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Abstract: Climate feedback mechanisms that have the potential to intensify global warming 
have been omitted almost completely in the integrated assessment of climate change and the 
economy so far. With the present paper we try to narrow this gap in literature. We discuss 
different types of feedback mechanisms and show how to incorporate them into the mathe-
matical setup of the well-known integrated assessment model DICE-2013R. Subsequently, we 
choose the permafrost carbon feedback (PCF) as specific application for an empirical analy-
sis. We calibrate the parameters for our modified version of the DICE-2013R model and 
compute the optimal emission mitigation rates that maximize welfare accounting for the im-
pact of the PCF. Finally, we quantify the economic losses resulting from a mitigation policy 
which ignores this feedback mechanism. Our empirical results generally indicate that account-
ing for the PCF leads to an increase in the optimal mitigation rates.  
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1 Introduction 

Although the direct effects of greenhouse gases on global temperature are relatively well un-
derstood, estimation of the overall effects is complicated due to the existence of feedback 
mechanisms in the climate system that have the potential to intensify global warming (e.g., 
Wolff et al. 2015). Higher temperatures, for instance, may lead to an increased release of CO2 
and CH4 from permafrost regions that in turn accelerates the increase in temperature. Such 
mechanisms have been omitted almost completely in the integrated assessment of climate 
change and the economy so far.1 This paper shows how to incorporate climate feedbacks into 
the mathematical setup of the well-known integrated assessment model DICE-2013R (see 
Nordhaus 2013) and derives some empirical results.  

Integrated assessment models (IAMs) are a popular tool when studying the economics of cli-
mate change (e.g., Hof et al. 2012). The major components of those IAMs are a neoclassical 
growth model and a climate module that is linked to the economic model. Important charac-
teristics of those IAMs are their intertemporal formulation and the incorporation of a long 
time horizon. Since greenhouse gases have a long residence time in the atmosphere (often 
more than 100 years), this model setup is necessary for a meaningful assessment of climate 
change. Taking into account the mitigation costs and potential climate damage costs, one ma-
jor subject of study in IAMs is the economically optimal emission mitigation path. Although 
we are aware of massive reservations against these models, we do not agree with the part of 
criticism that climatic feedback loops are “largely unknown” (Pindyck 2013, p. 870). On the 
contrary, we try to improve the model results by integrating such feedback mechanisms to 
slightly reduce the simplifications of DICE-2013R.  

The use of DICE-2013R for this paper has several reasons. Since the development of the first 
version of DICE (Nordhaus 1994), it is probably the most popular IAM in the economics of 
climate change and its codes are publicly available.2 Due to its popularity, DICE entails the 
advantage that our results are comparable with those of many other studies using the same 
model family. This is particularly important since climatic feedbacks are closely related to 
tipping points3 and potential catastrophes which have been assessed in a couple of studies 
within the DICE framework. For example, Mastrandrea and Schneider (2001) and Keller et al. 
(2004) show that optimal emission mitigation increases when uncertainty and potential catas-
trophes are included in the DICE-94 model. Ackerman et al. (2010) present a similar analysis 
for DICE-07, and Rezai (2010) introduces an upper limit for the atmospheric carbon absorp-
tion in order to account for potential catastrophes. Moreover, Lemoine and Traeger (2014a) 
use DICE-07 to analyze the impact of multiple tipping points that reinforce each other’s eco-
nomic impacts.  

The paper is organized as follows. In the next section we present those parts of the original 
DICE-2013R model which are essential for the implementation of climate feedback loops. In 
                                                           
1 The only exception is a short paper recently published by Gonzáles-Eguino and Neumann (2016) which, how-
ever, is more limited in scope than our analysis – see also Section 3.3.   
2 See http://www.econ.yale.edu/~nordhaus/homepage/. 
3 The term “tipping point” refers to critical thresholds that can change the climate system abruptly (see also Sec-
tion 3).  
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Section 3 we briefly describe some of the most important feedbacks and show how to incor-
porate them into the mathematical setup of DICE-2013R. In a subsequent empirical analysis 
we focus on the permafrost carbon feedback (PCF) because this is one of the most studied and 
best understood feedback mechanisms. In Section 4 we calibrate the parameters for our modi-
fied version of the model, and in Section 5 we discuss our empirical results. Finally, in Sec-
tion 6 we summarize the paper. 

2 The DICE-2013R model 

The main components of the model are a neoclassical growth model (Ramsey 1928) that is 
linked to a climate module which consists of a simple representation of the global carbon cy-
cle.4 These two components are linked via greenhouse gas emissions that are mainly caused 
by production. Global warming resulting from these emissions then in turn affects production 
possibilities which leads to climate damages. The main focus of DICE lies on the trade-off 
between these damages and costly emission mitigation measures. Hence, solving the model 
yields the economically optimal mitigation policy.  

