Abeliansky, Ana; Prettner, Klaus

Working Paper
Automation and demographic change

Hohenheim Discussion Papers in Business, Economics and Social Sciences, No. 05-2017

Provided in Cooperation with:
Faculty of Business, Economics and Social Sciences, University of Hohenheim

Suggested Citation: Abeliansky, Ana; Prettner, Klaus (2017) : Automation and demographic change, Hohenheim Discussion Papers in Business, Economics and Social Sciences, No. 05-2017, Universität Hohenheim, Fakultät Wirtschafts- und Sozialwissenschaften, Stuttgart, http://nbn-resolving.de/urn:nbn:de:bsz:100-opus-13363

This Version is available at:
http://hdl.handle.net/10419/155768

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
AUTOMATION AND DEMOGRAPHIC CHANGE

Ana Abeliasky
University of Göttingen

Klaus Prettner
University of Hohenheim
Automation and demographic change

Ana Abeliansky, Klaus Prettner

Download this Discussion Paper from our homepage:
https://wiso.uni-hohenheim.de/papers

ISSN 2364-2076 (Printausgabe)
ISSN 2364-2084 (Internetausgabe)

Hohenheim Discussion Papers in Business, Economics and Social Sciences are intended to make results of the Faculty of Business, Economics and Social Sciences research available to the public in order to encourage scientific discussion and suggestions for revisions. The authors are solely responsible for the contents which do not necessarily represent the opinion of the Faculty of Business, Economics and Social Sciences.
Abstract

We analyze the effects of declining population growth on the adoption of automation technology. A standard theoretical framework of the accumulation of traditional physical capital and of automation capital predicts that countries with a lower population growth rate are the ones that innovate and/or adopt new automation technologies faster. We test the theoretical prediction by means of panel data for 60 countries over the time span from 1993 to 2013. Regression estimates provide empirical support for the theoretical prediction and suggest that a 1% increase in population growth is associated with approximately a 2% reduction in the growth rate of robot density. Our results are robust to the inclusion of standard control variables, the use of different estimation methods, the consideration of a dynamic framework with the lagged dependent variable as regressor, and changing the measurement of the stock of robots.

JEL classification: J11, O14, O33, O40.

Keywords: Automation, Industrial Robots, Demographic Change, Declining Population Growth, Economic Growth.
1 Introduction

Industrialized countries have experienced substantial declines in fertility and in birth rates over the last few decades. For example, in the United States, the total fertility rate (TFR) fell from 3.33 children per woman in the period 1950-1955 to 1.89 children per woman in the period 2010-2015. Over the same time span, the crude birth rate (CBR) decreased from 24.4 children per 1000 inhabitants to 12.6 children per 1000 inhabitants (see The United Nations, 2015, and Table 1 in which we depict the situation in the G7 countries). These demographic changes have already had a pronounced effect on the evolution of the labor force. Furthermore, the relatively larger cohorts that entered the labor markets of these countries in the 1960s and 1970s are now starting to reach the retirement age such that a substantial decline in the working-age population is most likely to prevail in the coming decades.

There are many concerns among economists regarding the long-run consequences of the mentioned demographic developments. For example, it is often argued that social security systems and retirement schemes would need to be reformed to ensure that they are accurately financed in the future when fewer and fewer workers will have to support ever more retirees (see Gruber and Wise, 1998; Bloom et al., 2010; The Economist, 2011), there are concerns that investment rates will decline when the retiring cohorts run down their assets (Mankiw and Weil, 1989; Schich, 2008), and some are afraid that the innovative capacity of aging societies will decline (see, for example, Canton et al., 2002; Borghans and ter Weel, 2002; Irmen and Litina, 2016; Gehringer and Prettner, 2017). Some commentators have even gone so far as to argue that aging is a “threat more grave and certain than those posed by chemical weapons, nuclear proliferation, or ethnic strife” (Peterson, 1999).

Table 1: TFR in the G7 countries 1950-1955 and 2010-2015 (United Nations, 2015)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>3.65</td>
<td>1.61</td>
<td>27.4</td>
<td>10.9</td>
</tr>
<tr>
<td>France</td>
<td>2.75</td>
<td>2.00</td>
<td>19.1</td>
<td>12.4</td>
</tr>
<tr>
<td>Germany</td>
<td>2.13</td>
<td>1.39</td>
<td>15.6</td>
<td>8.3</td>
</tr>
<tr>
<td>Italy</td>
<td>2.36</td>
<td>1.43</td>
<td>18.2</td>
<td>8.6</td>
</tr>
<tr>
<td>Japan</td>
<td>3.00</td>
<td>1.40</td>
<td>23.8</td>
<td>8.3</td>
</tr>
<tr>
<td>U.K.</td>
<td>2.18</td>
<td>1.92</td>
<td>15.1</td>
<td>12.6</td>
</tr>
<tr>
<td>USA</td>
<td>3.33</td>
<td>1.89</td>
<td>24.4</td>
<td>12.6</td>
</tr>
</tbody>
</table>

As far as the expected labor shortages due to population aging are concerned, there is a silver lining on the horizon. In recent years, robots have started to take over many tasks that have previously been regarded as non-automatable and it is expected that this trend will continue in the future (see Frey and Osborne, 2013; Arntz et al., 2016; Acemoglu and Restrepo, 2017, for different views on the extent of this development and for a discussion on how automation could alleviate the burden of population aging). Very
prominent examples that have received an extensive media coverage in recent years are autonomous cars and lorries that could soon transport passengers and goods without the need to rely on the (usually highly imperfect) driving skills of humans (fully automated food deliveries are already present in some cities, see El Pais, 2016); 3D printers are starting to produce highly specialized products – that could not be mass-manufactured before and which therefore required a lot of specialized human labor input – at a large scale; software based on machine learning is now already able to more reliably diagnose diseases than doctors; and even the skills of authors become more and more obsolete as algorithms are able to write newsflashes, reports, and even novels on their own.\footnote{See, for example, The Economist (2014), Abeliasky et al. (2015), Lanchester (2015), Graetz and Michaels (2015), Brynjolfsson and McAfee (2016), and Prettner (2017) on different aspects of automation and on new developments} Admittedly, it is still a much bigger pleasure to read “Anna Karenina” than “True Love” (a novel written by an algorithm programmed to rewrite Anna Karenina in the style of the Japanese author Haruki Murakami; see Barrie, 2014). However, things might change quite fast and maybe we will some day find out how “The Castle” or “The Man Without Qualities” could have come to an end – hopefully in the style of Kafka and Musil, respectively.

The paper is structured as follows. In Section 2, we provide some theoretical considerations on the potential effects of automation in the face of the demographic changes outlined in the introduction and we assess for which countries with a given demographic structure the adoption of robots is most likely to occur at a fast rate. In Section 3 we test the theoretical predictions empirically and in Section 4 we discuss our results and draw some policy conclusions.

2 Declining population growth and automation: Theoretical considerations

2.1 Basic assumptions

Consider an economy with three production factors, human labor, traditional capital (machines, assembly lines, production halls, office buildings, etc.), and automation capital (robots, 3D printers, driverless cars, devices based on machine learning, etc). Time t evolves discretely such that one time step corresponds to approximately 25 years and the population grows at rate n between time t and time $t+1$. Traditional capital and automation capital can be accumulated and they fully depreciate over the course of one generation. Human labor and traditional physical capital are imperfect substitutes, while automation capital is – by its definition – a perfect substitute for labor. Note the special and non-standard role that automation capital plays in such a setting: on the one hand, it performs the tasks of human labor and therefore constitutes a perfect substitute for this production factor; on the other hand, its accumulation resembles the process of standard physical capital accumulation and the income stream that automation capital generates
flows to the capital owners/savers of an economy. Overall, we follow the simplified exposition of Solow (1956) and assume that households save a constant fraction \(s \in (0, 1) \) of their total income. The savings rate could also be endogenized along the lines of Ramsey (1928), Cass (1965), and Koopmans (1965) but this would mainly complicate the exposition without adding substantially new insights regarding the effect of demographic change on automation. In a very interesting contribution, Steigum (2011) analyzes the effects of automation capital that is a (potentially imperfect) substitute for human labor, on long-run economic growth.\(^2\)

2.2 Households and population growth

The population size is given by \(N_t \) and its evolution is governed by the difference equation

\[
N_{t+1} = (1 + n)N_t,
\]

where \(n \) is the population growth rate. This rate is expected to fall in the future because of the demographic changes outlined in the introduction. We assume that there is inelastic labor supply of households and full employment such that the labor force at time \(t \) is also given by \(L_t \equiv N_t \). Consequently, a reduction in the population growth rate translates into a reduction in the growth rate of the work-force which is realistic, although, of course, it typically requires a certain amount of time. We abstract from this delay and assume that the decline of the population growth rate also represents the decline in the work-force.

Aggregate savings are given by \(S_{t+1} = sN_t \) and there are two savings vehicles, traditional physical capital and automation capital. As a consequence, there is a no-arbitrage condition that has to hold in any equilibrium in which individuals are investing in both types of assets. This condition states that the rates of return on traditional physical capital and on automation capital have to be equal.

2.3 Production and automation

We follow Prettner (2017) and assume that the production function has a Cobb-Douglas structure with respect to human labor and traditional physical capital. However, the additional non-standard production factor “automation capital” is a perfect substitute for labor such that aggregate output is given by

\[
Y_t = K_t^\alpha [L_t + P_t]^{1-\alpha},
\]

where \(K_t \) refers to traditional physical capital, \(P_t \) denotes automation capital, and \(\alpha \in (0, 1) \) is the elasticity of output with respect to traditional physical capital. We abstract

\(^2\)Endogenizing the savings rate along the lines of Diamond (1965), however, runs into problems because the accumulation of automation capital reduces the wages of households in the first period of their lives and therefore reduces their savings capacity, which leads to a stagnation equilibrium (Sachs and Kotlikoff, 2012; Benzell et al., 2015; Sachs et al., 2015; Gasteiger and Prettner, 2017). However, it is more realistic that savings are not only made out of wage income but also out of capital income.
from factor-augmenting technological progress that would only act as an additional source of economic growth but it would not alter the crucial mechanisms in our framework.\footnote{For an R&D-based endogenous growth model along the lines of Romer (1990) in which firms can invest in robot technology, see Hémous and Olsen (2016). In Acemoglu and Restrepo (2015) new tasks are constantly created by R&D, while, at the same time, old tasks are automated. Both of these papers focus on a different aspect of the rise of machines than the implications of demographic change for investments in (and the adoption of) automation technology.} We assume that there is perfect competition on factor markets such that production factors are paid their marginal value product. Normalizing the price of final output to 1, the wage rate and the rates of return on the two types of capital are given by

\begin{align}
 w_t &= (1 - \alpha) \left[\frac{K_t}{L_t + P_t} \right]^\alpha, \\
 R_{t+1}^{\text{autom}} &= w_t = (1 - \alpha) \left[\frac{K_t}{L_t + P_t} \right]^\alpha, \\
 R_{t+1}^{\text{trad}} &= \alpha \left[\frac{L_t + P_t}{K_t} \right]^{1-\alpha},
\end{align}

where \(R_{t+1}^{\text{autom}} \) is the gross interest rate paid on automation capital, which is equal to the wage rate, and \(R_{t+1}^{\text{trad}} \) is the gross interest rate paid on traditional physical capital. While the effects of \(K_t \) and \(L_t \) on wages and on the rate of return on traditional physical capital are straightforward, we have a non-standard effect of the accumulation of automation capital: As \(P_t \) increases, the wage rate decreases because workers compete with automation capital, whereas the rate of return on traditional physical capital increases because automation capital substitutes for workers and therefore raises the productivity of traditional physical capital. Together with the fact that the income stream earned by automation capital flows to the capital owners this mechanism has the potential to explain the decrease in the labor income share that we have observed over the last few decades (Steigum, 2011; Prettner, 2017). It is important to note at this point, that, while automation reduces the marginal value product of labor and thereby the wage rate, labor productivity as measured by output per worker increases in the wake of automation.

The no-arbitrage condition states that investments in both types of physical capital have to yield the same rate of return, i.e., it holds that \(R_{t+1}^{\text{autom}} = R_{t+1}^{\text{trad}} \). Setting Equations (2) and (3) equal to each other and solving for \(K_t \) and \(P_t \), respectively, yields

\begin{align}
 P_t &= \frac{1 - \alpha}{\alpha} K_t - L_t \quad \Leftrightarrow \quad K_t = \frac{\alpha}{1 - \alpha} (P_t + L_t). \tag{4}
\end{align}

Plugging the expression for traditional physical capital from Equation (4) into the aggregate production function provides

\begin{align}
 Y_t = \left(\frac{\alpha}{1 - \alpha} \right) [L_t + P_t], \tag{5}
\end{align}

where it is immediately clear that the standard convergence process to a stationary equi-
librium with no long-run growth that we know from the Solow (1956) model without technological progress does not hold anymore. Instead, the production function has the potential to lead to long-run growth if the savings rate is large enough such that a positive accumulation rate of automation capital can be sustained (cf. Steigum, 2011; Prettner, 2017). Note that Equation (5) resembles the properties of an AK type of production structure. However, in contrast to standard AK type of growth models this is not due to an assumption that removes the diminishing marginal product with respect to physical capital but due to the structure of the production process as derived in the presence of automation capital.\footnote{Peretto and Saeter (2013) construct a long-run economic growth model in which firms can invest in technological progress that raises the productivity of physical capital by increasing the elasticity of final output with respect to physical capital. In the long-run limit, their aggregate production function converges to an AK type of production function and economic growth is perpetual.} Allowing for a different rate of depreciation for traditional physical capital and for automation capital would leave our central results unchanged. The only difference would be that an additional constant term (the difference between the rates of depreciation between the two forms of capital) appeared in Equation (4) and in the derivations that are based on this equation.

