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Abstract

This paper studies the effects of financial speculation on commodity futures returns, using publicly
available data from the US Commodity Futures Trading Commission, aggregated by trader groups.
We exploit the heteroskedasticity in the weekly data to identify exogenous variation in speculators’
positions. The results suggest that idiosyncratic net long demand shocks of both index investors
and hedge funds increase futures returns. They further indicate that these shocks are a relevant
driver of returns, especially during periods of high speculative demand volatility. These findings
confirm significant price effects of financial investments, complementing existing evidence based on
disaggregated and proprietary daily data.
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1 Introduction

The recent drastic boom-bust cycles in commodity prices spurred an intense debate about the increased

presence of financial investors in commodity markets. The discussion revolves around whether investors

are responsible for the large price swings and, more generally, whether they drive prices away from

fundamentals, distort price signals, and reduce welfare. Growing concerns among policy makers already

led to initiatives of stronger futures market regulation.1 The empirical literature, on the other hand, has

reached no consensus on whether and how financial investment affects commodity prices. Many studies

use publicly available data on futures market positions aggregated by groups of traders, provided by the

US Commodity Futures Trading Commission (CFTC) at a weekly or lower frequency. Only a few of

these papers document positive effects of investor flows on futures returns for specific sample periods and

markets (see Singleton, 2014, and Gilbert and Pfuderer, 2014). Most of them, however, find no effect of

speculators’ position changes on futures prices (see, among others, Stoll and Whaley, 2010, Büyükşahin

and Harris, 2011, Irwin and Sanders, 2012, Aulerich et al., 2013, Hamilton and Wu, 2015).2

The main challenge in this literature is identification. Specifically, it is necessary to isolate variation

in investors’ positions due to trades actually initiated by speculators from variation due to trades initiated

by other market participants, such as producers, to which speculators only respond by taking the counter-

side. This distinction is important because only the former trades induce a positive correlation between

speculators’ long positions and futures prices, whereas the latter trades imply a negative correlation as

producers need to compensate speculators for taking the risk by setting the futures price at a discount. A

lack of identification might thus imply an insignificant correlation, as both types of trades are averaged.

Two recent studies address the identification issue using daily proprietary or disagreggated data and

find significant positive price effects of financial investments. Henderson et al. (2015) use detailed issuance

data on commodity-linked notes and show that futures prices increase when the financial institutions

issuing the notes hedge their short exposure vis-à-vis the holders of the securities through long positions in

the futures market. Cheng et al. (2015) have access to the CFTC’s Large Trader Reporting System which

provides private account-level data on individual traders’ positions. The authors show that increases in the

VIX, that are associated with lower futures prices, lead to a reduction in financial traders’ exposure, and to

an increase in producers’ net long positions. This is consistent with financial traders initiating the trades.

In this paper, we provide new evidence on the price effects of financial investments in commodity

futures markets by proposing an approach to address the identification issue in the publicly available

aggregated weekly CFTC data. Specifically, we identify a system of simultaneous equations, modeled

1In the US, the Dodd-Frank act granted the Commodity Futures Trading Commission (CFTC) the responsibility for additional
regulations of commodity derivative markets. In the European Union, the European Commission set up an expert group on the
regulation of commodity derivatives.

2See also Fattouh et al. (2013) and Cheng and Xiong (2013) for overviews of the literature.
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as a vector autoregression (VAR), through the heteroskedasticity that is present in the weekly data to

isolate exogenous variation in speculators’ net long positions. Following Sentana and Fiorentini (2001)

and Rigobon (2003), the approach exploits the fact that changes in the volatility of the structural shocks in

the system contain additional information on the relation between the endogenous variables. For example,

in a period of high speculative demand volatility, we learn more about the response of returns to positions

as the covariance between both variables temporarily increases. Then, speculative demand shocks are

more likely to occur and can be used as a ‘probabilistic instrument’ (see Rigobon, 2003).

The model includes three endogenous variables: commodity futures returns and net long positions of

‘index investors’ and ‘hedge funds’, respectively, who are both financial speculators.3 We use position data

from the CFTC Supplemental Commitments of Traders (SCOT) reports, which contain a proper category

for ‘index investors’. Both groups are important in terms of market share and have received considerable

attention in the academic debate (see Büyüksahin and Robe, 2014, Singleton, 2014, Cheng et al., 2015,

Basak and Pavlova, 2016). The reports cover eleven agricultural markets, but exclude energy and metal

markets. For the core analysis, we compute an aggregate index for each endogenous variable and apply

a statistical approach to the reduced-form residuals of the model to detect changes in the volatility of

the structural shocks. These changes in volatility, together with the assumption of time-invariant impact

effects, are central to achieving identification. Formal tests support the necessary assumptions and indicate

that identification has been achieved from a statistical point of view.

Our results suggest that the identified exogenous position changes of speculators have significant

contemporaneous price effects and that they are a relevant driver of futures returns. In particular, we find

that demand shocks of both index investors and hedge funds impact positively on returns. A one standard

deviation shock to index investors’ net long positions increases futures returns significantly by 0.15

standard deviations on impact. The contemporaneous effect of hedge funds’ demand shocks on returns is

0.39 standard deviations. These results are qualitatively and quantitatively robust to various alterations of

the model and the data. Specifically, we assess the sensitivity of the estimates to changing the definition

of volatility regimes, to adding another trader group to the model, and to splitting the sample. Our results

also hold on the single markets underlying the aggregate indexes used in the main specification.

We further assess the economic importance of the identified speculative demand shocks for commodity

price fluctuations with variance and historical decompositions. The variance decompositions suggest that

the shocks account for roughly one fifth of the variation in returns on average. Moreover, their importance

increases during periods of high speculative demand volatility. Then, demand shocks of hedge funds

account for 30 percent of the variation in futures returns, and demand shocks of index investors explain

up to 10 percent. By means of historical decompositions, we also quantify the relevance of fundamental

3The latter group actually contains positions of hedge funds, commodity pool operators, and commodity trading advisors.
For brevity, we refer to this category as hedge funds in the following.
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demand and supply conditions as well as changes in the VIX and oil prices for explaining agricultural

futures prices. The results suggest that these forces account for the largest part of commodity price

fluctuations, and in particular explain their secular dynamics. Speculative demand shocks, on the other

hand, seem to mainly contribute to short-run price movements.

Overall, the results support existing studies that detect significant impacts of financial investments

on commodity returns based on highly disaggregated or proprietary data. Using a structural VAR

approach allows quantifying the statistical significance of speculative demand shocks and their economic

importance - both on average and during specific time periods - with publicly available aggregated data.

The documented price effects are consistent with two recent strands of theoretical models. The first strand

emphasizes the existence of limits to arbitrage. When financial intermediaries are funding constrained,

position changes of other market participant can have price effects (see He and Krishnamurthy, 2013,

Acharya et al., 2013, Hamilton and Wu, 2014). The second strand stresses the role of informational

frictions. Under asymmetric information, trades can transmit private signals to the market and thereby

affect prices (see Goldstein and Yang, 2015, 2016, Sockin and Xiong, 2015).

Methodologically, our paper connects to a fast-growing line of research that investigates the role of

financial investors in commodity markets using time-series models. Irwin and Sanders (2012), Aulerich

et al. (2013), or Gilbert and Pfuderer (2014) rely on bivariate Granger-causality tests or similar techniques.

Other authors use structural VAR models. Ederer et al. (2013) and Bruno et al. (2017) employ Cholesky

identification schemes. Zero restrictions, however, seem difficult to defend when working with weekly

or lower frequency financial market data. Alternatively, Kilian and Murphy (2014) use sign restrictions

that allow for an instantaneous response of all endogenous variables. Different to our focus, they analyze

the impact of speculation tied to physical inventories. Moreover, sign restrictions do not allow us to

disentangle the main shocks of interest, as theory gives similar predictions regarding the sign of the impact

of several of the model’s structural shocks on the endogenous variables. Therefore, we apply an agnostic

identification approach using changes in volatility, without additional sign or zero restrictions.

