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Abstract

This paper introduces a copula based multivariate rank test for independence extending ex-

isting approaches from literature to p dimensions. Then, a multiparametric p-dimensional

generalization of the FGM copula is provided that can model the behavior in each vertex of

the p-dimensional unit cube using exactly one parameter per vertex – the family of polyno-

mial copulas. The independence copula is nested in this family if and only if every parameter

is zero. In this case, a popular way to test for independence is comparing an estimate of the

vector of parameters to a vector containing zeros only. Unfortunately, due to the mere quan-

tity of parameters, no established estimation procedure can be used in higher dimensions.

Instead, the developed multivariate rank test is applied sequentially to every parameter to

test for joint squared deviation from independence. Applying this new test to the polynomial

copula results in the new vertex test which is a test for independence with focus on the high

dimensional tail regions. It is compared to similar nonparametric rank tests of independence

by means of calculation time and power under several alternatives and sample sizes.

Keywords: Rank-based inference, multiparametric, copula, independence, dependogramm,

partial dependence, multivariate tail
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Testing for independence is an area of huge interest in statistics and finds application in

almost every scientific discipline. Probably the most common case of appliance is testing

for independence when there are two samples that are each independent and identically

distributed (i.i.d.). The parameter space of a bivariate parametric probability distribution

often includes a value that is equivalent to the independence of the marginals, say 0. If so,

a natural test for independence requires an estimate of the parameter which is compared to

0, i.e. independence, if the distribution of the estimator is known. The estimation is usually

done using either maximum likelihood – if a certain distribution of the sample is assumed –

or kernel density estimation. If no assumptions on the family of the population’s distribution

can be made or in presence of outliers, nonparametric methods of inference concerning the

parameter are often available.

This procedure of testing for independence can be applied easily if the assumed distribu-

tion of the sample satisfies standard regularity conditions, if the amount of parameters q of

the distribution is low, and if the dimension p of the sample is not too large. However, it is

debatable if having only one or few dependence parameters is sufficient for modeling complex

dependency structures, especially in higher dimensions. More flexible statistical models with

more parameters as the vine copulas however suffer from the curse of dimensionality as the

amount of parameters increases exponentially, see e.g. Czado (2010).

Shirahata (1974) introduces a nonparametric rank-based test of independence for a dis-

tribution function of dimension p, allowing distributions with q > 1 parameters. The test

statistic is based on the aggregation of ranks of the samples, which is a natural, nonpara-

metric and consistent way of estimating the marginal probability functions. This rank test

is locally most powerful against the alternative that the sample is from the aforementioned

distribution. However, for a multiparameteric probability distribution the proposed test

statistic of Shirahata (1974) has one disadvantage: Summing up the components of the re-

lated vector of test statistics can cancel out deviations from zero, corresponding to deviations

from independence. This can result in test decisions that are far too conservative, since the

hypothesis of independence will erroneously not be rejected in the latter case. Without loss

of generality, this mechanism of finding locally most powerful rank tests can be converted to

copulas, which will be done throughout the paper.
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This disadvantage and the potential lack of unique characterization of independence in

a multiparametric setting vanishes if distributions with only one parameter are discussed.

In particular, Garralda-Guillén (1998), later Genest and Verret (2005), transferred the pro-

cedure of Shirahata (1974) exclusively into the world of bivariate copulas with one single

parameter of dependence. They identify several well known rank test statistics to be locally

most powerful under specific alternatives and compare the power of these tests to other

established tests in various scenarios.

This article is concerned with various generalizations. First, a principle of construction

for locally most powerful rank tests for multivariate copulas with dimension p ≥ 2 and one

parameter is provided, extending the work of Garralda-Guillén (1998) and Genest and Verret

(2005) which has not been addressed in literature yet. Second, this procedure is applied to

copulas with q > 1 parameters consecutively for each parameter, resulting in a vector of

rank test statistics T . If this copula allows a unique characterization of independence by

a vector of parameters, this enables jointly testing for independence using all entries of

T simultaneously. The difference to the approach of Shirahata (1974) however is, that

knowing the distribution of T allows a squared standardized aggregation which avoids the

canceling-out-effect described earlier. Third, a new copula family Cα
θ with parameter vector

θ = (θ1, ..., θq)
′, q > 1, and nuisance parameter α is introduced. Cα

θ is called polynomial

copula and is equal to the independence copula if and only if θ = (0, ..., 0)′. The polynomial

copula generalizes the copula with cubic sections introduced by Nelsen et al. (1997) by

extension to higher dimensions and by the additional shape parameter α. Every component of

θ is uniquely linked to one vertex of the p dimensional unit cube [0, 1]p. θj = 0 indicates that

the density function is equal to 1 in the vertex vj that is associated to θj for j = 1, ..., q – the

value of the density function of the independence copula. θj 6= 0 states that the probability

of an occurrence located in regions close to vj is lower or higher than if the marginals

were independent. This focus on the vertex regions of the unit cube, which represent high

dimensional tails of a probability distribution, is of interested in many applications (see

e.g. Demarta and McNeil (2005)), namely hydrology, banking and finance, insurance, and

geology. Thus, Cα
θ incorporates a way for flexible modeling of multivariate tail constellations.

The downside of using multiparametric copulas can be that the amount of parameters q
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increases exponentially as p is getting larger. As an example, estimating θ of the polynomial

copula from a sample to test for independence is troublesome since q = 2p. For maximum

likelihood estimation, there is often no closed form expression for the estimator, and nu-

merical maximization is not feasible for high dimensions due to the lack of a decent ratio

of observations to parameters for large p and possible dependencies within θ. Additionally,

the admissibility restrictions for θ are complex and complicate the optimization problem. A

possible alternative, the kernel density estimation (kde), suffers from similar problems, but

provides bad approximations at the tails of distributions additionally, especially in higher

dimensions. For copulas with parameters modeling the behavior in the tails, it is especially

not recommended to use kde in a multiparametric, multidimensional setting.

For the polynomial copula, instead of using an estimate of θ to test for independence,

T is derived for Cα
θ , denoted Tα. It is shown that there is a closed form expression for

every entry Tα,j, j = 1, ..., q, which enables fast computation. The components of the

realization tα can be computed separately, since they have no interpretation as parameter

of Cα
θ and are hence not subject of admissibility restrictions any longer. Every component

tα,j, j = 1, ..., q, provides information on deviations from the density function value of 1

in the associated vertex. The larger the absolute value of a component of tα, the larger

the deviation from the density function of the independence copula. The sum of squared

standardized deviations will be used testing for independence in the following, since it will

be shown that Tα is asymptotically multivariate normally distributed, by constructing a

χ2-type test of independence (vertex test).

In a simulation study, the power of the vertex test is compared to similar nonparametric

tests, which are a multivariate version of Spearman’s ρ introduced by Schmid and Schmidt

(2007) and a test based on the average squared distance between independence copula and the

empirical copula according to Deheuvels (1979) discussed in Genest and Rémillard (2004).

The distributions of both alternative tests have no closed form expression, which means that

the critical values need to be simulated at high computational costs for each sample size

n and dimension p. Key advantage of the vertex test is that the asymptotic distribution

of the test statistic is available in explicit form and therefore the critical values can be

immediately determined. This distinguishes the vertex test from other nonparametric tests
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of independence and can have a crucial impact on real-time systems where calculation time

is of importance.

