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1 Introduction

Economists have only recently started to experimentally investigate lying behav-

ior. Gneezy (2005) has shown that a significant share of subjects have a strong

aversion to lying besides purely distributional preferences. Subsequent studies

explored various determinants of individual lying aversion such as the payoff

consequences for the sender and the receiver of the message (Erat and Gneezy,

2012), the form of communication (Lundquist et al., 2009), anticipated trust of

the receiver (Charness and Dufwenberg, 2006; Sutter, 2009), or the size of the lie

(Kajackaite and Gneezy, 2015).

An important experimental paradigm for studying motivations for honesty

has been developed by Fischbacher and Föllmi-Heusi (2013) which already in the

rather short time frame since its publication has been used in a large number

of experimental studies. A recent meta-study by Abeler et al. (2016) already

includes more than 70 studies using this paradigm. In this setting, subjects pri-

vately have to roll a die and then report the number they have observed. The

payoff is simply equivalent to the reported number (except for the number 6

which leads to a payoff of zero). An important advantage of the method is that

it avoids strategic interactions between subjects and thus facilitates the identi-

fication of intrinsic motives for lying behavior. Moreover, in the baseline design

the experimenter cannot verify the reported messages on the individual level,

hence, subjects can be certain that lies are not discovered, but lying behavior can

still be inferred from the distribution of reported numbers. If all subjects told

the truth each number should be reported with a likelihood of 1/6. However,

in the experiment the fractions of numbers 4 and 5 among all reported numbers

were significantly above the expected 1/6 (i.e., 27.2% for the 4 and 35.0% for

the 5). Hence, a substantial number of subjects did not tell the truth - but also

apparently many did not maximize their own material payoff (i.e., did not report

the number 5). As a possible explanation, Fischbacher and Föllmi-Heusi (2013)

suggest that some subjects might have a reputational concern motivating them

to disguise their lying to an outside observer (which can be an experimenter or a

future self) by reporting not the payoff-maximizing number. This conjecture was

further substantiated by the experimental evidence that partial lying in cheating

games turns to be significantly less frequent if lying can be individually verified

by the experimenter (Gneezy et al., 2016; Kajackaite and Gneezy, 2015; Abeler

et al., 2016).

We now formalize this idea by developing a model which assumes both a fixed
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cost of lying and image concerns not to be viewed as a liar and study whether

equilibrium behavior can indeed predict patterns such as those described in the

experiment. In our model agents consider three motives: (i) they are better off

when earning more money, (ii) they have an intrinsic cost of lying (which varies

between individuals) and (iii) an agent’s utility is decreasing in the likelihood

with which an outside observer believes her to have lied after having observed

the reported number.1 We show that such context naturally gives rise to equilibria

in which agents who lie randomize their reporting behavior among a subset of

the most favorable reports.

We furthermore show that the lower bound of the set of numbers liars report

in equilibrium is decreasing in the strength of the agents’ image concerns. If

image concerns are weak, all liars report the highest feasible number. In the

opposite case when image concerns become very strong, liars randomize over the

whole set of possible reports excluding the smallest number. Thus, too strong

reputational concerns of the sender may actually backfire for the receiver since

then she can never be sure to have obtained the correct information (except for

the case of the lowest message). Notably, we show that this effect goes in the

opposite direction of the effect of an increase in the fixed costs of lying, which

leads to a smaller range of reported lies. Finally, we consider the effect of the

stake size. While the total rate of lying unambiguously increases with the stake

size, the range of reported lies can both increase and decrease depending on the

parameters. The latter fact is due to the opposing effects from a relative decrease

in the reputational and fixed costs of lying.

With very few calibrated parameters, the model produces a good fit of the

predicted behavior to the actual data from Fischbacher and Föllmi-Heusi (2013)

and related experiments. While our model is primarily motivated to explain the

empirical evidence from experimental cheating games, it is worth noting that

such games also capture structural properties of many real-life communication

settings where: 1) transmitted information is not easily verifiable (or verifiable

with a significant delay), 2) there are material incentives to misreport, and 3) the

sender of the message might care about not being perceived as a liar at the time

1Models of fixed (i.e., belief-independent) costs of lying were developed by Kartik et al.
(2007) and Kartik (2009). Ottaviani and Sørensen (2006a) and Ottaviani and Sørensen (2006b)
considered settings where the sender cares about the inferred precision of his private signal.
The concern for the inferred social preferences was modeled in Bernheim (1994), Bénabou and
Tirole (2006) and Ellingsen and Johannesson (2008) where an agent prefers to be perceived as
having a certain type of preferences. In contrast to these models, we assume that the sender
cares about the receiver’s inference regarding the action of lying. See Abeler et al. (2016) for
further classification of the related models.
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of communication. Potential examples include medical diagnoses, promises in

political election campaigns, the sale of credence goods, and academic reference

letters.

