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Abstract

We analyze the effects of declining population growth on the adoption of automa-

tion technology. A standard theoretical framework of the accumulation of traditional

physical capital and of automation capital predicts that countries with a lower popula-

tion growth rate are the ones that innovate and/or adopt new automation technologies

faster. We test the theoretical prediction by means of panel data for 60 countries over

the time span from 1993 to 2013. Regression estimates provide empirical support for

the theoretical prediction and suggest that a 1% increase in population growth is as-

sociated with approximately a 2% reduction in the growth rate of robot density. Our

results are robust to the inclusion of standard control variables, the use of different

estimation methods, the consideration of a dynamic framework with the lagged de-

pendent variable as regressor, and changing the measurement of the stock of robots.

JEL classification: J11, O14, O33, O40.

Keywords: Automation, Industrial Robots, Demographic Change, Declining Popu-

lation Growth, Economic Growth.
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1 Introduction

Industrialized countries have experienced substantial declines in fertility and in birth rates

over the last few decades. For example, in the United States, the total fertility rate (TFR)

fell from 3.33 children per woman in the period 1950-1955 to 1.89 children per woman in

the period 2010-2015. Over the same time span, the crude birth rate (CBR) decreased

from 24.4 children per 1000 inhabitants to 12.6 children per 1000 inhabitants (see The

United Nations, 2015, and Table 1 in which we depict the situation in the G7 countries).

These demographic changes have already had a pronounced effect on the evolution of the

labor force. Furthermore, the relatively larger cohorts that entered the labor markets of

these countries in the 1960s and 1970s are now starting to reach the retirement age such

that a substantial decline in the working-age population is most likely to prevail in the

coming decades.

There are many concerns among economists regarding the long-run consequences of

the mentioned demographic developments. For example, it is often argued that social se-

curity systems and retirement schemes would need to be reformed to ensure that they are

accurately financed in the future when fewer and fewer workers will have to support ever

more retirees (see Gruber and Wise, 1998; Bloom et al., 2010; The Economist, 2011), there

are concerns that investment rates will decline when the retiring cohorts run down their

assets (Mankiw and Weil, 1989; Schich, 2008), and some are afraid that the innovative

capacity of aging societies will decline (see, for example, Canton et al., 2002; Borghans

and ter Weel, 2002; Irmen and Litina, 2016; Gehringer and Prettner, 2017). Some com-

mentators have even gone so far as to argue that aging is a “threat more grave and certain

than those posed by chemical weapons, nuclear proliferation, or ethnic strife” (Peterson,

1999).

Table 1: TFR in the G7 countries 1950-1955 and 2010-2015 (United Nations, 2015)

Country TFR TFR CBR CBR
1950-1955 2010-2015 1950-1955 2010-2015

Canada 3.65 1.61 27.4 10.9
France 2.75 2.00 19.1 12.4
Germany 2.13 1.39 15.6 8.3
Italy 2.36 1.43 18.2 8.6
Japan 3.00 1.40 23.8 8.3
U.K. 2.18 1.92 15.1 12.6
USA 3.33 1.89 24.4 12.6

As far as the expected labor shortages due to population aging are concerned, there

is a silver lining on the horizon. In recent years, robots have started to take over many

tasks that have previously been regarded as non-automatable and it is expected that

this trend will continue in the future (see Frey and Osborne, 2013; Arntz et al., 2016;

Acemoglu and Restrepo, 2017, for different views on the extent of this development and

for a discussion on how automation could alleviate the burden of population aging). Very
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prominent examples that have received an extensive media coverage in recent years are

autonomous cars and lorries that could soon transport passengers and goods without the

need to rely on the (usually highly imperfect) driving skills of humans (fully automated

food deliveries are already present in some cities, see El Pais, 2016); 3D printers are starting

to produce highly specialized products – that could not be mass-manufactured before and

which therefore required a lot of specialized human labor input – at a large scale; software

based on machine learning is now already able to more reliably diagnose diseases than

doctors; and even the skills of authors become more and more obsolete as algorithms are

able to write newsflashes, reports, and even novels on their own.1 Admittedly, it is still

a much bigger pleasure to read “Anna Karenina” than “True Love” (a novel written by

an algorithm programmed to rewrite Anna Karenina in the style of the Japanese author

Haruki Murakami; see Barrie, 2014). However, things might change quite fast and maybe

we will some day find out how “The Castle” or “The Man Without Qualities” could have

come to an end – hopefully in the style of Kafka and Musil, respectively.

The paper is structured as follows. In Section 2, we provide some theoretical consid-

erations on the potential effects of automation in the face of the demographic changes

outlined in the introduction and we assess for which countries with a given demographic

structure the adoption of robots is most likely to occur at a fast rate. In Section 3 we test

the theoretical predictions empirically and in Section 4 we discuss our results and draw

some policy conclusions.

2 Declining population growth and automation: Theoreti-

cal considerations

2.1 Basic assumptions

Consider an economy with three production factors, human labor, traditional capital (ma-

chines, assembly lines, production halls, office buildings, etc.), and automation capital

(robots, 3D printers, driverless cars, devices based on machine learning, etc). Time t

evolves discretely such that one time step corresponds to approximately 25 years and

the population grows at rate n between time t and time t + 1. Traditional capital and

automation capital can be accumulated and they fully depreciate over the course of one

generation. Human labor and traditional physical capital are imperfect substitutes, while

automation capital is – by its definition – a perfect substitute for labor. Note the special

and non-standard role that automation capital plays in such a setting: on the one hand, it

performs the tasks of human labor and therefore constitutes a perfect substitute for this

production factor; on the other hand, its accumulation resembles the process of standard

physical capital accumulation and the income stream that automation capital generates

