for financial data									
Barunik, Jozef & Kristoufek, Ladislav, (2010) DFA, MF-DFA DFA (1983-2009) DFA, MF-DFA (2003) R/S analysis is stable for the fat tails in the data. MF-DFA and DMA are inappropriate for data with fat tails. Hja Su, LinYang (2003) R/S Chinese Stock Market (1991-2001) Short-term memory is detected but there is no long-term dependence in the data (1991-2001) Short-term memory is detected but there is no long-term dependence in the data (1991-2001) Short-term memory is detected but there is no long-term dependence in the data (1995 – 1988) Hurst exponent equals 0.78 for the monthly returns in S&P 500 data. Evidence in favour of persistence in data (1998-2008) Evidence in favour of persistence in data (1998-2008) Properties in the data (1980-1995) Short-term memory is detected but there is no long-term dependency Hurst exponent equals 0.78 for the monthly returns in S&P 500 data. Evidence in favour of persistence in data (1993-1994) Short-term dependency Hurst exponent statistically differs from 0.5 and in not stable over time but increases to 0.87 for annual data Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data (1998-2008) properties in the data (1998-	Author	Methodolo	Data and period	Results						
Kristoufek, Ladislav, (2010) DFA, MF- DFA DFA Hja Su, LinYang (2003) R/S Greene and Fielitz (1991-2001) Peters (1991) and Peters (1994) R/S Glani (2002) R/S Barkoulas, Lanid R/S R/S R/S R/S R/S R/S R/S R/S R/S R/		gy								
Kristoufek, Ladislav, (2010) DFA, MF- DFA Hja Su, Lin Yang (2003) Greene and Fielitz (1991-2001) Greene and Fielitz (1991) Peters (1991) and Peters (1994) Peters (1994) R/S Glandlysis Gland (2002) Glenn (2007) R/S Market (1950-1988) Market (1950-1988) Market (1950-1988) Market (1972-1994) Glenn (2007) R/S MASDAQ Hurst exponent for daily data equals 0.78 for mothly returns in S&P 500 data. Evidence in favour of persistence in data Evidence in favour of persistence in data R/S Mibitel (Italy) andPX-Glob (2013) Batten, Elli, and Fetherston (2005) Batten, Elli, and Lydia R/S Batten, Elli, and R/S Batten, Elli, and Lydia R/S Batten, Elli, and R/S Batten, Elli, and R/S Batten, Elli, and Lydia R/S Batten, Elli, and R/S Batten, Elli, and Lydia R/S Batten, Elli, and R/S Batten, Elli, and R/S Batten, Elli, and R/S Batten, Elli, and Lydia R/S Batten, Elli, and R/S Batten, Elli	Barunik, Jozef &	R/S, GHE,	S&P 500 Index	GHE methodology provides better results.						
Hja Su, LinYang (2003) R/S Chinese Stock Market (1991-2001) Greene and Fielitz (1977) Peters (1991) and Peters (1994) Peters (1994) Peters (1990) Grazza and Malliaris (2002). Glenn (2007) R/S Diana R/S DJIA Conali, Enrico and Goddard, John (2011) Corectist and Rosenberg (2009) Batten, Elli, and Fetherston (2005) Berg, Lennart and Lyhagen, Johan (1998) Lo (1991) R/S Ding et al. (1993) R/S Ding et al. (1993) R/S Ding et al. (1993) R/S Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S Commodities R/S Commodities R/S Chinese Stock Market Short-term memory is detected but there is no long-term dependence in the data Short-term memory is detected but there is no long-term dependence in favour of long-term dependency Rubstantial evidence in favour of long-term dependence in favour of persistence in data R/S Substantial evidence in favour of persistence in data R/S DJ Hurst exponent statistically differs from 0.5 and in not stable over time 0.5 and in stable over time 0.5 and in not sta	Kristoufek,	DMA,	(1983-2009)							
Hja Su, Lin Yang (2003)	Ladislav, (2010)	DFA, MF-		data. MF- DFA and DMA are						
Hja Su, Lin Yang (2003)		DFA		inappropriate for data with fat tails.						
Greene and Fielitz (1971) Greene and Fielitz (1971) Greene and Fielitz (1971) Peters (1991) and R/S S&P 500 Index (1950 – 1988) Peters (1994) Greene (1950 – 1988) Corazza and R/S FOREX (1950 – 1988) Glenn (2007) Glenn (2007) R/S NASDAQ Hurst exponent satistically differs from (1972-1994) Glenn (2007) R/S NASDAQ Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Lento, Camillo (2013) Goddard, John (2011) Goddard, John (2011) Gerletis and R/S Mibtel (Italy) andPX-Glob (Czech Republic). Serletis and Rosenberg (2009) Batten, Elli, and R/S Nikkei Index (1980 – 2000) Berg, Lennart and Lyhagen, Johan (1998) Lo (1991) R/S (modified) Gillet (1872-1986) Ding et al. (1993) R/S S&P 500 Index (1995) Crato and Ray R/S Commodities R/S Gommodities R/S Stable evidence in favour of long-term memory in futures returns R/S Stable evidence of long memory in futures returns R/S Stable evidence of long memory in futures returns R/S Stable evidence of long memory in futures returns R/S Stable evidence of long memory in futures returns R/S Stable evidence of long memory in futures returns R/S Stable evidence of long memory in futures returns R/S Stable evidence of long memory in futures returns R/S Stable evidence of long memory in futures returns R/S Stable evidence of long memory in futures returns R/S P500 Index R/S Stable evidence of long memory in futures returns R/S P500 Index R/S Stable evidence of long memory in futures returns R/S P500 Index R/S Stable evidence of long memory in futures returns R/S P500 Index R/S Stable evidence of long memory in futures returns R/S P500 Index R/S Stable evidence of long memory in futures returns	Hja Su, LinYang	R/S	Chinese Stock	Short-term memory is detected but there is						