This paper is organized as follows: Section 1 initially introduces the general class of

polynomial copulas Cα
θ as foundation of the vertex test along with the k-reduced version,

where every parameter in θ is set to zero except the k-th. Further, admissibility restrictions

and important properties of Cα
θ are discussed. Section 2 extends the concept of locally most

powerful rank tests to p dimensions and applies it sequentially to multiparametric copulas

in general, and to the polynomial copula of the previous section in particular. It is shown

that the resulting vector of test statistics T containing the univariate rank test statistics is

asymptotically multivariate normal distributed and a χ2-type test of global independence is

provided. Section 3 provides possible applications of the resulting vertex test and compares

its performance to other similar nonparametric rank tests of independence with respect to

power and calculation time. This article concludes with a short summary and an outlook in

section 4.

1. Polynomial copula

This section introduces the flexible class of polynomial copulas, together with some pre-

liminary definitions and terms that are used throughout the paper:

Definition 1 (Nelsen (2006)). A p-dimensional copula C with parameter vector θ ∈ Rp is

mapping from [0, 1]p 7→ [0, 1] with the following properties:

• For all ui ∈ [0, 1], i = 1, ..., p, holds

Cθ(u1, ..., ui−1, 0, ui+1, ..., up) = 0

Cθ(1, ..., 1, ui, 1, ..., 1) = ui.

• For every H =
∏p

i=1[xi, yi] ⊆ [0, 1]p the integral∫
H

dC(u) ≥ 0

with respect to C, u ∈ [0, 1]p.

If Cθ is a copula, θ is called admissible. The copula density function is denoted as cθ.
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1.1. Bivariate polynomial copula

For the sake of simplicity we will initially introduce and discuss the bivariate case of the

new class of polynomial copulas. The generalization to higher dimension is given in section

1.2.

Definition 2 (Bivariate polynomial copula). For dimension p = 2, the new family of polyno-

mial copulas with dependence parameters (θ1, θ2, θ3, θ4)
′ and shape parameter α > 0 is given

by

Cα
θ (u1, u2) = Cα

(θ1,θ2,θ3,θ4)′(u1, u2) = u1u2 (1 + (1− u1) (1− u2)× (1)

(θ1 ((1− u1) (1− u2))α + θ2 ((1− u1)u2)α + θ3 (u1 (1− u2))α + θ4 (u1u2)
α)) ,

u1, u2 ∈ [0, 1]. The density function is denoted as cαθ .

The polynomial copula includes several copulas as special case, such as the iterated FGM

copula (Kotz and Johnson, 1977), the Lin copula (Lin, 1987), the copula of Kimeldorf and

Sampson (1975), the copula family of Sarmanov (1974), and the copula with cubic sections

of Nelsen et al. (1997) is provided as a special case (for α = 1). Figure 1 gives an impression

of the density function of a polynomial copula. The polynomial degree of the copula is

regulated by the shape parameter α. The higher α, the higher the overall degree of the

polynomial section of the copula. For α ∈ N+, the density function of the copula has a

simple form which enables fast calculations and an intuitive understanding of its properties.

The density function cαθ corresponding to equation (1) has the following properties:

cαθ(0, 0) = 1 + θ1, cαθ(0, 1) = 1− θ2, cαθ(1, 0) = 1− θ3, cαθ(1, 1) = 1 + θ4, (2)

i.e. the parameters describe the magnitude and the direction of deviations from the density

function of the independence copula in its 2p = 4 vertices, since independence is characterized

by

Cα
θ (u1, u2) = u1u2 ↔ θ = (0, 0, 0, 0)′ = θ0.

However, not every θ ∈ R4 results in proper copula function satisfying the requirements

of definition 2. The next lemma provides admissibility restrictions on θ for α = 1, which

can be evaluated in a closed form expression:
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Figure 1: Density function of the polynomial copula from equation (1) with parameter θ = (0, 0, 0, 0.37)′

and α = 1

Lemma 1 (Bivariate admissibility for α = 1). The polynomial copula from equation (1) is

admissible for α = 1, if (θ1, θ3)
′, (θ4, θ2)

′, (θ4, θ3)
′ and (θ1, θ2)

′ are element of

S1 := {[−1, 2]× [−2, 1]} ∩
{
x, y ∈ R|x2 − xy + y2 − 3x− 3y ≤ 0

}
Proof. See Nelsen et al. (1997).

Figure 2 gives a graphical intuition of the set S1 of lemma 1. One has to distinguish

between three cases:

• Triangle with vertices (−1, 1)′, (1, 1)′, (−1,−1)′: The minimum of the density function
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Figure 2: Area S1 which ensures the admissibility of the bivariate polynomial copula for α = 1 using the

example of (θ1, θ2)′.

is nonnegative and is attained in a vertex.

• Inner area of the ellipse with equation x2 − xy + y2 − 3x − 3y = 0: The minimum is

attained in between two vertices and is nonnegative.

• Black area: The minimum attains a negative value outside the interval [0, 1]. However,

the density function is nonnegative on [0, 1]2.

For α 6= 1, determining the range of admissibility of θ is not possible in a closed form

expression. Sets Sα for different values of α that are simulated based on 10,000 randomly

drawn parameter vectors θ such that they result in positive density values of cαθ are presented

in figure 6 in the appendix. However, since the aim is testing for independence rather than
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parameter estimation, for this purpose it is sufficient to show that there exists a region

around (0, 0, 0, 0)′ containing admissible θ for every value of α > 0:

Lemma 2 (Bivariate admissibility α 6= 1). For every 0 < α < ∞, there exists an ε > 0,

such that θ ∈ [−ε, ε]4 is admissible and Cα
θ is a copula function.

Proof. Since Cα
θ is a copula for θ = (0, 0, 0, 0), the stated follows directly from the uniform

continuity of polynomials on an closed interval [0, 1].

Cα
θ has a strong and weak tail index coefficient of 0 due to its polynomial structure.

Kendall’s τ takes on moderate values – large α result in small ranges of τ whereas values of

α ∈ [0.25, 1] result in τ roughly between −0.4 and 0.4. The effect of large α on τ results from

the high polynomial degree which pushes the density function cαθ close to 1 in non tail regions

– the value of the density function of the independence copula. Only in the vertex regions

the density drifts to the values of equation (2). This implies that generally rather weak

dependencies can be modeled with the polynomial copula, see table 1 for explicit formulas

of τ and summary statistics of simulated values based on 10,000 repetitions.

1.2. Multivariate polynomial copula

The polynomial copula from definition 2 shall now be extended to p dimensions – at first

for a vector of parameters θ ∈ Rq; later only a reduced special case q = 1 is discussed.

We use the following notation in order to uniquely identify vertices, even in higher di-

mensions:

Definition 3. The labeling of a vertex v of the p-dimensional cuboid [0, 1]p is given by the

coordinates as a binary number plus 1, which results in vertices vi, i = 1, ..., 2p. A vertex

v = (u1, ..., up)
′, ui ∈ {0, 1}, i = 1, ..., p, is called even, if the amount of ui = 1 is even or

zero, odd otherwise.