1See, for example, The Economist (2014), Abeliansky et al. (2015), Lanchester (2015), Graetz and
Michaels (2015), Brynjolfsson and McAfee (2016), and Prettner (2017) on different aspects of automation
and on new developments
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flows to the capital owners/savers of an economy. Overall, we follow the simplified expo-

sition of Solow (1956) and assume that households save a constant fraction s ∈ (0, 1) of

their total income. The savings rate could also be endogenized along the lines of Ramsey

(1928), Cass (1965), and Koopmans (1965) but this would mainly complicate the exposi-

tion without adding substantially new insights regarding the effect of demographic change

on automation. In a very interesting contribution, Steigum (2011) analyzes the effects

of automation capital that is a (potentially imperfect) substitute for human labor, on

long-run economic growth.2

2.2 Households and population growth

The population size is given by Nt and its evolution is governed by the difference equation

Nt+1 = (1 + n)Nt,

where n is the population growth rate. This rate is expected to fall in the future because

of the demographic changes outlined in the introduction. We assume that there is inelastic

labor supply of households and full employment such that the labor force at time t is also

given by Lt ≡ Nt. Consequently, a reduction in the population growth rate translates into

a reduction in the growth rate of the work-force which is realistic, although, of course, it

typically requires a certain amount of time. We abstract from this delay and assume that

the decline of the population growth rate also represents the decline in the work-force.

Aggregate savings are given by St+1 = sNt and there are two savings vehicles, tradi-

tional physical capital and automation capital. As a consequence, there is a no-arbitrage

condition that has to hold in any equilibrium in which individuals are investing in both

types of assets. This condition states that the rates of return on traditional physical

capital and on automation capital have to be equal.

2.3 Production and automation

We follow Prettner (2017) and assume that the production function has a Cobb-Douglas

structure with respect to human labor and traditional physical capital. However, the

additional non-standard production factor “automation capital” is a perfect substitute for

labor such that aggregate output is given by

Yt = Kα
t [Lt + Pt]

1−α,

where Kt refers to traditional physical capital, Pt denotes automation capital, and α ∈
(0, 1) is the elasticity of output with respect to traditional physical capital. We abstract

2Endogenizing the savings rate along the lines of Diamond (1965), however, runs into problems because
the accumulation of automation capital reduces the wages of households in the first period of their lives
and therefore reduces their savings capacity, which leads to a stagnation equilibrium (Sachs and Kotlikoff,
2012; Benzell et al., 2015; Sachs et al., 2015; Gasteiger and Prettner, 2017). However, it is more realistic
that savings are not only made out of wage income but also out of capital income.
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from factor-augmenting technological progress that would only act as an additional source

of economic growth but it would not alter the crucial mechanisms in our framework.3 We

assume that there is perfect competition on factor markets such that production factors

are paid their marginal value product. Normalizing the price of final output to 1, the wage

rate and the rates of return on the two types of capital are given by

wt = (1− α)

[
Kt

Lt + Pt

]α
, (1)

Rautomt+1 = wt = (1− α)

[
Kt

Lt + Pt

]α
, (2)

Rtradt+1 = α

[
Lt + Pt
Kt

]1−α
, (3)

where Rautomt+1 is the gross interest rate paid on automation capital, which is equal to the

wage rate, and Rtradt+1 is the gross interest rate paid on traditional physical capital. While

the effects of Kt and Lt on wages and on the rate of return on traditional physical capital

are straightforward, we have a non-standard effect of the accumulation of automation cap-

ital: As Pt increases, the wage rate decreases because workers compete with automation

capital, whereas the rate of return on traditional physical capital increases because au-

tomation capital substitutes for workers and therefore raises the productivity of traditional

physical capital. Together with the fact that the income stream earned by automation

capital flows to the capital owners this mechanism has the potential to explain the decrease

in the labor income share that we have observed over the last few decades (Steigum, 2011;

Prettner, 2017). It is important to note at this point, that, while automation reduces the

marginal value product of labor and thereby the wage rate, labor productivity as measured

by output per worker increases in the wake of automation.

The no-arbitrage condition states that investments in both types of physical capital

have to yield the same rate of return, i.e., it holds that Rautomt+1 = Rtradt+1 . Setting Equations

(2) and (3) equal to each other and solving for Kt and Pt, respectively, yields

Pt =
1− α
α

Kt − Lt ⇔ Kt =
α

1− α
(Pt + Lt). (4)

Plugging the expression for traditional physical capital from Equation (4) into the

aggregate production function provides

Yt =

(
α

1− α

)
[Lt + Pt], (5)

where it is immediately clear that the standard convergence process to a stationary equi-

3For an R&D-based endogenous growth model along the lines of Romer (1990) in which firms can
invest in robot technology, see Hémous and Olsen (2016). In Acemoglu and Restrepo (2015) new tasks are
constantly created by R&D, while, at the same time, old tasks are automated. Both of these papers focus
on a different aspect of the rise of machines than the implications of demographic change for investments
in (and the adoption of) automation technology.
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librium with no long-run growth that we know from the Solow (1956) model without

technological progress does not hold anymore. Instead, the production function has the

potential to lead to long-run growth if the savings rate is large enough such that a positive

accumulation rate of automation capital can be sustained (cf. Steigum, 2011; Prettner,

2017). Note that Equation (5) resembles the properties of an AK type of production

structure. However, in contrast to standard AK type of growth models this is not due

to an assumption that removes the diminishing marginal product with respect to physical

capital but due to the structure of the production process as derived in the presence of

automation capital.4 Allowing for a different rate of depreciation for traditional physical

capital and for automation capital would leave our central results unchanged. The only

difference would be that an additional constant term (the difference between the rates

of depreciation between the two forms of capital) appeared in Equation (4) and in the

derivations that are based on this equation.