Greene and Fielitz (1971) Greene and Fielitz (1971) Greene and Fielitz (1971) Peters (1991) and R/S S&P 500 Index (1950 – 1988) Peters (1994) Greene (1950 – 1988) Corazza and R/S FOREX (1950 – 1988) Glenn (2007) Glenn (2007) R/S NASDAQ Hurst exponent satistically differs from (1972-1994) Glenn (2007) R/S NASDAQ Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Lento, Camillo (2013) Goddard, John (2011) Goddard, John (2011) Gerletis and R/S Mibtel (Italy) andPX-Glob (Czech Republic). Serletis and Rosenberg (2009) Batten, Elli, and R/S Nikkei Index (1980 – 2000) Berg, Lennart and Lyhagen, Johan (1998) Lo (1991) R/S (modified) Gillet (1872-1986) Ding et al. (1993) R/S S&P 500 Index (1995) Crato and Ray R/S Commodities R/S Gommodities R/S Stable evidence in favour of long-term memory in futures returns R/S Stable evidence of long memory in futures returns R/S Stable evidence of long memory in futures returns R/S Stable evidence of long memory in futures returns R/S Stable evidence of long memory in futures returns R/S Stable evidence of long memory in futures returns R/S Stable evidence of long memory in futures returns R/S Stable evidence of long memory in futures returns R/S Stable evidence of long memory in futures returns R/S Stable evidence of long memory in futures returns R/S P500 Index R/S Stable evidence of long memory in futures returns R/S P500 Index R/S Stable evidence of long memory in futures returns R/S P500 Index R/S Stable evidence of long memory in futures returns R/S P500 Index R/S Stable evidence of long memory in futures returns R/S P500 Index R/S Stable evidence of long memory in futures returns	(2003)		Market	no long-term dependence in the data						
Peters (1991) and Peters (1994)			(1991-2001)							
Peters (1991) and Peters (1994)	Greene and Fielitz	R/S	US Stock	Substantial evidence in favour of long-						
Peters (1994) Corazza and R/S Malliaris (2002). Glenn (2007) R/S MASDAQ Hurst exponent statistically differs from 0.5 and in not stable over time Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Lento, Camillo (2013) R/S Onali, Enrico and Goddard, John (2011) Czech Republic). Serletis and Rosenberg (2009) Batten, Elli, and Fetherston (2005) Berg, Lennart and Lyhagen, Johan (1998) Lo (1991) R/S US Stock (modified) Market (1872-1986) Ding et al. (1993) Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S Commodities R/S Commodities Market R/S Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S Commodities Market (1972-1994) D. 5 And in not stable over time Hurst exponent statistically differs from 0.5 and in not stable over ime Lividence in favour of daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent can identify the persistence properties in the data Evidence in favour of long-term dependence in logarithm returns (2011) R/S No long-term dependence No long-term dependence Evidence in favour of the long-term dependence in data ais not clear No long-term dependence Serietis and S&P 500 Index No long-term dependence Stable evidence of long memory in returns No long-memory is detected	(1977)		Market (NYSE)	_						
Peters (1994) Corazza and Corazza and Malliaris (2002). Glenn (2007) R/S NASDAQ Hurst exponent statistically differs from 0.5 and in not stable over time 0	Peters (1991) and	R/S	S&P 500 Index	Hurst exponent equals 0.78 for the						
Corazza and Malliaris (2002). Glenn (2007) Glenn (2007) R/S NASDAQ Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Lento, Camillo (2013) Lento, Camillo (2013) Conali, Enrico and Goddard, John (2011) Serletis and R/S Batten, Elli, and Fetherston (2005) Berg, Lennart and Lyhagen, Johan (1998) Lo (1991) R/S Dirico and (1980 - 2000) R/S Nikkei Index (1980 - 2000) Berg, Lennart and Lyhagen, Johan (1998) Lo (1991) R/S Commodified) Ding et al. (1993) R/S Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S Commodities R/S R/S Commodities R/S R/S Commodities Hurst exponent statistically differs from 0.5 and in not stable over time Hurst exponent statistically differs from 0.5 and in not stable over time 0.5 and in not stable over time Hurst exponent statistically differs from 0.5 and in not stable over time 0.5 and in not stable over time Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Evidence in favour of long-term dependence Evidence in favour of the long-term dependence in data ais not clear Sevidence in favour of the long-term dependence of long-term dependence Evidence of long-term memory in returns No long-memory is detected No long-memory is detected Stable evidence of long memory in futures returns No persistence in the case of returns, but	Peters (1994)		(1950 - 1988)							