The remainder of the paper is structured as follows. Section 2 outlines a simple theoretical framework

to develop a notion about the structural shocks driving the systems of equations and to derive testable

hypotheses. Then, we describe the data and the identification strategy in Section 3. Section 4 contains the

main results, while their sensitivity and robustness is evaluated in Section 5. The last section concludes.

2 Theoretical framework

Our model of simultaneous equations contains three endogenous variables: the commodity futures return

and net long positions of index investors and hedge funds, respectively. The variables are assumed to be

contemporaneously driven by three uncorrelated structural shocks as well as exogenous variables. To
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develop a notion about the three structural shocks, we employ a simple theoretical model of the futures

market which also allows us to derive some hypotheses about the contemporaneous impacts of the shocks

on the endogenous variables. As in Cheng et al. (2015), we consider a one period model with different

groups of market participants, hedgers and–in our case–two groups of financial investors. The hedgers are

commodity producers (pr) who need to hedge their price risk in the futures market. Financial investors

are speculators without an interest in the physical delivery of the commodity, consisting of index investors

and hedge funds ( f 1 and f 2).

Speculative demand of the two groups of financial investors is driven by two idiosyncratic shocks, υ f 1

and υ f 2, that motivate them to change their positions. Additionally, there is a shock η which commonly

affects demand of all three groups. As we will exogenously control for physical supply conditions

and financial market risk in the model (see Section 3.3), the common shock is unrelated to these two

driving forces. Instead, it can be thought of as capturing changes in demand in the spot market which are

transmitted to the futures market. The demand curves for producers and financial investors are

∆xpr =−βpr∆F− γprη , ∆x f 1 =−β f 1∆F + γ f 1η +υ f 1, ∆x f 2 =−β f 2∆F + γ f 2η +υ f 2,

where ∆F is the change in the futures price, ∆xpr, ∆x f 1, and ∆x f 2 is the change in net long demand of

hedgers and financial investors, respectively, and it is assumed that βpr,β f 1,β f 2 ≥ 0 and that γpr,γ f 1,γ f 2 ≥

0. The first assumption implies that all demand curves are downward sloping. The second assumption

relates to the common shock. To meet higher physical demand, commodity producers increase their

output, which in turn raises their hedging needs. The common shock therefore causes a decline in net

long demand of producers in the futures market. We further assume that the common shock increases

speculative net long demand of financial investors as the physical demand for commodities rises. This

reaction can be motivated by, for example, trend-following behavior as speculators expect further price

increases (see Rouwenhorst, 1998, Bhardwaj et al., 2014, Kang et al., 2017).

Market clearing imposes that ∆xpr +∆x f 1 +∆x f 2 = 0 where the equilibrium price balances the three

groups’ net demand. Solving the model with respect to the underlying shocks yields the following equation

for the change in the futures price:

∆F =
1

βpr +β f 1 +β f 2
υ f 1 +

1
βpr +β f 1 +β f 2

υ f 2 +
γ f 1 + γ f 2− γpr

βpr +β f 1 +β f 2
η

According to the price equation ∂∆F/∂υ f 1 > 0 and ∂∆F/∂υ f 2 > 0 if βpr + β f 1 + β f 2 < ∞. For the

empirical model this implies the testable hypothesis:

Hypothesis 1 Positive speculative demand shocks lead to an increase in net long positions of financial

investors and contemporaneously increase commodity futures returns.
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The alternative is to find no significant effect of speculative demand shocks on futures returns. This

result would indicate that some or all of the βi are so large that 1/(βpr + β f 1 + β f 2) is statistically

indistinguishable from zero. Economically, this means that idiosyncratic position changes by financial

investors are absorbed by other market participants with nearly infinitely elastic demand curves and have

no price effects.

While Hypothesis 1 is derived from a highly stylized model, it is consistent with more sophisticated

asset pricing models. Shleifer and Summers (1990) and Shleifer and Vishny (1997), for example, show

that large position changes can influence prices through an effect on the order book if the instantaneous

supply of counterparty orders is low. Such problems of illiquidity might arise if there are limits to arbitrage

which deter risk averse arbitrageurs from taking the counter-side. Positions changes can also influence

futures market risk premia and thereby drive up prices (see Acharya et al., 2013, and Hamilton and Wu,

2014, 2015).4 If producers want to hedge their price risk, the futures price needs to include a risk premium

and, hence, to be set at a discount to induce speculative traders to take the price risk. The higher is the

provision of hedging liquidity through speculators, the lower is the risk premium and, hence, the higher

the futures price. Additionally, financial investors could affect prices through informational channels. If

some investors possess private information, their trades might communicate this information to the market

and change the price (see Grossman and Stiglitz, 1980, Hellwig, 1980, Goldstein and Yang, 2015). Private

information could be due to better forecasting abilities, different costs of private information production,

or divergent interpretations of public information (see Singleton, 2014).

The effect of the common shock on the futures price depends on the relative size of γpr, γ f 1, and γ f 2.

If long demand of investors increases by more than short demand of producers in response to the shock,

that is, if γ f 1 + γ f 2 > γpr, then ∂∆F/∂η > 0. Solving the model yields the following equation for changes

in net long positions of financial investor group i = 1,2

∆x f i =
βpr +β f j

βpr +β f 1 +β f 2
υ f i−

β f i

βpr +β f 1 +β f 2
υ f j +

(βpr +β f j)γ f i +β f i(γpr− γ f j)

βpr +β f 1 +β f 2
η ,

where j denotes the other investor group. The sign of the effect of physical demand shocks on financial

investors’ demand, ∂∆x f i/∂η , depends on the relative sizes of the parameters. However, as long as no

group reacts extremely to the common shock (γ f i very large) and no group reacts extremely to price

changes (β f i very large), it follows that ∂∆x f 1/∂η > 0 and ∂∆x f 2/∂η > 0. For the empirical model these

observations can be translated to
4Following the theory of normal backwardation, going back to Keynes (1930), the spot and the futures price are related

according to Ft,T − St = [E(ST )− St ]−πt,T , where St and ST are the spot price at t and T , respectively, Ft,T the T -periods
ahead futures price and πt,T the risk premium. If short hedging demand exceeds long supply, the risk premium will be positive.
Hamilton and Wu (2014, 2015) show that the same mechanism is at work if the market is characterized by long-pressure of
speculators and not by short-pressure of producers. If speculators cannot find a counter-party to take the short side, the futures
contract needs to include a risk premium on the short side. Therefore, an increase in speculators long exposure can lead to an
increase in futures prices if they affect risk premia.
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Hypothesis 2 Positive physical demand shocks have a positive contemporaneous effect on commodity

futures returns and drive up net long positions of financial speculators.

The alternative is that physical demand shocks have no significant effect on or even lead to a decrease in

speculators’ net long positions. This could be the case if, for example, γ f j� γpr and β f i� 0. In the next

section, we outline how we specify the empirical model to test the two hypotheses.

3 Empirical model, data, and estimation methodology

3.1 Empirical model

The structural VAR model is given by

Ayt = c̃+ Ã1yt−1 + ...+ Ãpyt−p + Λ̃xt + εt , (1)

with the vector of endogenous variables

yt =


∆log(Agricultural futures price)t

∆(Net long positions index investors)t

∆(Net long positions hedge funds)t

 ,

xt a vector of exogenous variables, and c̃, Ãp, and Λ̃ parameter matrices. The vector εt contains the

structural shocks with regime-dependent diagonal covariance matrix in regime k

Σε,k = E(εtε
′
t ) =


σF

k 0 0

0 σ I
k 0

0 0 σH
k

 .

In its reduced-form, the model in equation (1) can be re-written as follows

yt = c+Π1yt−1 + ...+Πpyt−p +Λxt +ut , (2)

where Πp = A−1Ãp and Λ = A−1Λ̃. The vector of reduced-form residuals ut = (uF
t ,u

I
t ,u

H
t )
′ is related to

the structural shocks through matrix A−1: ut = A−1εt .