Example 1. Let p = 4. The vertex (1, 0, 1, 0)′ is the eleventh vertex v10+1=11, since 10102 =

1010. v11 is even, since the value 1 appears two times.

In order to keep the notation simple, we require the following definition:
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Table 1: Descriptive statistics of 10,000 simulated Kendall’s τ values for several shape param-

eters α. Each value is calculated from a random vector of parameters θ sampled with respect

to the admissibility constraints from figure 6 in the appendix. The second column contains

explicit formulas for τ , if available.

Summary statistics

α Formula Min. 1st Qu. Median Mean 3rd Qu. Max.

0.1 - −0.336 −0.098 0.004 0.003 0.104 0.333

0.25 - −0.383 −0.098 0.000 −0.001 0.097 0.382

0.33 - −0.378 −0.098 0.000 0.001 0.100 0.393

0.5 - −0.388 −0.096 0.001 0.001 0.099 0.382

1
θ1θ4−θ2θ3

25
+θ1θ2θ3θ4

18
−0.379 −0.094 −0.001 0.000 0.095 0.386

2
θ1θ4−θ2θ3

49
+θ1θ2θ3θ4

50
−0.229 −0.050 −0.001 −0.001 0.048 0.223

3
θ1θ4−θ2θ3

98
+θ1θ2θ3θ4

225
−0.098 −0.023 0.000 0.000 0.023 0.101

4
θ1θ4−θ2θ3

1089
+θ1θ2θ3θ4

441
−0.053 −0.011 0.000 0.000 0.011 0.051

Definition 4. Let u = (u1, ..., up)
′. The function

perm(u) =

({
1− u1
u1

}
· · ·
{

1− up
up

})
maps to a vector of dimension 2p, whose components are the products of all possible combi-

nations of the elements in braces.

Example 2. For u ∈ [0, 1]2 we have

perm(u) =

({
1− u1
u1

}{
1− u2
u2

})
=


(1− u1)(1− u2)

(1− u1)u2
u1(1− u2)
u1u2


A generalization of the bivariate polynomial copula to p dimensions is given by the

following definition:
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Definition 5 (p-dimensional polynomial copula). For a vector u = (u1, ..., up)
′ ∈ [0, 1]p,

θ = (θ1, ..., θq)
′, α > 0 and q = 2p, the copula function

Cα
θ (u) =

p∏
i=1

ui

(
1 + 〈θ, perm(u)α〉

p∏
i=1

(1− ui)

)
(3)

with 〈x,y〉 =
∑p

i=1 xiyi for x = (x1, ..., xp)
′ respective y = (y1, ..., yp)

′ is an extension of the

polynomial copula from definition 2 to p dimensions.

The important vertex property of the polynomial copula from equation (2) is summarized

by the following lemma:

Lemma 3. For the p-dimensional density function cαθ(u), u = (u1, ..., up)
′, θ = (θ1, ..., θq)

′,

q = 2p, we have for α > 0 that

cαθ(vi) = 1 + a(vi)θi, i = 1, ..., 2p,

with

a(vi) =

1, if vi is an even vertex

−1, if vi is an odd vertex

.

The parameter θi is called associated with the vertex vi.

The following lemma provides a closed form expression for the space of admissible pa-

rameter vectors θ for the p dimensional polynomial copula if α = 1:

Corollary 1 (Multivariate admissibility for α = 1). The p-dimensional copula C1
θ(u) is

well-defined for p ≥ 2 if the pair of parameters (θ′, θ′′)′ associated to the vertices of every two

dimensional edge of the cuboid [0, 1]p are element of the set

S1 := [−1; 2]× [−2, 1] ∪
{
θ′′

2 − θ′ θ′′ + 3 θ′′ + θ′
2 − 3 θ′ ≤ 0

}
(4)

Proof. The requirements of definition 1 are verified. C1(u1, ..., ui−1, 0, ui+1, ..., up) = 0 is

true since if any ui = 0 the first product in (3) and hence the whole expression gets 0.

C1(1, ..., 1, ui, 1, ..., 1) = ui is true since the second product is zero for at least one occurrence

of 1 and therefore the whole parenthesis in (3). Now it is shown that the density function does
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only attain nonnegative values which is sufficient for the second requirement of definition 2

due to the polynomial structure of C1
θ(u). The minimum of the density function is attained

at a vertex or an edge. If the restriction

1 + a(vi)θi ≥ 0. (5)

holds for all parameters θi, i = 1, ..., 2p, all vertices always have nonnegative function values.

Let ei be an arbitrary, twodimensional edge of [0, 1]p with the respective vertices v′ and v′′,

w.l.o.g. ei = (0, ..., 0, u, 1, ..., 1)′ with v′ = (0, ..., 0, 0, 1, ..., 1)′ and v′′ = (0, ..., 0, 1, 1, ..., 1)′

resp. the associated parameters θ′ and θ′′. Then we have

c1θ(ei) = (3θ′ − 3θ′′)2u2 + (2θ′′ − 4θ′)u+ θ′ + 1. (6)

For θ′ > θ′′ the minimum of (6) is greater than 0 if

−1

3

θ′2 − θ′ θ′′ + 3 θ′′ + θ′′2 − 3 θ′

θ′ − θ′′
≥ 0.

The latter expression implies, that the pair (θ′, θ′′) needs to satisfy the ellipsoid inequality

θ′
2 − θ′ θ′′ + 3 θ′′ + θ′′

2 − 3 θ′ ≤ 0.

For 0 < θ′ ≤ θ′′ and θ′ ≥ −1 resp. θ′′ ≤ 1 the density function c1θ(ei) is concave and the

minimum is either attained at v′ or at v′′ and is in either case nonnegative. In the remaining

black area in figure 2 one has θ′ > θ′′ and therefore c1θ(ei) is a convex parabola. Although

the minimum has in this case a negative value, it is attained outside of the interval [0, 1],

and the nonnegativity of (6) at both vertices implies the nonnegativity on [0, 1].

As in the bivariate case, there is no closed form expression for the parameter space Θ ⊂

R2p of the p-dimensional polynomial copula for α 6= 1, containing all admissible parameter

vectors θ. However, the following lemma ensures that for every α there exists a neighborhood

of the p dimensional vector (0, ..., 0)′ that contains admissible vectors of parameters:

Lemma 4 (Multivariate admissibility for α 6= 1). For every 0 < α < ∞, there exists an

ε > 0, such that θ ∈ [−ε, ε]q, q = 2p, is admissible and Cα
θ is a copula function.

Proof. Since Cα
θ is a copula for θ = (0, ..., 0)′, the stated follows directly from the uniform

continuity of polynomials on a closed interval.
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Even though the polynomial copula has several dependence parameters, the characteri-

zation of independence is unique. The latter is shown by the following proposition:

Proposition 1 (Nested independence copula). The polynomial copula is equal to the inde-

pendence copula if and only if θ = 0.