Malliaris (2002). (1972-1994) 0.5 and in not stable over time Glenn (2007) R/S NASDAQ Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Lento, Camillo (2013) R/S DJIA Hurst exponent can identify the persistence properties in the data Conali, Enrico and Goddard, John (2011) Czech Republic). Serletis and Rosenberg (2009) R/S US Stock Market Batten, Elli, and R/S Nikkei Index (1980-2000) Berg, Lennart and Lyhagen, Johan (1998) R/S US Stock (1980-1995) Lo (1991) R/S (modified) Market (1872-1986) Ding et al. (1993) R/S S&P 500 Index Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S Commodities No long memory is detected Evidence in favour of the long-term dependence in data ais not clear Evidence of long-term dependence Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent can identify the persistence properties in the data Functional Analy R/S DJIA Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Burston (1998) Stock Market Stable evidence of long memory in futures returns				Evidence in favour of persistence in data						
Malliaris (2002). Glenn (2007) R/S NASDAQ Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Lento, Camillo (2013) Conali, Enrico and Goddard, John (2011) Goddard, John (2011) R/S Serletis and R/S Batten, Elli, and Fetherston (2005) Berg, Lennart and Lyhagen, Johan (1998) Lo (1991) R/S Ding et al. (1993) R/S Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S R/S R/S R/S R/S R/S R/S R/	Corazza and	R/S	FOREX	Hurst exponent statistically differs from						
Glenn (2007) R/S NASDAQ Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Brys Mibtel (Italy) andPX-Glob (Czech Republic). Serletis and Rosenberg (2009) R/S Batten, Elli, and Fetherston (2005) Berg, Lennart and Lyhagen, Johan (1998) Lo (1991) R/S Mikei Index (1980-1995) Lo (1991) R/S Warket (1872-1986) Ding et al. (1993) R/S Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S Commodities No long memory is detected Evidence in favour of the long-term dependence Evidence in data ais not clear Hurst exponent for daily data equals 0.59 but increases to 0.87 for annual data Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Fudata Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Fudata Hurst exponent can identify the persistence properties in the data Fudata Hurst exponent can identify the persistence properties in the data Feridence in favour of long-term dependence Evidence in favour of the long-term dependence in data ais not clear (1980-1995) No long-term dependence Evidence of long-term memory in returns No long-memory is detected	Malliaris (2002).		(1972-1994)							
Lento, Camillo (2013) R/S (1998-2008) Onali, Enrico and Goddard, John (2011) Serletis and Rosenberg (2009) Batten, Elli, and Fetherston (2005) Berg, Lennart and Lyhagen, Johan (1998) (1998) Lo (1991) R/S (modified) Ding et al. (1993) Jacobsen, Ben (1995) Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S DJIA (1998-2008) Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Hurst exponent can identify the persistence properties in the data Evidence in favour of the long-term dependence in data ais not clear (1980-2000) Evidence in favour of the long-term dependence in data ais not clear (1980-1995) No long-term dependence No long-term dependence Evidence of long-term memory in returns No long-memory is detected Stable evidence of long memory in futures returns No persistence in the case of returns, but		R/S	NASDAQ	Hurst exponent for daily data equals 0.59						
Lento, Camillo (2013) Onali, Enrico and Goddard, John (2011) Serletis and R/S Batten, Elli, and Lyhagen, Johan (1998) Lo (1991) Ding et al. (1993) Jacobsen, Ben (1995) Ding et al. (1993) Jacobsen, Ben (1995) Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S DJIA (1998-2008) Hurst exponent can identify the persistence properties in the data Evidence in favour of long-term dependence in logarithm returns Evidence in logarithm returns Evidence in logarithm returns No long-term dependence Evidence in favour of the long-term dependence in data ais not clear (1980-2000) Evidence in favour of the long-term dependence in data ais not clear (1980-1995) No long-term dependence No long-term dependence Stable evidence of long memory in returns No long-memory is detected Stable evidence of long memory in futures returns No persistence properties in the data Hurst exponent can identify the persistence properties in the data Evidence in favour of the long-term dependence in data ais not clear (1980-1995) No long-term dependence No long-term dependence No long-term dependence Stevidence of long-term memory in returns No long-memory is detected Stable evidence of long memory in futures returns	, ,			1 7 1						