From Equation (5) it follows that per capita GDP is given by

yt =

(
α

1− α

)
(pt + 1),

where pt is the automation density in terms of automation capital per capita. We immedi-

ately see that the prosperity of a country is positively linked to its automation density. The

intuitive explanation for this is clear. For a given population size, automation overcomes

the diminishing marginal product of traditional physical capital that acts as a boundary

for long-run economic growth in the standard Solow (1956) model (see Prettner, 2017,

for the analysis of the implications of automation for long-run economic growth in such a

setting). Once the tasks which could previously only be carried out by human labor are

automated, the stock of labor becomes, essentially, a reproducible production factor. At

the aggregate level, this implies that there are constant returns to scale with respect to all

reproducible production factors such that automation creates the potential for long-run

growth without additional factor-augmenting technological progress. Next, we analyze

how the automation density itself depends on the demographic setting, which is our main

question of interest that we analyze empirically in Section 3.

2.4 The effect of demographic change on automation density

Since households save a constant fraction s ∈ (0, 1) of their total income Yt and the

economy is closed, aggregate investment is It = sYt such that

Kt+1 + Pt+1 = sYt.

4Peretto and Saeter (2013) construct a long-run economic growth model in which firms can invest in
technological progress that raises the productivity of physical capital by increasing the elasticity of final
output with respect to physical capital. In the long-run limit, their aggregate production function converges
to an AK type of production function and economic growth is perpetual.
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Substituting for Kt+1 by the no-arbitrage relationship (4), for Yt by Equation (5), and

dividing by the population size Nt+1 provides the following expression

α(pt+1 + 1)

1− α
+ pt+1 = s

(
α

1− α

)α 1 + pt
1 + n

.

Solving this equation for the automation density in period t + 1 as a function of the

automation density in period t and the parameter values of the model yields

pt+1 = s(1− α)

(
α

1− α

)α 1 + pt
1 + n

− α. (6)

From this equation it follows immediately that a country with a lower population growth

rate will have a higher density of automation technology. We summarize this in the

following proposition.

Proposition 1. Consider a country in which the production structure is described by an

aggregate production function of the form of Equation (5). Households save a constant

fraction s ∈ (0, 1) of their total income (labor income and capital income in the form of

traditional physical capital and automation capital), and the no-arbitrage condition (4)

holds for both types of investments. In this case a country will have a higher density of

automation capital if it has a lower population growth rate (n).

Proof. Taking the derivative of Equation (6) with respect to n we get

∂pt+1

∂n
= −s(1− α)

(
α

1− α

)α 1 + pt
(1 + n)2

< 0.

Not that this expression is, in general, not equal to -1 such that our result is not just due

to the fact that automation density is defined as the aggregate stock of robots divided by

the population size.

The intuition for this finding is the following: A country in which the population –

and with it the labor force – grows fast, exhibits a comparably high rate of return on

traditional physical capital and there is no need to invest in automation capital. In fact,

in such a country, the rate of return on investment in automation capital tends to be rather

low (think, for example, of African countries with a very fast population growth rate such

as Mali and Niger: investing in automation would not be an attractive business strategy

in these countries). By contrast, in a country in which the population – and with it the

labor force – stagnates or even decreases, the rate of return on investment in automation

is high and the rate of return on investment in traditional physical capital is rather low

(think, for example, of aging European countries such as Germany and Italy and aging

East Asian countries such as Japan and South Korea). Consequently, our theory predicts

that the automation density is high in countries in which the growth rate of the population

is low or even negative.
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Table 2: Robot density and population growth in the top 10 countries with the highest
robot density (International Federation of Robotics, 2015; United Nations, 2015)

Country robot density per 10,000 employees average population growth
in manufacturing between 2010 and 2015

South Korea 347 0.48%
Japan 339 -0.12%
Germany 261 0.16%
Italy 159 0.07%
Sweden 157 0.83%
Denmark 145 0.42%
United States 135 0.75%
Spain 131 -0.21%
Finland 130 0.50%
Taiwan 129 N/A

Note: The robot density is measured in terms of robots per 10,000 employees in manufacturing in
2015. The population growth rate is calculated as the average population growth rate from 2010 to
2015. The data sources are (International Federation of Robotics, 2015; United Nations, 2015).

A first glimpse on whether this is true is provided by Table 2 that depicts the robot

density as of 2015 together with the average population growth rate in the preceding 5-year

interval from 2010 to 2015 for the ten countries with the highest robot density. In general,

we observe that the population growth rate in these countries is rather low and in some

of them even negative. However, this could just be due to the fact that these countries

are richer, implying that they have a lower fertility rate and that they are, at the same

time, able to invest more in automation technology. In the next section we therefore test

whether our theoretical implication is borne out by the data in a more thorough way.

3 Declining population growth and automation: Empirical

results

In this section we introduce the data, then we test Proposition 1 empirically, and finally

we provide a number of robustness checks.

3.1 Data description

The only available data-set so far to study the adoption of robots is the one collected by

the International Federation of Robotics (IFR). The IFR reports the yearly delivery of

“multipurpose manipulating industrial robots” as defined by the International Organiza-

tion for Standardization5 for several countries, starting from 1993. We use the data until

2013 because the data for the year 2014 seem to be unreliable: There are several zeroes

that look like reporting errors in comparison to previous values from the data series. In

5This refers to “Manipulating industrial robot as defined by ISO 8373: An automatically controlled,
reprogrammable, multipurpose manipulator programmable in three or more axes, which may be either fixed
in place or mobile for use in industrial automation applications” (Graetz and Michaels, 2015; International
Federation of Robotics, 2012).
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the baseline specification we use 3 year averages of the data which provides us with 7

time periods. The sample includes 60 countries for which the data are available (for the

list of countries see Table 9 in the Appendix). We had to combine the NAFTA countries

(Canada, the United States, and Mexico) into one country because they report the values

jointly until 2011.

The IFR also reports the deliveries and stock of robots at the industry level. They

consider that robots have a life-time horizon of 12 years, after which they are deployed

(International Federation of Robotics, 2016). Following Graetz and Michaels (2015), we

use an alternative way to calculate the stock of robots (for all robots and for the manufac-

turing industry) that relies on the perpetual inventory method under the assumption of a

depreciation rate of 10%. Similar to Graetz and Michaels (2015), we prefer this method

over the one used by the IFR because it is more in line with the standard economics

literature. Since the IFR reports the stock of robots in 1993, this is our first value for the

constructed series. Although all countries report the total stock of robots, not all of them

report the stock nor the deliveries disaggregated at the industry level on a yearly basis.