Simultaneously to our work, a few recent papers aim to explain the experimen-

tal data from cheating games. In Gneezy et al. (2016) and Abeler et al. (2016),

the main model specifications also combine both fixed costs of lying and image

concerns depending on the probability others assign that the agent lies. Unlike

us, Dufwenberg and Dufwenberg (2016) incorporate only (belief-dependent) costs

that are proportional to the size of a lie perceived by the receiver. In terms of

qualitative analytical results, the closest study to ours is of Gneezy et al. (2016)

who showed some of the important equilibrium properties also outlined in our

analysis. While our model has somewhat stricter (though, empirically justified)

restrictions on preferences (such as the invariance of the fixed lying cost to the ob-

served number and the size of the lie), at the same time this allows us to provide

a complete mathematical characterization of the (unique) equilibrium distribu-

tion of reports. Moreover, we analyze the comparative statics of the equilibrium

with respect to an increase in the image concerns, fixed lying costs and monetary

stakes, obtaining qualitatively different and testable predictions for each case that

allow to explain several experimental findings.2

The remainder of the paper is organized as follows. Section 2 presents the

model setting, Section 3 provides the equilibrium analysis, Section 4 shows the

results of the calibration of the model to the actual data from Fischbacher and

Föllmi-Heusi (2013) and Kajackaite and Gneezy (2015), and Section 5 concludes.

2 The Model

2.1 Benchmark Preferences: No Reputational Concerns

We consider a population of agents who play a variant of the Fischbacher and

Föllmi-Heusi (2013) cheating game. First, an agent privately observes a uniformly

distributed random (integer) number y ∈ Y = {0, 1, .., K} such that Pr (y) =
1

K+1
.3 She then has to report this number to a receiver making a report x ∈ Y

which leads to a payment equal to x to the agent. A perfectly selfish agent would

then always report the highest possible number K.

2The focus of the comparative statics analysis in the other studies is somewhat different. In
particular, Gneezy et al. (2016) primarily consider the effect of the underlying distribution of
the observed numbers.

3Setting the lowest number to 0 is without loss of generality for the qualitative results.
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Before we proceed to our full model that includes reputational concerns we

start by investigating a benchmark case where agents have only a fixed cost of

lying l > 0 such that their utility is reduced by l whenever they report x 6= y.4

Hereby, l is distributed according to a strictly increasing continuous cdf F (l) with

F (l) = 0 for l ≤ 0 and F (l) > 0 for l > 0.5 Note that our model allows for a large

probability mass on arbitrarily small lying costs: The assumption that F (0) = 0

just implies that agents who are indifferent between lying and telling the truth,

will tell the truth (similarly to a lexicographic preference for truth-telling). We

also assume that F (K) < 1, i.e., there is a strictly positive probability that there

are agents who never lie even if this would yield the highest possible payoff (so

that all numbers are reported in equilibrium). The utility function is then given

by

u (l, x, y) = x− l · IL(x, y), (1)

where L denotes the set of lies, i.e., L ={(x, y) ∈ Y 2 : x 6= y} and IL is the indi-

cator function. Such preferences imply that if an agent prefers lying by reporting

some x < K over truth-telling (i.e., x− l > y for some x ∈ Y ), then she prefers to

lie to the highest extent, since K− l > x− l for any x < K. Hence, in equilibrium

no partial lying to x < K can occur. This directly leads to the following result.

Proposition 1 Under preferences given by (1), all liars report x = K and the

likelihood of reporting x < K does not exceed 1
K+1

.