Onali, Enrico and Goddard, John (2011) Serletis and R/S (1988-2008) Batten, Elli, and Fetherston (2005) Berg, Lennart and Lyhagen, Johan (1998) Lo (1991) R/S (1980-1995) Lo (1991) Bing et al. (1993) Jacobsen, Ben (1995) Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S (Mibtel (Italy) Evidence in favour of long-term dependence in logarithm returns (dependence in logarithm returns (dependence in logarithm returns (dependence in logarithm returns (dependence in logarithm returns (Postaver dependence in logarithm returns (dependence in logarithm returns (Postaver dependence in logarithm returns (dependence in logarithm returns (Postaver dependence in logarithm returns (dependence in logarithm returns (Postaver dependence (Postaver dependence in logarithm returns (Postaver dependence (Postaver dependence (Postaver dependence in logarithm returns (Postaver dependence (Postaver dependence (Postaver dependence (Postaver dependence in logarithm returns (Postaver dependence (Postaver dependence (Postaver dependence (Postaver dependence in logarithm returns (Postaver dependence (Postaver dependence (Postaver dependence (Postaver dependence (Postaver dependence in logarithm returns (Postaver dependence (Postaver dependence (Postaver dependence (Postaver dependence (Postaver dependence in logarithm returns (Postaver dependence	Lento, Camillo	R/S	DJIA							
Onali, Enrico and Goddard, John (2011) Serletis and R/S US Stock Rosenberg (2009) Batten, Elli, and Fetherston (2005) Berg, Lennart and Lyhagen, Johan (1998) Lo (1991) Ding et al. (1993) Jacobsen, Ben (1995) Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S Mibtel (Italy) andPX-Glob (Czech Republic). Evidence in favour of long-term dependence No long-term dependence No long memory is detected Evidence in favour of the long-term dependence in data ais not clear No long-term dependence in data ais not clear Evidence of long-term memory in returns No long-memory is detected Evidence of long-term memory in returns No long-memory is detected Stable evidence of long memory in futures returns No long-memory is detected Stable evidence of long memory in futures returns			(1998-2008)	· · · · · · · · · · · · · · · · · · ·						
Goddard, John (2011) Serletis and Rosenberg (2009) Batten, Elli, and Fetherston (2005) Berg, Lennart and Lyhagen, Johan (1998) Lo (1991) Ding et al. (1993) Jacobsen, Ben (1995) Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S US Stock No long-term dependence No long memory is detected Evidence in favour of the long-term dependence in data ais not clear No long memory is detected Evidence in favour of the long-term dependence in data ais not clear No long-term dependence Evidence of long-term memory in returns SæP 500 Index Swedish Stock (modified) Market (1872-1986) Evidence of long-term memory in returns No long-memory is detected No long-memory is detected No long-memory in returns No long-memory in futures returns	Onali, Enrico and	R/S	` '							
Czech Republic).	· ·		` • ′							
Serletis and Rosenberg (2009) Batten, Elli, and Fetherston (2005) Berg, Lennart and Lyhagen, Johan (1998) Lo (1991) Ding et al. (1993) Jacobsen, Ben (1995) Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S Nikkei Index (1980 - 2000) No long memory is detected Evidence in favour of the long-term dependence in data ais not clear (1980 - 2000) Evidence in favour of the long-term dependence in data ais not clear (1980 - 1995) No long-term dependence Evidence of long-term memory in returns No long-memory is detected No long-memory is detected Stable evidence of long memory in futures returns Stable evidence of long memory in futures returns	(2011)		(Czech Republic).							
Rosenberg (2009) Batten, Elli, and Fetherston (2005) Berg, Lennart and Lyhagen, Johan (1980 - 2000) Lo (1991) Ding et al. (1993) Jacobsen, Ben (1995) Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S Nikkei Index (1980 - 2000) No long memory is detected Evidence in favour of the long-term dependence in data ais not clear (1980 - 1995) Evidence in favour of the long-term dependence in data ais not clear (1980 - 1995) No long-term dependence No long-term memory in returns Evidence of long-term memory in returns No long-memory is detected Stable evidence of long memory in futures returns No persistence in the case of returns, but	Serletis and	R/S		No long-term dependence						