From Equation (5) it follows that per capita GDP is given by

$$y_t = \left(\frac{\alpha}{1 - \alpha}\right)(p_t + 1),$$

where p_t is the automation density in terms of automation capital per capita. We immediately see that the prosperity of a country is positively linked to its automation density. The intuitive explanation for this is clear. For a given population size, automation overcomes the diminishing marginal product of traditional physical capital that acts as a boundary for long-run economic growth in the standard Solow (1956) model (see Prettner, 2017, for the analysis of the implications of automation for long-run economic growth in such a setting). Once the tasks which could previously only be carried out by human labor are automated, the stock of labor becomes, essentially, a reproducible production factor. At the aggregate level, this implies that there are constant returns to scale with respect to all reproducible production factors such that automation creates the potential for long-run growth without additional factor-augmenting technological progress. Next, we analyze how the automation density itself depends on the demographic setting, which is our main question of interest that we analyze empirically in Section 3.

2.4 The effect of demographic change on automation density

Since households save a constant fraction $s \in (0, 1)$ of their total income Y_t and the economy is closed, aggregate investment is $I_t = s Y_t$ such that

$$K_{t+1} + P_{t+1} = s Y_t.$$
Substituting for \(K_{t+1} \) by the no-arbitrage relationship (4), for \(Y_t \) by Equation (5), and dividing by the population size \(N_{t+1} \) provides the following expression

\[
\frac{\alpha (p_t + 1)}{1 - \alpha} + p_{t+1} = s \left(\frac{\alpha}{1 - \alpha} \right)^{\alpha} \frac{1 + p_t}{1 + n}.
\]

Solving this equation for the automation density in period \(t + 1 \) as a function of the automation density in period \(t \) and the parameter values of the model yields

\[
p_{t+1} = s(1 - \alpha) \left(\frac{\alpha}{1 - \alpha} \right)^{\alpha} \frac{1 + p_t}{1 + n} - \alpha.
\]

From this equation it follows immediately that a country with a lower population growth rate will have a higher density of automation technology. We summarize this in the following proposition.

Proposition 1. Consider a country in which the production structure is described by an aggregate production function of the form of Equation (5). Households save a constant fraction \(s \in (0, 1) \) of their total income (labor income and capital income in the form of traditional physical capital and automation capital), and the no-arbitrage condition (4) holds for both types of investments. In this case a country will have a higher density of automation capital if it has a lower population growth rate \((n) \).

Proof. Taking the derivative of Equation (6) with respect to \(n \) we get

\[
\frac{\partial p_{t+1}}{\partial n} = -s(1 - \alpha) \left(\frac{\alpha}{1 - \alpha} \right)^{\alpha} \frac{1 + p_t}{(1 + n)^2} < 0.
\]

Not that this expression is, in general, not equal to \(-1\) such that our result is not just due to the fact that automation density is defined as the aggregate stock of robots divided by the population size.

The intuition for this finding is the following: A country in which the population – and with it the labor force – grows fast, exhibits a comparably high rate of return on traditional physical capital and there is no need to invest in automation capital. In fact, in such a country, the rate of return on investment in automation capital tends to be rather low (think, for example, of African countries with a very fast population growth rate such as Mali and Niger: investing in automation would not be an attractive business strategy in these countries). By contrast, in a country in which the population – and with it the labor force – stagnates or even decreases, the rate of return on investment in automation is high and the rate of return on investment in traditional physical capital is rather low (think, for example, of aging European countries such as Germany and Italy and aging East Asian countries such as Japan and South Korea). Consequently, our theory predicts that the automation density is high in countries in which the growth rate of the population is low or even negative.
Table 2: Robot density and population growth in the top 10 countries with the highest robot density (International Federation of Robotics, 2015; United Nations, 2015)

<table>
<thead>
<tr>
<th>Country</th>
<th>Robot density per 10,000 employees in manufacturing</th>
<th>Average population growth between 2010 and 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Korea</td>
<td>347</td>
<td>0.48%</td>
</tr>
<tr>
<td>Japan</td>
<td>339</td>
<td>-0.12%</td>
</tr>
<tr>
<td>Germany</td>
<td>261</td>
<td>0.16%</td>
</tr>
<tr>
<td>Italy</td>
<td>159</td>
<td>0.07%</td>
</tr>
<tr>
<td>Sweden</td>
<td>157</td>
<td>0.83%</td>
</tr>
<tr>
<td>Denmark</td>
<td>145</td>
<td>0.42%</td>
</tr>
<tr>
<td>United States</td>
<td>135</td>
<td>0.75%</td>
</tr>
<tr>
<td>Spain</td>
<td>131</td>
<td>-0.21%</td>
</tr>
<tr>
<td>Finland</td>
<td>130</td>
<td>0.50%</td>
</tr>
<tr>
<td>Taiwan</td>
<td>129</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: The robot density is measured in terms of robots per 10,000 employees in manufacturing in 2015. The population growth rate is calculated as the average population growth rate from 2010 to 2015. The data sources are (International Federation of Robotics, 2015; United Nations, 2015).

A first glimpse on whether this is true is provided by Table 2 that depicts the robot density as of 2015 together with the average population growth rate in the preceding 5-year interval from 2010 to 2015 for the ten countries with the highest robot density. In general, we observe that the population growth rate in these countries is rather low and in some of them even negative. However, this could just be due to the fact that these countries are richer, implying that they have a lower fertility rate and that they are, at the same time, able to invest more in automation technology. In the next section we therefore test whether our theoretical implication is borne out by the data in a more thorough way.

3 Declining population growth and automation: Empirical results

In this section we introduce the data, then we test Proposition 1 empirically, and finally we provide a number of robustness checks.

3.1 Data description

The only available data-set so far to study the adoption of robots is the one collected by the International Federation of Robotics (IFR). The IFR reports the yearly delivery of “multipurpose manipulating industrial robots” as defined by the International Organization for Standardization for several countries, starting from 1993. We use the data until 2013 because the data for the year 2014 seem to be unreliable: There are several zeroes that look like reporting errors in comparison to previous values from the data series. In

5This refers to “Manipulating industrial robot as defined by ISO 8373: An automatically controlled, reprogrammable, multipurpose manipulator programmable in three or more axes, which may be either fixed in place or mobile for use in industrial automation applications” (Graetz and Michaels, 2015; International Federation of Robotics, 2012).

the baseline specification we use 3 year averages of the data which provides us with 7 time periods. The sample includes 60 countries for which the data are available (for the list of countries see Table 9 in the Appendix). We had to combine the NAFTA countries (Canada, the United States, and Mexico) into one country because they report the values jointly until 2011.

The IFR also reports the deliveries and stock of robots at the industry level. They consider that robots have a life-time horizon of 12 years, after which they are deployed (International Federation of Robotics, 2016). Following Graetz and Michaels (2015), we use an alternative way to calculate the stock of robots (for all robots and for the manufacturing industry) that relies on the perpetual inventory method under the assumption of a depreciation rate of 10%. Similar to Graetz and Michaels (2015), we prefer this method over the one used by the IFR because it is more in line with the standard economics literature. Since the IFR reports the stock of robots in 1993, this is our first value for the constructed series. Although all countries report the total stock of robots, not all of them report the stock nor the deliveries disaggregated at the industry level on a yearly basis. Given that we are mainly interested in the robots used in the manufacturing sector, we follow Graetz and Michaels (2015) and take the average share of deliveries of manufacturing robots over the total deliveries of robots (when the data are available), construct an average share, and impute the values for deliveries of manufacturing robots, as well as for the initial stock of robots (when the corresponding data were not available). In Table 8 in the Appendix we show the first reported year of robots’ data disaggregated by the industry level for the countries for which there were gaps in the reported data.

In the following figures we show how the robot density has evolved between the first period of the sample (1993-1995) and the last one (2011-2013). We discriminate between percentiles with Figure 1 (covering the period 1993-1995) reporting in the lightest shade of blue for the 75th percentile, proceeding with the 90th percentile, the 95th percentile, and finally the last 5% of the distribution (there are a lot of zeroes in this period which is why we use the 75th percentile as the first cutoff). For comparison, in Figure 2 (covering the period 2011-2013) we use the same cutoffs as in the previous figure. We observe a strong increase in robot density, especially in Europe and South Asia. Similar figures but only for robots used in the manufacturing sector are displayed in the Appendix (Figures 3 and 4).

We also collected information from the International Monetary Fund (IMF) on the investment share in terms of GDP. We constructed our investment variable summing the reported values of private investment, public investment, and joint ventures between the state and the private sector. As for other control variables, we included GDP per capita measured in constant US$ with a base year of 2010 from the World Development Indicators, openness measured as exports and imports over GDP, and the gross enrollment ratio in secondary school as in Busse and Spielmann (2006).\(^6\)

\(^6\)The natural choice of a proxy variable for education would have been the mean years of schooling as reported by (Barro and Lee, 2013). However, this variable is only available in 5 year intervals. Another
Figure 1: Average robot density for the period 1993-1995

Source: IFR and World Development Indicators. Note: The USA, Canada and Mexico have the same values because of the joint reporting.

Figure 2: Average robot density in the period 2011-2013

Source: IFR and World Development Indicators. Note: The USA, Canada and Mexico have the same values because of the joint reporting.
3.2 Empirical estimates

Based on Proposition 1, we estimate the relationship between robots adoption and population growth by means of the following equation:

\[
\ln(\hat{p}_{i,t}) = c + \alpha \ln(n_{i,t-1}) + \beta \ln(s_{i,t-1}) + \gamma \ln(x_{i,t-1}) + d_t + \epsilon_{i,t},
\]

where $\hat{p}_{i,t}$ is the growth rate of the stock of robots (either manufacturing robots, or the total amount of robots), $n_{i,t-1}$ is the population growth rate between period t-1 and t-2, $s_{i,t-1}$ is the investment rate in period $t-1$, $x_{i,t-1}$ is a vector of further control variables that will be used in the robustness analysis (i.e. GDP per capita), and d_t are time-specific effects to control for events and trends that affect all countries in the same manner, for example, the global economic and financial crisis that started in 2007/2008. Since we have zeroes and negative values in the dependent variable and in the population growth rate, we employed the Box-Cox transformation (Box and Cox, 1964) instead of simply applying logarithms.\(^7\) We apply the logarithmic transformation because this alleviates concerns regarding heteroskedasticity and non-linearities in the non-transformed variables. We relied on 3-year averages to alleviate problems regarding measurement errors and business-cycle effects (while the economic growth literature usually relies on 5 year averages, we would only have 2 consecutive time periods left for estimation in this case).

We first estimate Equation (7) using pooled OLS (POLS) and then proceed with a random-effects (RE) and a fixed-effects (FE) specification. Finally, we take the potential dynamics into account by including the lagged dependent variable in the regressions and applying various corrected fixed effects estimators (CorrFE) following Bruno (2005a,b), and the system GMM estimator [GMM (sys)] of Blundell and Bond (1998). Note that both of these types of estimators are seen as remedies for the Nickell (1981) bias in a dynamic panel data setting. We report the results for the total amount of robots and then also separately for the subset of manufacturing robots. Moreover, we assess the robustness of our results by adding a proxy for education, a proxy for GDP per capita, and a proxy for openness. In other robustness checks reported in the Appendix, we also consider different depreciation rates in the construction of the robot data series (5% and 15% instead of 10%), and a different transformation of the robot adoption and population growth rates [a neglog transformation as employed by Whittaker et al. (2005)].

Based on the theoretical considerations we expect to find a negative coefficient for the population growth rate that is smaller than -1 and a positive sign for the investment rate. When we include the controls, we expect a positive coefficient for GDP per capita because higher income implies a lower return to traditional capital accumulation and therefore

\(^7\)We created a new variable in the following manner: $z = \ln(\text{growth rate} - k)$, choosing k such that the skewness of z is zero. The correlation between the non-transformed variables and the variables in logarithms (naturally omitting the zeroes and the negative values) is 0.89.
a higher incentive to employ robots. Furthermore, a better educated population might be more inclined to invest in (or adapt to) robots such that the coefficient of education should also be positive. However, we have no a priori expectation regarding the sign of the coefficient for openness – on the one hand, as countries become more open, they could need fewer robots because domestic production could easier be substituted by imports; on the other hand, open economies are also subject to stronger international competition such that there is an incentive to automatize the production in search of efficiency gains.

3.2.1 Main Results

Table 3 contains the regression outputs from a baseline specification of Equation (7). As regressors we include the two crucial variables that are suggested by our theoretical considerations in Equation (6), the population growth rate and the investment rate. We observe that there is a negative relationship between population growth and the growth rate of the robot density in all specifications and it is statistically significant in the majority of the cases. Only in column (1), which reports the POLS regression, we find the coefficient not to be statistically significant which is most likely due to the lack of accounting of country-level heterogeneity. Our results are robust to the dynamic specifications using the corrected fixed effects estimators, as well as the system GMM estimator. For the choice between corrected fixed effects and system GMM we prefer the corrected fixed effects specifications because Judson and Owen (1999) report that this estimator performs better when the amount of time periods is smaller than 10, which is the case in our sample. Although the lagged dependent variable is statistically significant, the size of the coefficient does not suggest strong evidence for the use of a dynamic specification. Our preferred specification is therefore the fixed effects regression because the Hausman test suggests that the results from the random effects specification are inconsistent and that we therefore the need to control for unobserved heterogeneity. The coefficient estimate for the population growth rate in case of the fixed-effects specification suggests that when population growth increases by 1%, the robot density growth will decrease by 2%. As far as the main control variable (the investment share) is concerned, we find the expected positive relationship, although it is not statistically significant.