Thus, a (belief-independent) lying cost cannot by itself explain overreporting

of numbers strictly lower than K - the main empirical puzzle in the experiment

of Fischbacher and Föllmi-Heusi (2013) - which motivates the incorporation of

reputational costs into the agent’s utility function in the next section.6

4The experiments of Gneezy et al. (2013), Kajackaite and Gneezy (2015) and Gneezy et al.
(2016) show that the strength of (inference-independent) lying aversion does not depend on the
size of a lie.

5Gneezy et al. (2013) provide empirical evidence for heterogeneous fixed lying costs with a
large share of subjects being characterized by intermediate costs.

6Note that the second statement of Proposition 1 holds also for more complex specifications
of the lying cost function. For instance, if the lying cost is concave in the size of the lie, then the
net benefit from lying increases in the reported number. Consequently, no partial lies occur as
well. In case of a convex (size-dependent) cost of lying, partial lying is possible. However, under
such preferences, once an agent’s type prefers to lie to some x < K while observing y < x, the
same type would also prefer to lie at least to x + 1 while observing x (as the marginal cost of
lying in the latter case is weakly less steep). Hence, under uniform distribution of the observed
states, the likelihood of lying to any given x < K cannot exceed the likelihood of lying after
observing x. As a result, still no x < K would be overreported.
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2.2 Reputational Concerns

In our full model, agents have also concern for reputation of being honest besides

the fixed intrinsic lying costs. In particular, we assume that the agent’s utility

is decreasing in the likelihood that the receiver or some outside observer thinks

that she has told lie, i.e., in Pr [y 6= x|x].7 Thus, her utility function is

u (l, x, y) = x− l · IL(x, y)− η · Pr [y 6= x|x] (2)

such that parameter η > 0 captures the extent to which agents dislike being

viewed as liars by the receiver. Since the utility function depends on the receiver’s

beliefs, we obtain a psychological game (Geanakoplos et al., 1989; Battigalli and

Dufwenberg, 2009). The term −η · Pr [y 6= x|x] is referred below as the agent’s

reputational payoff.

3 Equilibrium Analysis

3.1 General Characterization

We now consider Bayesian Nash equilibria of the game which are characterized

by (i) the reporting strategy of an agent as a function of her cost of lying l and

the observed number y and (ii) the receiver’s beliefs about the likelihood that

an agent lied which is a function of the reported number x. Denote the (mixed)

strategy of an agent as

σ (l, y) =
(
p0ly, p

1
ly, ..., p

K
ly

)
,

which is a probability distribution over the K+1 pure reporting strategies, i.e., an

agent with cost of lying l who has observed y reports number x with probability

pxly. The receiver’s belief that a report x was truthful is denoted as

r(x) = Pr[y = x|x].

Then, an equilibrium is a set of mixed strategies and beliefs satisfying the follow-

ing conditions:

∀(l, x, y) : pxly > 0 only if x ∈ arg max
x′

u(l, x′, y), (3)

7See also Bénabou and Tirole (2006), Fischbacher and Föllmi-Heusi (2013) and Dufwenberg
and Dufwenberg (2016) for discussions regarding the agent herself being a plausible audience.
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∀(l, y) :
K∑
x=0

pxly = 1, (4)

∀(x) : r(x) =
Pr [y = x ∧ x reported]

Pr [x reported]
=

∫∞
0
pxlxdF (l)∑K

y=0

(∫∞
0
pxlydF (l)

) . (5)

The last condition ensures that beliefs are formed by Bayes rule.8,9

Denote by XL the set of reports chosen by lying agents in equilibrium. We

first show that in any equilibrium XL is non-empty.

Lemma 1 There exists no equilibrium with complete truth-telling.

Proof: Assume by contradiction that all agents tell the truth. Then, r (x) = 1

for all x ∈ Y . But then agents with sufficiently small costs of lying l observing

y < K would deviate and report x = K.

When XL is a singleton we have a pure strategy equilibrium, and it is straight-

forward to show that the only feasible candidate with this property is one in which

XL = {K}.10 To see that, suppose that all agents who lie choose x′ < K. In that

case someone reporting x = K must be a truth-teller and thus r (x′) < r (K) = 1.

But then the lying agents could earn a higher material payoff and reputation when

reporting the highest possible report K.

Note, however, that such an equilibrium where XL = {K} may not exist. The

reason is the following: suppose that sufficiently many liars report K. Then such

a report can lead to a strong loss in reputation. In turn, when η is large enough

liars will have an incentive to deviate and report a lower number. We can indeed

show:

Lemma 2 In any equilibrium in which the set of reports chosen by liars XL is

a singleton, all liars report x = K. If η is sufficiently large, XL can never be a

singleton.