Batten, Elli, and Fetherston (2005) Berg, Lennart and Lyhagen, Johan (1980 - 1995) Lo (1991) Ding et al. (1993) Jacobsen, Ben (1995) Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S R/S Nikkei Index (1980 - 2000) No long memory is detected Evidence in favour of the long-term dependence in data ais not clear Lyhagen, Johan (1980-1995) R/S US Stock (1980-1995) No long-term dependence Evidence of long-term memory in returns No long-memory is detected No long-memory is detected Stable evidence of long memory in futures returns Stable evidence of long memory in futures returns	Rosenberg (2009)		Market							
Fetherston (2005) Berg, Lennart and Lyhagen, Johan (1980 -2000) Lo (1998) Lo (1991) R/S (1980-1995) Lo (1991) R/S (1980-1995) R/S (1980-1995) Lo (1991) R/S (1980-1995) No long-term dependence (1872-1986) Ding et al. (1993) R/S (1872-1986) Ding et al. (1993) R/S (1872-1986) Evidence of long-term memory in returns R/S (1995) And Japan Stock Markets Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S (Commodities) No persistence in the case of returns, but	<u> </u>	R/S	Nikkei Index	No long memory is detected						
Berg, Lennart and Lyhagen, Johan (1998) Lo (1991) R/S (1980-1995) Lo (1991) R/S (1980-1995) Lo (1991) R/S (1980-1995) R/S (1980-1995) Ding et al. (1993) R/S (1872-1986) Ding et al. (1993) R/S (1872-1986) Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S (Swedish Stock (1980-1995) Rarket (1980-1995) R/S (198	, , , , , , , , , , , , , , , , , , ,			,						
Lyhagen, Johan (1998) Lo (1991) R/S (modified) Market (1872-1986) Ding et al. (1993) Jacobsen, Ben (1995) R/S Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S R/S R/S R/S R/S R/S R/S R/		R/S		Evidence in favour of the long-term						
(1998) (1980-1995) Lo (1991) R/S US Stock (modified) Market (1872-1986) Ding et al. (1993) R/S S&P 500 Index Evidence of long-term memory in returns Jacobsen, Ben (1995) And Japan Stock (1995) And Japan Stock Markets Barkoulas, Labys, and Onochie (1997) R/S Commodities No persistence in the case of returns, but			Market	_						
Lo (1991) R/S (modified) Market (1872-1986) Ding et al. (1993) R/S S&P 500 Index Evidence of long-term memory in returns No long-memory is detected No long-memory is detected No long-memory is detected No long-memory is detected Stable evidence of long memory in futures returns Stable evidence of long memory in futures returns No long-memory is detected			(1980-1995)							
(modified) Market (1872-1986) Ding et al. (1993) R/S S&P 500 Index Jacobsen, Ben (1995) European, USA and Japan Stock Markets Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S (Commodities) Market Evidence of long-term memory in returns No long-memory is detected Stable evidence of long memory in futures returns No persistence in the case of returns, but	` '	R/S	` '	No long-term dependence						
Ding et al. (1993) R/S S&P 500 Index Evidence of long-term memory in returns R/S European, USA and Japan Stock Markets Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S (1872-1986) Evidence of long-term memory in returns No long-memory is detected Stable evidence of long memory in futures returns No persistence in the case of returns, but										
Ding et al. (1993) R/S S&P 500 Index Evidence of long-term memory in returns R/S European, USA and Japan Stock Markets Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S S&P 500 Index Evidence of long-term memory in returns No long-memory is detected Stable evidence of long memory in futures returns No persistence in the case of returns, but		, "/								
Jacobsen, Ben (1995) Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S European, USA and Japan Stock Markets Stable evidence of long memory in futures returns No persistence in the case of returns, but	Ding et al. (1993)	R/S	` '	Evidence of long-term memory in returns						
(1995) and Japan Stock Markets Barkoulas, Labys, and Onochie (1997) R/S Futures markets Crato and Ray R/S Commodities No persistence in the case of returns, but				<u> </u>						
Barkoulas, Labys, and Onochie (1997) Crato and Ray Markets Futures markets Stable evidence of long memory in futures returns R/S Commodities No persistence in the case of returns, but			*							
Barkoulas, Labys, and Onochie (1997) Crato and Ray R/S Futures markets returns Stable evidence of long memory in futures returns No persistence in the case of returns, but			<u> </u>							
and Onochie (1997) returns Crato and Ray R/S Commodities No persistence in the case of returns, but	Barkoulas, Labys.	R/S		Stable evidence of long memory in futures						
Crato and Ray R/S Commodities No persistence in the case of returns, but										
		R/S	Commodities							
	(2000)		(1977-1997)	evidence of long memory in volatility.						