The focus of the empirical analysis is on the impact matrix A−1 that contains the contemporaneous

effects of the structural shocks on the endogenous variables. Specifically, the hypotheses outlined in

Section 2 can be assessed based on the estimated A−1. Assuming that the identified structural shocks

in the two equations with investors positions are speculative demand shocks of the different investor
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groups, Hypothesis 1 comes down to testing α1,2,α1,3 > 0, where α j,k is the corresponding element in

A−1. Similarly, if the structural shock in the futures price equation of the estimated structural VAR model

is the physical demand shock, Hypothesis 2 can be tested by analyzing whether α2,1,α3,1 > 0. Therefore,

after the estimation, we first assess how the estimated structural shocks can be interpreted with the outlined

theoretical model in mind, before evaluating the estimated parameters in A−1. For our baseline model, we

will also assess the direct effects of structural shocks captured in A. They differ from the overall effects

in A−1 as they do not take instantaneous feedback among endogenous variables into account. Instead,

parameters in A can be interpreted as effects of shocks keeping all other variables constant and showing

both is thus indicative of shock amplification among endogenous variables.

3.2 Identification

Equation (2) and the regime-dependent covariance matrix of the reduced-form shocks, Σu,k, can be

estimated consistently by ordinary least squares. Specifically, we specify the model in first (log) differences

to account for the non-stationarity of the data.5 Moreover, we standardize all variables prior to the

estimation.6 We include two lags of the endogenous variables to obtain residuals free from autocorrelation

and to strike a balance between the usual lag length selection criteria. From (1) and (2), it follows

that Σu,k = A−1Σε,k(A−1)′. This relation illustrates how different volatility regimes contain additional

information that can be exploited to identify the impact matrix A (or equivalently A−1). With k = 1 we

would only have six moments on the LHS that can be estimated but nine parameters that need to be

determined on the RHS (three structural shock variances and six off-diagonal elements in A, with the main

diagonal normalized to unity). For k ≥ 2, however, the system has at least as many moments that can be

estimated (for instance, twelve if k = 2) as unkowns (six structural shocks variances and six off-diagonal

elements if k = 2).

The approach of identification through heteroskedasticity has been developed by Sentana and Fiorentini

(2001) and Rigobon (2003) and applied in the context of financial markets and asset price co-movements

by, among others, Bouakez and Normandin (2010) and Ehrmann et al. (2011). The idea is that changes in

the relative variances of the structural shocks over time, that is, changes in σS
k /σS′

k across k with S = F, I,H

contain additional information which allows determining the entries in A. If, for example, the variance

of index investor position changes increases in a certain period (σ I
k/σF

k > σ I
k′/σF

k′ ), speculative demand

shocks coming from that group help tracing out the demand curve of other market participants, and thereby

5Augmented Dickey-Fuller and Phillips-Perron tests on the level of the agricultural futures price and investors’ net long
positions do not reject the null hypothesis of a unit root, irrespective of whether we include a drift term. Returns and first
differences of positions, in contrast, are found to be stationary.

6Specifically, we subtract the mean and divide by the standard deviation. This facilitates a direct comparison of the effects
across variables and markets. Moreover, it reduces the computational challenges of the minimization procedure as the parameters
to be estimated are of similar order of magnitude. For the main specification, we have verified that the results are robust to using
non-standardized data.
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the price effect, because large speculative demand shocks of index investors are more likely to occur during

this period. Rigobon (2003) refers to these relative changes in volatility as ‘probabilistic instruments’.

The identification strategy relies on two assumptions. First, the structural shocks are uncorrelated. This

is commonly assumed in the structural VAR literature. Second, the matrix of contemporaneous impacts

A is constant across volatility regimes. This is a standard assumption for instance in (G)ARCH models.

Moreover, we formally test the assumption and cannot reject it.

Alternatively, identification is often achieved by imposing zero or sign restrictions. Zero restrictions

would imply a delayed response of some endogenous variables to some structural shocks. This seems

too restrictive, however, as futures prices and positions are likely to respond to shocks and each other

contemporaneously at the weekly frequency. Sign restrictions, on the other hand, allow for an immediate

impact among variables. Yet, they are not helpful in disentangling the shocks in our model as these shocks

all imply the same sign pattern (compare Section 2), and it would thus take further strong assumptions,

for instance on the relative magnitude of their impact, to disentangle them.

3.3 Data

To measure positions of the trader groups, we use publicly available data from the CFTC Supplemental

Commitments of Traders (SCOT). In the reports, traders are classified into four categories: ‘commer-

cial’ (producers, processors, and merchants), ‘non-commercial’ (commodity trading advisors (CTAs),

commodity pool operators (CPOs), hedge funds, and other reportables), to which we for brevity mostly

just refer as hedge funds, ‘non-reporting traders’, and ‘index investors’. Both index investors and non-

commercial traders are financial investors without an interest in the physical delivery of the commodity.

There are, however, some differences in their characteristic trading strategies (see Masters and White,

2008, Mou, 2010, Heumesser and Staritz, 2013). Traders in the non-commercial category actively gather

and process commodity-specific information and base their trades thereon. CTAs and CPOs have an

insightful knowledge of specific agricultural markets and hedge funds often take directional views by

exploiting high-frequency cross-market information. These investors are typically active on both sides

of the market. In contrast, index investors essentially use commodities to diversify portfolio risk, but

have no particular interest in specific commodities. Their trades are based on re-balancing, rolling, or

weighting considerations and occur at lower frequencies. They are typically only active on the long side

of the market.

The SCOT reports cover all eleven agricultural commodities in the S&P Goldman Sachs Commodity

Index (GSCI), one of the most widely used investible commodity indices, but exclude energy and metal

futures markets. Reports start in July 2006, so that our sample runs from 04 July 2006 to 29 March 2016.

The data frequency in the reports is weekly. To measure futures prices, we use corresponding nearby
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futures contracts available from Thompson Reuters Datastream. For the core analysis, we construct one

aggregate index for each endogenous variable. The weights of the individual commodities in each index

are based on the commodities’ yearly varying weights in the S&P GSCI. In a robustness analysis, we also

investigate the relations among the endogenous variables on the individual markets using market-specific

price and position data, that is, we estimate one three-variable model for each of the eleven agricultural

futures markets separately. Table 1 lists the commodities and their average weights in our sample.

Table 1: Average commodity weights used for construction of aggregate futures market indexes

Corn SRW Wheat Live Cattle Soybeans Sugar Lean Hogs
20.9% 18.1% 12.9% 12.5% 9.1% 7.4%

Cotton HRW Wheat Coffee Feeder Cattle Cocoa
6.1% 4.7% 4.1% 2.3% 1.4%

The table lists the commodities used for construction of aggregate futures price,
position, and spread indexes and their average weights in these indexes. The weights
are updated yearly and based on the reported weights in the S&P GSCI. Differences
to 100% are due to rounding errors.

While the SCOT reports have the advantage of being publicly available and distinguishing between

index investors and other speculators, they also have notable drawbacks. The data might contain reporting

errors due to potential missclassication of traders for several reasons. First, financial investors have

incentives to try being classified as hedgers, since this entails them for preferential treatments like

exemption from positions limits or posting lower margins to clearinghouses. These incentives might

have even increased after the the Dodd-Frank Act in 2010, when additional regulatory measures started

to get implemented. Second, in particular large financial entities might trade for different reasons, like

setting up a trade for a customer, proprietary trading, or index trading. The reports, however, are based on

aggregated total end-of-day positions of individual traders and not on the underlying motifs behind their

specific trades. Third, the CTFC itself changes the classification of traders from time to time, for instance,

if additional information on a trader is available or when its client base changes.

Overall, these potential reporting errors in the data could show up in the estimated VAR model. With

speculators being partly classified as hedgers, our results might actually represent a lower bound for the

impact of speculators’ position changes on futures price formation and any detected significant impact

should still be supportive for the hypotheses. We also explicitly control for the impact of the Dodd-Frank

act on our results by splitting the sample at this point in the sensitivity analysis, and we ensure that the

changes in volatility used to identified the model are not solely driven by specific re-classification of

traders by assessing the robustness of the results to various definitions of volatility regimes.