Proof:

The first part of the lemma follows from the above considerations.

8Recall that there are always people who never lie (since F (K) < 1). Hence any value of x
is reported with strictly positive probability by a truthful agent on the equilibrium path.

9For our game, the defined equilibrium is equivalent to sequential equilibrium for psycho-
logical games developed by Battigalli and Dufwenberg (2009).

10The assumption that all agents are either pure liars or pure truth-tellers is without loss of
generality since the mass of agents whose lying cost l makes them indifferent between lying and
truth-telling has zero measure.

7



Let us show the second part. Assume that in equilibrium all liars report

x = K. Then, the total likelihood of lying Pr[x = K|y 6= K] is bounded from

below for any η. Indeed, consider agents observing y = 0 with l < K − 1. These

types will never tell the truth in equilibrium, since they have a strict incentive

to deviate to x = K − 1 earning K − 1 − l, which is then strictly higher than

the payoff of 0 they earn from truth-telling (while there is no reputational loss

in both cases). Thus, the probability of lying is bounded by the fraction of these

types, i.e.,

Pr[x = K|y 6= K] ≥ 1

K + 1
F (K − 1). (6)

Furthermore, note that agents observing K never report some x′ 6= K (earning

x′ − l) since otherwise it should hold x′ > K − η(1− r(K)) so that all liars to K

would have a strict incentive to also deviate to x′ (being indifferent in terms of

lying costs). Then, by Bayes rule

r(K) =
Pr [y = K ∧K reported]

Pr [K reported]
=

1
K+1

1
K+1

+ Pr[x = K|y 6= K]

≤
1

K+1
1

K+1
+ 1

K+1
F (K − 1)

=
1

1 + F (K − 1)
, (7)

i.e., r(K) is bounded from above by 1
1+F (K−1) < 1.

Moreover, if XL = {K} any agent who lies must prefer to report x = K to

reporting x = K − 1 or

K − 1 ≤ K − η · (1− r(K))

⇔ 1− 1

η
≤ r(K). (8)

Conditions (7) and (8) thus yield 1− 1
η
≤ 1

1+F (K−1) which leads to a contradiction

when η is sufficiently large.

Hence, when η is sufficiently large liars will not all report the same number in

equilibrium as otherwise someone reporting this number is perceived as a liar with

a too high probability which makes a deviation attractive. However, there may

be equilibria where liars report numbers from a larger set XL ⊆ Y . Intuitively,

randomizing reports over a larger set makes it easier to disguise a lie. It is

important to note that this can only be the case when liars are indifferent between
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all messages in XL or

x− η · (1− r (x)) = ρ for all x ∈ XL (9)

where ρ is some constant. To see this, note that if a person lies, the “optimal

lie” (i.e., the value of x maximizing x− η · (1− r(x))− l) does not depend on the

fixed cost of lying l. We use this to further characterize necessary conditions for

all feasible equilibria:

Proposition 2 In any equilibrium the following properties hold:

(i) Agents who lie make a report which is larger or equal than a cut-off value

xL where 1 ≤ xL ≤ K.

(ii) The probability that someone who reports x is a truth-teller is

r (x) =

{
1− x−ρ

η
if x ≥ xL

1 if x < xL,
(10)

where ρ is some constant in the interval (max{0, K − η}, K).

(iii) Agents who have observed a value y ≥ xL report their observed values

truthfully.

Proof:

First, note that in any equilibrium XL is non-empty by Lemma 1. Let us

show that agents who observed y ∈ XL report their true value. Assume by

contradiction that there exist y′, y′′ ∈ XL such that some agents observing y′ lie

by reporting x = y′′. For these agents, the following must hold

y′ − η(1− r (y′)) ≤ y′′ − η(1− r (y′′))− l

⇔ y′ − η(1− r (y′)) < y′′ − η(1− r (y′′)). (11)

This implies that no agent observing y 6= y′ would like to lie to y′, strictly

preferring to report y′′. Hence, y′ /∈ XL which is a contradiction. It follows that

all untruthful reports are done by the agents observing y /∈ XL.