Appendix C

Hurst exponent interval characteristics

Table C.1: Hurst exponent interval characteristics

Interval	Hypothesis	Distribution	«Memory» of	Type of	Trading strategies	
	>1>1		series	process		
	Data is fractal,	"Heavy tails" of	Anti-	Pink noise	Trading in the	
10	FMH is	distribution	persistent	with frequent	market is more	
0;	confirmed		series,	changes in	risky for an	
			negative	direction of	individual	
0 ≤ H < 0,5			correlation in	price	participant	
0			instruments	movement		
			value changes			
	Data is random,	Movement of	Lack of	White noise	Traders cannot	
	EMH is	asset prices is an	correlation in	of	"beat" the market	
	confirmed	example of the	changes in	independent	with the use of	
κ		random Brownian	value of	random	any trading	
H = 0.5		motion (Wiener	assets	process	strategy	
Н		process), time	(memory of			
		series are	series)			
		normally				
		distributed				
	Data is fractal,	"Heavy tails" of	Persistent	Black noise	Trend is present	
	FMH is	distribution	series,		in the market	
VI VI	confirmed		positive			
0,5 < H ≤			correlation			
~ ~			within			
			changes in the			
			value of assets			

Appendix D

R/S analysis

Table D.1: Results of the R/S analysis for the different financial markets, 2004-2016

Financial market	Instrument	Return	Volatility						
i) Daily data									
EODEV	EURUSD	0,55	0,48						
FOREX	USDJPY	0,56	0,43						
	Dow Jones	0,51	0,46						
	FTSE	0,47	0,47						
Stock market	NIKKEI	0,54	0,68						
	MICEX	0,55	0,46						
	PFTS	0,67	0,46						
C Pro	Oil	0,57	0,62						
Commodities	Gold	0,54	0,66						
	ii) Wee	kly data							
FOREY	EURUSD	0,56	0,36						
FOREX	USDJPY	0,57	0,43						
	Dow Jones	0,56	0,53						
Stock market	FTSE	0,52	0,56						
	NIKKEI	0,57	0,51						
Commodition	Oil	0,64	0,46						
Commodities	Gold	0,56	0,40						
	iii) Mon	thly data							
EODEV	EURUSD	0,55	0,38						
FOREX	USDJPY	0,66	0,42						
	Dow Jones	0,73	0,63						
	FTSE	0,74	0,46						
Stock market	NIKKEI	0,68	0,57						
	MICEX	0,61	0,42						
	PFTS	0,73	0,53						
Comme - Aldi	Oil	0,57	0,34						
Commodities	Gold	0,63	0,41						