In the following we refer to the version DICE-2013R (Nordhaus 2013) and present only those 
equations which are essential concerning the implementation of climate feedback loops. A 
short summary of the model is available in the Annex. Emissions E(t) are composed of an 
endogenous component resulting from production activities and an exogenous component 
resulting from land use changes like deforestation denoted as Edef(t): 

)t(E)t(Y)]t(1)[t()t(E def . (1) 

The variable Y(t) indicates gross output and τ(t) is an exogenous emission coefficient which 
declines over time in order to simulate carbon-saving technological change. Moreover, μ(t) is 
the endogenous mitigation rate, i.e., the share of emissions avoided by abatement activities. 
The remaining emissions according to (1) accumulate in the atmosphere and cause the atmos-
pheric carbon concentration to increase. The latter is interrelated with the concentrations in 
different layers of the oceans. The concentrations in the atmosphere MAT(t), in the upper 
ocean MUO(t) and in the lower ocean MLO(t) and their interrelationship are: 

  )1t(M)1t(M1)t(E)t(M UO21AT12AT  , (2) 

)1t(M)1t(M)1t(M)t(M LO32UO22AT12UO  , (3) 

)1t(M)1t(M)t(M LO33UO23LO  . (4) 

The atmospheric concentration MAT(t) is composed of the current emissions, the share of the 
concentration remaining from the previous period plus the share of the upper oceanic concen-
tration from the previous period that diffuses into the atmosphere. The upper oceanic concen-
tration MUO(t) consists of the remaining share from the previous period plus the absorptions 
from the atmosphere and the lower oceans. The concentration in the lower oceans MLO(t) is 

                                                           
4 For an extensive description of the model see Nordhaus (2013) and Nordhaus and Sztorc (2013). 
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the remaining share of the previous period plus the absorption from the upper oceans. The 
parameters ϕij control these relationships between different reservoirs and periods.  

In the next step, the atmospheric carbon concentration MAT(t) increases the radiative forcing 
from the sun F(t) represented by: 

)t(F
)preind(M

)t(M)t(F exog
AT

AT
  (5) 

with η being a parameter that controls the impact of increasing greenhouse gas concentrations 
and MAT(preind) indicating the pre-industrial level of these concentrations. The term Fexog(t) 
covers the additional radiative forcing caused by other greenhouse gases or aerosols that are 
exogenous in the model. Finally, the increasing radiative forcing results in an increase of tem-
peratures in the atmosphere ΔTAT(t) as well as in the oceans ΔTO(t).5 

3 Climate feedbacks and their modeling in DICE-2013R 

Climate feedback mechanisms as considered in the present paper are processes that have the 
potential to accelerate global warming.6 Hence, these mechanisms increase the danger of 
reaching critical tipping points where earth’s climate abruptly moves between relatively stable 
states. When the system is already close to such a tipping point, even small changes in tem-
perature can have dramatic consequences which are hard to predict. Examples are the melt of 
the Greenland ice sheet, the shutoff of the Atlantic deep water formation or the collapse of the 
Indian summer monsoon (Lenton et al. 2008).   

Climate feedback mechanisms and tipping points are a relatively new challenge to the model-
ing of the climate’s effect on the economy. Since several recent studies already address tip-
ping points in the context of climate economics (e.g., Lemoine and Traeger 2014a, 2014b) we 
will focus our analysis on feedback mechanisms. When modeling these mechanisms it is most 
important to account for their self-enforcing character. For example, melting glaciers lead to 
an increase in temperature which in turn leads to a further melting of glaciers (see also Sec-
tion 3.1.1). Modeling such interactions in DICE-2013R requires to identify the corresponding 
part of the model and to include an appropriate endogenous feedback loop. In the following 
this is illustrated for some of the most important kinds of climate feedbacks.  

3.1 Snow and ice albedo 

Albedo is the fraction of the incoming shortwave radiation (solar energy) which is reflected 
from the earth back into space. Hence, the higher the albedo, the lower is the radiative forcing 
F(t) described above by equation (5). Snow and ice have a high albedo, whereas water and 
land surface uncovered by snow or ice have a much lower albedo. Consequently, as snow and 
ice melts, more of the sun's energy is absorbed. This leads to a further warming which in turn 

                                                           
5 Strictly speaking, the variables ΔTAT(t) and ΔTO(t) represent the difference in temperatures compared to their 
pre-industrial level. 
6 Additionally, there also exist some so-called negative feedback mechanisms that can slow down global warm-
ing (see, e.g., Wolff et al. 2015). 
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melts even more snow and ice implying a further decrease in albedo. In the following two 
subsections we consider this feedback loop for glaciers and for the West Antarctic ice shield.  