Proof. Inserting θ = 0 directly in the expression of definition 5 results in

Cα
0 (u) =

p∏
i=1

ui = Π,

where Π denotes the independence copula. Let w.l.o.g. be θ1 from θ = (θ1, ..., θq)
′ unequal

to 0. Due to lemma 3 the value that the density function attains in vertex v1 is unequal to

1. Hence, Cα
θ (u) is not the independence copula.

The locally most powerful rank tests (LMPRT) for copulas from Garralda-Guillén (1998)

and Genest and Verret (2005) have been developed for θ ∈ R and p = 2. Conversely, the

polynomial copula is equipped with 2p parameters. For applying a generalized LMPRT to

the q-parametric copulas (see section 2.2), an auxiliary copula is required:

Definition 6 (k-reduced form). Let Cθ be a p-dimensional, q-parametric copula function

where the independence copula is uniquely determined by θ = 0. The copula resulting from

the parameter vector

θ[k] = (0, ..., 0︸ ︷︷ ︸
k−1

, θk, 0, ..., 0︸ ︷︷ ︸
q−k

)′

is called k-reduced copula, k = 1, ..., q, and has only one remaining parameter θk.

For α = 1, the rules of admissibility for the k-reduced polynomial copula are even simpler

than in the general case:

Lemma 5 (Admissibility of k-reduced polynomial copula). For α = 1, the k-reduced poly-

nomial copula is well-defined for θk ∈ [−1, 3] if vk is an even vertex and θk ∈ [−3, 1] if vk is

an odd vertex, k = 1, ..., q. For α 6= 1 there exists an interval [−ε, ε], ε > 0, which contains

admissible values for Cα
θ[k]

.

13



Proof. First part of the lemma follows from corollary 1 when one of the parameters is taking

the value 0. The second part from lemma 4, since 0 ∈ [−ε, ε], ε > 0.

Clearly, the k-reduced polynomial copula itself will not find application in practical work

since it can only consider dependencies in the single vertex vk. However, a joint analysis

of all vertices can be used to determine a deviation from independence. As pointed out

in the introduction, using an estimate of θ for the purpose of testing for independence is

not an option due to problematic complications in the estimation process. As a way out, a

new concept of locally most powerful rank tests for independence designed for p dimensional

copulas with one parameter of dependence is introduced in the next section. This concept

will be sequentially applied to every k-reduced form of a multiparametric copula to test

simultaneously for independence.

2. The vertex test for independence

2.1. Multivariate locally most powerful rank tests

Sklar’s theorem (Sklar, 1959) states that a copula describes the functional relation be-

tween continuous marginal distributions and the joint distribution of several random vari-

ables in a unique manner. In the following, the marginal distributions are assumed to be

known, hence w.l.o.g. they can be considered as uniformly distributed. For C(u1, ..., up) =

Π(u1, ..., up) =
∏p

i=1 ui, the joint distribution is equal to the product of the margin distribu-

tions – the respective random variables are stochastically independent. Hence, a simple idea

for a test of independence is to examine whether the empirical dependency structure of a

sample of size n and dimension p corresponds to an independence copula of dimension p. In

this section, the tests of independence for bivariate copulas, developed by Garralda-Guillén

(1998) and Genest and Verret (2005), are generalized to p dimensions. For this purpose, an

important requirement is the generalization of the concept of positive quadrant dependency

to higher dimensions:

Definition 7 (Positive orthant dependency of Joe (1997)). A distribution function H(x),

x = (x1, ..., xp)
′ ∈ Rp, with margins Xi ∼ Fi(xi) is called positive lower orthant dependend
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(PLOD) if

H(x)−
p∏
i=1

Fi(xi) ≥ 0 for all xi ∈ R, i = 1, ..., p.

A copula is called PLOD if C ≥ Π, where Π denotes the independence copula. If C is

parametrized by θ ∈ R, θ′ > θ ⇒ Cθ′(u) ≥ Cθ(u) for u ∈ [0, 1]p can be derived by PLOD.

Definition 7 generalizes the bivariate positive quadrant dependency concept used by

Garralda-Guillén (1998) and Genest and Verret (2005). Note, that until now independence

is still characterized by one single parameter.

Definition 8 (Locally most powerful rank test, Genest and Verret (2005)). LetM be the set

of all rank tests with a fixed level of significance. Let X1, ...,Xn be i.i.d. continuous random

variables of dimension p. A test Topt for the hypotheses

H0 : θ = θ0 = 0 vs. H1 : θ > θ0 (7)

is called locally most powerful rank test (LMPRT) if

∀T ∈M ∃ ε > 0 ∀ 0 < θ < ε : 1− βTopt(θ) > 1− βT (θ),

where β(·) denotes the power function of a test.

The requirements for the following proposition 2, that provides a method of constructing

a LMPRT for p-variate copulas with q = 1 dependence parameter, are:

A1 The parameter space Θ ⊂ R is a closed interval and there exists a θ0 ∈ Θ such that

Cθ0(u) = Π(u) =
∏p

i=1 ui.

A2 The family Cθ is PLOD.

A3 For all θ ∈ Θ, Cθ(u) and the respective density function cθ(u) are absolutely continuous

in θ for all u ∈ (0, 1)p.

A4 ċθ(u1, ..., up) := ∂cθ(u1,...,up)

∂θ
is continuous in an environment around θ0 with respect to

θ and it holds that

lim
θ→θ0

∫
(0,1)p

|ċθ(u1, ..., up)|dui1 · · · duip <∞,

for all {i1, ..., ip} ∈ Sp, where Sp denotes the set of all permutations of {1, ..., p}.
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Proposition 2 (Generalization of proposition 1, Genest and Verret (2005)). Let Ri =

(R1i, ..., Rji, ..., Rpi)
′ be the ranks associated with a p-dimensional sampleXi = (X1i, ..., Xji, ..., Xpi)

′,

i = 1, ..., n, j = 1, ..., p. Let Xi be from a population that follows a copula from the class

Cθ satisfying the requirements A1 to A4. Then the following statistic T ∗n is associated to the

LMPRT for a fixed level of significance:

T ∗n =
1

n

n∑
i=1

T (R1i, ..., Rpi), (8)

with

T (r1, ..., rp) = E

[
∂

∂θ
log cθ(Br1 , ..., Brp)

∣∣∣∣
θ=θ0

]
,

where Brj , j = 1, ..., p, are independent random variables with Brj ∼ β(rj, n− rj + 1).

Proof. Straightforward generalization of the proof in Garralda-Guillén (1998), Genest and

Verret (2005) in the sense of Shirahata (1974) for q = 1 to p dimensions.

In order to show the asymptotic normality of the test statistic of equation (8), the following

lemma is needed:

Lemma 6. Let ϕ(u1, ..., up) be a continuously differentiable element of L2([0, 1]p). Then

lim
n→∞

E
[
(aϕn(Rn11, ..., Rn1p)− ϕ(U11, ..., U1p))

2] = 0

where

aϕn(i1, ..., ip) = E [ϕ(U11, ..., U1p)|Rn11 = i1, ..., Rn1p = ip] .

Proof. Following Hájek et al. (1999), p. 189, with the addition, that continuously differen-

tiable functions of measurable functions are measurable again.