Appendix E

${\bf Fractional\ integration.\ Parametric\ method}$

Table E.1: Estimates of d using uncorrelated (white noise) errors

Financial market	Instrument	Return	Volatility
		i) Daily data	
EODEV	EURUSD	-0.01 (-0.03, 0.01)	0.26 (0.25, 0.28)
FOREX	USDJPY	-0.03 (-0.05, -0.01)	0.25 (0.23, 0.27)
	Dow Jones	-0.08 (-0.10, -0.06)	0.36 (0.34, 0.38)
	FTSE	-0.15 (-0.17, -0.13)	0.33 (0.30, 0.34)
Stock market	NIKKEI	-0.05 (-0.08, -0.03)	0.34 (0.32, 0.36)
	MICEX	-0.02 (-0.04, 0.00)	0.39 (0.37, 0.41)
	PFTS	0.10 (0.08, 0.12)	
Commodition	Oil	-0.01 (-0.03, 0.01)	0.26 (0.24, 0.27)
Commodities	Gold	-0.02 (-0.04, 0.00)	0.27 (0.26, 0.29)
	i	ii) Weekly data	
EODEV	EURUSD	0.01 (-0.03, 0.06)	0.31 (0.28, 0.35)
FOREX	USDJPY	-0.03 (-0.06, 0.02)	0.26 (0.23, 0.30)
	Dow Jones	-0.06 (-0.10, -0.01)	0.39 (0.35, 0.44)
Stock market	FTSE	-0.12 (-0.15, -0.07)	0.42 (0.38, 0.48)
	NIKKEI	-0.04 (-0.08, 0.00)	0.37 (0.33, 0.42)
C	Oil	0.01 (-0.03, 0.06)	0.35 (0.32, 0.38)
Commodities	Gold	-0.02 (-0.05, 0.02)	0.60 (0.55, 0.66)
	ii	i) Monthly data	
EODEN	EURUSD	-0.01 (-0.09, 0.10)	0.30 (0.24, 0.38)
FOREX	USDJPY	0.02 (-0.06, 0.12)	0.28 (0.20, 0.39)
	Dow Jones	0.03 (-0.07, 0.15)	0.28 (0.20, 0.39)
	FTSE	0.02 (-0.07, 0.12)	0.29 (0.21, 0.40)
Stock market	NIKKEI	0.08 (-0.01, 0.21)	0.31 (0.23, 0.42)
	MICEX	0.11 (0.01, 0.26)	0.47 (0.39, 0.58)
	PFTS	0.21 (0.08, 0.41)	
C The	Oil	-0.01 (-0.10, 0.11)	0.45 (0.39, 0.54)
Commodities	Gold	-0.07 (-0.14, 0.01)	0.49 (0.42, 0.60)