3.1.1 Glacier albedo 

Beside sea ice and northern hemispheric snow cover, glaciers have continued to shrink 
worldwide in recent decades leading to changes in land surface albedo, the hydrological cycle 
in general and to an increase of the global average sea level. These changes will continue un-
der all RCP7 scenarios (IPCC 2013). Even high mountain glaciers in the Everest region will 
probably lose much of their volume, which can be up to a range between 70 and 99% under 
RCP8.5 conditions by the year 2100 (Shea et al. 2015).  

Within the framework of DICE-2013R, the glacier albedo feedback can be incorporated as 
follows: Due to an increasing atmospheric temperature ΔTAT(t) glaciers are melting and ab-
sorb less radiation; this leads to a higher radiative forcing F(t), which again causes an increase 
in temperature leading to a further melting of glaciers. Consequently, we propose to include 
the atmospheric temperature increase ΔTAT(t) into the equation for radiative forcing (5) as an 
additional endogenous argument: 

2π
AT1exog

AT

AT (t)ΔTπ)t(F
)preind(M

)t(M)t(F  . (5a) 

The additional term 2π
AT1 (t)ΔTπ   implies that the temperature increase ΔTAT(t) intensifies 

the radiative forcing F(t). The extent of this effect caused by melting glaciers can be con-
trolled by the parameters π1>0 and π2>0. Since an increase in radiative forcing in turn leads to 
further rising temperatures, equation (5a) constitutes a feedback loop which accelerates global 
warming. 

3.1.2 West Antarctic ice shield  

During the last decade the average volume loss of the West Antarctic ice sheet increased by 
70% (Paolo et al. 2015).8 The impact on the radiation budget functions in a pretty similar way 
as for glaciers. However, concerning the former, the deciding factor is not the atmospheric 
temperature ΔTAT(t) but the oceanic temperature ΔTO(t) which influences the stability of the 
ice shield (e.g., Lenton et al. 2008): Higher water temperatures lead to increased melting of 
the shelf ice which gets thinner. With the shelf becoming thinner, the probability of ruptures 
increases. The ruptured ice melts in the open sea and thus, the surface of ice (i.e., the area of 
high radiation reflection) is lost. This loss of ice causes the radiative forcing to increase and 
ultimately leads to enhanced global warming. To model this feedback, we propose to include 
the increase of oceanic temperature ΔTO(t) into the equation for radiative forcing (5):  

                                                           
7 The abbreviation RCP refers to the four “Representative Concentration Pathways” (RCP2.6, RCP4.5, RCP6, 
RCP8.5) that are used for climate modeling, describing greenhouse gas concentration trajectories (see van 
Vuuren et al. 2011). The RCPs define different radiative forcing values (2.6, 4.5, 6.0, 8.5 W/m2) by the year 
2100 relative to pre-industrial values in 1850 and have been used by the IPCC (2013). 
8 However, a complete or nearly complete disintegration of the West Antarctic ice shield is regarded as very 
unlikely during the 21st century (IPCC 2013). 
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2(t)ΔT)t(F
)preind(M

)t(M)t(F O1exog
AT

AT  . (5b) 

The extension 2(t)ΔTO1
  with φ1>0 and φ2>0 creates a feedback loop similar to the one in 

section 3.1.1: The increase of the ocean temperature ΔTO(t) increases the radiative forcing 
which leads to higher temperatures. 

3.2 Oceanic carbon sink  

Oceans can absorb huge amounts of carbon dioxide emissions depending on the atmospheric 
CO2 concentration, the ocean water temperature and biological processes which help to 
transport carbon dioxide into the deep ocean by plankton. As global warming can affect all 
parts of the atmospheric-ocean carbon exchange chain, long-term projections are difficult. 
However, it is obvious that the ocean carbon sink is vulnerable to future warming because its 
uptake capacity is reduced with increasing water temperatures (Arora et al. 2013, Heinze et al. 
2015). This implies another feedback loop: With increasing water temperatures the carbon 
uptake is reduced and more emissions accumulate in the atmosphere enhancing the green-
house effect. This leads to further warming and further decreasing oceanic carbon uptake. We 
propose to model this feedback loop as represented by equations (2a) and (3a): 

)1t(M)1t(M
)t(T

1)t(E)t(M UO21AT12
O

1
AT

2

















, (2a) 

)1t(M)1t(M)1t(M
)t(T

)t(M LO32UO22AT12
O

1
UO

2








. (3a) 

In the original equations (2) and (3) the parameter ϕ12 controls the share of emissions that dif-
fuse from the atmosphere into the upper oceans,9 and [1–ϕ12] is the share that remains in the 
atmosphere. In the extended equations above this transition effect additionally depends on the 
ocean temperature change ΔTO(t). In equation (3a) the share of emissions absorbed by the 
upper ocean from the atmosphere is reduced due to the factor 1)t(T/ 2O1   . Hence, the 
share that remains in the atmosphere enlarges as shown in equation (2a). δ1>0 and δ2>0 are 
scaling parameters that control the shape and the strength of this feedback.  