Given that we are mainly interested in the robots used in the manufacturing sector, we

follow Graetz and Michaels (2015) and take the average share of deliveries of manufac-

turing robots over the total deliveries of robots (when the data are available), construct

an average share, and impute the values for deliveries of manufacturing robots, as well as

for the initial stock of robots (when the corresponding data were not available). In Table

8 in the Appendix we show the first reported year of robots’ data disaggregated by the

industry level for the countries for which there were gaps in the reported data.

In the following figures we show how the robot density has evolved between the first

period of the sample (1993-1995) and the last one (2011-2013). We discriminate between

percentiles with Figure 1 (covering the period 1993-1995) reporting in the lightest shade

of blue for the 75th percentile, proceeding with the 90th percentile, the 95th percentile,

and finally the last 5% of the distribution (there are a lot of zeroes in this period which is

why we use the 75th percentile as the first cutoff). For comparison, in Figure 2 (covering

the period 2011-2013) we use the same cutoffs as in the previous figure. We observe a

strong increase in robot density, especially in Europe and South Asia. Similar figures but

only for robots used in the manufacturing sector are displayed in the Appendix (Figures

3 and 4).

We also collected information from the International Monetary Fund (IMF) on the

investment share in terms of GDP. We constructed our investment variable summing the

reported values of private investment, public investment, and joint ventures between the

state and the private sector. As for other control variables, we included GDP per capita

measured in constant US$ with a base year of 2010 from the World Development Indicators,

openness measured as exports and imports over GDP, and the gross enrollment ratio in

secondary school as in Busse and Spielmann (2006)6.

6The natural choice of a proxy variable for education would have been the mean years of schooling as
reported by (Barro and Lee, 2013). However, this variable is only available in 5 year intervals. Another
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Figure 1: Average robot density for the period 1993-1995

[0,.00012]
(.00012,.0003]
(.0003,.0005]
(.0005,.003]
No data

Source: IFR and World Development Indicators. Note: The USA, Canada and Mexico
have the same values because of the joint reporting.

Figure 2: Average robot density in the period 2011-2013

[0,.00012]
(.00012,.0003]
(.0003,.0005]
(.0005,.003]
No data

Source: IFR and World Development Indicators. Note: The USA, Canada and Mexico
have the same values because of the joint reporting.

10



3.2 Empirical estimates

Based on Proposition 1, we estimate the relationship between robots adoption and popu-

lation growth by means of the following equation:

ln(p̂i,t) = c+ α ln(ni,t−1) + β ln(si,t−1) + γ ln(xi,t−1) + dt + εi,t, (7)

where p̂i,t is the growth rate of the stock of robots (either manufacturing robots, or the

total amount of robots), ni,t−1 is the population growth rate between period t-1 and t-2,

si,t−1 is the investment rate in period t − 1, xi,t−1 is a vector of further control variables

that will be used in the robustness analysis (i.e. GDP per capita), and dt are time-specific

effects to control for events and trends that affect all countries in the same manner, for

example, the global economic and financial crisis that started in 2007/2008. Since we have

zeroes and negative values in the dependent variable and in the population growth rate,

we employed the Box-Cox transformation (Box and Cox, 1964) instead of simply applying

logarithms.7 We apply the logarithmic transformation because this alleviates concerns

regarding heteroskedasticity and non-linearities in the non-transformed variables. We

relied on 3-year averages to alleviate problems regarding measurement errors and business-

cycle effects (while the economic growth literature usually relies on 5 year averages, we

would only have 2 consecutive time periods left for estimation in this case).

We first estimate Equation (7) using pooled OLS (POLS) and then proceed with a

random-effects (RE) and a fixed-effects (FE) specification. Finally, we take the potential

dynamics into account by including the lagged dependent variable in the regressions and

applying various corrected fixed effects estimators (CorrFE) following Bruno (2005a,b),

and the system GMM estimator [GMM (sys)] of Blundell and Bond (1998). Note that both

of these types of estimators are seen as remedies for the Nickell (1981) bias in a dynamic

panel data setting. We report the results for the total amount of robots and then also

separately for the subset of manufacturing robots. Moreover, we assess the robustness of

our results by adding a proxy for education, a proxy for GDP per capita, and a proxy for

openness. In other robustness checks reported in the Appendix, we also consider different

depreciation rates in the construction of the robot data series (5% and 15% instead of

10%), and a different transformation of the robot adoption and population growth rates

[a neglog transformation as employed by Whittaker et al. (2005)].

Based on the theoretical considerations we expect to find a negative coefficient for the

population growth rate that is smaller than -1 and a positive sign for the investment rate.

When we include the controls, we expect a positive coefficient for GDP per capita because

higher income implies a lower return to traditional capital accumulation and therefore

alternative would have been to use the literacy rate but this is close to one in most countries of the sample
and there are also a lot of missing values for this variable, so we decided to stick with the gross enrollment
ratio (Busse and Spielmann, 2006, also uses this variable).

7We created a new variable in the following manner: z = ln(growth rate − k), choosing k such that
the skewness of z is zero. The correlation between the non-transformed variables and the variables in
logarithms (naturally omitting the zeroes and the negative values) is 0.89.
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a higher incentive to employ robots. Furthermore, a better educated population might

be more inclined to invest in (or adapt to) robots such that he coefficient of education

should also be positive. However, we have no a priori expectation regarding the sign of

the coefficient for openness – on the one hand, as countries become more open, they could

need fewer robots because domestic production could easier be substituted by imports;

on the other hand, open economies are also subject to stronger international competition

such that there is an incentive to automatize the production in search of efficiency gains.