Table 4 shows the results for the growth rate of the manufacturing robot density. As in the previous case, we document a positive correlation, although not statistically significant, between the investment rate and the growth rate of the manufacturing robots density. We again find a negative association between the population growth rate and the robots density growth rate with the size of the coefficients being similar to the those reported in Table 3. In this case, there is even less evidence than before for the need of a dynamic specification because the coefficients of the lagged dependent variable are smaller in size and not even statistically significant in the case of the system GMM estimator.
Table 3: The relation between total robots growth and population growth

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POLS</td>
<td>RE</td>
<td>FE</td>
<td>CorrFE (bb)</td>
<td>CorrFE (ab)</td>
<td>CorrFE (ah)</td>
<td>GMM (sys)</td>
</tr>
<tr>
<td>(\dot{p}_{t-1})</td>
<td></td>
<td></td>
<td></td>
<td>0.316***</td>
<td>0.259***</td>
<td>0.245**</td>
<td>0.226**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.779)</td>
<td>(0.090)</td>
<td>(0.0987)</td>
<td>(0.111)</td>
</tr>
<tr>
<td>(r_{t-1})</td>
<td>-0.539</td>
<td>-0.694*</td>
<td>-2.030**</td>
<td>-1.600***</td>
<td>-1.803***</td>
<td>-1.828***</td>
<td>-3.515***</td>
</tr>
<tr>
<td></td>
<td>(0.328)</td>
<td>(0.354)</td>
<td>(0.894)</td>
<td>(0.597)</td>
<td>(0.562)</td>
<td>(0.557)</td>
<td>(1.205)</td>
</tr>
<tr>
<td>(s_{t-1})</td>
<td>0.063</td>
<td>0.090</td>
<td>0.419</td>
<td>0.304</td>
<td>0.324</td>
<td>0.335</td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td>(0.119)</td>
<td>(0.129)</td>
<td>(0.495)</td>
<td>(0.357)</td>
<td>(0.340)</td>
<td>(0.341)</td>
<td>(0.473)</td>
</tr>
</tbody>
</table>

Country FE: no no yes yes yes yes -
Time FE: yes yes yes yes yes yes yes
AR(2) test: 0.922
Hansen test: 0.623
Countries: 60 60 60 60 60 60 60
Observations: 300 300 300 300 300 300 300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.

Table 4: The relation between manufacturing robots growth and population growth

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POLS</td>
<td>RE</td>
<td>FE</td>
<td>CorrFE (bb)</td>
<td>CorrFE (ab)</td>
<td>CorrFE (ah)</td>
<td>GMM (sys)</td>
</tr>
<tr>
<td>(\dot{p}_{t-1})</td>
<td></td>
<td></td>
<td></td>
<td>0.264***</td>
<td>0.197**</td>
<td>0.180**</td>
<td>0.120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.077)</td>
<td>(0.086)</td>
<td>(0.0914)</td>
<td>(0.120)</td>
</tr>
<tr>
<td>(r_{t-1})</td>
<td>-0.457</td>
<td>-0.632*</td>
<td>-2.185**</td>
<td>-1.950***</td>
<td>-2.055***</td>
<td>-2.078***</td>
<td>-3.908***</td>
</tr>
<tr>
<td></td>
<td>(0.336)</td>
<td>(0.368)</td>
<td>(0.973)</td>
<td>(0.613)</td>
<td>(0.570)</td>
<td>(0.566)</td>
<td>(1.237)</td>
</tr>
<tr>
<td>(s_{t-1})</td>
<td>0.026</td>
<td>0.043</td>
<td>0.175</td>
<td>0.132</td>
<td>0.146</td>
<td>0.155</td>
<td>0.311</td>
</tr>
<tr>
<td></td>
<td>(0.095)</td>
<td>(0.101)</td>
<td>(0.490)</td>
<td>(0.365)</td>
<td>(0.343)</td>
<td>(0.343)</td>
<td>(0.401)</td>
</tr>
</tbody>
</table>

Country FE: no no yes yes yes yes -
Time FE: yes yes yes yes yes yes yes
AR(2) test: 0.623
Hansen test: 0.506
Countries: 60 60 60 60 60 60 60
Observations: 300 300 300 300 300 300 300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
3.2.2 Robustness Analysis

As a first robustness check we control for three potential omitted variables: GDP per capita, openness of the economy, and secondary school enrollment. Omitting these variables could be a source of bias because GDP per capita might be correlated with the population growth rate due to the fact that richer countries are more able to invest in new technologies and they are also the ones that are disproportionally affected by declining fertility as outlined in Section 1; an open economy might be under more pressure to stay competitive, and, at the same time, smaller economies by means of the population size tend to be more open; and education is highly correlated with GDP per capita, while, at the same time, a better educated population might be more inclined to invest in (or adapt to) robots.

Table 5: Total robots growth including controls

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_{t-1})</td>
<td>0.210**</td>
<td>0.137</td>
<td>0.140</td>
<td>0.279</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.082)</td>
<td>(0.085)</td>
<td>(0.088)</td>
<td>(0.202)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{t-1})</td>
<td>-0.565</td>
<td>-0.731*</td>
<td>-1.554**</td>
<td>-1.377*</td>
<td>-1.494**</td>
<td>-1.485**</td>
<td>-3.247*</td>
</tr>
<tr>
<td></td>
<td>(0.379)</td>
<td>(0.422)</td>
<td>(0.689)</td>
<td>(0.754)</td>
<td>(0.704)</td>
<td>(0.708)</td>
<td>(1.879)</td>
</tr>
<tr>
<td>(s_{t-1})</td>
<td>0.092</td>
<td>0.107</td>
<td>-0.416</td>
<td>-0.377</td>
<td>-0.337</td>
<td>-0.336</td>
<td>-0.316</td>
</tr>
<tr>
<td></td>
<td>(0.130)</td>
<td>(0.134)</td>
<td>(0.556)</td>
<td>(0.486)</td>
<td>(0.443)</td>
<td>(0.445)</td>
<td>(0.485)</td>
</tr>
<tr>
<td>(y_{t-1})</td>
<td>-0.172**</td>
<td>-0.151**</td>
<td>2.535***</td>
<td>2.316***</td>
<td>2.280***</td>
<td>2.283***</td>
<td>-0.080</td>
</tr>
<tr>
<td></td>
<td>(0.073)</td>
<td>(0.073)</td>
<td>(0.911)</td>
<td>(0.883)</td>
<td>(0.784)</td>
<td>(0.787)</td>
<td>(0.421)</td>
</tr>
<tr>
<td>(e_{t-1})</td>
<td>0.148</td>
<td>0.133</td>
<td>0.112</td>
<td>0.106</td>
<td>0.111</td>
<td>0.111</td>
<td>0.334</td>
</tr>
<tr>
<td></td>
<td>(0.180)</td>
<td>(0.176)</td>
<td>(0.192)</td>
<td>(0.185)</td>
<td>(0.171)</td>
<td>(0.171)</td>
<td>(0.244)</td>
</tr>
<tr>
<td>(open_{t-1})</td>
<td>0.040</td>
<td>0.034</td>
<td>-0.088</td>
<td>-0.149</td>
<td>-0.136</td>
<td>-0.139</td>
<td>-0.144</td>
</tr>
<tr>
<td></td>
<td>(0.142)</td>
<td>(0.155)</td>
<td>(0.519)</td>
<td>(0.552)</td>
<td>(0.503)</td>
<td>(0.506)</td>
<td>(0.795)</td>
</tr>
</tbody>
</table>

Country FE | no | no | yes | yes | yes | yes | - |
Time FE | yes |
AR(2) test | 0.979 |
Hansen test | 0.156 |
Countries | 57 | 57 | 57 | 57 | 57 | 57 | 57 |
Observations | 262 | 262 | 262 | 262 | 262 | 262 | 262 |

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.

Table 5, which includes the mentioned control variables, shows again a negative correlation between robot density growth and population growth. The magnitude of the coefficients in the different specifications are marginally smaller than in the previous tables. However, except for the pooled OLS specification, they are statistically significant at the 5% or at the 10% level. One reason for this could be that we had to accept a reduction in the sample size because of several missing observations for the openness and the secondary enrollment variables. The coefficient estimate of the investment rate is still
Table 6: Manufacturing robots growth including controls

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS RE FE CorrFE (bb) CorrFE (ab) CorrFE (ah) GMM (sys)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\hat{p}_{t-1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.148*</td>
<td>0.064</td>
<td>0.60</td>
<td>0.60</td>
<td>0.043</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.078)</td>
<td>(0.079)</td>
<td>(0.081)</td>
<td>(0.131)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{t-1}</td>
<td>-0.472</td>
<td>-0.636</td>
<td>-1.726**</td>
<td>-1.599**</td>
<td>-1.700**</td>
<td>-1.697**</td>
<td>-1.833**</td>
</tr>
<tr>
<td></td>
<td>(0.382)</td>
<td>(0.422)</td>
<td>(0.702)</td>
<td>(0.771)</td>
<td>(0.703)</td>
<td>(0.706)</td>
<td>(1.218)</td>
</tr>
<tr>
<td>s_{t-1}</td>
<td>0.061</td>
<td>0.067</td>
<td>-0.646</td>
<td>-0.586</td>
<td>-0.567</td>
<td>-0.570</td>
<td>-0.241</td>
</tr>
<tr>
<td></td>
<td>(0.109)</td>
<td>(0.108)</td>
<td>(0.558)</td>
<td>(0.496)</td>
<td>(0.441)</td>
<td>(0.442)</td>
<td>(0.349)</td>
</tr>
<tr>
<td>y_{t-1}</td>
<td>-0.197***</td>
<td>-0.181***</td>
<td>2.617***</td>
<td>2.531***</td>
<td>2.551***</td>
<td>2.580***</td>
<td>-0.523***</td>
</tr>
<tr>
<td></td>
<td>(0.068)</td>
<td>(0.067)</td>
<td>(0.841)</td>
<td>(0.899)</td>
<td>(0.785)</td>
<td>(0.787)</td>
<td>(0.169)</td>
</tr>
<tr>
<td>e_{t-1}</td>
<td>0.187</td>
<td>0.182</td>
<td>0.174</td>
<td>0.171</td>
<td>0.174</td>
<td>0.173</td>
<td>0.352*</td>
</tr>
<tr>
<td></td>
<td>(0.175)</td>
<td>(0.166)</td>
<td>(0.174)</td>
<td>(0.189)</td>
<td>(0.181)</td>
<td>(0.171)</td>
<td>(0.180)</td>
</tr>
<tr>
<td>$open_{t-1}$</td>
<td>0.024</td>
<td>0.021</td>
<td>0.000</td>
<td>-0.059</td>
<td>-0.033</td>
<td>-0.036</td>
<td>-0.392</td>
</tr>
<tr>
<td></td>
<td>(0.148)</td>
<td>(0.158)</td>
<td>(0.515)</td>
<td>(0.566)</td>
<td>(0.504)</td>
<td>(0.507)</td>
<td>(0.659)</td>
</tr>
</tbody>
</table>

Country FE no no yes yes yes yes -
Time FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.720
Hansen test - - - - - - 0.234
Countries 57 57 57 57 57 57 57
Observations 262 262 262 262 262 262 262

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.

not statistically significant across the specifications, as in the previous case. In columns (1) and (2), GDP per capita has a negative sign, which is surprising given that we expect that richer countries would be able to invest more in new technologies. However, GDP per capita reverts its sign from column (3) onwards. We believe that the reason for this is the presence of unobserved heterogeneity, as also the Hausman test indicates. Secondary enrollment has the predicted sign, although it is not statistically significant. Finally, openness has a negative sign in most of the specifications although none of the coefficients is statistically significant. Finally, the coefficient size of the lagged dependent variable shows that there is no pressing need to take the dynamics into account in the regression.

Turning to the manufacturing robots (Table 6), we observe a similar pattern as for the case of total robots. All specifications show a negative correlation between manufacturing robots growth and population growth. In contrast to the previous results, we find no statistical significance in column (7). However, this could be related to the fact that we do not need a dynamic specification and that the system GMM estimator is known to be very inefficient in case of a small time dimension. As in the previous tables we find no evidence of the importance of investment or secondary schooling for robots adoption. Similar to the case of total robots, we find a positive relationship between GDP per capita and the growth rate of manufacturing robots density. A puzzling result is the change in the sign of per capita GDP in case of the system GMM estimator. However, the estimations performed
with the corrected fixed effects estimators still exhibit the significantly positive result. In Tables 10 and 11 in the Appendix we report the same specification but omitting the controls that were not statistically significant (i.e., secondary enrollment and openness). The results do not change dramatically but the significance of the puzzling negative sign of per capita GDP in case of the system GMM estimator vanishes.

As further robustness checks, we used 2-year averages instead of averaging the data over 3 years. Tables 12 and 13 in the Appendix show the corresponding results. As before, we observe a statistically significant negative correlation of the population growth rate with the growth of robot density (either of the total stock of robots or the ones employed in the manufacturing sector). However, the magnitude of the correlation is smaller in absolute value. The investment rate coefficient continues to be statistically insignificant in both tables, having a positive sign in most of the cases. Only in column (7) of Table 13 the coefficient of the investment rate is negative, although this estimate should be considered with caution because the AR(2) test cannot rule out remaining autocorrelation of the residuals at the 10% significance level. Moreover, we also constructed two alternative robot stocks using 5% and 15% as alternative depreciation rates. The estimates for the baseline model can be seen in Tables 14 and 16 (for total robots) and Tables 15 and 16 (for manufacturing robots) in the Appendix. We find no substantial differences with our previous estimates. As the two final robustness checks we use the neglog transformation for both the population growth rate and the robot density growth rate. This transformation involves making the following adjustments to the variable (which we call \(x \) for simplicity). If \(x < 0 \), then we use \(-\ln(-x+1) \) instead and if \(x > 0 \), then we use \(\ln(x+1) \) instead. The results are shown in Tables 18 and 19 of the Appendix. Again, the results remain similar in terms of the sign and the statistical significance, although the size of the coefficients is higher. The results show some sensitivity with relation to the transformation of the variables that can take the value of 0 or negative values.