Next, we show that XL consists of the largest elements of Y by contradiction:

suppose that xL is the smallest element of XL and there is a specific value x′ > xL

which is not an element of XL so that r (x′) = 1 > r(xL). Then u (x′, y) >

u (xL, y) for all y 6= xL (as both material and reputational payoffs are higher by

reporting x′) and liars to xL would deviate and report x′ instead. Thus, xL /∈ XL

which is a contradiction.
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The existence of the cut-off value, together with condition (9), leads to the

characterization of the probability of truth-telling (10). Moreover, xL 6= 0 as

the opposite implies that XL = Y and hence nobody would lie since, as we

have shown, agents observing y ∈ XL report their number truthfully. This is a

contradiction by Lemma 1.

Since agents observing y ∈ XL tell the truth while liars must use all messages

in XL by definition, we have

1 > r(x) > 0 for all x ∈ XL, (12)

which together with K ∈ XL and condition (9) leads to ρ ∈ (K− η,K). Further-

more, ρ must be strictly positive. Otherwise, we would have ρ− l < y for all (l, y)

which would imply that liars observing y /∈ XL have a strict incentive to deviate

to truth-telling. Thus, ρ ∈ (max{0, K − η}, K).

In equilibrium we must thus observe a specific pattern in the association

between a report and the reputation for being a truth-teller given this report.

This reputation is linearly decreasing within the set of reports chosen by liars: the

loss in money when choosing a lower report must be exactly offset by an equivalent

gain in reputation so that the sum of monetary and reputational payoffs remains

constant at some level ρ (see (9)).

As Proposition 2 also shows, all agents who have observed a y ≥ xL tell the

truth. The intuition for this is simple: reporting a different value within XL would

lead to the identical sum of monetary and reputational payoffs but comes along

with a utility loss due to the cost of lying l.

We can now consider the behavior of agents who have observed a true value

y strictly below the cut-off value xL. When reporting the truth such an agent’s

utility is y and when lying she obtains ρ− l. Hence, she will report truthfully if

and only if

ρ− y ≤ l. (13)

This implies:

Lemma 3 If an agent observes a value y < xL she reports truthfully if and only

if her cost of lying l exceeds a cut-off value l∗ (y) = ρ− y.

We can use Proposition 2 and Lemma 3 to characterize the equilibrium dis-

tribution of reported numbers:
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Proposition 3 In equilibrium the probability that x is reported is

Pr [x reported] =

{
η

(K+1)(η−x+ρ) if x ≥ xL
1

K+1
(1− F (ρ− x)) if x < xL

(14)

which is strictly increasing in x. Moreover, Pr [x reported] > 1
K+1

for x ≥ xL and

Pr [x reported] ≤ 1
K+1

for x < xL.

Proof:

By Bayes rule,

r (x) =
Pr [y = x ∧ x reported]

Pr [x reported]
. (15)

At the same time, by Proposition 2 for any x ≥ xL

Pr [y = x ∧ x reported] =
1

K + 1
(16)

as x is observed with probability 1
K+1

and all agents who observe it tell the truth.

We then obtain from (15) and (16) that

Pr [x reported] =
1

K + 1

1

r(x)
for x ≥ xL, (17)

which is strictly larger than 1
K+1

. By substituting r (x) = 1− x−ρ
η

from Proposi-

tion 2 we obtain that

Pr [x reported] =
η

(K + 1) (η − x+ ρ)
(18)

in this case.

For any x < xL the likelihood that x is reported is (given Lemma 3)

Pr [x reported] = Pr [x observed] · Pr [ρ− x ≤ l]

=
1

K + 1
(1− F (ρ− x)) ≤ 1

K + 1
. (19)

The claim that Pr [x reported] is strictly increasing in x for x ≥ xL follows

directly from (18). It is left to show that Pr[x reported] strictly increases in x

also for x < xL. Given (19), a sufficient condition for this is that

ρ− (xL − 1) ≥ 0, (20)

in which case F (ρ− x) strictly decreases in x for x ≤ xL − 1. Assume the
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opposite, i.e., that ρ − (xL − 1) < 0 ⇔ xL − 1 > ρ. Then, any agent who lies

would be better off reporting xL − 1 (getting at least xL − 1 − l) instead of an

x ≥ xL (getting ρ− l) which leads to a contradiction by Proposition 2.