Appendix F

Semi-parametric method

Table F.1: Estimates of d for the return series

i) Daily data										
		56	58	60	62	64	66	68	70	72
	Euro	0.015	0.005	0.016	0.016	0.013	-0.008	-0.001	-0.006	0.000
FOREX	DJPY	0.129	0.107	0.112	0.111	0.104	0.121	0.110	0.101	0.102
	D&J	-0.041	-0.037	-0.030	-0.025	-0.009	-0.020	-0.020	-0.009	-0.001
Stock	FTSE	-0.214	-0.228	-0.228	-0.215	-0.233	-0.240	-0.240	-0.247	-0.237
Market	Nikkei	0.010	0.002	0.004	0.002	0.009	0.004	0.001	0.009	0.022
	MICEX	0.113	0.107	0.078	0.082	0.079	0.051	0.059	0.070	0.073
	Oil	-0.040	-0.036	-0.036	-0.038	-0.036	-0.030	-0.030	-0.032	-0.031
Comm.	Gold	0.042	0.018	0.015	-0.020	-0.054	-0.043	-0.063	-0.076	-0.075
				ii) V	Weekly da	ıta				
		22	24	26	28	30	32	34	36	38
	Euro	0.047	0.001	0.014	0.020	0.008	0.042	0.027	0.025	0.032
FOREX	DJPY	-0.030	-0.015	-0.014	0.014	0.033	0.063	0.080	0.095	0.130
	D & J	0.091	0.029	0.072	0.102	0.121	0.079	0.044	0.080	0.063
Stock	FTSE	0.207	0.122	0.074	0.115	0.067	0.093	0.073	0.061	-0.009
Market	Nikkei	0.014	0.050	0.046	0.082	0.073	0.116	0.091	0.103	0.125
	Oil	-0.069	-0.042	-0.013	0.032	0.033	0.050	0.000	0.004	-0.009
Comm.	Gold	0.097	0.106	0.098	0.107	0.141	0.105	0.067	0.056	0.009
				iii) N	Monthly d	ata				
		11	12	13	14	15	16	17	18	19
	Euro	-0.121	-0.114	-0.066	-0.059	-0.045	-0.019	0.025	0.072	0.089
FOREX	DJPY	0.306	0.285	0.262	0.260	0.220	0.208	0.129	-0.004	-0.009
	D & J	0.127	0.120	0.132	-0.100	-0.035	0.015	-0.004	-0.018	0.023
Stock	FTSE	0.265	0.124	0.058	0.062	0.019	0.040	0.047	0.090	0.108
Market	Nikkei	0.076	0.035	0.039	0.002	0.049	0.101	0.002	-0.037	-0.020
	MICEX	-0.098	-0.082	-0.057	-0.084	-0.045	-0.019	-0.036	-0.054	-0.066
	Oil	-0.085	-0.103	-0.054	-0.101	-0.070	-0.087	-0.114	-0.096	-0.151
Comm.	Gold	0.175	0.222	0.215	0.147	0.155	0.111	0.102	0.097	0.101

Table F.2: Estimates of d for the volatility series

i) Daily data										
		56	58	60	62	64	66	68	70	72
	Euro	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
FOREX	DJPY	0.448	0.462	0.483	0.493	0.500	0.500	0.500	0.500	0.500
	D & J	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
Stock	FTSE	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
Market	Nikkei	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
	MICEX	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
	Oil	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
Comm.	Gold	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
				ii) W	eekly da	ta				
		22	24	26	28	30	32	34	36	38
	Euro	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
FOREX	DJPY	0.403	0.444	0.429	0.448	0.443	0.375	0.376	0.396	0.426
	D & J	0.362	0.365	0.392	0.373	0.409	0.401	0.399	0.400	0.412
Stock	FTSE	0.417	0.421	0.420	0.411	0.403	0.437	0.429	0.446	0.447
Market	Nikkei	0.450	0.461	0.499	0.444	0.449	0.434	0.449	0.444	0.418
	Oil	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
Comm.	Gold	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
				iii) M	Ionthly da	ata				
		11	12	13	14	15	16	17	18	19
	Euro	0.484	0.448	0.436	0.461	0.500	0.500	0.500	0.483	0.475
FOREX	DJPY	0.306	0.285	0.262	0.260	0.220	0.208	0.129	-0.004	-0.009
	D & J	0.391	0.362	0.316	0.306	0.331	0.305	0.326	0.308	0.337
Stock Market	JTSE	0.065	-0.120	-0.058	-0.062	-0.019	0.040	0.047	0.090	0.108
	Nikkei	0.076	0.035	-0.039	0.002	0.049	0.101	0.002	-0.037	-0.020
	MICEX	-0.098	-0.082	-0.057	-0.084	-0.045	-0.019	-0.036	-0.054	-0.066
	Oil	-0.085	-0.103	-0.054	-0.101	-0.070	-0.087	-0.114	-0.096	-0.151
Comm.	Gold	0.175	0.222	0.215	0.147	0.155	0.111	0.102	0.097	0.101

In bold, statistical evidence of long memory (d > 0) in the volatility processes. Please note that d can only be estimated in the case of stationarity (i.e., d>0.5) and is set equal to 0.5 otherwise.