3.2.1 Main Results

Table 3 contains the regression outputs from a baseline specification of Equation (7).

As regressors we include the two crucial variables that are suggested by our theoretical

considerations in Equation (6), the population growth rate and the investment rate. We

observe that there is a negative relationship between population growth and the growth

rate of the robot density in all specifications and it is statistically significant in the majority

of the cases. Only in column (1), which reports the POLS regression, we find the coefficient

not to be statistically significant which is most likely due to the lack of accounting of

country-level heterogeneity. Our results are robust to the dynamic specifications using

the corrected fixed effects estimators, as well as the system GMM estimator. For the

choice between corrected fixed effects and system GMM we prefer the corrected fixed

effects specifications because Judson and Owen (1999) report that this estimator performs

better when the amount of time periods is smaller than 10, which is the case in our

sample. Although the lagged dependent variable is statistically significant, the size of the

coefficient does not suggest strong evidence for the use of a dynamic specification. Our

preferred specification is therefore the fixed effects regression because the Hausman test

suggests that the results from the random effects specification are inconsistent and that

we therefore the need to control for unobserved heterogeneity. The coefficient estimate

for the population growth rate in case of the fixed-effects specification suggests that when

population growth increases by 1%, the robot density growth will decrease by 2%. As

far as the main control variable (the investment share) is concerned, we find the expected

positive relationship, although it is not statistically significant.

Table 4 shows the results for the growth rate of the manufacturing robot density.

As in the previous case, we document a positive correlation, although not statistically

significant, between the investment rate and the growth rate of the manufacturing robots

density. We again find a negative association between the population growth rate and

the robots density growth rate with the size of the coefficients being similar to the those

reported in Table 3. In this case, there is even less evidence than before for the need of a

dynamic specification because the coefficients of the lagged dependent variable are smaller

in size and not even statistically significant in the case of the system GMM estimator.
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Table 3: The relation between total robots growth and population growth

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE CorrFE (bb) CorrFE (ab) CorrFE (ah) GMM (sys)

p̂t−1 0.316*** 0.259*** 0.245** 0.226**
(0.779) (0.090) (0.0987) (0.111)

nt−1 -0.539 -0.694* -2.030** -1.690*** -1.803*** -1.828*** -3.515***
(0.328) (0.354) (0.894) (0.597) (0.562) (0.557) (1.205)

st−1 0.063 0.090 0.419 0.304 0.324 0.335 0.115
(0.119) (0.129) (0.495) (0.357) (0.340) (0.341) (0.473)

Country FE no no yes yes yes yes -
Time FE yes yes yes yes yes yes yes
AR(2) test 0.922
Hansen test 0.623
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent
level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with
“bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano
and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.

Table 4: The relation between manufacturing robots growth and population growth

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE CorrFE (bb) CorrFE (ab) CorrFE (ah) GMM (sys)

p̂t−1 0.264*** 0.197** 0.180** 0.120
(0.077) (0.086) (0.0914) (0.120)

nt−1 -0.457 -0.632* -2.185** -1.950*** -2.055*** -2.078*** -3.908***
(0.336) (0.368) (0.973) (0.613) (0.570) (0.566) (1.237)

st−1 0.026 0.043 0.175 0.132 0.146 0.155 0.311
(0.095) (0.101) (0.490) (0.365) (0.343) (0.343) (0.401)

Country FE no no yes yes yes yes -
Time FE yes yes yes yes yes yes yes
AR(2) test 0.623
Hansen test 0.506
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent
level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with
“bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano
and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
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3.2.2 Robustness Analysis

As a first robustness check we control for three potential omitted variables: GDP per

capita, openness of the economy, and secondary school enrollment. Omitting these vari-

ables could be a source of bias because GDP per capita might be correlated with the

population growth rate due to the fact that richer countries are more able to invest in new

technologies and they are also the ones that are disproportionally affected by declining

fertility as outlined in Section 1; an open economy might be under more pressure to stay

competitive, and, at the same time, smaller economies by means of the population size

tend to be more open; and education is highly correlated with GDP per capita, while, at

the same time, a better educated population might be more inclined to invest in (or adapt

to) robots.

Table 5: Total robots growth including controls

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE CorrFE (bb) CorrFE (ab) CorrFE (ah) GMM (sys)

p̂t−1 0.210** 0.137 0.140 0.279
(0.082) (0.085) (0.088) (0.202)

nt−1 -0.565 -0.731* -1.554** -1.377* -1.494** -1.485** -3.247*
(0.379) (0.422) (0.689) (0.754) (0.704) (0.708) (1.879)

st−1 0.092 0.107 -0.416 -0.377 -0.337 -0.336 -0.316
(0.130) (0.134) (0.556) (0.486) (0.443) (0.445) (0.485)

yt−1 -0.172** -0.151** 2.535*** 2.316*** 2.280*** 2.283*** -0.080
(0.073) (0.073) (0.911) (0.883) (0.784) (0.787) (0.421)

et−1 0.148 0.133 0.112 0.106 0.111 0.111 0.334
(0.180) (0.176) (0.192) (0.185) (0.171) (0.171) (0.244)

opent−1 0.040 0.034 -0.088 -0.149 -0.136 -0.139 -0.144
(0.142) (0.155) (0.519) (0.552) (0.503) (0.506) (0.795)

Country FE no no yes yes yes yes -
Time FE yes yes yes yes yes yes yes
AR(2) test 0.979
Hansen test 0.156
Countries 57 57 57 57 57 57
Observations 262 262 262 262 262 262 262

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent
level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with
“bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano
and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.