We add several exogenous variables to the model. First, we control for physical supply in the US

as most of the included commodities are to a large extent produced there. Specifically, we build an

index of crop conditions following Bruno et al. (2017) for this purpose. Second, changes in uncertainty
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and risk aversion can have an impact on commodity futures prices and financial investors’ risk bearing

capacity. Cheng et al. (2015) show that speculators adjust positions to changes in the CBOE Volatility

Index (VIX). We thus control for changes in the VIX. Third, changes in the price of oil can affect the

price of agricultural products (see Baffes, 2007). One argument is that oil prices are part of production

costs. Wang et al. (2014) find effects of oil shocks on agricultural commodity prices. As oil prices are

highly correlated with the VIX including both of them jointly into the model would lead to problems of

multicollinearity and therefore would make it difficult to interpret significance levels. We therefore use

changes in the oil price orthogonal to changes in the VIX, computed as the residuals from a regression of

oil returns on VIX changes. Fourth, we add the size of the Federal Reserve balance sheet as a measure

of aggregate liquidity. Finally, the model contains monthly dummy variables to capture seasonal effects,

following Kilian and Murphy (2014). All exogenous variables enter the model contemporaneously. As

explained in Section 2, the estimated structural shocks in equation (1) thus explain the variation in the

data that is left after controlling for the exogenous variables, and have to be interpreted accordingly. We

provide a detailed description of the data in Appendix A.

3.4 Estimation

Before the estimation, we need to determine the volatility regimes used to identify the model. Following

Ehrmann et al. (2011), we apply a statistical approach. Specifically, we compute the rolling standard

deviation for each reduced-form residual in ut . We then calibrate a threshold for the rolling standard

deviations above which the corresponding residual is classified into a high volatility regime. In particular,

we use a window of 15 weeks to compute the rolling standard deviations and a threshold of one standard

deviation. We define regime 1 as a low volatility regime, where the standard deviation of all three residuals

is below one. Regimes 2 to 4 are characterized by high volatility of only one of the residuals, while the

other two residuals display low volatility.

The approach of defining one high volatility regime for each residual is motivated by the identification

idea that a relative volatility shift of the underlying structural shock helps to trace out the effects of

that shock on the other variables. The choice of the window and the threshold is then largely dictated

by the need to have sufficient observations in each regime and the objective of minimizing the number

of observations which do not fit into any regime, for example, because two reduced-form errors are

in the high volatility regime simultaneously. We drop these observations from the estimation of the

regime-specific reduced-form covariance matrices. Finally, note that the approach generates four volatility

regimes, while two regimes are in principle enough for identification. Hence, the model is overidentified

and the overidentifying restrictions implied by a regime-invariant A can be tested.

Table 2 shows the estimated variances of the residuals and the number of observations per regime. It
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also contains the regime-specific estimated covariances between the residuals. The latter illustrate the idea

underlying identification through heteroskedasticity. In regime 3, for example, where the reduced-form

errors of the index investor equation display high volatility, the covariance between these residuals and

those of the futures returns equation increases strongly relative to the regime 1, where both residuals show

low volatility. Similarly, the covariance between the residuals of the hedge funds equation and of the

futures return equation increases substantially in regime 4. These changes in the covariances provide the

additional information needed for identification.

Table 2: Variance-covariance of the reduced-form shocks in the different regimes1

Regime (1) (2) (3) (4)
All low Return Index inv. Hedge funds

volatility high volatility high volatility high volatility

V (uF
t ) 0.47 1.17 0.38 0.52

V (uI
t ) 0.42 0.57 1.68 0.48

V (uH
t ) 0.49 0.49 0.58 1.25

C(uF
t ,u

I
t ) 0.13 0.11 0.26 0.14

C(uF
t ,u

H
t ) 0.27 0.47 0.25 0.54

Observations 152 59 51 96

1 The table shows the estimated variances and covariances of the reduced-form errors
in the different volatility regimes. The sample period is 04 July 2006 - 29 March
2016.

To see whether our regime definition is supported by the data, we test formally for the constancy

of the reduced-form covariance matrix. Recall that for identification we not only require changes in

the volatility of the reduced-form residuals, which we expect given our construction of regimes, but in

particular significant changes in the covariances between residuals across regimes. Following Lanne and

Lütkepohl (2008), we thus perform pairwise likelihood ratio tests on the null hypothesis that two regimes

have the same covariance matrix. Moreover, we test the joint null hypothesis that all four covariance

matrices are the same. Table 3 shows that all null hypotheses are strongly rejected by the data. It is known

that such likelihood ratio tests do not have optimal small sample properties. The null might be rejected too

often. However, our test statistics are large, so that we reject the equality of the matrices with confidence,

and in particular the joint equality of all matrices. The data prefer a model with changes in volatility over

the assumption of homoskedasticity.

With the volatility regimes in hand, we estimate the model as in Ehrmann et al. (2011) by minimizing

the following matrix norm:

||g′g||=
√

tr[gg′] =
√

vec(g)vec(g)′, with g =
4

∑
k=1

[AΣu,kA′−Σε,k] (3)

and Σu,k the regime-specific covariance matrix of the reduced-form residuals. Statistical inference is based

on bootstrapping. Specifically, we generate 200 draws of the data using the regime-specific covariance
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Table 3: Tests for constancy of reduced-form covariance matrix1

H0 Σu,1 = Σu,2 = Σu,3 = Σu,4 Σu,1 = Σu,2 Σu,1 = Σu,3
LR statistic 746.82 31.86 46.46
p-value (0.00) (0.00) (0.00)

H0 Σu,1 = Σu,4 Σu,2 = Σu,3 Σu,2 = Σu,4 Σu,3 = Σu,4
LR statistic 30.68 43.82 48.22 38.93
p-value (0.00) (0.00) (0.00) (0.00)

1 The table shows results of likelihood ratio tests on the null hypothesis that
all regimes have the same reduced-form covariance matrix and that pairwise
regimes have the same reduced-form covariance matrix. p-values are in
parentheses.

matrices and for each draw we estimate the coefficients by minimizing (5). We compute p-values as the

share of estimates beyond zero.

3.5 Identification and parameter stability tests

As outlined above, we use changes in volatility for identification. To uniquely determine A with this

method, that is, to achieve identification in a statistical sense, the estimated variance-ratios of the

uncorrelated structural shocks have to be sufficiently distinct across regimes (see Lütkepohl and Netšunajev,

2014). To check whether this is the case, we first study the variance-ratios φ
S,S′
k = σS

k /σS′
k for each pair

of shocks (S,S′), which are given in Table 14 in Appendix B. The estimated ratios and standard errors

suggest that for each pair there is at least one regime where the ratio changes sufficiently relative to the

other regimes, that is, where the one-standard error intervals do not overlap. While these changes are

indicative of statistically significant changes in volatility ratios, we also test formally for identification.

For each shock pair, we use a linear Wald test on the joint null hypothesis that the variance-ratio is the

same across regimes, that is, that φ
S,S′
1 = φ

S,S′
2 = φ

S,S′
3 = φ

S,S′
4 , which would invalidate the identification of

A. Inference in these tests is based on 200 bootstrap replications. Table 4 contains the Wald test statistics

and the associated p-values. It shows that for each pair of shocks the null hypothesis of no changes in

volatility is strongly rejected by the data. The model is statistically fully identified.

Table 4: Identification tests

H0 φ
I,F
1 = φ

I,F
2 = φ

I,F
3 = φ

I,F
4 φ

H,F
1 = φ

H,F
2 = φ

H,F
3 = φ

H,F
4 φ

H,I
1 = φ

H,I
2 = φ

H,I
3 = φ

H,I
4

Wald statistic 22.96 27.19 28.92
(bootstrapped)
p-value 0.00 0.00 0.00
(bootstrapped)

The table shows the Wald statistics and associated p-values of linear Wald tests on the joint null hypothesis that the
estimated variance ratios of two structural shocks, φ

S,S′
k = σS

k /σS′
k , are the same across volatility regimes, for each pair

of structural shocks. Here, σS
k is the estimated variance of shock S = F, I,H in regime k = 1, . . . ,4. The tests are based

on 200 bootstrap replications.