Proposition 3 thus implies a specific pattern in the observed distribution of

reports. First of all, all numbers above the threshold xL are reported more fre-

quently than they are actually observed, and all numbers below the threshold are

reported (weakly) less frequently than observed.11 The reason is straightforward:

only agents who observed y < xL lie and they only lie to x ≥ xL.

Furthermore, the higher x the higher is the likelihood that x is reported. This

is due to two effects: For x < xL all agents who report such an x are truth-tellers.

But within this set the incentives to lie are stronger for lower observed numbers

as here the material gain from lying is larger. For larger values of x (x ≥ xL) the

fact that the likelihood of a report x must increase in x is due to the reputational

payoff obtained in equilibrium. As laid out in the above, all numbers reported

by liars in equilibrium must lead to the same total payoff. In turn, any material

gain must be offset by an equivalent reputational loss. As higher values of x come

along with a higher material gain, more liars must thus choose to report them in

equilibrium.

3.2 Existence and Uniqueness

We have shown so far that an equilibrium of the game can be characterized by

the cut-off value xL and the gross utility from lying (not including the fixed lying

cost) ρ. The following result shows that the equilibrium values of these variables

are directly linked.

Lemma 4 In any equilibrium xL is equal to the smallest integer strictly larger

than ρ, that is

xL (ρ) = min {x ∈ {1, .., K} |x > ρ} . (21)

Proof:

By Proposition 2, the equilibrium likelihood that a report x is truthful is

r(x) = 1− x− ρ
η

< 1 for all x ≥ xL, (22)

11The number xL − 1 can still be reported with probability 1
K+1 if ρ = xL − 1, which is not

precluded by the incentive constraint (20).
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where the inequality follows from the fact that there are always liars reporting an

x ≥ xL. This implies that x > ρ for all x ≥ xL and in turn we must have xL > ρ.

At the same time, xL ≤ ρ+ 1 is given by (20).

In equilibrium, the total likelihood of sending a false message by an agent

observing y < xL must be equal to the total likelihood of receiving a false message.

We now use this “accounting property” to show the existence and investigate the

uniqueness of equilibrium.

Theorem 1 All equilibria of the game induce the same distribution of reported

numbers characterized by ρ∗ ∈ (max{0, K − η}, K), which is implicitly defined by

the equation
xL(ρ

∗)−1∑
y=0

F (ρ∗ − y) =
K∑

x=xL(ρ)

(
x− ρ∗

η − x+ ρ∗

)
(23)

that always has a unique solution in this interval.

Proof:

By Proposition 2 and Lemma 3 the total fraction of liars is

Pr[Lie] =

xL(ρ)−1∑
y=0

1

K + 1
F (ρ− y) (24)

as a function of ρ. At the same time we can determine the total probability that

a reported number is a lie as

Pr[Lie] =
K∑

x=xL(ρ)

Pr [x reported] · Pr [x is a lie |x reported] .

Using Proposition 3 and the fact that Pr [x is a lie |x reported] = 1−r (x) = x−ρ
η

,

this is equal to

K∑
x=xL(ρ)

η

(K + 1) (η − x+ ρ)

x− ρ
η

=
K∑

x=xL(ρ)

x− ρ
(K + 1) (η − x+ ρ)

. (25)

In equilibrium the fraction of liars (24) must be equal to the fraction of reported

lies (25) which then leads to condition (23).

13



In a next step, we show that (23) always has a unique solution on (max{0,
K − η}, K). In order to do so, consider the function

θ (ρ) =

xL(ρ)−1∑
y=0

F (ρ− y)−
K∑

x=xL(ρ)

x− ρ
ρ+ η − x

(26)

which is strictly increasing in ρ on (max{0, K−η}, K). Let us show that θ (ρ) = 0

always has a unique solution ρ∗ ∈ (max{0, K − η}, K).

First, we can show that

lim
ρ→max{0,K−η}+

θ (ρ) < 0, (27)

lim
ρ→K−

θ (ρ) > 0. (28)

Indeed, when ρ → max{0, K − η} (from above) then either θ (ρ) → −∞ (if

max{0, K − η} = K − η) or θ (ρ) → −
∑K

x=1
x

η−x < 0 (if max{0, K − η} =

0). When ρ → K (from below) then xL = K by Lemma 4 so that θ (ρ) →∑K−1
y=0 F (K − y) > 0.