Table 5, which includes the mentioned control variables, shows again a negative cor-

relation between robot density growth and population growth. The magnitude of the

coefficients in the different specifications are marginally smaller than in the previous ta-

bles. However, except for the pooled OLS specification, they are statistically significant

at the 5% or at the 10% level. One reason for this could be that we had to accept a

reduction in the sample size because of several missing observations for the openness and

the secondary enrollment variables. The coefficient estimate of the investment rate is still
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Table 6: Manufacturing robots growth including controls

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE CorrFE (bb) CorrFE (ab) CorrFE (ah) GMM (sys)

p̂t−1 0.148* 0.064 0.60 0.043
(0.078) (0.079) (0.081) (0.131)

nt−1 -0.472 -0.636 -1.726** -1.599** -1.700** -1.697** -1.833
(0.382) (0.422) (0.702) (0.771) (0.703) (0.706) (1.218)

st−1 0.061 0.067 -0.646 -0.586 -0.567 -0.570 -0.241
(0.109) (0.108) (0.558) (0.496) (0.441) (0.442) (0.349)

yt−1 -0.197*** -0.181*** 2.617*** 2.531*** 2.551*** 2.580*** -0.523***
(0.068) (0.067) (0.841) (0.899) (0.785) (0.787) (0.169)

et−1 0.187 0.182 0.174 0.171 0.174 0.173 0.352*
(0.175) (0.166) (0.174) (0.189) (0.171) (0.171) (0.180)

opent−1 0.024 0.021 0.000 -0.059 -0.033 -0.036 -0.392
(0.148) (0.158) (0.515) (0.566) (0.504) (0.507) (0.659)

Country FE no no yes yes yes yes -
Time FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.720
Hansen test - - - - - - 0.234
Countries 57 57 57 57 57 57 57
Observations 262 262 262 262 262 262 262

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent
level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with
“bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano
and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.

not statistically significant across the specifications, as in the previous case. In columns

(1) and (2), GDP per capita has a negative sign, which is surprising given that we expect

that richer countries would be able to invest more in new technologies. However, GDP

per capita reverts its sign from column (3) onwards. We believe that the reason for this is

the presence of unobserved heterogeneity, as also the Hausman test indicates. Secondary

enrollment has the predicted sign, although it is not statistically significant. Finally, open-

ness has a negative sign in most of the specifications although none of the coefficients is

statistically significant. Finally, the coefficient size of the lagged dependent variable shows

that there is no pressing need to take the dynamics into account in the regression.

Turning to the manufacturing robots (Table 6), we observe a similar pattern as for the

case of total robots. All specifications show a negative correlation between manufacturing

robots growth and population growth. In contrast to the previous results, we find no

statistical significance in column (7). However, this could be related to the fact that we do

not need a dynamic specification and that the system GMM estimator is known to be very

inefficient in case of a small time dimension. As in the previous tables we find no evidence

of the importance of investment or secondary schooling for robots adoption. Similar to the

case of total robots, we find a positive relationship between GDP per capita and the growth

rate of manufacturing robots density. A puzzling result is the change in the sign of per

capita GDP in case of the system GMM estimator. However, the estimations performed
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with the corrected fixed effects estimators still exhibit the significantly positive result.

In Tables 10 and 11 in the Appendix we report the same specification but omitting the

controls that were not statistically significant (i.e., secondary enrollment and openness).

The results do not change dramatically but the significance of the puzzling negative sign

of per capita GDP in case of the system GMM estimator vanishes.

As further robustness checks, we used 2-year averages instead of averaging the data over

3 years. Tables 12 and 13 in the Appendix show the corresponding results. As before, we

observe a statistically significant negative correlation of the population growth rate with

the growth of robot density (either of the total stock of robots or the ones employed in the

manufacturing sector). However, the magnitude of the correlation is smaller in absolute

value. The investment rate coefficient continues to be statistically insignificant in both

tables, having a positive sign in most of the cases. Only in column (7) of Table 13 the

coefficient of the investment rate is negative, although this estimate should be considered

with caution because the AR(2) test cannot rule out remaining autocorrelation of the

residuals at the 10% significance level. Moreover, we also constructed two alternative

robot stocks using 5% and 15% as alternative depreciation rates. The estimates for the

baseline model can be seen in Tables 14 and 16 (for total robots) and Tables 15 and 16

(for manufacturing robots) in the Appendix. We find no substantial differences with our

previous estimates. As the two final robustness checks we use the neglog transformation for

both the population growth rate and the robot density growth rate. This transformation

involves making the following adjustments to the variable (which we call x for simplicity).

If x <= 0, then we use − ln(−x+1) instead and if x > 0, then we use ln(x+1) instead. The

results are shown in Tables 18 and 19 of the Appendix. Again, the results remain similar

in terms of the sign and the statistical significance, although the size of the coefficients

is higher. The results show some sensitivity with relation to the transformation of the

variables that can take the value of 0 or negative values.

4 Conclusions

We propose a theoretical framework of production in the age of automation for countries

that are subject to declining population growth and population aging. In so doing we

introduce a new production factor that resembles the properties of labor in the produc-

tion process, i.e., it is a perfect substitute for labor, while it resembles the properties of

traditional physical capital in the accumulation process, i.e., it is accumulated in the same

manner as physical capital due to the savings and investment behavior of households.

For this case the standard Solow (1956) framework predicts, under certain circumstances,

perpetual growth even without technological progress and a declining labor income share

(Prettner, 2017). In our contribution we show that countries with a lower population

growth rate have a stronger incentive to invest in the adoption of automation. The empir-

ical estimates that we present, subject to several robustness tests, support this theoretical

prediction.
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As far as the policy implications are concerned, our theoretical and empirical findings

suggest that countries, which are subject to larger demographic challenges, will be the

first to adopt and/or invent new automation technologies. This in turn might help them

to overcome some of the negative effects that declining population growth and population

aging imply for long-run economic prosperity, issues that also the media is nowadays

heavily concerned with (see, for example, The Washington Post, 2016). Of course, the

transition to automation technologies might not be all that smooth because automation

capital competes with labor and therefore could act so as to depress wages. If this concern

is valid and widespread, it might lead to resistance against automation from labor unions

and the population at large. Altogether, it might therefore be in everybody’s interest

if governments enact policies that alleviate the burden of those who suffer because of

automation. Potential policies along these lines could include education subsidies and

re-training programs for those who loose their jobs because of automation, making sure

that unemployment insurance is widely available, etc. Furthermore, it would at some

point be necessary to rethink how social security systems are financed because the main

contribution is now made by the production factor labor. If labor income becomes a

smaller and smaller share of total income, however, alternatives would need to be found.