Having established statistical identification, we can test the assumption of a time-invariant impact
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matrix A as it becomes overidentifying with more than two regimes. For this we perform the following

Likelihood ratio test: LR = 2(logLT − logLr
T ), where Lr

T is the maximum of the likelihood under the H0

of time-invariant A and LT is the maximum likelihood under H1, which corresponds to the maximum

likelihood of the reduced-form model with changes in volatility (compare Herwartz and Lütkepohl,

2014). The LR-statistic is 5.32 and the corresponding p-value is 0.50, not rejecting the constancy of A at

conventional significance levels.

Finally, we investigate whether there is a break in the relation between the exogenous and endogenous

variables on 21 July 2010. This dates splits the sample into a crisis and post-crisis half. It is, first,

motivated by Cheng et al. (2015) who show, based on different position data however, that the behavior of

financial investors can change in crises. Hedge funds, for example, may be more sensitive to prices or

may increasingly trade for reasons unrelated to agricultural commodities, such as losses in other markets.

Second, the date corresponds to the day of the Dodd-Frank act. The following regulations of commodity

derivative markets may have changed the functioning of futures markets. However, joint Chow tests for

the three parameters of interest, referring to oil prices, the VIX, and crop conditions, do not reject the

hypothesis of constant parameters across subsamples in the three equations. Moreover, all Chow tests of

individual coefficient are insignificant, except for the effect of the VIX on hedge funds positions, where

the null hypothesis of no break can be rejected at the 10% level. To account for the latter observation, we

report subsample estimates in the robustness analysis of Section 5, which confirm our main results. All in

all, the tests in this subsection indicate that the data support the assumptions of changing volatility during

the sample period and time-invariant slope coefficients.

4 Empirical results: demand shocks and commodity futures returns

4.1 Interpretation of structural shocks

While we have shown that the model is statistically identified, our agnostic identification strategy has

a well-known drawback. The structural shocks are more difficult to interpret since they are not based

on a priori (zero or sign) assumptions or disaggregated data. We address this issue in several ways, in

particular with the model outlined in Section 2 in mind.

First, we explore the significance of the exogenous control variables, meant to capture common factors

affecting both futures prices and positions, to obtain an impression of the variation that remains in the

reduced-form errors which are decomposed into the structural shocks. Table 5 shows the estimated effects

of the most significant exogenous variables on the endogenous variables, corresponding to the entries in Λ

in the reduced form model (2). Standard errors are robust to heteroskedasticity and statistical significance

is denoted by a, b, c for the 1%, 5%, and 10% level, respectively. The index of crop conditions has the
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expected negative effect on prices and is highly statistically significant. Better weather conditions lead

to lower returns. While index investor positions are insensitive to crop conditions, net long positions of

hedge funds decrease in response to improved physical supply conditions. Moreover, all three endogenous

variables respond strongly to changes in the VIX and oil prices. In line with Tang and Xiong (2010) and

Cheng et al. (2015), these responses suggest that changes in the risk bearing capacity of financial investors,

as proxied by changes in the VIX, or re-balancing motives, induced by oil price changes, are important

drivers of financial investors’ positions that induce similar movements in agricultural commodity futures

returns. This co-movement indicates that changes in these variables are to a large extent transmitted to

futures returns through financial investors.

Table 5: Effects of selected exogenous variables on the endogenous variables1,2

Exogenous variable
Index of crop conditions VIX Oil price (orthogonal to VIX)

Futures returns -0.36a -0.30a 0.31a

(0.00) (0.00) (0.00)
Index inv. positions 0.09 -0.16a 0.26a

(0.40) (0.00) (0.00)
Hedge funds positions -0.23a -0.13a 0.15a

(0.01) (0.00) (0.00)

1 The table shows the effects of selected exogenous variables on the endogenous variables from the
baseline VAR, obtained from estimating the rows of the reduced-form model (2).

2 a, b, c denote significance at the 1%, 5%, 10% levels. Heteroskedasticity robust p-values below point
estimates.

Given that the crop condition variable has a strong effect on returns and therefore appears to be a

good measure of physical supply, we interpret the structural shock to the equation for futures returns,

εF
t , that explains the largest part of the remaining variability in futures returns (see the forecast error

variance decompositions in Section 4.3), as shifts in physical demand for agricultural commodities. In the

notation of the theoretical model, the shock εF
t thus is interpreted as corresponding to the shock η . The

interpretation of εF
t as a physical demand shock is also supported by model-external information. Figure

1 shows the cumulative effect of εF
t on futures prices, obtained from a historical decomposition, and the

(inverted) level of agricultural stocks in the US.7 The variables display a strong co-movement for most of

the sample, indicating that they are driven by similar underlying demand shifts, with changes in stocks

leading the relation. As intuition would suggest, physical demand shifts tend to be buffered by inventories

first and then show up in prices over time.

With physical demand as well as supply, financial market risk, and oil price changes accounted for,

we interpret the remaining two structural shocks as investor-specific speculative demand shifts in line

7The stock variable is based on data from the US Department of Agriculture and described in Appendix A. We do not include
it into the model as it is only available at a monthly frequency. The stocks variable is not available for sugar, coffee, and cocoa
that constitute close to 15 % of the aggregates. The relationship depicted in 1, however, is robust to excluding these commodities
from the estimations.
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Figure 1: Agricultural stocks and cumulative effect of estimated agricultural specific demand shocks on
the futures price. The figure shows the level of agricultural stocks as reported by the US Department
of Agriculture (grey line, right scale inverted) and the agricultural futures price implied by cumulated
agricultural demand shocks obtained from a historical decomposition (black line).

with the theoretical model. Specifically, structural shocks to the equation for index investor positions, ε I
t ,

are interpreted as idiosyncratic shifts in their speculative demand. Analogously, we interpret structural

shocks to the equation for hedge funds, εH
t , as demand shifts of hedge funds. Both ε I

t and εH
t thus capture

speculative demand shocks unrelated to changes in the risk bearing capacity or re-balancing motives as

captured by VIX or oil price movements. This orthogonality allows complementing the analysis of Tang

and Xiong (2010) and Cheng et al. (2015) by focusing on changes in speculative demand unrelated to

these motives. Index investors, for example, may adjust positions in response to demand changes of their

institutional or retail clients, and hedge funds might trade based on private information, say.

To further assess our labeling of these two structural shocks, we follow Herwartz and Lütkepohl (2014)

and evaluate whether the structural shocks display distinct volatility patterns and higher volatility during

those periods that we expect, given our shock interpretation. Figure 2 shows the structural shocks (grey

line) and their centered 52-weeks rolling standard deviation (black line). The shocks ε I
t display higher

volatility during the first sample half and in 2014/15, whereas the volatility of εH
t -shocks increases sharply

towards the very end of the sample. These changes in volatility correspond to the time-varying importance

and activity of the two investor groups on commodity futures markets. While index investors were

relatively more active in the first part of the sample, and in particular in 2007/08 where many institutional

and retail investors sought exposure to commodities as a new asset class, a significant portion of these

investors left the market afterwards when long-only strategies were no longer profitable as commodity
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prices experienced sharp boom-bust cycles. Their share in total long positions, for instance, declined from

32% in 2008 to 25% in 2014. In contrast, hedge funds employ trading strategies which allow them to

earn positive returns in periods of both rising and declining prices (see Mayer, 2009). Their activity was

relatively stable during most of the sample and only started to intensify when commodity prices began a

steady decline from 2014 onwards.
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Figure 2: Interpretation of structural shocks. The figure shows the estimated structural shocks (grey line,
left axis) together with their (centered) 52 weeks rolling standard deviations (black line, right axis). The
estimated shocks are based on a structural VAR identified through heteroscedasticity.

4.2 Contemporaneous shock propagation

Having labeled the structural shocks, we now present their effects on the endogenous variables. Table 6

shows the estimated contemporaneous impact matrices A and A−1. We do not show impulse response

functions, as they do not provide additional insights given that there is virtually no persistence in the

differenced data. To evaluate Hypothesis 1, we focus on the impact of speculative demand shocks on

futures returns, that is, on parameters α1,2 and α1,3. According to the direct effects, demand shocks

of both investor groups lead to a significant contemporaneous increase in commodity futures returns.