Further requirements for proposition 3, which ensures asymptotic normality of the test

statistic from proposition 2, are:

A5 Let ċθ0(u) be such that for all u = (u1, ..., up)
′ ∈ (0, 1)p we have:∫ 1

0

ċθ0(u1, ..., up)dui = 0, i = 1, ..., p, and

∫
[0,1]p

ċθ0(u)du ≥ 0.

16



A6 ċθ0 can be expressed by a finite sum of squared integrable functions that are monotone

in every argument and it holds

E
[
ċθ0

(
R1i

n+ 1
, ...,

Rpi

n+ 1

)
ċθ0

(
R1j

n+ 1
, ...,

Rpj

n+ 1

)]
= o

(
1

n

)
, i 6= j.

Proposition 3 (Generalization of proposition 2, Genest and Verret (2005)). If ċθ0 satisfies

the requirements A5 and A6,
√
nT ∗n converges to a normal distribution with expectation 0

and variance σ2(ċθ0) if the H0 hypothesis is true, where

σ2(ċθ0) =

∫
(0,1)p

|ċθ0(u)|2 du.

Further T ∗n and the statistic

Tn =
1

n

n∑
i=1

ċθ0

(
R1i

n+ 1
, ...,

Rpi

n+ 1

)
are asymptotically equivalent.

Proof. Using theorem 1 of Behnen (1971) together with lemma 6.

Proposition 3 provides a construction mechanism for a LMPRT for a p-dimensional copula

with one parameter. As argued before, it is disputable whether or not one single parameter

can reflect a complex, high dimensional association between the marginal distributions. If the

independence copula is uniquely identified by a parameter vector, the following proposition

allows the application of the developed multivariate LMPRT to more flexible, q-parametric

copula families such as the polynomial copula from definition 5 by simultaneously testing

the hypotheses H0 : θk = θ0,k for every k-reduced form, k = 1, ..., q, short H0 : θ = θ0,

θ,θ0 ∈ Θ ⊂ Rq. In the following, T denotes a vector containing the q LMPRT statistics Tn,k

from proposition 2 of each k-reduced form from definition 6.

Proposition 4 (Asymtotic normality of T ). Let Cθ be a p-dimensional, q-parametric cop-

ula family with k-reduced copulas satisfying the assumptions A1 to A6, k = 1, ..., q. Let

T = (Tn,1, ..., Tn,q)
′, short (T1, ..., Tq)

′, be a vector containing all LMPRT statistics Tn,k from

proposition 2 of each k-reduced form Cθ[k], k = 1, ..., q. Then,
√
nT is asymptotically multi-

variate normally distributed with µ = θ0 and covariance matrix

Σ(ċθ0)i,j =

∫
[0,1]p

(
∂cθ(u)

∂θi

∣∣∣∣
θ=θ0

)
×

(
∂cθ(u)

∂θj

∣∣∣∣
θ=θ0

)
du
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for i, j = 1, ..., q. Further, we have that

T = nT ′Σ(ċθ0)
−1T

a∼ χ2(q). (9)

Proof. Proposition 3 states that every component of T is asymptotically normal distributed.

The joint normal distribution of T with expectation µ = θ0 and covariance matrix Σ(ċ0)

follows directly from theorem 4.1 in Sen and Puri (1967) together with lemma 6. Hence,

it can be concluded that the quadratic form of T is asymptotically χ2 distributed with q

degrees of freedom.

In the following, w.l.o.g. the vectors θ0 and 0 := (0, ..., 0) are used interchangeably. As

initially pointed out, a classical way of testing for independence would be the estimation

of θ from data and testing if deviations between the estimate and θ0 cannot be explained

by the sampling error alone. However, for many multiparametric copulas in general and

for high dimensional polynomial copulas in particular, the estimation of θ is problematic

for several reasons. First, the amount of parameters q that need to be estimated can grow

exponentially in dimension p. Second, there often is no closed form expression for the

classical maximum likelihood estimator, thus numerical optimization is required which is

cumbersome. Third, alternative estimation procedures such as the kernel density estimation

(kde) are not practicable since the domain of the copula is bounded and thus the estimation

in tail regions, which are often of interest, imprecise. Fourth, admissibility restrictions on

θ often imply dependence within the components of θ and needs to be considered in the

estimation process.

This difficulties can partially be avoided by discussing deviations from θ0 = 0 in t, the

realization of T , instead of the estimate of θ. While the curse of dimensionality keeps per-

sisting, the components of t are easily calculated due to its rank-based form. Importantly,

they can not be interpreted as parameters of a copula any longer. This solves the admissi-

bility problem for higher dimensions and allows computing the components of t sequentially.

Proposition 4 simultaneously tests the hypotheses that each component of θ deviates from

0. Thus, a large value of the sum of squared scaled deviations of t from θ0 = 0 can be used

as statistic of a test of independence for copula families with multiple parameters that allow

a unique characterization of the independence copula, w.l.o.g with θ0 = 0.
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Corollary 2 (Testing for multivariate independence). Let Cθ be a q-parametric, p-dimensional

copula family, θ ∈ Θq ⊆ Rq, where Cθ is the independence copula w.l.o.g. if and only if

θ = 0. If Cθ satisfies the assumptions A1–A6, the test statistic T from proposition 4 can be

used to test for independence.

One class of copulas whose k-reduced forms satisfy conditions A1–A6 is the polynomial

copula from section 1. Next, an explicit test statistics Tα which results from the application

of corollary 2 to polynomial copulas is provided and the covariance matrix for the asymptotic

distribution of Tα is derived.

2.2. Locally most powerful rank test for the polynomial copula and the vertex test

In the following, proposition 3 shall be applied sequentially to the new k-reduced poly-

nomial copula. To keep the notation simple, another definition is required:

Definition 9. Let u = (u1, ..., up)
′ and c = (c1, ..., cp)

′. Then

pow(u, c) := (uc11 , ..., u
cp
p )′ and powπ(u, c) :=

p∏
i=1

ucii .

The next lemma ensures that the k-reduced polynomial copula satisfies the assumption

A2:

Lemma 7. The k-reduced polynomial copula from Definition 6 is PLOD.

Proof. Let θ′k > θk. Let vk = (vk,1, ..., vk,p)
′, vi ∈ {0, 1}, i = 1, ..., p, be the vertex associated

to θ′k resp. θk. Then we have

Cα
θ′
[k]

(u1, ..., up)− Cα
θ[k]

(u1, ..., up) =

(θ′k − θk︸ ︷︷ ︸
>0

)× powπ(u,vk)
α︸ ︷︷ ︸

≥0

× powπ(1− u, 1− vk)α︸ ︷︷ ︸
≥0

×
p∏
i=1

ui(1− ui)︸ ︷︷ ︸
≥0

≥ 0, (10)

where 1− x = (1− x1, ..., 1− xp)′.