One remedy that is often suggested would be to make sure that everybody owns some

part of the automation capital of an economy, for example, a driverless car that earns an

income stream for him or her (Pratt, 2015; The Economist, 2017).

Of course we have to admit that our framework stayed deliberately simple and the

results that we present are meant as a first step in the direction of analyzing the interre-

lations between demography and automation. In reality, there are different skill groups

in the population and the tasks that are performed by the different skill groups might be

more or less suited to automation and they might even change over time (cf. Acemoglu

and Restrepo, 2015). A more detailed framework should be able to take this into account

and to empirically distinguish between the education level of different types of workers,

and also the heterogeneity of tasks that workers perform. However, this crucially hinges

on the data for automation in general, and robots, in particular, to become more widely

available. Furthermore, a more detailed modeling of demographic change is called for that

takes survival to old age and changing life expectancy into account. First steps in this

direction have been undertaken by Gasteiger and Prettner (2017).
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David Höhle for excellent research assistance. We are grateful for the funding provided by

the Faculty of Economics and Social Sciences at the University of Hohenheim within its

research focus “Inequality and Economic Policy Analysis (INEPA)”.

17



5 Appendix

5.1 Summary Statistics

Table 7: Summary statistics

Variable (in logs) Observations Mean Std. Dev. Minimum Maximum

p̂t−1 300 4.300 0.909 -2.126 8.249
nt−1 300 -2.057 0.239 -2.788 -1.179
si;t−1 300 2.879 0.609 -1.697 3.815
yt−1 300 9.351 1.262 6.539 11.408
et−1 267 4.368 0.540 1.616 5.065
opent−1 295 4.262 0.523 2.789 6.033

5.2 Countries included

Table 8: Countries with adjusted values to create manufacturing stock

Country Year Country Year

Argentina 2004 South Korea 2001 (gap in 2002)
Australia 2006 Malaysia 2006
Austria 2003 Mexico 2011
Belgium 2004 Netherlands 2004
Brazil 2004 New Zealand 2006
Bulgaria 2006 Philippines 2006
Canada 2011 Poland 2004
Chile 2005 Portugal 2004
China 2006 Romania 2004
Denmark 1996 Russia 2004
Greece 2006 Singapore 2005
Hungary 2004 Slovakia 2004
Iceland 2006 Slovenia 2005
Malta 2006 South Africa 2005
Peru 2006 Switzerland 2004
India 2006 Thailand 2005
Indonesia 2006 Turkey 2005
Ireland 2006 USA 2004
Israel 2005 Vietnam 2005
Japan 1996

Note: The year indicates the first time that the country reported dis-
aggregated deliveries of robots at the industry level.
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Table 9: Countries included in the sample

Argentina France Moldova Serbia
Australia Germany Morocco Singapore
Austria Greece NAFTA Slovakia
Belgium Hungary Netherlands South Africa
Brazil Iceland New Zealand Spain
Bulgaria India Norway Sweden
Chile Indonesia Oman Switzerland
China Ireland Pakistan Thailand
Colombia Israel Peru Tunisia
Croatia Italy Philippines Turkey
Czech Republic Japan Poland Ukraine
Denmark South Korea Portugal United Kingdom
Egypt Kuwait Romania Uzbekistan
Estonia Lithuania Russia Venezuela
Finland Malaysia Saudi Arabia Vietnam
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5.3 Distribution of the manufacturing stock of robots

Figure 3: Average manufacturing robot density for the period 1993-1995

[0,.0001021]
(.0001021,.0002529]
(.0002529,.0004311]
(.0004311,.003]
No data

Source: IFR and World Development Indicators. Note: The USA, Canada and Mexico
have the same values because of the joint reporting.

Figure 4: Average manufacturing robot density in the period 2011-2013

[0,.0001021]
(.0001021,.0002529]
(.0002529,.0004311]
(.0004311,.003]
No data

Source: IFR and World Development Indicators. Note: The USA, Canada and Mexico
have the same values because of the joint reporting.
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5.4 Estimates with only GDP per capita as control

Table 10: Total robots growth including GDP per capita

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE CorrFE (bb) CorrFE (ab) CorrFE (ah) GMM (sys)

p̂t−1 0.250*** 0.197** 0.197** 0.119
(0.079) (0.092) (0.100) (0.163)

nt−1 h -0.601* -0.732** -1.444* -1.283* -1.430** -1.421** 0.565
(0.320) (0.345) (0.758) (0.659) (0.611) (0.607) (8.093)

st−1 0.102 0.123 0.003 -0.006 0.053 0.052 0.003
(0.143) (0.148) (0.557) (0.400) (0.374) (0.374) (0.420)

yt−1 -0.137*** -0.131*** 2.195*** 1.944** 1.855** 1.872** -0.554
(0.049) (0.048) (0.817) (0.800) (0.737) (0.735) (1.130)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.438
Hansen test - - - - - - 0.591
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level,
respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4) to
(6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal transformation. All of the
variables are in logarithms, while population growth and robots growth were transformed with the Box-Cox transformation.
CorrFE refers to the corrected fixed effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator,
“ab” initialization by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982)
estimator.
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Table 11: Manufacturing robots growth including GDP per capita