4 Conclusions

We propose a theoretical framework of production in the age of automation for countries that are subject to declining population growth and population aging. In so doing we introduce a new production factor that resembles the properties of labor in the production process, i.e., it is a perfect substitute for labor, while it resembles the properties of traditional physical capital in the accumulation process, i.e., it is accumulated in the same manner as physical capital due to the savings and investment behavior of households. For this case the standard Solow (1956) framework predicts, under certain circumstances, perpetual growth even without technological progress and a declining labor income share (Prettner, 2017). In our contribution we show that countries with a lower population growth rate have a stronger incentive to invest in the adoption of automation. The empirical estimates that we present, subject to several robustness tests, support this theoretical prediction.
As far as the policy implications are concerned, our theoretical and empirical findings suggest that countries, which are subject to larger demographic challenges, will be the first to adopt and/or invent new automation technologies. This in turn might help them to overcome some of the negative effects that declining population growth and population aging imply for long-run economic prosperity, issues that also the media is nowadays heavily concerned with (see, for example, The Washington Post, 2016). Of course, the transition to automation technologies might not be all that smooth because automation capital competes with labor and therefore could act so as to depress wages. If this concern is valid and widespread, it might lead to resistance against automation from labor unions and the population at large. Altogether, it might therefore be in everybody’s interest if governments enact policies that alleviate the burden of those who suffer because of automation. Potential policies along these lines could include education subsidies and re-training programs for those who loose their jobs because of automation, making sure that unemployment insurance is widely available, etc. Furthermore, it would at some point be necessary to rethink how social security systems are financed because the main contribution is now made by the production factor labor. If labor income becomes a smaller and smaller share of total income, however, alternatives would need to be found. One remedy that is often suggested would be to make sure that everybody owns some part of the automation capital of an economy, for example, a driverless car that earns an income stream for him or her (Pratt, 2015; The Economist, 2017).

Of course we have to admit that our framework stayed deliberately simple and the results that we present are meant as a first step in the direction of analyzing the interrelations between demography and automation. In reality, there are different skill groups in the population and the tasks that are performed by the different skill groups might be more or less suited to automation and they might even change over time (cf. Acemoglu and Restrepo, 2015). A more detailed framework should be able to take this into account and to empirically distinguish between the education level of different types of workers, and also the heterogeneity of tasks that workers perform. However, this crucially hinges on the data for automation in general, and robots, in particular, to become more widely available. Furthermore, a more detailed modeling of demographic change is called for that takes survival to old age and changing life expectancy into account. First steps in this direction have been undertaken by Gasteiger and Prettner (2017).

Acknowledgments

We would like to thank Matthias Beulmann, Georg Graetz, Volker Meier, and the participants at the annual meeting of the field committee for population economics of the German Economic Association in Passau 2017 for valuable comments and suggestions and David Höhle for excellent research assistance. We are grateful for the funding provided by the Faculty of Economics and Social Sciences at the University of Hohenheim within its research focus “Inequality and Economic Policy Analysis (INEPA)”.

17
5 Appendix

5.1 Summary Statistics

Table 7: Summary statistics

<table>
<thead>
<tr>
<th>Variable (in logs)</th>
<th>Observations</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{p}_{t-1})</td>
<td>300</td>
<td>4.300</td>
<td>0.909</td>
<td>-2.126</td>
<td>8.249</td>
</tr>
<tr>
<td>(n_{t-1})</td>
<td>300</td>
<td>-2.057</td>
<td>0.239</td>
<td>-2.788</td>
<td>-1.179</td>
</tr>
<tr>
<td>(s_{i,t-1})</td>
<td>300</td>
<td>2.879</td>
<td>0.609</td>
<td>-1.697</td>
<td>3.815</td>
</tr>
<tr>
<td>(y_{t-1})</td>
<td>300</td>
<td>9.351</td>
<td>1.262</td>
<td>6.539</td>
<td>11.408</td>
</tr>
<tr>
<td>(e_{t-1})</td>
<td>267</td>
<td>4.368</td>
<td>0.540</td>
<td>1.616</td>
<td>5.065</td>
</tr>
<tr>
<td>(open_{t-1})</td>
<td>295</td>
<td>4.262</td>
<td>0.523</td>
<td>2.789</td>
<td>6.033</td>
</tr>
</tbody>
</table>

5.2 Countries included

Table 8: Countries with adjusted values to create manufacturing stock

<table>
<thead>
<tr>
<th>Country</th>
<th>Year</th>
<th>Country</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>2004</td>
<td>South Korea</td>
<td>2001 (gap in 2002)</td>
</tr>
<tr>
<td>Australia</td>
<td>2006</td>
<td>Malaysia</td>
<td>2006</td>
</tr>
<tr>
<td>Austria</td>
<td>2003</td>
<td>Mexico</td>
<td>2011</td>
</tr>
<tr>
<td>Belgium</td>
<td>2004</td>
<td>Netherlands</td>
<td>2004</td>
</tr>
<tr>
<td>Brazil</td>
<td>2004</td>
<td>New Zealand</td>
<td>2006</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>2006</td>
<td>Philippines</td>
<td>2006</td>
</tr>
<tr>
<td>Canada</td>
<td>2011</td>
<td>Poland</td>
<td>2004</td>
</tr>
<tr>
<td>Chile</td>
<td>2005</td>
<td>Portugal</td>
<td>2004</td>
</tr>
<tr>
<td>China</td>
<td>2006</td>
<td>Romania</td>
<td>2004</td>
</tr>
<tr>
<td>Denmark</td>
<td>1996</td>
<td>Russia</td>
<td>2004</td>
</tr>
<tr>
<td>Greece</td>
<td>2006</td>
<td>Singapore</td>
<td>2005</td>
</tr>
<tr>
<td>Hungary</td>
<td>2004</td>
<td>Slovakia</td>
<td>2004</td>
</tr>
<tr>
<td>Iceland</td>
<td>2006</td>
<td>Slovenia</td>
<td>2005</td>
</tr>
<tr>
<td>Malta</td>
<td>2006</td>
<td>South Africa</td>
<td>2005</td>
</tr>
<tr>
<td>Peru</td>
<td>2006</td>
<td>Switzerland</td>
<td>2004</td>
</tr>
<tr>
<td>India</td>
<td>2006</td>
<td>Thailand</td>
<td>2005</td>
</tr>
<tr>
<td>Indonesia</td>
<td>2006</td>
<td>Turkey</td>
<td>2005</td>
</tr>
<tr>
<td>Ireland</td>
<td>2006</td>
<td>USA</td>
<td>2004</td>
</tr>
<tr>
<td>Israel</td>
<td>2005</td>
<td>Vietnam</td>
<td>2005</td>
</tr>
<tr>
<td>Japan</td>
<td>1996</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The year indicates the first time that the country reported dis-aggregated deliveries of robots at the industry level.
<table>
<thead>
<tr>
<th>Countries included in the sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
</tr>
<tr>
<td>France</td>
</tr>
<tr>
<td>Moldova</td>
</tr>
<tr>
<td>Serbia</td>
</tr>
<tr>
<td>Australia</td>
</tr>
<tr>
<td>Germany</td>
</tr>
<tr>
<td>Morocco</td>
</tr>
<tr>
<td>Singapore</td>
</tr>
<tr>
<td>Austria</td>
</tr>
<tr>
<td>Greece</td>
</tr>
<tr>
<td>NAFTA</td>
</tr>
<tr>
<td>Slovakia</td>
</tr>
<tr>
<td>Belgium</td>
</tr>
<tr>
<td>Hungary</td>
</tr>
<tr>
<td>Netherlands</td>
</tr>
<tr>
<td>South Africa</td>
</tr>
<tr>
<td>Brazil</td>
</tr>
<tr>
<td>Iceland</td>
</tr>
<tr>
<td>New Zealand</td>
</tr>
<tr>
<td>Spain</td>
</tr>
<tr>
<td>Bulgaria</td>
</tr>
<tr>
<td>India</td>
</tr>
<tr>
<td>Norway</td>
</tr>
<tr>
<td>Sweden</td>
</tr>
<tr>
<td>Chile</td>
</tr>
<tr>
<td>Indonesia</td>
</tr>
<tr>
<td>Oman</td>
</tr>
<tr>
<td>Switzerland</td>
</tr>
<tr>
<td>China</td>
</tr>
<tr>
<td>Ireland</td>
</tr>
<tr>
<td>Pakistan</td>
</tr>
<tr>
<td>Thailand</td>
</tr>
<tr>
<td>Colombia</td>
</tr>
<tr>
<td>Israel</td>
</tr>
<tr>
<td>Peru</td>
</tr>
<tr>
<td>Tunisia</td>
</tr>
<tr>
<td>Croatia</td>
</tr>
<tr>
<td>Italy</td>
</tr>
<tr>
<td>Philippines</td>
</tr>
<tr>
<td>Turkey</td>
</tr>
<tr>
<td>Czech Republic</td>
</tr>
<tr>
<td>Japan</td>
</tr>
<tr>
<td>Poland</td>
</tr>
<tr>
<td>Ukraine</td>
</tr>
<tr>
<td>Denmark</td>
</tr>
<tr>
<td>South Korea</td>
</tr>
<tr>
<td>Portugal</td>
</tr>
<tr>
<td>United Kingdom</td>
</tr>
<tr>
<td>Egypt</td>
</tr>
<tr>
<td>Kuwait</td>
</tr>
<tr>
<td>Romania</td>
</tr>
<tr>
<td>Uzbekistan</td>
</tr>
<tr>
<td>Estonia</td>
</tr>
<tr>
<td>Lithuania</td>
</tr>
<tr>
<td>Russia</td>
</tr>
<tr>
<td>Venezuela</td>
</tr>
<tr>
<td>Finland</td>
</tr>
<tr>
<td>Malaysia</td>
</tr>
<tr>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>Vietnam</td>
</tr>
</tbody>
</table>
5.3 Distribution of the manufacturing stock of robots

Figure 3: Average manufacturing robot density for the period 1993-1995

Source: IFR and World Development Indicators. Note: The USA, Canada and Mexico have the same values because of the joint reporting.

Figure 4: Average manufacturing robot density in the period 2011-2013

Source: IFR and World Development Indicators. Note: The USA, Canada and Mexico have the same values because of the joint reporting.
5.4 Estimates with only GDP per capita as control

Table 10: Total robots growth including GDP per capita

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POLS</td>
<td>RE</td>
<td>FE</td>
<td>CorrFE (bb)</td>
<td>CorrFE (ab)</td>
<td>CorrFE (ah)</td>
<td>GMM (sys)</td>
</tr>
<tr>
<td>\hat{P}_{t-1}</td>
<td>0.250***</td>
<td>0.197**</td>
<td>0.197**</td>
<td>0.119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.079)</td>
<td>(0.092)</td>
<td>(0.100)</td>
<td>(0.163)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{t-1}</td>
<td>-0.601*</td>
<td>-0.732**</td>
<td>-1.444*</td>
<td>-1.283*</td>
<td>-1.430**</td>
<td>-1.421**</td>
<td>0.565</td>
</tr>
<tr>
<td></td>
<td>(0.320)</td>
<td>(0.345)</td>
<td>(0.758)</td>
<td>(0.659)</td>
<td>(0.611)</td>
<td>(0.607)</td>
<td>(8.093)</td>
</tr>
<tr>
<td>s_{t-1}</td>
<td>0.102</td>
<td>0.123</td>
<td>0.003</td>
<td>-0.006</td>
<td>0.053</td>
<td>0.052</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>(0.143)</td>
<td>(0.148)</td>
<td>(0.557)</td>
<td>(0.400)</td>
<td>(0.374)</td>
<td>(0.374)</td>
<td>(0.420)</td>
</tr>
<tr>
<td>y_{t-1}</td>
<td>-0.137***</td>
<td>-0.131***</td>
<td>2.195***</td>
<td>1.944**</td>
<td>1.855**</td>
<td>1.872**</td>
<td>-0.554</td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.048)</td>
<td>(0.817)</td>
<td>(0.800)</td>
<td>(0.737)</td>
<td>(0.735)</td>
<td>(1.130)</td>
</tr>
</tbody>
</table>

Country FE | no | no | yes | yes | yes | yes | yes | - |
Year FE | yes |
AR(2) test | - | - | - | - | - | - | - | 0.438 |
Hansen test | - | - | - | - | - | - | - | 0.591 |
Countries | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
Observations| 300| 300| 300 | 300 | 300 | 300 | 300 | 300 |

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
Table 11: Manufacturing robots growth including GDP per capita

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POLS RE</td>
<td>FE</td>
<td>CorrFE (bb)</td>
<td>CorrFE (ab)</td>
<td>CorrFE (ah)</td>
<td>GMM (sys)</td>
<td></td>
</tr>
<tr>
<td>(\hat{p}_{t-1})</td>
<td>0.186**</td>
<td>0.124</td>
<td>0.119</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.078)</td>
<td>(0.087)</td>
<td>(0.091)</td>
<td>(0.082)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_{t-1})</td>
<td>-0.525</td>
<td>-0.667*</td>
<td>-1.554*</td>
<td>-1.468**</td>
<td>-1.587***</td>
<td>-1.577***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.326)</td>
<td>(0.355)</td>
<td>(0.806)</td>
<td>(0.674)</td>
<td>(0.614)</td>
<td>(0.612)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.667*</td>
<td>-0.667*</td>
<td>-1.554*</td>
<td>-1.468**</td>
<td>-1.587***</td>
<td>-1.577***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.326)</td>
<td>(0.355)</td>
<td>(0.806)</td>
<td>(0.674)</td>
<td>(0.614)</td>
<td>(0.612)</td>
<td></td>
</tr>
<tr>
<td>(y_{t-1})</td>
<td>0.069</td>
<td>0.080</td>
<td>-0.272</td>
<td>-0.229</td>
<td>-0.191</td>
<td>-0.197</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.119)</td>
<td>(0.120)</td>
<td>(0.533)</td>
<td>(0.409)</td>
<td>(0.376)</td>
<td>(0.376)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.069</td>
<td>0.080</td>
<td>-0.272</td>
<td>-0.229</td>
<td>-0.191</td>
<td>-0.197</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.119)</td>
<td>(0.120)</td>
<td>(0.533)</td>
<td>(0.409)</td>
<td>(0.376)</td>
<td>(0.376)</td>
<td></td>
</tr>
<tr>
<td>(y_{t-1})</td>
<td>-0.152***</td>
<td>-0.145***</td>
<td>2.365***</td>
<td>2.221***</td>
<td>2.174***</td>
<td>2.215***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td>(0.046)</td>
<td>(0.717)</td>
<td>(0.815)</td>
<td>(0.740)</td>
<td>(0.739)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.152***</td>
<td>-0.145***</td>
<td>2.365***</td>
<td>2.221***</td>
<td>2.174***</td>
<td>2.215***</td>
<td></td>
</tr>
</tbody>
</table>