Example 3. The bivariate 4-reduced polynomial copula from definition 2 (see figure 1) for

α = 1 is given by

C1
θ4

(u1, u2) = u1u2 + θ4u
2
1u

2
2(1− u1) (1− u2) (11)
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for θ4 ∈ [−3, 1] and u1, u2 ∈ [0, 1]. C1
θ4

satisfies the properties A1–A6 due to its simple

polynomial structure and lemma 7. Therefore the test based on the statistic

Tn =
1

n

n∑
i=1

(
3
R2i

n+ 1
− 2

)
R1i

n+ 1

(
3
R1i

n+ 1
− 2

)
R2i

n+ 1
(12)

is LMPRT for the 4-reduced polynomial copula (11). According to proposition 3,
√
nTn is

asymptotically normal distributed with expectation 0 and variance 4
225

. The asymptotic p-

value can be calculated using 1− Φ(tn), where tn denotes the realization of the test statistic

Tn and Φ is the cumulative distribution function (cdf) of the standard normal distribution.

Note that according to equation (2), the sign and absolute value of tn give information on the

direction and magnitude of a deviation from independence: a negative (positive) sign implies

deviation from independence due to a higher (lower) density of observations in the vertex v4

than in the case of independence. The larger the absolute value of tn, the larger the deviation

from independence.

Applying corollary 2 to the family of polynomial copulas for general α results in the

test statistic Tα which is based on Tα from proposition 4. tα and tα denote their respective

realizations. The k-th entry of Tα, Tα,k, is the LMPRT only against the alternative hypothesis

of the k-reduced polynomial copula.

Example 4 (Vertex test for a bivariate sample). For p = 2 and α = 1 we have under the

null hypothesis H0 : θ = θ0 = (0, 0, 0, 0)′ that the vector of LMPRT statistics is

T1 =


1
n

∑n
i=1

(
R2i

n+1
− 1
) (

3 R1i

n+1
− 1
) (

R1i

n+1
− 1
) (

3 R2i

n+1
− 1
)

1
n

∑n
i=1−

(
3 R2i

n+1
− 2
) (

3 R1i

n+1
− 1
) (

R1i

n+1
− 1
)
R2i

n+1

1
n

∑n
i=1−

(
R2i

n+1
− 1
) (

3 R2i

n+1
− 1
)
R1i

n+1

(
3 R1i

n+1
− 2
)

1
n

∑n
i=1

(
3 R2i

n+1
− 2
)
R1i

n+1

(
3 R1i

n+1
− 2
)
R2i

n+1

 .

Further,
√
nT1 is asymptotically normal distributed with expectation µ′ = (0, 0, 0, 0)′ and

Σ(ċ0)i=1,...,4,j=1,...,4 =


64 −16 −16 4

−16 64 4 −16

−16 4 64 −16

4 −16 −16 64


−1

.
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Therefore, we have

T1 = nT1
′Σ(ċ0)−1T1

a∼ χ2(4)

and the asymptotic p-value is obtained using 1− Fχ2(4)(t1).

Tables of test statistics Tα and covariance matrices Σ(ċ0) associated to bivariate vertex

tests with other values of α can be found in the appendix (table 5 and 6), together with

test statistic and covariance matrix of the vertex test for p = 3 and α = 1. Note that

a generalization to dimension p > 3 is straightforward but omitted in this paper for the

purposes of simplicity.

Rejecting H0 for the k-th component of tα implies a substantial deviation of tα,k from

θ0,k = 0, k = 1, ..., q. Thus, tα,k gives insights into the frequency of occurrences in a region

close to the vertex vk with respect to the frequency that would have been expected if the

marginal distributions were independent.

This concrete interpretation of the components of tα as deviations from the density

function of the independence copula, evaluated at the vertices of the unit cube, encourages

the usage of Tα as general test for independence. In this case however, the single components

of Tα are no longer a LMPRT in general but inherit information on the deviation from

independence in regions located close to the vertices only.

Conclusively, the effect of the nuisance parameter α on the sensitive regions of the vertex

test is investigated. For this purpose, the influence function (Hampel, 1986) is simulated,

which is a Gâteaux derivative for measuring the impact of small contamination in a sample

on the statistical functional Tα. Figure 3 shows as an example influence functions for α = 1

and α = 3 based on 1,000 iterations.

As pointed out earlier, the vertex test focuses on deviations from independence in the

vertices of the unit cube which correspond to high dimensional tails of a copula. One can

deduce from figure 3 that the higher α, the more sensitive Tα reacts to small changes in the

tail regions. This finding is supported by the simulation study in section 3.2 where large

values of α are especially suitable if the tails of the sample distribution are extremely heavy.

Note that the vector tα itself could also find a possible application to financial stock

market data, where a certain pattern of joint extreme directions of the returns is desirable
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Figure 3: Simulated influence function (1,000 iterations) of Tα for α = 1 (left) and α = 3 (right) for a

bivariate sample of size n = 50 with independent, uniformly distributed margins.

i.e. to identify a portfolio that has an opposing movement of its partial returns out of a

pool of many assets. Another application of Tα as the basis of new concepts of symmetry

similarly to radial symmetry including a testing procedure can be found in Mangold (2017).

The following section illustrates the theoretical findings of Tα in a short simulation study

and compares its power to other nonparametric tests.

3. Application

In this section an implementation of the vertex test in the language R (R Core Team,

2016) is provided and compared to other nonparametric rank tests of independence by means

of power and calculation time. First, an implementation of an dependogram based on the

polynomial vertex test mimicking Genest and Rémillard (2004) testing simultaneously for

every possible partial dependency is introduced.

3.1. Dependogram

In this section, only the vertex test for α = 1 is discussed as an example. A generalization

for α 6= 1 is straightforward.
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Definition 10 (Dependogram). Let Xi = (X1i, ..., Xji, ..., Xpi)
′, i = 1, ..., n, j = 1, ..., p,

be from sample of size n of a p-variate distribution. The dependogram provides (graphical)

information if every partial sample, indexed by

P>1({1, ..., p}) = {U ⊆ {1, ..., p} : |U | > 1}, (13)

is stochastically independent by calculating and plotting all test statistics T1 and critical

values of the vertex test applied to every partial sample. Thereby, the level of significance is

corrected via Bonferroni correction – all in all one has to perform 2p − p− 1 tests.

Initially, the dependogram has been introduced by Genest and Rémillard (2004) using a

test statistic that is based on a Cramér-von Mises distance between the empirical copula by

Deheuvels (1979) and the independence copula. An implementation to create this dependo-

gram is available by the command dependogram provided by the R package copula (Yan,

2007; Kojadinovic and Yan, 2010; Hofert and Mächler, 2011; Hofert et al., 2015).

Note that the distribution of the used test statistic has no closed form expression under

the null hypotheses which implies that the critical values have to be obtained via Monte-

Carlo simulation for every sample size n and dimension p. Since the effort in the sense of

calculation time is huge, the application of this method can be cumbersome, especially for

large sample sizes and/or higher dimensions. Information about the required calculation

time is provided in section 3.4.

The implementation of the dependogram based on the vertex test is now introduced and

its usage presented exemplarily by a dependency structure used in Genest and Rémillard

(2004).

Example 5 (Genest and Rémillard (2004)). Let x be a random sample of a 5-variate Gaus-

sian distributed random variable with µ = (0, 0, 0, 0, 0)′ and with an identity matrix as co-

variance matrix. The dependency structure is obtained by:

x <- matrix(rnorm(500),100,5)

x[,1] <- abs(x[,1]) * sign(x[,2] * x[,3])

x[,5] <- x[,4]/2 + sqrt(3) * x[,5]/2
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Figure 4: Dependogram based on the test statistic of Genest and Rémillard (2004) from the R package

copula. The critical values are presented as points, the values of the test statistics as bars.
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Figure 5: New implementation the dependogram based on the polynomial vertex with α = 1. The critical

values are presented as stars, the values of the test statistics as bars.