3.3 Permafrost 

Permafrost is soil (sediment or rock) which remains below 0°C for two or more years and 
covers about a quarter of the northern hemispheric land surface. Especially in the high-
latitude permafrost regions temperatures have risen 0.6°C per decade over the last 30 years, 
which is twice as fast as the global average (IPCC 2013). Thus, permafrost regions are very 
sensitive to global climate change. Moreover, in these regions soils have the highest mean soil 
organic carbon contents. Boreal and Arctic ecosystems contain approximately 50% of global 
terrestrial organic carbon below ground (Tarnocai et al. 2009). At higher latitudes, these are 

                                                           
9 The parameter value for ϕ12 is 0.088. That means in the original DICE 2013R 8.8% of the atmospheric green-
house gases are absorbed by the upper oceans within one period (5 years). 
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frozen over by permafrost, and the embedded greenhouse gases are effectively locked away. 
However, when the soil thaws due to rising temperatures, the greenhouse gases will become 
unlocked and be released as CO2 or CH4. These additional emissions accumulate in the at-
mosphere, accelerate global warming and constitute the permafrost carbon feedback (PCF). 

Modeling this feedback in DICE-2013R is straightforward: We propose to include the atmos-
pheric temperature increase ΔTAT(t) as an additional endogenous argument into equation (1) 
which describes emissions E(t): 

2)t(T)t(E)t(E)t(E AT1defind
 . (1a) 

The extension 2)t(TAT1
  in (1a) causes the respective feedback loop: Due to increasing 

temperatures ΔTAT(t) the permafrost thaws, depending on the parameters ε1>0 and ε2>0. As a 
result the greenhouse gas accumulation in the atmosphere intensifies which leads to an in-
crease in radiative forcing and further rising temperatures. 

Before calibrating the parameters of our model it is necessary to distinguish our analysis from 
the work recently published by González-Eguino and Neumann (2016). Except for some 
technical features there are three main differences: 

– Firstly, González-Eguino and Neumann (2016) use a carbon budget approach where the 
temperature increase is handled as an additional restriction and kept below 2 °C. For this 
constrained scenario the authors calculate the welfare maximizing mitigation rates. In con-
trast, we follow the original approach of DICE-2013R and calculate the unconstrained wel-
fare maximum. Hence, in our analysis the resulting increase in temperature is completely 
endogenous.  

– Secondly, in the work of González-Eguino and Neumann (2016) emissions from perma-
frost follow an exogenously given time path, whereas in our analysis PCF-related emis-
sions explicitly depend on temperature thereby constituting an endogenous feedback loop. 

– Thirdly, González-Eguino and Neumann (2016) calculate the increase in mitigation rates 
and the associated cost to society that occur if the 2 °C target has to be met in the presence 
of emissions from permafrost. In contrast, we also calculate the economic losses resulting 
from a mitigation policy which ignores the PCF. 

4 Calibration of the parameters for the PCF 

We chose the PCF for a more throughout empirical investigation within DICE-2013R because 
the PCF is one of the most studied and best understood climate feedback mechanisms. Several 
studies have tried to quantify the effect of the PCF on the climate system (e.g., Schneider von 
Deimling et al. 2012, Schaefer et al. 2014, Koven et al. 2015). Hence, in contrast to the other 
feedback mechanisms considered in Sections 3.1 and 3.2, we have some more or less reliable 
data which can be used for calibrating the additional parameters ε1 and ε2 in equation (1a).  



8 
 

Following Schneider von Deimling et al. (2012), the extent of the PCF for different RCP 
emission scenarios is shown in Table 1.10 These estimates indicate the additional increase in 
the atmospheric temperature caused by the PCF in the years 2100 and 2200. 

Table 1 Additional increase in atmospheric temperature due to the PCF in the years 2100 and 
2200 for different RCP emission scenarios (Schneider von Deimling et al. 2012) 

 Lower boundary Best guess Upper boundary 
 2100 2200 2100 2200 2100 2200 

RCP2.6 0.01°C 0.03°C 0.03°C 0.06°C 0.06°C 0.13°C 

RCP4.5 0.02°C 0.07°C 0.05°C 0.14°C 0.10°C 0.29°C 

RCP6.0 0.02°C 0.10°C 0.05°C 0.20°C 0.11°C 0.46°C 

RCP8.5 0.04°C 0.18°C 0.10°C 0.38°C 0.23°C 0.78°C 

 

Schneider von Deimling et al. (2012) studied the PCF within the MAGICC model by 
Meinshausen et al. (2011a, 2011b). MAGICC is a compact climate model that also has been 
utilized to calibrate the parameters of the climate module in former versions of the DICE 
model (Nordhaus 2008, p. 44). For calibrating the parameters ε1 and ε2 we use the RCP4.5 
scenario because it provides a good match for the respective emissions that are calculated in 
the standard optimal run of DICE-2013R.  