Country FE: no no yes yes yes yes -
Year FE: no no yes yes yes yes yes
AR(2) test: - - - - - - yes 0.250
Hansen test: - - - - - - yes 0.427
Countries: 60 60 60 60 60 60 60
Observations: 300 300 300 300 300 300 300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
5.5 Baseline estimates using 2-year averages instead of 3-year averages

Table 12: Total robots

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POLS</td>
<td>RE</td>
<td>FE</td>
<td>corrFE (bb)</td>
<td>corrFE (ab)</td>
<td>corrFE (ah)</td>
<td>GMM (sys)</td>
</tr>
<tr>
<td>(\hat{p}_{t-1})</td>
<td></td>
<td></td>
<td></td>
<td>0.366***</td>
<td>0.351***</td>
<td>0.393***</td>
<td>0.291***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.049)</td>
<td>(0.050)</td>
<td>(0.051)</td>
<td>(0.071)</td>
</tr>
<tr>
<td>(n_{t-1})</td>
<td>-0.435</td>
<td>-0.606*</td>
<td>-1.160*</td>
<td>-0.717**</td>
<td>-0.736**</td>
<td>-0.706*</td>
<td>-1.415*</td>
</tr>
<tr>
<td></td>
<td>(0.294)</td>
<td>(0.344)</td>
<td>(0.594)</td>
<td>(0.359)</td>
<td>(0.343)</td>
<td>(0.370)</td>
<td>(0.760)</td>
</tr>
<tr>
<td>(s_{t-1})</td>
<td>0.093</td>
<td>0.135</td>
<td>0.380</td>
<td>0.230</td>
<td>0.247</td>
<td>0.257</td>
<td>0.091</td>
</tr>
<tr>
<td></td>
<td>(0.099)</td>
<td>(0.108)</td>
<td>(0.326)</td>
<td>(0.214)</td>
<td>(0.196)</td>
<td>(0.208)</td>
<td>(0.155)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Country FE</th>
<th>Year FE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>AR(2) test</td>
<td>-</td>
<td>0.143</td>
<td></td>
</tr>
<tr>
<td>Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.</td>
<td></td>
</tr>
</tbody>
</table>
Table 13: Manufacturing robots

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POLS</td>
<td>RE</td>
<td>FE</td>
<td>corrFE (bb)</td>
<td>corrFE (ah)</td>
<td>corrFE (ah)</td>
<td>GMM (sys)</td>
</tr>
<tr>
<td>$\hat{\rho}_{t-1}$</td>
<td>0.341***</td>
<td>0.316***</td>
<td>0.369***</td>
<td>0.297***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.050)</td>
<td>(0.051)</td>
<td>(0.083)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{t-1}</td>
<td>-0.336</td>
<td>-0.519</td>
<td>-1.142*</td>
<td>-0.775**</td>
<td>-0.790**</td>
<td>-0.754**</td>
<td>-1.398*</td>
</tr>
<tr>
<td></td>
<td>(0.292)</td>
<td>(0.347)</td>
<td>(0.604)</td>
<td>(0.364)</td>
<td>(0.346)</td>
<td>(0.376)</td>
<td>(0.780)</td>
</tr>
<tr>
<td>s_{t-1}</td>
<td>0.058</td>
<td>0.088</td>
<td>0.247</td>
<td>0.132</td>
<td>0.148</td>
<td>0.169</td>
<td>-0.033</td>
</tr>
<tr>
<td></td>
<td>(0.074)</td>
<td>(0.079)</td>
<td>(0.316)</td>
<td>(0.219)</td>
<td>(0.199)</td>
<td>(0.213)</td>
<td>(0.195)</td>
</tr>
<tr>
<td>Country FE</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Year Dummies</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>AR(2) test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.055</td>
</tr>
<tr>
<td>Hansen test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.155</td>
</tr>
<tr>
<td>Countries</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Observations</td>
<td>539</td>
<td>539</td>
<td>539</td>
<td>539</td>
<td>539</td>
<td>539</td>
<td>539</td>
</tr>
</tbody>
</table>

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
5.6 Baseline estimates using 5% depreciation rate

Table 14: Total robots

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{p}_{t-1}</td>
<td>0.339***</td>
<td>0.294***</td>
<td>0.280***</td>
<td>0.299**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.077)</td>
<td>(0.088)</td>
<td>(0.099)</td>
<td>(0.137)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{t-1}</td>
<td>-0.501*</td>
<td>-0.718**</td>
<td>-2.151**</td>
<td>-1.731***</td>
<td>-1.835***</td>
<td>-1.862***</td>
<td>-2.087**</td>
</tr>
<tr>
<td></td>
<td>(0.332)</td>
<td>(0.353)</td>
<td>(0.937)</td>
<td>(0.645)</td>
<td>(0.612)</td>
<td>(0.608)</td>
<td>(1.291)</td>
</tr>
<tr>
<td>s_{t-1}</td>
<td>0.077</td>
<td>0.103</td>
<td>0.545</td>
<td>0.385</td>
<td>0.405</td>
<td>0.419</td>
<td>-0.146</td>
</tr>
<tr>
<td></td>
<td>(0.125)</td>
<td>(0.136)</td>
<td>(0.519)</td>
<td>(0.387)</td>
<td>(0.371)</td>
<td>(0.374)</td>
<td>(0.622)</td>
</tr>
</tbody>
</table>

Country FE	no	no	yes	yes	yes	yes	-
Year FE	yes						
AR(2) test							0.783
Hansen test							0.177
Countries	60	60	60	60	60	60	60
Observations	300	300	300	300	300	300	300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.

Table 15: Manufacturing robots

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{p}_{t-1}</td>
<td>0.300***</td>
<td>0.246***</td>
<td>0.227**</td>
<td>0.200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.076)</td>
<td>(0.085)</td>
<td>(0.083)</td>
<td>(0.128)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{t-1}</td>
<td>-0.526</td>
<td>-0.673*</td>
<td>-2.332**</td>
<td>-2.018***</td>
<td>-2.116***</td>
<td>-2.147***</td>
<td>-3.024***</td>
</tr>
<tr>
<td></td>
<td>(0.345)</td>
<td>(0.370)</td>
<td>(1.018)</td>
<td>(0.662)</td>
<td>(0.623)</td>
<td>(0.618)</td>
<td>(1.117)</td>
</tr>
<tr>
<td>s_{t-1}</td>
<td>0.051</td>
<td>0.070</td>
<td>0.318</td>
<td>0.229</td>
<td>0.244</td>
<td>0.258</td>
<td>0.094</td>
</tr>
<tr>
<td></td>
<td>(0.111)</td>
<td>(0.117)</td>
<td>(0.517)</td>
<td>(0.395)</td>
<td>(0.376)</td>
<td>(0.376)</td>
<td>(0.458)</td>
</tr>
</tbody>
</table>

Country FE	no	no	yes	yes	yes	yes	-
Year FE	yes						
AR(2) test							0.884
Hansen test							0.119
Countries	60	60	60	60	60	60	60
Observations	300	300	300	300	300	300	300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
5.7 Baseline estimates using 15% depreciation rate

Table 16: Total robots

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POLS</td>
<td>RE</td>
<td>FE</td>
<td>corrFE (bb)</td>
<td>corrFE (ab)</td>
<td>corrFE (ah)</td>
<td>GMM (sys)</td>
</tr>
<tr>
<td>\hat{p}_{t-1}</td>
<td>0.301***</td>
<td>0.240***</td>
<td>0.227**</td>
<td>0.174</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.079)</td>
<td>(0.092)</td>
<td>(0.098)</td>
<td>(0.106)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{t-1}</td>
<td>-0.515</td>
<td>-0.663*</td>
<td>-1.945**</td>
<td>-1.658***</td>
<td>-1.763***</td>
<td>-1.782***</td>
<td>-4.050***</td>
</tr>
<tr>
<td></td>
<td>(0.223)</td>
<td>(0.353)</td>
<td>(0.858)</td>
<td>(0.562)</td>
<td>(0.528)</td>
<td>(0.523)</td>
<td>(1.377)</td>
</tr>
<tr>
<td>s_{t-1}</td>
<td>0.055</td>
<td>0.081</td>
<td>0.337</td>
<td>0.247</td>
<td>0.266</td>
<td>0.272</td>
<td>0.291</td>
</tr>
<tr>
<td></td>
<td>(0.118)</td>
<td>(0.126)</td>
<td>(0.477)</td>
<td>(0.335)</td>
<td>(0.319)</td>
<td>(0.319)</td>
<td>(0.542)</td>
</tr>
</tbody>
</table>

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.790
Hansen test - - - - - - 0.891
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with "bb" indicating initialization by the Blundell and Bond (1998) estimator, "ab" initialization by the Arellano and Bond (1991) estimator, and "ah" initialization by the Anderson and Hsiao (1982) estimator.

Table 17: Manufacturing robots

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POLS</td>
<td>RE</td>
<td>FE</td>
<td>corrFE (bb)</td>
<td>corrFE (ab)</td>
<td>corrFE (ah)</td>
<td>GMM (sys)</td>
</tr>
<tr>
<td>\hat{p}_{t-1}</td>
<td>0.233***</td>
<td>0.162*</td>
<td>0.149*</td>
<td>0.071</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.078)</td>
<td>(0.085)</td>
<td>(0.090)</td>
<td>(0.123)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{t-1}</td>
<td>-0.419</td>
<td>-0.605*</td>
<td>-2.079**</td>
<td>-1.901***</td>
<td>-1.998***</td>
<td>-2.012***</td>
<td>-4.411***</td>
</tr>
<tr>
<td></td>
<td>(0.328)</td>
<td>(0.365)</td>
<td>(0.938)</td>
<td>(0.575)</td>
<td>(0.534)</td>
<td>(0.531)</td>
<td>(1.430)</td>
</tr>
<tr>
<td>s_{t-1}</td>
<td>0.009</td>
<td>0.022</td>
<td>0.072</td>
<td>0.059</td>
<td>0.071</td>
<td>0.075</td>
<td>0.290</td>
</tr>
<tr>
<td></td>
<td>(0.086)</td>
<td>(0.091)</td>
<td>(0.469)</td>
<td>(0.342)</td>
<td>(0.321)</td>
<td>(0.320)</td>
<td>(0.491)</td>
</tr>
</tbody>
</table>

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.481
Hansen test - - - - - - 0.813
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with "bb" indicating initialization by the Blundell and Bond (1998) estimator, "ab" initialization by the Arellano and Bond (1991) estimator, and "ah" initialization by the Anderson and Hsiao (1982) estimator.
5.8 Baseline estimates using the neglog transformation

Table 18: Total robots

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POLS RE FE</td>
<td>corrFE (bb)</td>
<td>corrFE (ab)</td>
<td>corrFE (ah)</td>
<td>GMM (sys)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{p}_{t-1})</td>
<td>-0.496***</td>
<td>0.477***</td>
<td>0.456***</td>
<td>0.473***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.068)</td>
<td>(0.081)</td>
<td>(0.092)</td>
<td>(0.105)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{n}_{t-1})</td>
<td>-12.135*</td>
<td>-15.798**</td>
<td>-35.286*</td>
<td>-20.726**</td>
<td>-21.720**</td>
<td>-22.657**</td>
<td>-40.401***</td>
</tr>
<tr>
<td>(\hat{s}_{t-1})</td>
<td>0.321</td>
<td>0.499</td>
<td>2.409**</td>
<td>1.275</td>
<td>1.327</td>
<td>1.383</td>
<td>-0.575</td>
</tr>
<tr>
<td></td>
<td>(0.430)</td>
<td>(0.475)</td>
<td>(0.957)</td>
<td>(0.909)</td>
<td>(0.916)</td>
<td>(0.921)</td>
<td>(1.030)</td>
</tr>
</tbody>
</table>

Country FE | no | no | yes | yes | yes | yes | -
Year FE | yes | yes | yes | yes | yes | yes | yes
AR(2) test | - | - | - | - | - | - | 0.100
Hansen test | - | - | - | - | - | - | 0.186
Countries | 60 | 60 | 60 | 60 | 60 | 60 | 60
Observations | 300 | 300 | 300 | 300 | 300 | 300 | 300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.

Table 19: Manufacturing robots

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POLS RE FE</td>
<td>corrFE (bb)</td>
<td>corrFE (ab)</td>
<td>corrFE (ah)</td>
<td>GMM (sys)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{p}_{t-1})</td>
<td>0.257***</td>
<td>0.192**</td>
<td>0.174*</td>
<td>0.186*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.077)</td>
<td>(0.086)</td>
<td>(0.098)</td>
<td>(0.110)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{n}_{t-1})</td>
<td>-4.084</td>
<td>-5.570*</td>
<td>-16.691**</td>
<td>-14.854***</td>
<td>-15.714***</td>
<td>-15.892***</td>
<td>-23.165***</td>
</tr>
<tr>
<td></td>
<td>(2.791)</td>
<td>(3.069)</td>
<td>(7.375)</td>
<td>(4.150)</td>
<td>(3.880)</td>
<td>(3.846)</td>
<td>(8.161)</td>
</tr>
<tr>
<td>(\hat{s}_{t-1})</td>
<td>0.030</td>
<td>0.049</td>
<td>0.266</td>
<td>0.219</td>
<td>0.237</td>
<td>0.247</td>
<td>0.152</td>
</tr>
<tr>
<td></td>
<td>(0.094)</td>
<td>(0.100)</td>
<td>(0.469)</td>
<td>(0.369)</td>
<td>(0.347)</td>
<td>(0.347)</td>
<td>(0.355)</td>
</tr>
</tbody>
</table>

Country FE | no | no | yes | yes | yes | yes | -
Year FE | yes | yes | yes | yes | yes | yes | yes
AR(2) test | - | - | - | - | - | - | 0.798
Hansen test | - | - | - | - | - | - | 0.219
Countries | 60 | 60 | 60 | 60 | 60 | 60 | 60
Observations | 300 | 300 | 300 | 300 | 300 | 300 | 300

Note: We report standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth were transformed with the Box-Cox transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
References

The Faculty of Business, Economics and Social Sciences continues since 2015 the established “FZID Discussion Paper Series” of the “Centre for Research on Innovation and Services (FZID)” under the name “Hohenheim Discussion Papers in Business, Economics and Social Sciences”.