The figures 4 and 5 show the dependogram of the R functions and the implementation of the

polynomial vertex test applied to the example: Both reject the null hypothesis for the pairwise
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test on {4, 5} and the triple test of {1, 2, 3} whereas the global hypotheses of all 5 samples

would not have been rejected. Even if the global hypothesis would have been rejected, the

finding of the partial dependencies allows a deeper insight into the relationship between the

variables.

As further discussed in section 3.4, the calculation time for creating the dependograms of

figures 4 and 5 differs rigorously: The determination of the critical values of the test statistic

of Genest and Rémillard (2004) for the example with p = 5 implies a Monte Carlo simulation

for the dimensions p = 2, 3, 4, 5. The vertex test however compares T1 with a quantile of a

univariate χ2 distribution which is available right away.

3.2. Comparison of power

In a simulation study it shall be investigated how the vertex test performs in comparison

to the test of Genest and Rémillard (2004) (ff. Genest test) from section 3.1 and a third test,

based on a multivariate version of Spearman’s ρ by Schmid and Schmidt (2007) (ff. Schmid

test):

Definition 11 (Multivariate version of Spearman’s ρ by Schmid and Schmidt (2007)). Let

X1i, ..., Xni be an i.i.d. sample of a p variate population, i = 1, ..., p. One generalization of

the correlation coefficient by Spearman is given by

ρ1,p = h(p)

(
2p
∫
[0,1]p

Ĉn(u)du− 1

)
= h(p)

(
2p

n

(
n∑
j=1

p∏
i=1

(
1− Rji

n

))
− 1

)

whereas Rji denotes the rank of Xji in X1i, ..., Xni, i = 1, ..., p. The distribution of ρ1,p itself

depends on the dimension p and the sample size n under the null hypothesis of independence

and needs to be determined via simulation.
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The power is compared in a Monte Carlo simulation with N = 10,000 iterations for

dimensions p ∈ {2, 5} at a significance level of 5% and various sample sizes n ∈ {25, 50}.

Since the vertex test has the focus on deviations from independence in the tails of the

a distribution, the generated data is from a multivariate Student t distribution with low

degrees of freedom, ν = 1, ..., 5. To determine the critical value a Monte-Carlo simulation

with N = 1,000 iterations has been carried out under the null hypothesis. This is the

default in the package copula. The parameter of dependence is set such that it results in

τ = 0.05, 0.1, 0.25. Table 2 gives an overview on the simulated values.

To give a résumé, the vertex test performs best in situations with small τ , fairly large

sample size n = 50 and a low degree of freedom. This is expected, since a certain sample size

is required for observing values in the tails where the vertex test is sensitive. The Schmid

test has the highest power if the degrees of freedom and the dependency τ are relatively high.

It seems that the test statistic ρ1,p tends to be a sound choice for strong linear deviation

from independence towards a normal distribution. For smaller sample sizes from a high

dimensional sample, the test of Genest and Rémillard (2004) achieves the highest power.

Interestingly, there is a difference in the tendencies of the behavior of power: With

increasing degrees of freedom, the power of the vertex and the Genest test diminishes where

the opposite is true for the Schmid test. In a situation where one needs to decide which test

should be used, an analysis of the existence of the first moments seems to be advisable.

There is strong evidence that all of the three tests are consistent, since the power is

approximately 100% in all cases for very large sample sizes (not listed in table). This finding

emboldens the usage of the vertex test based on the polynomial copula as a test for deviations

from independence with a focus on the high dimensional tail regions.

Throughout the section, the nuisance parameter α has been set to 1. However, different

values of α lead to different simulated power values. The next section provides a possible

selection procedure for α using a semiparametric estimation in the bivariate case.

3.3. Setting the nuisance parameter α

This section presents an adaptive selection procedure for α that can be used to estimate

αauto from data prior to the actual test for independence. Amblard and Girard (2005)
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introduced a semiparametric method of estimating the generating function φ of bivariate

copulas with one dependence parameter from data, if the copula function can be written as

Cθ,φ(u1, u2) = uv + θφ(u1)φ(u2). (14)

The function φ must satisfy the assumptions φ(0) = φ(1) = 0 and |φ(x)−φ(y)| ≤ |x− y| for

all x, y ∈ [0, 1]2.

Example 6. The 4-reduced form of the bivariate polynomial copula can be written in the

sense of equation (14) with φα(x) = xα+1(1 − x). φα is a proper generating function since

φα(0) = φα(1) = 0 and |φα(x) − φα(y)| ≤ |x − y| for all x, y ∈ [0, 1]2. The latter is true,

since φ′α has an upper bound of L = 1 and is therefore Lipschitz continuous.

The 1-reduced form can also be expressed by a generating function as in example 6.

However, this is not true for the remaining two reduced forms. Thus, using the method of

Amblard and Girard (2005) for calibrating α can only involve the 1- and the 4-reduced form

of the polynomial copula.

Once the semiparametric estimate of φ̂ is obtained from a bivariate sample, the best

parameter αauto is the value of α that minimizes the functional quadratic distance between

φ̂ and φα. Table 3 provides simulated power values from an identical simulation setting as

in section 3.2 for fix values α = 1, 2, 3 and αauto, as well as several sample sizes n.

For small sample sizes, a small value of α leads to the highest power. This is expected,

since the tail regions are sparse for n = 25 and therefore the sensitive regions should not be

focused too much on the tails alone. With augmenting sample size however, the best results

are obtained with a higher value of α.
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The results for applying the semiparametric routine of estimating αauto from the data

prior to the actual test are promising: using αauto instead of a fixed α results in simulated

power values that are similar to the best power obtained with fixed α if the sample size

is large. The obtained power is often not the overall highest, but there are only few fixed

α with a slightly higher performance together with some α with considerably lower power.

However, small samples sizes n < 100 are insufficient for the semiparametric method of

Amblard and Girard (2005), who use a minimum of n = 100 in their paper. The bad quality

of the estimate φ̂ illuminates why the fitted αauto results in a lower power than for any of the

fixed α. Using αauto is therefore recommended in situations where the vertex test has not

been applied yet, so no further information on how to choose α properly is available, and if

the sample size is sufficiently large.

A generalization of this semiparametric routine to higher dimensions is possible, but even

more cumbersome. For the p-dimensional polynomial copula however, yet the 1- and the

2p-reduced form have a representation with a generating function φ – the remaining 2p−1

reduced forms cannot be considered. Thus, the natural choice of α = 1 is recommended for

higher dimensions in remembrance of Occam’s razor.

3.4. Calculation time

This section discusses the required calculation time with respect to dimension p and

sample size n. To avoid redundancy, the vertex test is exclusively discussed for α = 1 and

only compared to the Genest test which has similar calculation requirements as the Schmid

test.