It is important to acknowledge that the values for the RCP4.5 scenario are rather conservative 
guesses. The RCP6.0 scenario and the RCP8.5 scenario as well as other studies show higher 
temperature increases as a result of the PCF (e.g., Schaefer et al. 2014). However, we chose 
the study of Schneider von Deimling et al. (2012) because it provides the best overall assess-
ment considering different RCP scenarios and multiple points in time. Also the authors speci-
fied an upper and lower boundary for the temperature increase in each emission scenario.  

We calibrated the parameters εi by using the extended emission equation according to (1a) but 
at the same time we fixed the mitigation rates μ(t) to the values of the standard optimal run of 
DICE-2013R.11 This setup was run multiple times resetting the parameters εi each time until 
two requirements were met:  

– Firstly, for the best guess as well as for the lower and the upper boundary the additional 
temperature increase due to the PCF in the years 2100 and 2200 must result exactly in the 
magnitudes shown for the RCP4.5 scenario in Table 1. Moreover, for the starting year 
2010 we require an additional temperature increase of zero which is also roughly in line 
with the underlying study of Schneider von Deimling et al. (2012). 

– Secondly, for all three scenarios the resulting graph concerning the additional temperature 
increase due to the PCF must exhibit a specific shape: Roughly for the first century the ad-

                                                           
10 For an overview on the different RCP emission scenarios and their assumptions see van Vuuren et al. (2011).  
11 All calculations in this paper have been processed with the GAMS-sofware (“General Algebraic Modeling 
System”) using the CONOPT 3 solver. This is the same setup that is used by Nordhaus (2013) for solving the 
DICE-2013R model. The program file is available from the authors on request.  
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ditional temperature increase must be more than proportionately, but at some period there 
must be a turning point such that the increase becomes less than proportionately.   

The reason why we require this specific shape is straightforward: When a certain degree of 
warming is reached, the majority of the permafrost has already thawed and less additional 
emissions get into the atmosphere. As a result, the effect caused by the PCF diminishes. This 
is where the turning point occurs and the additional temperature increase becomes less than 
proportionately.  

Table 2 Calibration results for the parameters ε1 and ε2 based on the RCP4.5 scenario 

 Lower boundary Best guess Upper boundary 

ε1 1)t(Ord75.0   1)t(Ord55.2   1)t(Ord2.5   

ε2 1)t(Ord29.2   1)t(Ord235.2   1)t(Ord235.2   

 

The parameters εi resulting from our calibration are shown in Table 2 for the best guess sce-
nario as well as the lower and the upper boundary scenario. These expressions look somewhat 
peculiar due to the variable ord(t) which is part of the GAMS syntax.  It simply displays the 
number of the period that is currently considered (e.g., in period 10 we obtain ord(t)=10). This 
time-dependent formulation is necessary to meet the estimates by Schneider von Deimling et 
al. (2012). The reason for this complication is the long residence time of greenhouse gases in 
the atmosphere which entails that additional emissions due to thawing permafrost take effect 
for many subsequent periods. Thus, a non-time dependent formulation would always meet 
either the estimate for 2100 or the estimate for 2200, but never both. In contrast, the time-
dependent expressions in Table 2 become smaller over time because ord(t) increases. As a 
result, the permafrost impact is decreasing. This is also consistent with estimates that most of 
the emissions due to permafrost thawing will occur roughly up to the year 2150 (Schneider 
von Deimling et al. 2012). 
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Fig. 1 Temperature increase due to the PCF in the best guess scenario – comparing our sim-
ulation results with the estimates of Schneider von Deimling et al. (2012)   

 

Finally, in order to demonstrate the validity of our calibration, Figure 1 shows the additional 
increase in temperature due to the PCF that results if we employ the parameter values εi that 
stem from our calibration using the best guess scenario. Moreover, the three points marked by 
the symbol Δ represent the underlying estimates for this scenario by Schneider von Deimling 
et al. (2012). 

5 Results for the PCF 

In this section we discuss the results from using the DICE-2013R model with the PCF exten-
sion as described above and compare them to the original results of Nordhaus (2013). The 
major endogenous policy variables are the mitigation rates μ(t) which describes the share of 
emissions avoided. Figure 2 shows the “base level” of the mitigation rates resulting from the 
original DICE-2013R model as calculated by Nordhaus (2013).12 For the first period (i.e., the 
year 2010) the mitigation rate is exogenously fixed. The first endogenously optimized mitiga-
tion rate occurs in the year 2015 with roughly 20%. From that point on, the mitigation rate 
rises steadily until it reaches its (temporary) upper limit of 100% in the year 2120. Subse-
quently, beginning in 2155 the upper limit is relaxed to 120% which causes another jump in 
Figure 2. Of course, mitigation rates above 100% imply that more emissions are avoided than 
even occur. This could be interpreted as the employment of some carbon removal techniques 
which become available by 2155 (e.g., climate engineering).13 
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Fig. 2 Optimal mitigation rates in the original DICE-2013R model (“base level”)    