Institutes

510 Institute of Financial Management
520 Institute of Economics
530 Institute of Health Care & Public Management
540 Institute of Communication Science
550 Institute of Law and Social Sciences
560 Institute of Economic and Business Education
570 Institute of Marketing & Management
580 Institute of Interorganisational Management & Performance

Research Areas (since 2017)

INEPA "Inequality and Economic Policy Analysis"
TKID "Transformation der Kommunikation – Integration und Desintegration"
NegoTrans "Negotiation Research – Transformation, Technology, Media and Costs"
INEF “Innovation, Entrepreneurship and Finance”

Download Hohenheim Discussion Papers in Business, Economics and Social Sciences from our homepage: https://wiso.uni-hohenheim.de/papers

<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title</th>
<th>Inst</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-2015</td>
<td>Thomas Beissinger, Philipp Baudy</td>
<td>THE IMPACT OF TEMPORARY AGENCY WORK ON TRADE UNION WAGE SETTING: A Theoretical Analysis</td>
<td>520</td>
</tr>
<tr>
<td>02-2015</td>
<td>Fabian Wahl</td>
<td>PARTICIPATIVE POLITICAL INSTITUTIONS AND CITY DEVELOPMENT 800-1800</td>
<td>520</td>
</tr>
<tr>
<td>03-2015</td>
<td>Tommaso Proietti, Martyna Marczaq, Gianluigi Mazzi</td>
<td>EUROMIND-D: A DENSITY ESTIMATE OF MONTHLY GROSS DOMESTIC PRODUCT FOR THE EURO AREA</td>
<td>520</td>
</tr>
<tr>
<td>04-2015</td>
<td>Thomas Beissinger, Nathalie Chusseau, Joël Hellier</td>
<td>OFFSHORING AND LABOUR MARKET REFORMS: MODELLING THE GERMAN EXPERIENCE</td>
<td>520</td>
</tr>
<tr>
<td>05-2015</td>
<td>Matthias Mueller, Kristina Bogner, Tobias Buchmann, Muhamed Kudic</td>
<td>SIMULATING KNOWLEDGE DIFFUSION IN FOUR STRUCTURALLY DISTINCT NETWORKS – AN AGENT-BASED SIMULATION MODEL</td>
<td>520</td>
</tr>
<tr>
<td>06-2015</td>
<td>Martyna Marczaq, Thomas Beissinger</td>
<td>BIDIRECTIONAL RELATIONSHIP BETWEEN INVESTOR SENTIMENT AND EXCESS RETURNS: NEW EVIDENCE FROM THE WAVELET PERSPECTIVE</td>
<td>520</td>
</tr>
<tr>
<td>07-2015</td>
<td>Peng Nie, Galit Nimrod, Alfonso Sousa-Poza</td>
<td>INTERNET USE AND SUBJECTIVE WELL-BEING IN CHINA</td>
<td>530</td>
</tr>
<tr>
<td>No.</td>
<td>Author</td>
<td>Title</td>
<td>Inst</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>08-2015</td>
<td>Fabian Wahl</td>
<td>THE LONG SHADOW OF HISTORY ROMAN LEGACY AND ECONOMIC DEVELOPMENT – EVIDENCE FROM THE GERMAN LIMES</td>
<td>520</td>
</tr>
<tr>
<td>09-2015</td>
<td>Peng Nie, Alfonso Sousa-Poza</td>
<td>COMMUTE TIME AND SUBJECTIVE WELL-BEING IN URBAN CHINA</td>
<td>530</td>
</tr>
<tr>
<td>10-2015</td>
<td>Kristina Bogner</td>
<td>THE EFFECT OF PROJECT FUNDING ON INNOVATIVE PERFORMANCE AN AGENT-BASED SIMULATION MODEL</td>
<td>520</td>
</tr>
<tr>
<td>11-2015</td>
<td>Bogang Jun, Tai-Yoo Kim</td>
<td>A NEO-SCHUMPETERIAN PERSPECTIVE ON THE ANALYTICAL MACROECONOMIC FRAMEWORK: THE EXPANDED REPRODUCTION SYSTEM</td>
<td>520</td>
</tr>
<tr>
<td>12-2015</td>
<td>Volker Grossmann, Aderonke Osikominu, Marius Osterfeld</td>
<td>ARE SOCIOCULTURAL FACTORS IMPORTANT FOR STUDYING A SCIENCE UNIVERSITY MAJOR?</td>
<td>520</td>
</tr>
<tr>
<td>13-2015</td>
<td>Martyna Marczak, Tommaso Proietti, Stefano Grassi</td>
<td>A DATA–CLEANING AUGMENTED KALMAN FILTER FOR ROBUST ESTIMATION OF STATE SPACE MODELS</td>
<td>520</td>
</tr>
<tr>
<td>01-2016</td>
<td>Michael Ahlheim, Jan Neidhardt</td>
<td>NON-TRADING BEHAVIOUR IN CHOICE EXPERIMENTS</td>
<td>520</td>
</tr>
<tr>
<td>02-2016</td>
<td>Bogang Jun, Alexander Gerybadze, Tai-Yoo Kim</td>
<td>THE LEGACY OF FRIEDRICH LIST: THE EXPANSIVE REPRODUCTION SYSTEM AND THE KOREAN HISTORY OF INDUSTRIALIZATION</td>
<td>520</td>
</tr>
<tr>
<td>03-2016</td>
<td>Peng Nie, Alfonso Sousa-Poza</td>
<td>FOOD INSECURITY AMONG OLDER EUROPEANS: EVIDENCE FROM THE SURVEY OF HEALTH, AGEING, AND RETIREMENT IN EUROPE</td>
<td>530</td>
</tr>
<tr>
<td>04-2016</td>
<td>Peter Spahn</td>
<td>POPULATION GROWTH, SAVING, INTEREST RATES AND STAGNATION. DISCUSSING THE EGGERTSSON-MEHROTRA-MODEL</td>
<td>520</td>
</tr>
<tr>
<td>05-2016</td>
<td>Vincent Dekker, Kristina Strohmaier, Nicole Bosch</td>
<td>A DATA-DRIVEN PROCEDURE TO DETERMINE THE BUNCHING WINDOW – AN APPLICATION TO THE NETHERLANDS</td>
<td>520</td>
</tr>
<tr>
<td>06-2016</td>
<td>Philipp Baudy, Dario Cords</td>
<td>DEREGULATION OF TEMPORARY AGENCY EMPLOYMENT IN A UNIONIZED ECONOMY: DOES THIS REALLY LEAD TO A SUBSTITUTION OF REGULAR EMPLOYMENT?</td>
<td>520</td>
</tr>
<tr>
<td>No.</td>
<td>Author</td>
<td>Title</td>
<td>Inst</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>07-2016</td>
<td>Robin Jessen, Davud Rostam-Afschar, Sebastian Schmitz</td>
<td>HOW IMPORTANT IS PRECAUTIONARY LABOR SUPPLY?</td>
<td>520</td>
</tr>
<tr>
<td>08-2016</td>
<td>Peng Nie, Alfonso Sousa-Poza, Jianhong Xue</td>
<td>FUEL FOR LIFE: DOMESTIC COOKING FUELS AND WOMEN’S HEALTH IN RURAL CHINA</td>
<td>530</td>
</tr>
<tr>
<td>10-2016</td>
<td>Vladan Ivanovic, Vadim Kufenko, Boris Begovic, Menad Stanisic, Vincent Geloso</td>
<td>CONTINUITY UNDER A DIFFERENT NAME. THE OUTCOME OF PRIVATISATION IN SERBIA</td>
<td>520</td>
</tr>
<tr>
<td>11-2016</td>
<td>David E. Bloom, Michael Kuhn, Klaus Prettner</td>
<td>THE CONTRIBUTION OF FEMALE HEALTH TO ECONOMIC DEVELOPMENT</td>
<td>520</td>
</tr>
<tr>
<td>12-2016</td>
<td>Franz X. Hof, Klaus Prettner</td>
<td>THE QUEST FOR STATUS AND R&D-BASED GROWTH</td>
<td>520</td>
</tr>
<tr>
<td>14-2016</td>
<td>Benjamin Fuchs</td>
<td>THE EFFECT OF TEENAGE EMPLOYMENT ON CHARACTER SKILLS, EXPECTATIONS AND OCCUPATIONAL CHOICE STRATEGIES</td>
<td>520</td>
</tr>
<tr>
<td>15-2016</td>
<td>Seung-Kyu Yi, Bogang Jun</td>
<td>HAS THE GERMAN REUNIFICATION STRENGTHENED GERMANY’S NATIONAL INNOVATION SYSTEM? TRIPLE HELIX DYNAMICS OF GERMANY’S INNOVATION SYSTEM</td>
<td>520</td>
</tr>
<tr>
<td>16-2016</td>
<td>Gregor Pfeifer, Fabian Wahl, Martyna Marczak</td>
<td>ILLUMINATING THE WORLD CUP EFFECT: NIGHT LIGHTS EVIDENCE FROM SOUTH AFRICA</td>
<td>520</td>
</tr>
<tr>
<td>17-2016</td>
<td>Malte Klein, Andreas Sauer</td>
<td>CELEBRATING 30 YEARS OF INNOVATION SYSTEM RESEARCH: WHAT YOU NEED TO KNOW ABOUT INNOVATION SYSTEMS</td>
<td>570</td>
</tr>
<tr>
<td>18-2016</td>
<td>Klaus Prettner</td>
<td>THE IMPLICATIONS OF AUTOMATION FOR ECONOMIC GROWTH AND THE LABOR SHARE</td>
<td>520</td>
</tr>
<tr>
<td>19-2016</td>
<td>Klaus Prettner, Andreas Schaefer</td>
<td>HIGHER EDUCATION AND THE FALL AND RISE OF INEQUALITY</td>
<td>520</td>
</tr>
<tr>
<td>20-2016</td>
<td>Vadim Kufenko, Klaus Prettner</td>
<td>YOU CAN’T ALWAYS GET WHAT YOU WANT? ESTIMATOR CHOICE AND THE SPEED OF CONVERGENCE</td>
<td>520</td>
</tr>
<tr>
<td>No.</td>
<td>Author</td>
<td>Title</td>
<td>Inst</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
<td>------</td>
</tr>
</tbody>
</table>
| 01-2017 | Annarita Baldanzi
Alberto Bucci
Klaus Prettner | CHILDRENS HEALTH, HUMAN CAPITAL ACCUMULATION, AND R&D-BASED ECONOMIC GROWTH | INEPA |
| 02-2017 | Julius Tennert
Marie Lambert
Hans-Peter Burghof | MORAL HAZARD IN VC-FINANCE: MORE EXPENSIVE THAN YOU THOUGHT | INEF |
| 03-2017 | Michael Ahlheim
Oliver Frör
Nguyen Minh Duc
Antonia Rehl
Ute Siepmann
Pham Van Dinh | LABOUR AS A UTILITY MEASURE RECONSIDERED | 520 |
| 04-2017 | Bohdan Kukharskyy
Sebastian Seiffert | GUN VIOLENCE IN THE U.S.: CORRELATES AND CAUSES | 520 |
| 05-2017 | Ana Abeliiansky
Klaus Prettner | AUTOMATION AND DEMOGRAPHIC CHANGE | 520 |
FZID Discussion Papers

(published 2009-2014)

Competence Centers

<table>
<thead>
<tr>
<th>CC</th>
<th>Competence Centers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IK</td>
<td>Innovation and Knowledge</td>
</tr>
<tr>
<td>ICT</td>
<td>Information Systems and Communication Systems</td>
</tr>
<tr>
<td>CRFM</td>
<td>Corporate Finance and Risk Management</td>
</tr>
<tr>
<td>HCM</td>
<td>Health Care Management</td>
</tr>
<tr>
<td>CM</td>
<td>Communication Management</td>
</tr>
<tr>
<td>MM</td>
<td>Marketing Management</td>
</tr>
<tr>
<td>ECO</td>
<td>Economics</td>
</tr>
</tbody>
</table>

Download FZID Discussion Papers from our homepage: https://wiso.uni-hohenheim.de/archiv_fzid_papers