The point estimates are both significant at the one percent level. A similar conclusion can be drawn

from the overall effects which take into account all contemporaneous feedback among the endogenous

variables. The overall effects imply that an exogenous increase of index investors’ net long demand by one

standard deviation leads to an increase in commodity futures returns by 0.15 standard deviations within

the same week. The effect for hedge funds is even stronger. Here, a demand shock increases returns by
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0.39 standard deviations. Together, the estimates support Hypothesis 1. Speculative demand shocks that

increase net long positions impact positively on futures returns. Returning to the motivating theoretical

model, these results imply that the demand curve of hedgers (or the respective counter-party in a general

setting) is not infinitely elastic with respect to changes in the futures price and that exogenous changes

in speculative demand consume liquidity. In other words, hedgers require a compensation for meeting

speculators net long demand.

Table 6: Contemporaneous effects among endogenous variables1,2

Impulse
Response Futures return Index inv. positons Hedge funds positions

Direct effects (A)
Futures Return 1.00 -0.16 -0.33

. .a .a
Index inv. positons 0.03 1.00 -0.16

. . .
Hedge funds positions -0.29 0.08 1.00

.a . .

Overall effects (A−1)
Futures Return 1.11 0.15 0.39

.a .b .a
Index inv. positons 0.01 0.99 0.16

. .a .
Hedge funds positions 0.32 -0.04 1.10

.a . .a

1 The table shows the estimated impact effects of structural shocks of one standard deviation on the
endogenous variables, based on a structural VAR identified through heteroskedasticity. Impulse
variables are in columns, response variables are in rows. The sample period is 04 July 2006 - 29
March 2016. The number of observations used for identification is 358.

2 .a, .b, .c below point estimates denote significance at the 1%, 5%, 10% level, respectively.

Regarding Hypothesis 2, the point estimates for the effect of physical demand shocks on speculators’

positions provide mixed evidence (parameters α2,1 and α3,1). Positions of index investors do not respond

significantly to physical demand shocks, whereas for hedge funds we find a significant positive effect.

For this trader group, a physical demand shock of one standard deviation leads to an increase in net long

positions by 0.32 standard deviations. Through the lens of the theoretical model, the significant response

of hedge funds’ net long positions to physical demand shocks suggests that - through their increased net

long demand - they provide liquidity to producers who have higher hedging needs.

4.3 Drivers of commodity futures prices

We next assess the relevance of alternative explanations for the commodity price swings contained in

our sample by means of a historical decomposition of the futures return series. The upper left panel of

Figure 3 contains the cumulated changes in the futures price and the cumulative effect of the exogenous

variables on the futures price. It shows that the exogenous variables are an important driver of futures
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prices and explain in particular the secular price movements well. There is a strong co-movement between

both series. Local supply conditions as well as changes in the VIX and oil prices explain about half of the

boom-bust cycle of commodity prices in 2008/09, and a relevant part of the steady price decline from

2012 onwards.
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Figure 3: Cumulative effects of exogenous variables and structural shocks on agricultural futures prices.
The figure shows the cumulative change of the agricultural futures price (grey line) and the cumulative
effect of the exogenous variables and of the structural shocks (black lines) on agricultural futures prices
over the sample 04 July 2006 - 29 March 2016.

The figure also shows the cumulative effects of physical and speculative demand shocks on futures

prices. The cumulative effects are based on a historical decomposition of the futures return series which

yields the weekly contribution of each structural shock to the futures return. The top right panel reveals

that, next to the exogenous variables, physical demand shocks are the other main driver of futures prices.

They explain approximately the other half of the boom-bust cycle in 2008/09, nearly the entire price surge

in 2010/11, and account for a major fraction of the subsequent decline. Together, the top two panels

suggest that the exogenous variables and physical demand shocks are the main drivers of prices and in

particular explain the longer-term price movements.

Compared to these main forces, the effects of speculative demand shocks on futures prices appear

more modest, but are not negligible. Especially speculative demand shifts of hedge funds explain the

higher frequency (that is, short term) movements in returns well, in particular in the second sample half.

Speculative demand shocks of index investors, on the other hand, seem to play only a limited role. This

preliminary conclusion does not imply, however, that index investors are unimportant for commodity price

formation in general. First, our results indicate that they transmit changes in the VIX or price of oil to

18



futures prices (see Section 4.1). Second, while their impact is apparently small on average, they might

have relevant effects when their volatility increases. We investigate this issue next.

Specifically, we compute one week ahead forecast error variance decompositions to quantify the

regime-specific and average economic significance of the different types of structural shocks. Since

we have four different volatility regimes, we obtain four decompositions. They yield the percentage

contribution of each shock to the variance of the endogenous variables in each regime. In addition, we

compute a weighted average of the regime-specific decompositions to measure the average importance of

the shocks over the full sample, using the number of observations per regime as weights. Table 7 shows

that speculative demand shocks explain 15 percent of the variability in futures returns in regime 1, where

all shocks display low volatility. Shocks of hedge funds are important, whereas index investor demand

shifts play a more limited role. The positions of index investors, in turn, are almost entirely driven by own

shocks, consistent with their trading strategies. Hedge funds positions, on the other hand, are also respond

to physical demand shocks.

Table 7: Forecast error variance decompositions1

Impulse
Futures return Index inv. positions Hedge funds positions

Regime 1
Futures return 0.85 0.02 0.13
Index investor positions 0.00 0.98 0.02
Hedge funds positions 0.07 0.00 0.93
Regime 2
Futures return 0.95 0.01 0.04
Index investor positions 0.00 0.98 0.02
Hedge funds positions 0.19 0.00 0.81
Regime 3
Futures return 0.73 0.09 0.18
Index investor positions 0.00 0.99 0.01
Hedge funds positions 0.04 0.00 0.95
Regime 4
Futures return 0.68 0.02 0.30
Index investor positions 0.00 0.95 0.05
Hedge funds positions 0.02 0.00 0.98
Weighted FEVD
Futures return 0.80 0.03 0.17
Index investor positions 0.00 0.97 0.03
Hedge funds positions 0.07 0.00 0.93

1 The table shows the forecast error variance decompositions over the horizon of one week for
volatility regimes 1-4 and a weighted average of these, using the number of observations per regime
as weights, based on a structural VAR identified through heteroskedasticity. In regime 1 all structural
shocks have low volatility. In regimes 2-4 the volatility of shocks to, respectively, physical demand,
index investor demand, and hedge funds demand is high relative to the other structural shocks.

This asymmetry between investors increases in regime 2, where physical demand shocks are more

volatile relative to the other shocks. Physical demand shocks now explain 19 percent of the variation

in hedge funds positions and still nothing of the changes in index investor positions. Reversely, the
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importance of speculative demand shocks in futures price determination increases and becomes important

when positions are more volatile. In regime 3, demand shifts of index investors explain 9 percent of

the variation in futures returns. In regime 4, hedge funds demand shocks account for nearly one third

of the fluctuation. Finally, the weighted forecast error variance decomposition reveals that taking into

account these changes in volatility increases the importance of speculative demand shifts relative to their

importance in the tranquil period. Financial demand shocks on average account for almost one fifth of

the variance of futures returns. All in all, however, the decompositions show that, next to exogenous

fundamentals, shocks to physical demand are the main driver of commodity prices.

5 Sensitivity analysis

5.1 Alternative definitions of volatility regimes

As a final step in the analysis, we assess the sensitivity of our main results to various modifications of

the model. First, we analyze the robustness of the results to changing the calibration and definition of

the volatility regimes. In the baseline specification, we use 15-weeks rolling standard deviations of the

residuals and a threshold of 1 standard deviation above which underlying observations are classified into

volatility regimes. We investigate how the results change when we modify either the threshold (from 1 to

1.1 and 1.2 standard deviations, respectively) or the length of the window (from 15 weeks to 10, 12, and

18, respectively). Table 8 shows that the main results are robust to these alterations.