                                                           
12 For convenience, in the text mitigation rates are expressed as percentages although in the original GAMS file 
as well as in the figures above the variables μ(t) are expressed as decimals.  
13 However, neither Nordhaus (2013) nor Nordhaus and Sztorc (2013) offer an explicit justification for relaxing 
the upper limit in 2155. 
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Next, we present the results of our own calculations using the DICE-2013R model with the 
PCF extension for the best guess scenario as well as for the upper and the lower boundary.14 
In order to enhance the graphical depiction, Figure 3 does not show the absolute mitigation 
rates but their difference to the base levels as shown in Figure 2. As indicated by Figure 3, in 
all scenarios the resulting mitigation rates are slightly above the base levels.15 The reason for 
this difference is obvious: The PCF leads to increased emissions and therefore to increasing 
climate damages. Hence, mitigation becomes more favorable. 
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Fig. 3 Difference between optimal mitigation rates with PCF and base level mitigation rates 

according to Figure 2  
 

For all three scenarios the mitigation rates’ differences to the base level increase steadily until 
they drop down to zero in 2125 since mitigation rates approach to their upper limit in our ex-
tended model as well as in the original version. The differences to the base level are biggest in 
the upper boundary scenario where the PCF is most severe. In this scenario, the differences 
rise up to roughly 2.7 percentage points. This might seem to be rather small but two crucial 
points need to be emphasized. Firstly, as already mentioned in Section 4, the magnitudes con-
cerning the PCFs impact on the temperature as shown in Table 1 are quite conservative guess-
es compared to other studies. And secondly, our model considers only one type of feedback 

                                                           
14 It should carefully be noted, that the fixation of the mitigation rates μ(t) to the base level in Section 4 was only 
for the purpose of calibrating the parameters εi. The results discussed here, of course, rely on endogenously op-
timized mitigation rates.  
15 Generally, the PCF-related increase in mitigation rates calculated with our approach is smaller compared to the 
results obtained by Gonzáles-Eguino and Neumann (2016). The reason is that their model forces the increase in 
temperature to stay below 2° C whereas unconstrained welfare maximization in our model leads to a peak in-
crease in temperature of about 3.4° C.  
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mechanism; when multiple feedbacks are considered simultaneously, the overall impact could 
be expected to be much higher.  

Also the differences shown in Figure 3 are small compared to the results of related papers 
investigating uncertainty and potential catastrophes (Keller et al. 2004, Ackerman et al. 2010). 
However, these results are only partially comparable. We deal with climate feedbacks that 
enhance damages but we do not deal with uncertainty about these damages. In contrast, the 
above cited papers explicitly consider uncertainty leading to much higher emission mitigation 
rates that can be considered as a risk premium to insure against catastrophes (Nordhaus 2008 
pp. 137, Weitzman 2010).  
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Fig. 4 Temperature increase - difference between our results with optimized mitigation rates 

and the original DICE2013R model  
 

An important variable directly related to the mitigation rate is the temperature increase. Alt-
hough our extended model leads to higher mitigation rates compared to Nordhaus (2013) the 
corresponding atmospheric temperature exceeds the base level resulting from the original ver-
sion of DICE-2013R. These differences in temperature, as shown in Figure 4, indicate that 
even in the optimum, enhanced mitigation will only avoid a part of the temperature increase 
caused by the PCF. However, as easily can be checked, the additional increase in temperature 
that remains after enhanced mitigation stays well below the reference values for the RCP4.5 
scenario presented in Table 1. 

Next, in order to investigate potential economic impacts, we compute the output losses that 
are caused if climate policy ignores that optimal adaption to the PCF requires increasing miti-
gation rates. Each calculation for the best guess scenario as well as for the upper and the low-
er boundary proceeds in three steps: 
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– In the first step, we calculate the output that results if the optimal mitigation rates as de-
rived from our extended model are employed. 

– In the second step, the mitigation rates are fixed to the reference values (base level) that 
stem from the original DICE-2013R without the PCF. Hence, our model is forced to em-
ploy suboptimal low mitigation rates. This yields the output that results if climate policy 
ignores the PCF although its mechanism is present in the model.  

– In the third step, the differences in output between the optimal run (first step) and the run 
with fixed mitigation rates (second step) are calculated. These differences can be interpret-
ed as the economic losses that occur if the PCF is ignored. 
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Fig. 5 Output loss that is caused if climate policy ignores the PCF  
 

The undiscounted losses in output (trillions of $ US) resulting from these calculations are 
shown in Figure 5.16 Noticeable, the economic impact for roughly the first 100 years is very 
small since output losses tend to be around zero or even slightly below in all three scenarios. 
Negative losses imply that actually the suboptimal climate policy with fixed mitigation rates 
is economically beneficial in those periods. The reason for this is obvious: The optimal cli-
mate policy requires higher mitigation rates. This leads immediately to higher mitigation 
costs, whereas the majority of the benefits in terms of a lower atmospheric carbon concentra-
tion accrue in the distant future. Consequently, when considering only the first couple of peri-
ods, employing suboptimal low mitigation rates is beneficial.  