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Autor</th>
<th>Titel</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-2009</td>
<td>Julian P. Christ</td>
<td>NEW ECONOMIC GEOGRAPHY RELOADED: Localized Knowledge Spillovers and the Geography of Innovation</td>
<td>IK</td>
</tr>
<tr>
<td>02-2009</td>
<td>André P. Slowak</td>
<td>MARKET FIELD STRUCTURE & DYNAMICS IN INDUSTRIAL AUTOMATION</td>
<td>IK</td>
</tr>
<tr>
<td>03-2009</td>
<td>Pier Paolo Saviotti, Andreas Pyka</td>
<td>GENERALIZED BARRIERS TO ENTRY AND ECONOMIC DEVELOPMENT</td>
<td>IK</td>
</tr>
<tr>
<td>04-2009</td>
<td>Uwe Focht, Andreas Richter and Jörg Schiller</td>
<td>INTERMEDIATION AND MATCHING IN INSURANCE MARKETS</td>
<td>HCM</td>
</tr>
<tr>
<td>05-2009</td>
<td>Julian P. Christ, André P. Slowak</td>
<td>WHY BLU-RAY VS. HD-DVD IS NOT VHS VS. BETAMAX: THE CO-EVOLUTION OF STANDARD-SETTING CONSORTIA</td>
<td>IK</td>
</tr>
<tr>
<td>06-2009</td>
<td>Gabriel Felbermayr, Mario Larch and Wolfgang Lechthaler</td>
<td>UNEMPLOYMENT IN AN INTERDEPENDENT WORLD</td>
<td>ECO</td>
</tr>
<tr>
<td>07-2009</td>
<td>Steffen Otterbach</td>
<td>MISMATCHES BETWEEN ACTUAL AND PREFERRED WORK TIME: Empirical Evidence of Hours Constraints in 21 Countries</td>
<td>HCM</td>
</tr>
<tr>
<td>08-2009</td>
<td>Sven Wydra</td>
<td>PRODUCTION AND EMPLOYMENT IMPACTS OF NEW TECHNOLOGIES – ANALYSIS FOR BIOTECHNOLOGY</td>
<td>IK</td>
</tr>
<tr>
<td>09-2009</td>
<td>Ralf Richter, Jochen Streb</td>
<td>CATCHING-UP AND FALLING BEHIND KNOWLEDGE SPILLOVER FROM AMERICAN TO GERMAN MACHINE TOOL MAKERS</td>
<td>IK</td>
</tr>
<tr>
<td>Nr.</td>
<td>Autor</td>
<td>Titel</td>
<td>CC</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>10-2010</td>
<td>Rahel Aichele, Gabriel Felbermayr</td>
<td>KYOTO AND THE CARBON CONTENT OF TRADE</td>
<td>ECO</td>
</tr>
<tr>
<td>11-2010</td>
<td>David E. Bloom, Alfonso Sousa-Poza</td>
<td>ECONOMIC CONSEQUENCES OF LOW FERTILITY IN EUROPE</td>
<td>HCM</td>
</tr>
<tr>
<td>12-2010</td>
<td>Michael Ahlheim, Oliver Frör</td>
<td>DRINKING AND PROTECTING – A MARKET APPROACH TO THE PRESERVATION OF CORK OAK LANDSCAPES</td>
<td>ECO</td>
</tr>
<tr>
<td>13-2010</td>
<td>Michael Ahlheim, Oliver Frör, Antonia Heinke, Nguyen Minh Duc, and Pham Van Dinh</td>
<td>LABOUR AS A UTILITY MEASURE IN CONTINGENT VALUATION STUDIES – HOW GOOD IS IT REALLY?</td>
<td>ECO</td>
</tr>
<tr>
<td>14-2010</td>
<td>Julian P. Christ</td>
<td>THE GEOGRAPHY AND CO-LOCATION OF EUROPEAN TECHNOLOGY-SPECIFIC CO-INVENTORSHIP NETWORKS</td>
<td>IK</td>
</tr>
<tr>
<td>15-2010</td>
<td>Harald Degner</td>
<td>WINDOWS OF TECHNOLOGICAL OPPORTUNITY DO TECHNOLOGICAL BOOMS INFLUENCE THE RELATIONSHIP BETWEEN FIRM SIZE AND INNOVATIVENESS?</td>
<td>IK</td>
</tr>
<tr>
<td>16-2010</td>
<td>Tobias A. Jopp</td>
<td>THE WELFARE STATE EVOLVES: GERMAN KNAPPSCHAFTEN, 1854-1923</td>
<td>HCM</td>
</tr>
<tr>
<td>17-2010</td>
<td>Stefan Kirn (Ed.)</td>
<td>PROCESS OF CHANGE IN ORGANISATIONS THROUGH eHEALTH</td>
<td>ICT</td>
</tr>
<tr>
<td>18-2010</td>
<td>Jörg Schiller</td>
<td>ÖKONOMISCHE ASPEKTE DER ENTLOHNUNG UND REGULIERUNG UNABHÄNGIGER VERSICHERUNGSVERMITTLER</td>
<td>HCM</td>
</tr>
<tr>
<td>19-2010</td>
<td>Frauke Lammers, Jörg Schiller</td>
<td>CONTRACT DESIGN AND INSURANCE FRAUD: AN EXPERIMENTAL INVESTIGATION</td>
<td>HCM</td>
</tr>
<tr>
<td>20-2010</td>
<td>Martyna Marczak, Thomas Beissinger</td>
<td>REAL WAGES AND THE BUSINESS CYCLE IN GERMANY</td>
<td>ECO</td>
</tr>
<tr>
<td>21-2010</td>
<td>Harald Degner, Jochen Streb</td>
<td>FOREIGN PATENTING IN GERMANY, 1877-1932</td>
<td>IK</td>
</tr>
<tr>
<td>22-2010</td>
<td>Heiko Stüber, Thomas Beissinger</td>
<td>DOES DOWNWARD NOMINAL WAGE RIGIDITY DAMPEN WAGE INCREASES?</td>
<td>ECO</td>
</tr>
<tr>
<td>23-2010</td>
<td>Mark Spoerer, Jochen Streb</td>
<td>GUNS AND BUTTER – BUT NO MARGARINE: THE IMPACT OF NAZI ECONOMIC POLICIES ON GERMAN FOOD CONSUMPTION, 1933-38</td>
<td>ECO</td>
</tr>
<tr>
<td>Nr.</td>
<td>Autor</td>
<td>Titel</td>
<td>CC</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>24-2011</td>
<td>Dhammika Dharmapala, Nadine Riedel</td>
<td>EARNINGS SHOCKS AND TAX-MOTIVATED INCOME-SHIFTING: EVIDENCE FROM EUROPEAN MULTINATIONALS</td>
<td>ECO</td>
</tr>
<tr>
<td>25-2011</td>
<td>Michael Schuele, Stefan Kirn</td>
<td>QUALITATIVES, RÄUMLICHES SCHLIEßEN ZUR KOLLISIONSERKENNUNG UND KOLLISIONSVERMEIDUNG AUTONOMER BDI-AGENTEN</td>
<td>ICT</td>
</tr>
<tr>
<td>26-2011</td>
<td>Marcus Müller, Guillaume Stern, Ansgar Jacob and Stefan Kirn</td>
<td>VERHALTENSMODELLE FÜR SOFTWAREAGENTEN IM PUBLIC GOODS GAME</td>
<td>ICT</td>
</tr>
<tr>
<td>27-2011</td>
<td>Monnet Benoit, Patrick Gbakoua and Alfonso Sousa-Poza</td>
<td>ENGEL CURVES, SPATIAL VARIATION IN PRICES AND DEMAND FOR COMMODITIES IN CÔTE D’IVOIRE</td>
<td>ECO</td>
</tr>
<tr>
<td>28-2011</td>
<td>Nadine Riedel, Hannah Schildberg-Hörisch</td>
<td>ASYMMETRIC OBLIGATIONS</td>
<td>ECO</td>
</tr>
<tr>
<td>29-2011</td>
<td>Nicole Waidlein</td>
<td>CAUSES OF PERSISTENT PRODUCTIVITY DIFFERENCES IN THE WEST GERMAN STATES IN THE PERIOD FROM 1950 TO 1990</td>
<td>IK</td>
</tr>
<tr>
<td>30-2011</td>
<td>Dominik Hartmann, Atilio Arata</td>
<td>MEASURING SOCIAL CAPITAL AND INNOVATION IN POOR AGRICULTURAL COMMUNITIES. THE CASE OF CHAPARRA - PERU</td>
<td>IK</td>
</tr>
<tr>
<td>31-2011</td>
<td>Peter Spahn</td>
<td>DIE WÄHRUNGSKRISENUNION DIE EURO-VERSCHULDUNG DER NATIONALSTAATEN ALS SCHWACHSTELLE DER EWU</td>
<td>ECO</td>
</tr>
<tr>
<td>32-2011</td>
<td>Fabian Wahl</td>
<td>DIE ENTWICKLUNG DES LEBENSTANDARDS IM DRITTEN REICH – EINE GLÜCKSÖKONOMISCHE PERSPEKTIVE</td>
<td>ECO</td>
</tr>
<tr>
<td>33-2011</td>
<td>Giorgio Triulzi, Ramon Scholz and Andreas Pyka</td>
<td>R&D AND KNOWLEDGE DYNAMICS IN UNIVERSITY-INDUSTRY RELATIONSHIPS IN BIOTECH AND PHARMACEUTICALS: AN AGENT-BASED MODEL</td>
<td>IK</td>
</tr>
<tr>
<td>34-2011</td>
<td>Claus D. Müller-Hengstenberg, Stefan Kirn</td>
<td>ANWENDUNG DES ÖFFENTLICHEN VERGABERECHTS AUF MODERNE IT SOFTWAREENTWICKLUNGSVERFAHREN</td>
<td>ICT</td>
</tr>
<tr>
<td>35-2011</td>
<td>Andreas Pyka</td>
<td>AVOIDING EVOLUTIONARY INEFFECTIVENESS IN INNOVATION NETWORKS</td>
<td>IK</td>
</tr>
<tr>
<td>36-2011</td>
<td>David Bell, Steffen Otterbach and Alfonso Sousa-Poza</td>
<td>WORK HOURS CONSTRAINTS AND HEALTH</td>
<td>HCM</td>
</tr>
<tr>
<td>37-2011</td>
<td>Lukas Scheffknecht, Felix Geiger</td>
<td>A BEHAVIORAL MACROECONOMIC MODEL WITH ENDOGENOUS BOOM-BUST CYCLES AND LEVERAGE DYNAMICS</td>
<td>ECO</td>
</tr>
<tr>
<td>Nr.</td>
<td>Autor</td>
<td>Titel</td>
<td>CC</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>39-2011</td>
<td>Michael Ahlheim, Tobias Börger and Oliver Frör</td>
<td>RESPONDENT INCENTIVES IN CONTINGENT VALUATION: THE ROLE OF RECIPROCITY</td>
<td>ECO</td>
</tr>
<tr>
<td>40-2011</td>
<td>Tobias Börger</td>
<td>A DIRECT TEST OF SOCIALLY DESIRABLE RESPONDING IN CONTINGENT VALUATION INTERVIEWS</td>
<td>ECO</td>
</tr>
<tr>
<td>41-2011</td>
<td>Ralf Rukwid, Julian P. Christ</td>
<td>QUANTITATIVE CLUSTERIDENTIFIKATION AUF EBENE DER DEUTSCHEN STADT- UND LANDKREISE (1999-2008)</td>
<td>IK</td>
</tr>
<tr>
<td>Nr.</td>
<td>Autor</td>
<td>Titel</td>
<td>CC</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>42-12</td>
<td>Benjamin Schön, Andreas Pyka</td>
<td>A TAXONOMY OF INNOVATION NETWORKS</td>
<td>IK</td>
</tr>
<tr>
<td>43-12</td>
<td>Dirk Foremny, Nadine Riedel</td>
<td>BUSINESS TAXES AND THE ELECTORAL CYCLE</td>
<td>ECO</td>
</tr>
<tr>
<td>44-12</td>
<td>Gisela Di Meglio, Andreas Pyka and Luis Rubalcaba</td>
<td>VARIETIES OF SERVICE ECONOMIES IN EUROPE</td>
<td>IK</td>
</tr>
<tr>
<td>45-12</td>
<td>Ralf Rukwid, Julian P. Christ</td>
<td>INNOVATIONSPOTENTIALE IN BADEN-WÜRTTEMBERG: PRODUKTIONSCLUSTER IM BEREICH „METALL, ELEKTRO, IKT“ UND REGIONALE VERFÜGBARKEIT AKADEMISCHER FACHKRÄFTE IN DEN MINT-FÄCHERN</td>
<td>IK</td>
</tr>
<tr>
<td>46-12</td>
<td>Julian P. Christ, Ralf Rukwid</td>
<td>INNOVATIONSPOTENTIALE IN BADEN-WÜRTTEMBERG: BRANCHENSPZIFISCHES FORSCHUNGS- UND ENTWICKLUNGSAKTIVITÄT, REGIONALES PATENTAUFKOMMEN UND BESCHÄFTIGUNGSSTRUKTUR</td>
<td>IK</td>
</tr>
<tr>
<td>47-12</td>
<td>Oliver Sauter</td>
<td>ASSESSING UNCERTAINTY IN EUROPE AND THE US - IS THERE A COMMON FACTOR?</td>
<td>ECO</td>
</tr>
<tr>
<td>48-12</td>
<td>Dominik Hartmann</td>
<td>SEN MEETS SCHUMPETER. INTRODUCING STRUCTURAL AND DYNAMIC ELEMENTS INTO THE HUMAN CAPABILITY APPROACH</td>
<td>IK</td>
</tr>
<tr>
<td>49-12</td>
<td>Harold Paredes-Frigolett, Andreas Pyka</td>
<td>DISTAL EMBEDDING AS A TECHNOLOGY INNOVATION NETWORK FORMATION STRATEGY</td>
<td>IK</td>
</tr>
<tr>
<td>50-12</td>
<td>Martyna Marczak, Víctor Gómez</td>
<td>CYCLICALITY OF REAL WAGES IN THE USA AND GERMANY: NEW INSIGHTS FROM WAVELET ANALYSIS</td>
<td>ECO</td>
</tr>
<tr>
<td>51-12</td>
<td>André P. Slowak</td>