Also note that in the main specification we drop some observations from the computation of the

regime-specific covariance matrices as they do not fit into any of the four volatility regimes. As a further

robustness check, we adjust the regime definitions so that only a few observations are discarded. In

contrast to the baseline definitions, now the second regime contains all observations where the residuals

for the futures returns are volatile and the residuals for index investor positions tranquil, independent of

the volatility of hedge fund positions, and vice versa for the third regime. Again, our main results are

insensitive to these changes.8

5.2 Additional group of traders

Second, aside from commercials, non-commercials, and index investors, the SCOT reports contain the

additional category of traders called ‘non-reportables’ (see above). To assess the sensitivity of our

estimates for index investors and hedge funds to including another trader group, we add the net long

positions of non-reportables as a fourth endogenous variable to the baseline model. Adding this fourth

8The same holds when, instead of the volatility in hedge fund positions, the volatility in futures returns or index investor
positions is disregarded for the computation of the other two volatility regimes, respectively. With the reported combination,
however, the lowest number of observations is discarded.
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Table 8: Effects among endogenous variables with different regime definitions1,2

Alternative regime definitions 1 2 3 4 5 6

Index Inv -> Fut Return 0.15 0.17 0.20 0.14 0.20 0.24 0.14
.b .b .a .b .a .a .b

Hedge funds -> Fut Return 0.39 0.45 0.44 0.41 0.39 0.49 0.39
.a .a .a .a .a .a .a

Fut Return -> Index Inv 0.01 -0.08 -0.07 0.04 0.00 -0.09 -0.02
. . . . . . .

Fut Return -> Hedge funds 0.32 0.26 0.33 0.30 0.31 0.18 0.38
.a .a .a .a .a .b .a

Window 15 15 15 10 12 18 15
Threshold 1 1.1 1.2 1 1 1 1
Regime definition main main main main main main adjusted

1 The table shows the estimated structural overall effects between futures prices and investors’ positions,
based on market-specific six-variable structural VAR models. The arrows indicate the relation
between impulse and response variable. The sample period is 04 July 2006 - 29 March 2016.

2 .a, .b, .c denote significance at the 1%, 5%, 10% levels.

variable requires adjusting the volatility regime definition slightly. To account for the additional shock, we

add a fifth regime where only the reduced-form residuals of the new equation display volatility above the

threshold. To obtain a sufficient number of observations per regime, we use 12-weeks instead of 15-weeks

rolling standard deviations of the residuals.

Table 9 contains the results. It shows that the contemporaneous structural relations between futures

returns, hedge fund positions, and index investor positions are robust to this model alteration. Speculative

demand shocks still impact significantly positive on returns, with the size of the coefficients being

comparable to the baseline case. On the other hand, net long positions of hedge funds, but not of index

investors respond significantly to the physical demand shock.

Table 9: Contemporaneous effects in a model with non-reportables1,2

baseline model with
non-reportables

Index Inv. -> Fut Return 0.15 0.25
.b .b

Hedge funds -> Fut Return 0.39 0.32
.a .a

Fut Return -> Index Inv. 0.01 -0.04
. .

Fut Return -> Hedge funds 0.32 0.34
.a .a

1 The table shows the estimated structural effects between futures
prices and investors’ positions, based on the a structural VAR
model where non-reportables net long positions are added as a
fourth endogenous variable. The arrows indicate the relation
between impulse and response variable. The sample period is
04 July 2006 - 29 March 2016.

2 .a, .b, .c denote significance at the 1%, 5%, 10% levels.
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5.3 Alternative sample periods

Third, while statistical tests do not reject the assumption of a constant impact matrix A, one Chow test

indicates the possibility that the impact of the VIX on hedge funds positions might vary between crisis

and tranquil times (see Section 3.5). Also, financial speculators might have had stronger incentives to be

classified as hedgers after the introduction of the Dodd-Frank act, possibly affecting the categorization

of traders (see Section 3.3). Therefore, we split our sample in a pre-crisis/crisis sample and a post crisis

sample and carry out individual estimations for the two samples. Specifically, we try two different break

dates. The first is the implementation of the Dodd-Frank act on 07 July 2010. The second is 07 June

2011 following Cheng et al. (2015), who show that the behavior of financial investors can change between

crisis and tranquil times.

Table 10 contains the parameters of interest for the different sub-sample estimations. It shows that

the relation between structural shocks, hedge funds positions, and futures returns is basically the same

across the two samples. The impact of index investors speculative demand shocks, on the other hand, is

significant for the post-crisis samples, but less or not at all significant in the crisis. Whether this is indeed

due to a less significant impact of shocks to index investors positions during the crisis, or due to more

difficulties in identifying the shock in the particular sample, cannot be distinguished.

Table 10: Effects among endogenous variables in subsamples1,2

crisis post-crisis
1 2 3 4

Index Inv. -> Fut Return 0.36 0.23 0.18 0.20
.c . .a .b

Hedge funds -> Fut Return 0.33 0.35 0.39 0.50
.b .a .a .a

Fut Return -> Index Inv. -0.11 -0.13 -0.12 -0.10
. . . .

Fut Return -> Hedge funds 0.27 0.31 0.37 0.26
.c .b .a .c

Sample start 04jul2006 04jul2006 10aug2010 21jun2011
Sample end 27jul2010 07jun2011 29mar2016 29mar2016

1 The table shows the estimated structural effects between futures prices and investors’ posi-
tions, based on the baseline structural VAR model, for different start and end dates of the
sample. The arrows indicate the relation between impulse and response variable.

2 .a, .b, .c denote significance at the 1%, 5%, 10% levels.

5.4 Single markets

Fourth, we assess whether our main results based on the aggregated indexes reflect a general pattern on

agricultural futures markets or whether they are driven by a few (dominant) markets. To this end, we

estimate the structural model (1) for each individual market, that is, we replace the indexes in yt by market-
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specific variables and, regarding the exogenous variables, use market-specific crop conditions.9 For the

market-specific models, we calibrate the thresholds and windows for the volatility regimes individually.

This ensures that on each market there are enough observations per volatility regime and that statistical

identification is achieved every time.

Table 11 shows the results which are ordered by market size. They closely mirror the findings for

the aggregate level. The effect of demand shifts of hedge funds on futures returns is positive and highly

statistically significant in all eleven markets. Quantitatively, the impact varies between 0.26 and 0.50,

spanning the corresponding point estimate for the aggregate level of 0.39. Similarly, demand shocks of

index investors impact significantly on returns in nine of eleven markets. Regarding the physical demand

shocks, in ten of the eleven markets hedge funds systematically increase their long exposure in response

to the shock. Index investors, in contrast, show significant reactions to the shock only in three markets.

Table 11: Effects between investors’ positions and futures prices on individual markets1,2

Corn SRW Live Soybeans Sugar Lean
Wheat Cattle Hogs

Index Inv. -> Fut. Return 0.11 0.20 0.14 0.07 -0.00 0.20
.c .a .c . . .b

Hedge funds -> Fut. Return 0.47 0.37 0.26 0.46 0.42 0.30
.a .a .a .a .a .a

Fut Return -> Index Inv. 0.11 -0.07 0.07 0.14 -0.07 -0.12
. . . .c . .c

Fut. Return -> Hedge funds 0.23 0.23 0.18 0.32 0.27 0.13
.a .a .a .a .a .c

Cotton HRW Coffee Feeder Cocoa
Wheat Cattle

Index Inv. -> Fut. Return 0.12 0.25 0.11 0.10 0.11
.c .b .b .c .c

Hedge funds -> Fut. Return 0.33 0.36 0.50 0.34 0.42
.a .a .a .a .a

Fut. Return -> Index Inv. -0.00 0.03 0.01 0.05 0.23
. . . . .a

Fut. Return -> Hedge funds 0.18 0.17 0.28 0.13 0.16
.a .b .a . .a

1 The table shows the estimated structural effects between futures prices and investors’ positions,
based on market-specific structural VAR models. The arrows indicate the relation between
impulse and response variable. The sample period is 04 July 2006 - 29 March 2016.

2 .a, .b, .c denote significance at the 1%, 5%, 10% levels.