However, things change drastically by the year 2125 when the graphs suddenly get steeper 
and output losses become considerably positive. This turn can easily be explained: As indicat-
ed by Figure 3, in 2125 the optimal mitigation rates converge to the base level rates shown in 
Figure 2. Hence, in the following years there are no more additional mitigation costs implied 
                                                           
16 The same calculations can be performed for the variables consumption and investment. The resulting diagrams 
are mostly similar to those for output. 
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by the optimal policy but the economy still profits from the increased mitigation rates in the 
past. 

Finally, we calculated the net present value of output losses employing a pure rate of social 
time preference of 1,5% as used by Nordhaus (2013). The resulting magnitudes range from 
0.9 trillion $ US in the lower boundary scenario, to 1.5 trillion $ US in the best guess scenario 
and 3.2 trillion $ US in the upper boundary scenario. Compared to the overall net output this 
implies relative losses ranging from 0.02% to 0.08%. These figures might seem pretty low. 
However, since the benefits of taking into account the PCF when determining the optimal 
mitigation rates occur in the distant future, there is an enormous bias caused by discounting. 
Moreover, as already mentioned above, our results are based on rather conservative estimates 
of the PCFs impact on temperature.  

6 Conclusions 

Previous studies on the economics of climate change based on integrated assessment models 
almost completely omitted the additional effect of feedback mechanisms within the climate 
system. From the viewpoint of integrated assessment modeling, the most important feature of 
these mechanisms is their self-enforcing character which leads to endogenous feedback loops. 
In this paper, we show how to incorporate some of the most important feedback mechanisms 
into the setup of DICE-2013R. In a subsequent empirical analysis we focus on the PCF which 
is one of the most studied and best understood climate feedback mechanisms.  

Our results showed that maximizing welfare in the presence of an endogenous feedback loop 
caused by PCF-related emissions requires an increase in mitigation rates that amounts up to 
2.7 percentage points (depending on the scenario considered). At first glance, this might seem 
rather small. However, analyzing multiple feedback mechanisms simultaneously should con-
siderably amplify the impacts illustrated. Moreover, our results are based on rather conserva-
tive estimates concerning the impact of the PCF on temperature. 

Concerning overall welfare we calculated the economic losses resulting from a mitigation 
policy which ignores the PCF. It turned out that the main losses occur far in the future when 
mitigation rates with and without considering the PCF converge such that there are no more 
additional mitigation costs but the economy would still profit from increased (optimal) miti-
gation rates in the past. Moreover, this delayed occurrence of losses together with the impact 
of discounting leads to comparatively small economic effects ranging from -0.02 to  
-0.08 % when the present value of output is considered.  

Of course, we are aware that our analysis can provide only some first insights concerning the 
incorporation of endogenous feedback loops into integrated assessment models and the result-
ing economic consequences. Except for the PCF there is still huge uncertainty about the dif-
ferent feedback mechanisms’ quantitative impacts on the climate system. Consequently, more 
studies from the natural sciences are necessary before these mechanisms can be properly cali-
brated and included into integrated assessment models like DICE. 
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Annex 

Short description of the DICE-2013R model 

The utility in DICE is expressed as a standard constant-relative-risk-aversion utility function 
for neoclassical growth models: 















1
)t(c)t(L)]t(L),t(c[U
1

 (1) 

with t indicating the specific period (one period accounts for five years), c(t) is per capita con-
sumption, L(t) is the population and α is the elasticity of marginal utility of consumption. The 
objective is to maximize the welfare function W. The latter consists of the discounted utility 
summed over a finite time horizon: 

)]t(L),t(c[U
)1(

1)]t(L),t(c[W
T

1t
1t




 . (2) 

The parameter ρ is the pure rate of social time preference such that 1t)1(1   is the discount 
factor. The production function is of Cobb-Douglas type: 

 1)t(L)t(K)t(A)t(Y . (3) 

A(t) is the total factor productivity, K(t) is the capital stock, L(t) is not only the population but 
also the labor input and γ is the elasticity of output with respect to capital. The link to the cli-
mate module is formed via greenhouse gas emissions which are caused by production due to 
an exogenous emission coefficient (see also equation (7)). These emissions accumulate in the 
atmosphere. The carbon dioxide concentrations in the atmosphere and in the oceans are inter-
related, since oceans are considered a huge sink for emissions (Nordhaus 2008 p. 43). As de-
scribed below by equations (9) to (14), the accumulated emissions lead to a higher atmospher-
ic greenhouse gas concentration which causes the radiative forcing to increase and ultimately 
cause the surface temperature to increase. The impact of this temperature increase is given by 
the following damage function Ω(t) which indicates the share of output that is lost due to cli-
mate damages: 