<td>DIE DURCHSETZUNG VON SCHNITTSTELLEN IN DER STANDARDSETZUNG: FALLENBEISPIEL LADESYSTEM ELEKTROMOBILITÄT</td>
<td>IK</td>
</tr>
<tr>
<td>52-12</td>
<td>Fabian Wahl</td>
<td>WHY IT MATTERS WHAT PEOPLE THINK - BELIEFS, LEGAL ORIGINS AND THE DEEP ROOTS OF TRUST</td>
<td>ECO</td>
</tr>
<tr>
<td>53-12</td>
<td>Dominik Hartmann, Micha Kaiser</td>
<td>STATISTISCHER ÜBERBLICK DER TÜRKISCHEN MIGRATION IN BADEN-WÜRTTEMBERG UND DEUTSCHLAND</td>
<td>IK</td>
</tr>
<tr>
<td>54-12</td>
<td>Dominik Hartmann, Andreas Pyka, Seda Aydín, Lena Klauß, Fabian Stahl, Ali Santircioğlu, Silvia Oberegelsbacher, Sheida Rashidi, Gaye Onan and Suna Erginkoç</td>
<td>IDENTIFIZIERUNG UND ANALYSE DEUTSCH-TÜRKISCHER INNOVATIONSNETZWERKE. ERSTE ERGEBNISSE DES TGIN-PROJEKTES</td>
<td>IK</td>
</tr>
<tr>
<td>55-12</td>
<td>Michael Ahlheim, Tobias Börger and Oliver Frör</td>
<td>THE ECOLOGICAL PRICE OF GETTING RICH IN A GREEN DESERT: A CONTINGENT VALUATION STUDY IN RURAL SOUTHWEST CHINA</td>
<td>ECO</td>
</tr>
<tr>
<td>Nr.</td>
<td>Autor</td>
<td>Titel</td>
<td>CC</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>56-2012</td>
<td>Matthias Strifler Thomas Beissinger</td>
<td>FAIRNESS CONSIDERATIONS IN LABOR UNION WAGE SETTING – A THEORETICAL ANALYSIS</td>
<td>ECO</td>
</tr>
<tr>
<td>57-2012</td>
<td>Peter Spahn</td>
<td>INTEGRATION DURCH WÄHRUNGSUNION? DER FALL DER EURO-ZONE</td>
<td>ECO</td>
</tr>
<tr>
<td>59-2012</td>
<td>Sibylle H. Lehmann, Philipp Hauber and Alexander Opitz</td>
<td>POLITICAL RIGHTS, TAXATION, AND FIRM VALUATION – EVIDENCE FROM SAXONY AROUND 1900</td>
<td>ECO</td>
</tr>
<tr>
<td>60-2012</td>
<td>Martyna Marczak, Victor Gómez</td>
<td>SPECTRAN, A SET OF MATLAB PROGRAMS FOR SPECTRAL ANALYSIS</td>
<td>ECO</td>
</tr>
<tr>
<td>61-2012</td>
<td>Theresa Lohse, Nadine Riedel</td>
<td>THE IMPACT OF TRANSFER PRICING REGULATIONS ON PROFIT SHIFTING WITHIN EUROPEAN MULTINATIONALS</td>
<td>ECO</td>
</tr>
<tr>
<td>Nr.</td>
<td>Autor</td>
<td>Titel</td>
<td>CC</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>62-2013</td>
<td>Heiko Stüber</td>
<td>REAL WAGE CYCLICALITY OF NEWLY HIRED WORKERS</td>
<td>ECO</td>
</tr>
<tr>
<td>63-2013</td>
<td>David E. Bloom, Alfonso Sousa-Poza</td>
<td>AGEING AND PRODUCTIVITY</td>
<td>HCM</td>
</tr>
<tr>
<td>64-2013</td>
<td>Martyna Marczak, Víctor Gómez</td>
<td>MONTHLY US BUSINESS CYCLE INDICATORS: A NEW MULTIVARIATE APPROACH BASED ON A BAND-PASS FILTER</td>
<td>ECO</td>
</tr>
<tr>
<td>65-2013</td>
<td>Dominik Hartmann, Andreas Pyka</td>
<td>INNOVATION, ECONOMIC DIVERSIFICATION AND HUMAN DEVELOPMENT</td>
<td>IK</td>
</tr>
<tr>
<td>66-2013</td>
<td>Christof Ernst, Katharina Richter and Nadine Riedel</td>
<td>CORPORATE TAXATION AND THE QUALITY OF RESEARCH AND DEVELOPMENT</td>
<td>ECO</td>
</tr>
<tr>
<td>67-2013</td>
<td>Michael Ahlheim, Oliver Fró, Jiang Tong, Luo Jing and Sonna Pelz</td>
<td>NONUSE VALUES OF CLIMATE POLICY - AN EMPIRICAL STUDY IN XINJIANG AND BEIJING</td>
<td>ECO</td>
</tr>
<tr>
<td>68-2013</td>
<td>Michael Ahlheim, Friedrich Schneider</td>
<td>CONSIDERING HOUSEHOLD SIZE IN CONTINGENT VALUATION STUDIES</td>
<td>ECO</td>
</tr>
<tr>
<td>69-2013</td>
<td>Fabio Bertoni, Tereza Tykovová</td>
<td>WHICH FORM OF VENTURE CAPITAL IS MOST SUPPORTIVE OF INNOVATION? EVIDENCE FROM EUROPEAN BIOTECHNOLOGY COMPANIES</td>
<td>CFRM</td>
</tr>
<tr>
<td>70-2013</td>
<td>Tobias Buchmann, Andreas Pyka</td>
<td>THE EVOLUTION OF INNOVATION NETWORKS: THE CASE OF A GERMAN AUTOMOTIVE NETWORK</td>
<td>IK</td>
</tr>
<tr>
<td>71-2013</td>
<td>B. Vermeulen, A. Pyka, J. A. La Poutré and A. G. de Kok</td>
<td>CAPABILITY-BASED GOVERNANCE PATTERNS OVER THE PRODUCT LIFE-CYCLE</td>
<td>IK</td>
</tr>
<tr>
<td>72-2013</td>
<td>Beatriz Fabiola López Ulloa, Valerie Møller and Alfonso Sousa-Poza</td>
<td>HOW DOES SUBJECTIVE WELL-BEING EVOLVE WITH AGE? A LITERATURE REVIEW</td>
<td>HCM</td>
</tr>
<tr>
<td>73-2013</td>
<td>Wencke Gwozdz, Alfonso Sousa-Poza, Lucia A. Reisch, Wolfgang Ahrens,</td>
<td>MATERNAL EMPLOYMENT AND CHILDHOOD OBESITY – A EUROPEAN PERSPECTIVE</td>
<td>HCM</td>
</tr>
<tr>
<td>Nr.</td>
<td>Autor</td>
<td>Titel</td>
<td>CC</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>--</td>
<td>----</td>
</tr>
<tr>
<td>74-2013</td>
<td>Andreas Haas, Annette Hofmann</td>
<td>RISIKEN AUS CLOUD-COMPUTING-SERVICES: FRAGEN DES RISIKOMANAGEMENTS UND ASPEKTE DER VERSICHERBARKEIT</td>
<td>HCM</td>
</tr>
<tr>
<td>75-2013</td>
<td>Yin Krogmann, Nadine Riedel and Ulrich Schwalbe</td>
<td>INTER-FIRM R&D NETWORKS IN PHARMACEUTICAL BIOTECHNOLOGY: WHAT DETERMINES FIRM’S CENTRALITY-BASED PARTNERING CAPABILITY?</td>
<td>ECO, IK</td>
</tr>
<tr>
<td>76-2013</td>
<td>Peter Spahn</td>
<td>MACROECONOMIC STABILISATION AND BANK LENDING: A SIMPLE WORKHORSE MODEL</td>
<td>ECO</td>
</tr>
<tr>
<td>77-2013</td>
<td>Sheida Rashidi, Andreas Pyka</td>
<td>MIGRATION AND INNOVATION – A SURVEY</td>
<td>IK</td>
</tr>
<tr>
<td>78-2013</td>
<td>Benjamin Schön, Andreas Pyka</td>
<td>THE SUCCESS FACTORS OF TECHNOLOGY-SOURCING THROUGH MERGERS & ACQUISITIONS – AN INTUITIVE META-ANALYSIS</td>
<td>IK</td>
</tr>
<tr>
<td>79-2013</td>
<td>Irene Prostolupow, Andreas Pyka and Barbara Heller-Schuh</td>
<td>TURKISH-GERMAN INNOVATION NETWORKS IN THE EUROPEAN RESEARCH LANDSCAPE</td>
<td>IK</td>
</tr>
<tr>
<td>80-2013</td>
<td>Eva Schlenker, Kai D. Schmid</td>
<td>CAPITAL INCOME SHARES AND INCOME INEQUALITY IN THE EUROPEAN UNION</td>
<td>ECO</td>
</tr>
<tr>
<td>81-2013</td>
<td>Michael Ahlheim, Tobias Börger and Oliver Frör</td>
<td>THE INFLUENCE OF ETHNICITY AND CULTURE ON THE VALUATION OF ENVIRONMENTAL IMPROVEMENTS – RESULTS FROM A CVM STUDY IN SOUTHWEST CHINA –</td>
<td>ECO</td>
</tr>
<tr>
<td>82-2013</td>
<td>Fabian Wahl</td>
<td>DOES MEDIEVAL TRADE STILL MATTER? HISTORICAL TRADE CENTERS, AGGLOMERATION AND CONTEMPORARY ECONOMIC DEVELOPMENT</td>
<td>ECO</td>
</tr>
<tr>
<td>83-2013</td>
<td>Peter Spahn</td>
<td>SUBPRIME AND EURO CRISIS: SHOULD WE BLAME THE ECONOMISTS?</td>
<td>ECO</td>
</tr>
<tr>
<td>84-2013</td>
<td>Daniel Guffarth, Michael J. Barber</td>
<td>THE EUROPEAN AEROSPACE R&D COLLABORATION NETWORK</td>
<td>IK</td>
</tr>
<tr>
<td>85-2013</td>
<td>Athanasios Saitis</td>
<td>KARTELLBEKÄMPFUNG UND INTERNE KARTELLSTRUKTUREN: EIN NETZWERKTHEORETISCHER ANSATZ</td>
<td>IK</td>
</tr>
<tr>
<td>Nr.</td>
<td>Autor</td>
<td>Titel</td>
<td>CC</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>86-2014</td>
<td>Stefan Kirn, Claus D. Müller-Hengstenberg</td>
<td>INTELLIGENTE (SOFTWARE-)AGENTEN: EINE NEUE HERAUSFORDERUNG FÜR DIE GESELLSCHAFT UND UNSER RECHTSSYSTEM?</td>
<td>ICT</td>
</tr>
<tr>
<td>87-2014</td>
<td>Peng Nie, Alfonso Sousa-Poza</td>
<td>MATERNAL EMPLOYMENT AND CHILDHOOD OBESITY IN CHINA: EVIDENCE FROM THE CHINA HEALTH AND NUTRITION SURVEY</td>
<td>HCM</td>
</tr>
<tr>
<td>88-2014</td>
<td>Steffen Otterbach, Alfonso Sousa-Poza</td>
<td>JOB INSECURITY, EMPLOYABILITY, AND HEALTH: AN ANALYSIS FOR GERMANY ACROSS GENERATIONS</td>
<td>HCM</td>
</tr>
<tr>
<td>89-2014</td>
<td>Carsten Burhop, Sibylle H. Lehmann-Hasemeyer</td>
<td>THE GEOGRAPHY OF STOCK EXCHANGES IN IMPERIAL GERMANY</td>
<td>ECO</td>
</tr>
<tr>
<td>90-2014</td>
<td>Martyna Marczak, Tommaso Proietti</td>
<td>OUTLIER DETECTION IN STRUCTURAL TIME SERIES MODELS: THE INDICATOR SATURATION APPROACH</td>
<td>ECO</td>
</tr>
<tr>
<td>91-2014</td>
<td>Sophie Urmetzer, Andreas Pyka</td>
<td>VARIETIES OF KNOWLEDGE-BASED BIOECONOMIES</td>
<td>IK</td>
</tr>
<tr>
<td>92-2014</td>
<td>Bogang Jun, Joongho Lee</td>
<td>THE TRADEOFF BETWEEN FERTILITY AND EDUCATION: EVIDENCE FROM THE KOREAN DEVELOPMENT PATH</td>
<td>IK</td>
</tr>
<tr>
<td>93-2014</td>
<td>Bogang Jun, Tai-Yoo Kim</td>
<td>NON-FINANCIAL HURDLES FOR HUMAN CAPITAL ACCUMULATION: LANDOWNERSHIP IN KOREA UNDER JAPANESE RULE</td>
<td>IK</td>
</tr>
<tr>
<td>94-2014</td>
<td>Michael Ahlheim, Oliver Frör, Gerhard Langenberger and Sonna Pelz</td>
<td>CHINESE URBANITES AND THE PRESERVATION OF RARE SPECIES IN REMOTE PARTS OF THE COUNTRY – THE EXAMPLE OF EAGLEWOOD</td>
<td>ECO</td>
</tr>
<tr>
<td>95-2014</td>
<td>Harold Paredes-Frigolett, Andreas Pyka, Javier Pereira and Luiz Flávio Autran Monteiro Gomes</td>
<td>RANKING THE PERFORMANCE OF NATIONAL INNOVATION SYSTEMS IN THE IBERIAN PENINSULA AND LATIN AMERICA FROM A NEO-SCHUMPETERIAN ECONOMICS PERSPECTIVE</td>
<td>IK</td>
</tr>
<tr>
<td>96-2014</td>
<td>Daniel Guffarth, Michael J. Barber</td>
<td>NETWORK EVOLUTION, SUCCESS, AND REGIONAL DEVELOPMENT IN THE EUROPEAN AEROSPACE INDUSTRY</td>
<td>IK</td>
</tr>
</tbody>
</table>
University of Hohenheim
Dean’s Office of the Faculty of Business, Economics and Social Sciences
Palace Hohenheim 1 B
70593 Stuttgart | Germany
Fon +49 (0)711 459 22488
Fax +49 (0)711 459 22785
E-mail wiso@uni-hohenheim.de
Web www.wiso.uni-hohenheim.de