Since the variances of the distributions of the test statistics of the Genest and the Schmid

test contain a Brownian bridge, their quantiles cannot be calculated directly – they have to

be determined via a preceded simulation for every constellation of dimension p and sample

size n. Both, quality of the derived critical values and the required calculation time are

augmenting with increasing amount of iterations (the default setting in the package copula is

1,000 Monte Carlo iterations). In addition to that, it is obvious that the required calculation

time increases for larger sample sizes and higher dimensions.

Although only the asymptotic distribution of the vertex test statistic Tα is known, it is
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provided in a closed form expression. For small sample sizes the error of approximation of the

critical value can be large. However, with increasing sample size this error diminishes as table

2 suggests. Since the dimension p only affects the degrees of freedom needed to determine

the critical value of an univariate distribution, the dimension has virtually no influence on

the required calculation time of the critical value compared to the other nonprametric tests.

Naturally, p influences the time that is needed to make a test decision because the vector

of LMPRT statistics of length 2p needs to be calculated from data. Similarly to any of the

three proposed tests, this calculation can get very cumbersome especially in high dimensions

despite the formula of the LMPRT statistics is relatively simple.

Table 4: Calculation time in seconds (except as noted otherwise) that is needed to

make a test decision. Genest test: Time to simulate a critical value. Vertex test: Time

to generate the calculation routine.

Genest test Vertex test

n = 25 n = 50 n = 100 n = 200 n = 500 n ≤ 1000

p

2 0.06 0.07 0.15 0.58 3.80 0.00

3 0.04 0.11 0.33 1.29 17.74 0.00

4 0.09 0.20 0.67 2.78 48.48 0.00

5 0.17 0.45 1.62 6.53 132.56 0.00

6 0.33 1.00 3.82 14.83 321.15 0.04

7 0.70 2.23 8.91 34.31 767.48 0.14

· · · · · · · · · · · · · · · · · · · · ·
13 151 2m1 20m1 1h1 5d1 23m

1Extrapolated

Table 4 gives an overview on the calculation time that is required for the entire test-

ing procedure, including the simulation of the critical values and the calculation of the test

statistic. Obviously, the time that is needed to simulate a critical value is increasing ex-

ponentially for both, the Genest and the vertex test as the sample sizes or the dimension

rises. However, the degree of exponentiality differs massively. Especially samples of large

size illuminate that the time needed to simulate the critical values for the Genest test plays
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an important role for actual applications. Similarly, the calculation time augments for the

vertex test with higher dimension p. Hereby the bottleneck is rather the calculation of the

2p dimensional vector of test statistics and the required covariance matrix for scaling rather

than the determination of the critical value. The actual calculation time is barely influenced

by the sample size n – quite the contrary, the vertex test rather profits of increasing sample

sizes since the error of approximation is shrinking as pointed out by section 3.2. The time

provided in table 4 is the run-time needed in R in order to generate the routine that can be

used to calculate the vector of test statistics t1 from data.

Thus, the vertex test can be a sound alternative in situations where the time it lasts to

perform a test of independence is relevant. This finding is especially important if the sample

size is varying, which would require several cumbersome simulations of the critical values of

the other nonparametric tests, or if the sample size is very large.

4. Summary and Outlook

In this article, a nonparametric multivariate rank-based test for independence has been

developed. The test consists of two generalizations: First, it is based on an extension of

bivariate locally most powerful rank tests for copulas with one dependence parameter to

p dimensions. Second, a generalization of the famous FGM-copula with more than one

dependence parameter and one nuisance parameter is introduced, the polynomial copula.

The multivariate test of independence for one parameter, sequentially applied to a copula

family with several dependence parameters, can be used as a joint test for independence

provided that there is a unique parameter constellation that results in the independence

copula. The squared scaled form of the vector of test statistics leads to a simple χ2-type

test of independence. Its key feature is an asymptotic distribution that has a closed form

expression.

Deriving this test for the polynomial copula leads to an expression that can be interpreted

as sum of squared scaled deviations from the density function of the independence copula

evaluated in regions close to the vertices of the unit cube – the vertex test. Thus, if one is

interested in independent behavior of marginal distributions with focus on multivariate tails,

this vertex test can be applied to samples from any distribution.
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In a Monte Carlo simulation study, this vertex test based on the polynomial copula has

been compared to other nonparametric rank tests. For samples from a Student t distribution

with non-existing lower moments, three tests have been compared by evaluating the power

with a focus on dimensions p > 2. The influence of the choice of the nuisance parameter

on the power has been discussed and an adaptive procedure for determining this parameter

from data has been introduced. However, a broader simulation study considering further

alternative hypotheses could illuminate the differences of the examined tests and the choice

of the nuisance parameter in a more detailed manner.

One key advantage of the vertex test is the good performance for large sample sizes

n, since the critical values used for test decisions are from an asymptotic distribution and

are therefore not affected by sample size. Other state-of-the-art rank-based tests for in-

dependence need a cumbersome simulation of the critical values preceding the test. This

time-consuming procedure can be omitted using the vertex test which makes it attractive in

areas where the computation time is crucial. The loss in power which arises by the use of an

asymptotic instead of a finite sample distribution was shown to be minor in the simulation.

Decoding the violation of independence into deviations from independence in every single

vertex (e.g. the more frequent joint occurrences of high ranks as in the case of independence)

gives insight into the nature of dependence. This finding could be used e.g. in the area of

financial market data – if one wants to build a portfolio of p assets from a pool of N assets,

one could identify the one out of
(
N
p

)
combinations that provides favorable joint movement

of the returns. In this way, one could search for a combination of assets, whose returns

move in the most diametrical of parallel manner. The former is of interest for diversification,

the latter for an investment strategy and has already found application in Stübinger et al.

(2016). The focus on the high dimensional tail regions, or vertices of the unit cube, enables

a new concept of symmetry for copulas that can easily be generalized to higher dimensions,

see Mangold (2017) for further details.
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F., Härdle, W. K., and Rychlik, T., editors, Copula Theory and its Applications: Proceed-

ings of the Workshop held in Warsaw, 25-26 September 2009, pages 93–109. Springer,

Berlin/Heidelberg, Germany.
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Table 6: Covariance matrices Σ(ċ0) of Tα for p = 2 for several values of α.

α = 0.5 α = 1
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α = 2 α = 3
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Example 7 (Vertex test for a trivariate sample). For p = 3 and α = 1 we have under the

null hypothesis H0 : θ = θ0 = 0 that that the vector of LMPRT statistics is

T1 =
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.

Further,
√
nT1 is normal distributed with expectation µ′ = (0, 0, 0, 0, 0, 0, 0, 0)′ and

Σ(ċ0)i=1...8,j=1...8 =



512 −128 −128 32 −128 32 32 −8

−128 512 32 −128 32 −128 −8 32

−128 32 512 −128 32 −8 −128 32

32 −128 −128 512 −8 32 32 −128

−128 32 32 −8 512 −128 −128 32

32 −128 −8 32 −128 512 32 −128

32 −8 −128 32 −128 32 512 −128

−8 32 32 −128 32 −128 −128 512



−1

.

Therefore, we have

T1 = nT1
′Σ(ċ0)−1T1

a∼ χ2(8)

and the asymptotic p-value is obtained using 1− Fχ2(8)(t1).
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