5.5 Narrative approach to identify volatility regimes

Fifth, in the baseline specification we have used a statistical approach to determine the volatility regimes.

An alternative used in the literature is a narrative approach (see, Rigobon, 2003), which specifies volatility

9For the meat markets, we use crop conditions for corn. For sugar, coffee, and cocoa, no measure of crop conditions is
available.
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clusters based on a time line of major economic and political events. As a further sensitivity analysis,

we thus apply such a narrative approach and then re-estimate our baseline model using the narratively-

determined regimes. Specifically, we divide the sample into four volatility regimes. The first regime runs

from the beginning of the sample until the bankruptcy of Lehman Brothers in September 2008. Regime 2

and 3 are then separated by the implementation of the Dodd-Frank act in July 2010, while the last Regime

begins with the Federal Reserve ending its asset purchases in October 2014, corresponding to the end of

quantitative easing. Table 12 displays matrix A−1 as estimated using the narrative volatility regimes. It

shows that results of this exercise are similar to the baseline specification. Shocks to net long positions of

both investor groups impact positively on futures returns, while only positions of hedge funds respond

significantly to the physical demand shock.10

Table 12: Contemporaneous effects among endogenous variables1,2 - narrative regime definition

Impulse
Response Futures return Index inv. positons Hedge funds positions
Futures return 1.11 0.22 0.43

.a .b .a
Index inv. positons -0.04 0.99 0.02

. .a .
Hedge funds positions 0.32 0.06 1.12

.a . .a

1 The table shows the estimated impact effects of structural shocks of one standard deviation on the
endogenous variables, based on a structural VAR identified through heteroskedasticity. Impulse
variables are in columns, response variables are in rows. The sample period is 04 July 2006 - 29
March 2016.

2 .a, .b, .c below point estimates denote significance at the 1%, 5%, 10% level, respectively.

6 Conclusion

This study provides new evidence on the impact of financial investment on price formation in commodity

futures markets. We use publicly available data on net long positions of hedge funds and index investors

on agricultural commodity futures markets from SCOT reports of the Commodity Futures Trading

Commission, and include them in a vector autoregression along with the corresponding futures price.

Controlling exogenously for physical supply and financial market risk and using the heteroskedasticity in

the data, we identify idiosyncratic shocks to speculative demand of both investor groups.

Our results suggests that speculative demand shocks of both index investors and hedge funds impact

significantly and positively on commodity futures returns. The shocks appear also economically relevant

as they account for about one fifth of futures return fluctuations on average, and for up to one third of

10Results of the narrative approach are robust to the exact start and end date of the regimes. To assess this, we replaced one-
by-one the bankruptcy of Lehman Brothers with the failure of Bear Stearns in March 2008, the implementation of Dodd-Frank
with the second breakpoint used in Section 5.3, and the end of asset purchases with announcements of Federal Reserve official to
taper quantitative easing.
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the variability in returns during periods of high speculative demand volatility. Overall, physical demand

shocks and exogenous variables explain most of the secular movement in commodity futures prices.

The findings complement recent studies that detect significant effects of financial investments on

commodity futures prices based on highly disaggregated and partly private data (see Cheng et al., 2015,

and Henderson et al., 2015). While these data potentially allow for a more precise estimation of the

effects of speculative trading on commodity futures returns, and simpler and more transparent econometric

approaches, one advantage of the statistical approach employed in this study is that it allows using publicly

available data such that the analysis can be replicated and readily updated in the future. Moreover, the

structural VAR model allows quantifying not only the statistical significance of the effects of speculative

demand shocks, but also their economic importance both on average in the sample and during historical

episodes.
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Appendix

A Data and sources

Table 13: Data construction and sources
Variable Construction and source

Agricultural futures
prices

Nearby (next-to-maturity) futures prices of eleven agricultural commodities. As position data measure open
positions on each Tuesday, we use Tuesday futures prices. If Tuesday is not a trading day, we use the closing
price of the trading day before. Individual returns are computed as log differences and aggregated into one
variable by multiplying them with their respective weights in the S&P GSCI. Our results are robust to first
computing an aggregate futures price index with rescaled individual series and then taking the return of this
index. Source: Datastream.

Investors’ positions Aggregated data on open positions of different trader groups on eleven agricultural markets. The underlying
reports divide traders into four categories: index investors, non-commercial traders, non-reporting traders, com-
mercial traders. The index investors category includes positions of managed funds, pension funds, and other
investors that are generally seeking exposure to a broad index of commodity prices as an asset class in an un-
leveraged and passively-managed manner, as well as positions of entities whose trading predominantly reflects
hedging of over-the-counter transactions involving commodity indices - for example, a swap dealer holding
long futures positions to hedge a short commodity index exposure opposite institutional traders. Traders are
classified as commercials if the trader uses futures contracts in that particular commodity for hedging as defined
in CFTC Regulation 1.3, 17 CFR 1.3(z). Examples are entities that predominantly engages in the production,
processing, packing or handling of a physical commodity and use the futures markets to manage or hedge risks
associated with those activities. The non-commercial category contains speculative traders like hedge funds,
registered commodity trading advisors (CTAs), registered commodity pool operators (CPOs), or unregistered
funds identified by CFTC. The non-reporting category contains traders that hold positions below specific repor-
ting levels set by CFTC regulations. To construct aggregate position indexes, we combine net long positions in
individual markets in two steps. First, we divide by average open interest in each market in 2010 to dispose of
the underlying units (bushels, pounds, et cetera). Then, we average over markets with the respective weights.
Source: CFTC SCOT reports.

Index of crop conditi-
ons

Weather conditions are measured following Bruno et al. (2017). We use weekly crop conditions reports of
the US Department of Agriculture (USDA) which survey the condition of cotton, corn, soybeans, and wheat
plants in major producing US states. On a given week, a percentage of crops is assessed to be in an ‘excellent’,
‘good’, ‘fair’, ‘poor’, or ‘very poor’ condition. We weight the assessments using a linear scheme to construct
a measure of individual crop conditions. The resulting series are set to zero when no information is available,
that is when there is nothing yet in the ground. We construct a weather conditions index based on the eight
US based commodities using the (adjusted) S&P GSCI weights. Thereby, additional weight, namely that for
live cattle, lean hogs, and feeder cattle, is given to corn as it is the most import source of feed for cattle and
pigs. As a robustness check, we also exclude the weights for meat commodities, as they are not directly affected
by the weather. This yields very similar results. For the included commodities not produced in the US (sugar,
coffee, and cocoa) no such weather index is available. As they constitute less than 15 % of our aggregate, it is
not surprising that the supply measure is, nevertheless, highly significant in the baseline estimations. Our main
results are robust to dropping the non US commodities, the meat commodities, or even both. For the individual
market estimates, we use the weather index for corn for live cattle, lean hogs, and, feeder cattle.

Oil Price WTI oil price. Source: St. Louis Fed FRED database.

VIX CBOE Volatility Index: VIX©, Source: St. Louis Fed FRED database.

Fed balance sheet Total assets of the Fed. Source: St. Louis Fed FRED database.

Agricultural stocks Actual agricultural stocks for eight US based commodities, constructed as in Bruno et al. (2017). Meat stocks:
USDA total storage figures for beef and pork (excluding frozen ham). For grain and cotton stocks: monthly
stock forecasts reported in the current USDA forecasts of US supply-use balances of major grains.
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B Variance-ratios of the structural shocks

Table 14: Variance-ratios of the structural shocks per volatility regime k 1

Regime (1) (2) (3) (4)

σ I
k/σF

k 1.33 0.58 7.66 1.74
(0.24) (0.16) (2.39) (0.39)

σH
k /σF

k 1.19 0.37 2.05 3.65
(0.24) (0.11) (0.61) (0.88)

σ I
k/σF

k 0.91 0.66 0.28 2.14
(0.18) (0.21) (0.08) (0.52)

Observations 149 31 44 44

1 The table shows the estimated volatility-ratios of the
structural shocks of the endogenous variables in the
different regimes. The shocks are named after the equa-
tion they appear in. Bootstrapped standard deviations
of the ratios are reported in parentheses.
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