2
AT2AT1 )t(T)t(T)t(  . (4) 

ΔTAT(t) is the increase of global mean temperature of the atmosphere over the pre-industrial 
level, and σ1 as well as σ2 are parameters that determine the shape of the damage function. To 
avoid damages, emissions can be reduced by mitigation activities. The accompanying costs 
Λ(t) are expressed as the share of output that is lost due to mitigation activities. The cost func-
tion describing Λ(t) is given by: 

2)t()t( 1
  (5) 
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with μ(t) indicating the share of avoided emissions, and ψ1 as well as ψ2 are parameters that 
determine the shape of the mitigation cost function.  

To sum up, Ω(t) indicates the share of output lost due to climate damages, whereas Λ(t) indi-
cates the share of output lost due to mitigation activities. Consequently, weighting the gross 
output Y(t) by the multipliers [1–Ω(t)] and [1–Λ(t)] yields the remaining net output: 

 1
net )t(L)t(K)t(A)]t(1)][t(1[)t(Y . (6) 

Equation (6) highlights the typical trade-off in climate policy: More emission mitigation leads 
to higher mitigation costs Λ(t) resulting in a decreasing net output. However, at the same 
time, more emission mitigation leads to lower damages Ω(t) resulting in an increasing net 
output.  

Finally, the net output is divided into consumption and investment: )t(I)t(C)t(Ynet  . This 
creates the typical trade-off in neoclassical growth models. Output is either consumed directly 
or invested in physical capital in order to increase the consumption possibilities in the future. 

Emissions are caused by production depending on an exogenous emission coefficient τ(t) 
which declines over time in order to simulate carbon-saving technological change. Account-
ing for abatement activities, the remaining emissions from production are given by: 

 1
ind )t(L)t(K)t(A)]t(1)[t()t(E  (7) 

with μ(t) indicating the mitigation rate, i.e., the share of emissions avoided. Besides emissions 
from production the model also accounts for exogenously given emissions from land use 
changes (e.g., deforestation) which are denoted by )t(Edef . Hence, the complete emissions 
are given by: 

)t(E)t(E)t(E defind  . (8) 

These emissions accumulate in the atmosphere and cause the atmospheric carbon concentra-
tion to increase. The latter is interrelated with the concentrations in different layers of the 
oceans. The concentrations in the atmosphere MAT(t), in the upper ocean MUO(t) and in the 
lower ocean MLO(t) and their interrelationship are shown in equations (9) to (11): 

  )1t(M)1t(M1)t(E)t(M UO21AT12AT  , (9) 

)1t(M)1t(M)1t(M)t(M LO32UO22AT12UO  , (10) 

)1t(M)1t(M)t(M LO33UO23LO  . (11) 

The atmospheric concentration MAT(t) is composed of the current emissions, the share of the 
concentration remaining from the previous period plus the share of the upper oceanic concen-
tration from the previous period that diffuses into the atmosphere. The upper oceanic concen-
tration MUO(t) consists of the remaining share from the previous period plus the absorptions 
from the atmosphere and the lower oceans. The concentration in the lower oceans MLO(t) is 
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the remaining share of the previous period plus the absorption from the upper oceans. The 
parameters ϕij control these relationships between different reservoirs and periods.  

In the next step, the atmospheric carbon concentration MAT(t) increases the radiative forcing 
from the sun F(t) represented by: 

)t(F
)preind(M

)t(M)t(F exog
AT

AT
  (12) 

with η being a parameter that controls the impact of increasing greenhouse gas concentrations 
and MAT(preind) indicating the pre-industrial level of these concentrations. The term Fexog(t) 
covers the additional radiative forcing caused by other greenhouse gases or aerosols that are 
exogenous in the model.  

Finally, the increasing radiative forcing results in an increase of temperatures in the atmos-
phere ΔTAT(t) as well as in the oceans ΔTO(t) as given by equations (13) and (14): 

  )1t(T)1t(T)1t(T)t(F)1t(T)t(T OAT3AT21ATAT  , (13) 

 )1t(T)1t(T)1t(T)t(T OAT4OO  . (14) 

The change in atmospheric temperatures according to (13) results from the change of the pre-
vious period as well as from the current radiative forcing that is corrected for the previous 
period and the interference between atmosphere and oceans. Analogously, the temperature 
change in the oceans according to (14) is computed from the change of the previous period 
that is corrected for the interference between the oceans and the atmosphere. These relation-
ships between radiative forcing and the temperature in different carbon reservoirs or different 
periods, respectively, are controlled by the parameters ωi. 

 