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE CorrFE (bb) CorrFE (ab) CorrFE (ah) GMM (sys)

p̂t−1 0.186** 0.124 0.119 0.005
(0.078) (0.087) (0.091) (0.082)

nt−1 -0.525 -0.667* -1.554* -1.468** -1.587*** -1.577*** 0.466
(0.326) (0.355) (0.806) (0.674) (0.614) (0.612) (4.403)

st−1 0.069 0.080 -0.272 -0.229 -0.191 -0.197 0.020
(0.119) (0.120) (0.533) (0.409) (0.376) (0.376) (0.476)

yt−1 -0.152*** -0.145*** 2.365*** 2.221*** 2.174*** 2.215*** -0.626
(0.046) (0.046) (0.717) (0.815) (0.740) (0.739) (0.511)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.250
Hansen test - - - - - - 0.427
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent
level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the
ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal
transformation. All of the variables are in logarithms, while population growth and robots growth were transformed
with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization by
the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991) estimator, and “ah”
initialization by the Anderson and Hsiao (1982) estimator.
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5.5 Baseline estimates using 2-year averages instead of 3-year averages

Table 12: Total robots

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.366*** 0.351*** 0.393*** 0.291***
(0.049) (0.050) (0.051) (0.071)

nt−1 -0.435 -0.606* -1.160* -0.717** -0.736** -0.706* -1.415*
(0.294) (0.344) (0.594) (0.359) (0.343) (0.370) (0.760)

st−1 0.093 0.135 0.380 0.230 0.247 0.257 0.091
(0.099) (0.108) (0.326) (0.214) (0.196) (0.208) (0.155)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.143
Hansen test - - - - - - 0.276
Countries 60 60 60 60 60 60 60
Observations 539 539 539 539 539 539 539

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent
level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with
“bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano
and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
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Table 13: Manufacturing robots

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.341*** 0.316*** 0.369*** 0.297***
(0.049) (0.050) (0.051) (0.083)

nt−1 -0.336 -0.519 -1.142* -0.775** -0.790** -0.754** -1.398*
(0.292) (0.347) (0.604) (0.364) (0.346) (0.376) (0.780)

st−1 0.058 0.088 0.247 0.132 0.148 0.169 -0.033
(0.074) (0.079) (0.316) (0.219) (0.199) (0.213) (0.195)

Country FE no no yes yes yes yes -
Year Dummies yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.055
Hansen test - - - - - - 0.155
Countries 60 60 60 60 60 60 60
Observations 539 539 539 539 539 539 539

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent
level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with
“bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano
and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
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5.6 Baseline estimates using 5% depreciation rate

Table 14: Total robots

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.339*** 0.294*** 0.280*** 0.299**
(0.077) (0.088) (0.099) (0.137)

nt−1 -0.591* -0.718** -2.151** -1.731*** -1.835*** -1.862*** -2.687**
(0.332) (0.353) (0.937) (0.645) (0.612) (0.608) (1.291)

st−1 0.077 0.103 0.545 0.385 0.405 0.419 -0.146
(0.125) (0.136) (0.519) (0.387) (0.371) (0.374) (0.622)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.783
Hansen test - - - - - - 0.177
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent
level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with
“bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano
and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.

Table 15: Manufacturing robots

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.300*** 0.246*** 0.227** 0.200
(0.076) (0.085) (0.093) (0.128)

nt−1 -0.526 -0.673* -2.332** -2.018*** -2.116*** -2.147*** -3.024***
(0.345) (0.370) (1.018) (0.662) (0.623) (0.618) (1.117)

st−1 0.051 0.070 0.318 0.229 0.244 0.258 0.094
(0.111) (0.117) (0.517) (0.395) (0.376) (0.376) (0.458)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.884
Hansen test - - - - - - 0.119
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent
level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with
“bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano
and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
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5.7 Baseline estimates using 15% depreciation rate

Table 16: Total robots

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.301*** 0.240*** 0.227** 0.174
(0.079) (0.092) (0.098) (0.106)

nt−1 -0.515 -0.683* -1.945** -1.658*** -1.763*** -1.782*** -4.050***
(0.323) (0.353) (0.858) (0.562) (0.528) (0.523) (1.377)

st−1 0.055 0.081 0.337 0.247 0.266 0.272 0.291
(0.118) (0.126) (0.477) (0.335) (0.319) (0.319) (0.542)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.790
Hansen test - - - - - - 0.891
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent
level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with
“bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano
and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.

Table 17: Manufacturing robots

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.233*** 0.162* 0.149* 0.071
(0.078) (0.085) (0.090) (0.123)

nt−1 -0.419 -0.605* -2.079** -1.901*** -1.998*** -2.012*** -4.411***
(0.328) (0.365) (0.938) (0.575) (0.534) (0.531) (1.430)

st−1 0.009 0.022 0.072 0.059 0.071 0.075 0.290
(0.086) (0.091) (0.469) (0.342) (0.321) (0.320) (0.491)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.481
Hansen test - - - - - - 0.813
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent
level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with
“bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano
and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
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5.8 Baseline estimates using the neglog transformation

Table 18: Total robots

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.496*** 0.477*** 0.456*** 0.473***
(0.068) (0.081) (0.092) (0.105)

nt−1 -12.135* -15.798** -35.286* -20.726** -21.720** -22.657** -40.401***
(6.436) (6.399) (18.480) (10.299) (10.138) (9.892) (14.349)

st−1 0.321 0.499 2.409** 1.275 1.327 1.383 -0.575
(0.430) (0.475) (0.957) (0.909) (0.916) (0.921) (1.030)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.100
Hansen test - - - - - - 0.186
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent
level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with
“bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano
and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.

Table 19: Manufacturing robots

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.257*** 0.192** 0.174* 0.186*
(0.077) (0.086) (0.918) (0.110)

nt−1 -4.084 -5.570* -16.691** -14.854*** -15.714*** -15.892*** -23.165***
(2.791) (3.069) (7.375) (4.150) (3.880) (3.846) (8.161)

st−1 0.030 0.049 0.266 0.219 0.237 0.247 0.152
(0.094) (0.100) (0.469) (0.369) (0.347) (0.347) (0.355)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.798
Hansen test - - - - - - 0.219
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent
level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with
“bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano
and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
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