We now show that θ (ρ) is continuous on (max{0, K − η}, K). First note that

θ (ρ) is continuous when ρ is not an integer as in this case xL (ρ) does not vary

by Lemma 4. We now demonstrate that the function is continuous also at integer

values of ρ. Suppose we have an integer value of ρ′ ∈ (max{0, K − η}, K). Then

xL (ρ′) = ρ′ + 1 and

θ (ρ′) =

ρ′∑
y=0

F (ρ′ − y)−
K∑

x=ρ′+1

x− ρ′

ρ′ + η − x
.

It is straightforward to see that limε→0 θ (ρ′ + ε) = θ (ρ′), since xL does not vary.

Now consider limε→0 θ (ρ′ − ε). First note that xL (ρ′ − ε) = ρ′ for ε < 1. Hence,

θ (ρ′ − ε) =

ρ′−1∑
y=0

F (ρ′ − ε− y)−
K∑
x=ρ′

(
x− ρ′ + ε

ρ′ − ε+ η − x

)

=

ρ′∑
y=0

F (ρ′ − ε− y)− F (ρ′ − ε− ρ′)

−
K∑

x=ρ′+1

(
x− ρ′ + ε

ρ′ − ε+ η − x

)
−
(

ρ′ − ρ′ + ε

ρ′ − ε+ η − ρ′

)

14



=

ρ′∑
y=0

F (ρ′ − ε− y)− F (−ε)

−
K∑

x=ρ′+1

(
x− ρ′ + ε

ρ′ − ε+ η − x

)
−
(

ε

η − ε

)
.

But then, as limε→0 F (−ε) = 0 = F (0),

lim
ε→0

θ (ρ′ − ε) =

ρ′∑
y=0

F (ρ′ − y)−
K∑

x=ρ′+1

(
x− ρ′

ρ′ + η − x

)
= θ (ρ′) , (29)

and thus the function is continuous. This together with (27), (28), the fact that

θ(ρ) is increasing and the intermediate value theorem implies that θ (ρ) = 0 has

a unique solution ρ∗ ∈ (max{0, K− η}, K). Given that ρ uniquely pins down the

equilibrium distribution of reported numbers by Proposition 3 and Lemma 4, the

claim follows.

The intuition behind the condition (23) is the following. Recall that only

agents who observed an y < xL (ρ) lie. And only reports x ≥ xL (ρ) can be lies.

In equilibrium the likelihood that an agent who observed y < xL (ρ) decided to

lie (the left-hand side of (23)) must be equal to the likelihood that an agent who

reported x ≥ xL (ρ) actually lied (the right-hand side of (23)). The left-hand

side of (23) is strictly increasing in ρ. Intuitively, the higher the gross payoff

of lying ρ the more agents lie. At the same time, the right-hand side of (23) –

the total probability that a reported number is a lie – is strictly decreasing in ρ.

Intuitively, the larger the fraction of lies among the reported numbers the smaller

is the reputation of somebody reporting an x ≥ xL and the smaller is thus ρ.

Therefore there is a unique value of ρ that solves this equation and, by Propo-

sition 3 and Lemma 4, we thus can infer that any equilibrium must induce the

same distribution of messages. We can now combine these insights to character-

ize the equilibrium strategies pxly chosen by liars. Note that there are multiple

equilibria but – as the following result shows – all are payoff equivalent to the

unique mixed strategy equilibrium where all lying agents observing y < xL pursue

symmetric randomization strategies, i.e., pxly = px for any y < xL, x ≥ xL and

l < ρ− y.

Proposition 4 There is a unique mixed strategy equilibrium with symmetric ly-

ing strategies. In this equilibrium an agent lies if and only if x < xL(ρ∗) and

l < ρ∗ − y and otherwise tells the truth. All liars report x ≥ xL(ρ∗) with proba-
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bility

px =
1∑xL(ρ∗)−1

y=0 F (ρ∗ − y)

x− ρ∗

η − x+ ρ∗
. (30)

All other equilibria yield the same distribution of messages and are payoff-equivalent.

Proof:

To derive px for given ρ recall that we know from Proposition 3 that in equi-

librium

Pr [x reported] =
η

(K + 1) (η − x+ ρ)
for all x ≥ xL.

But by the law of total probability this must be equal to

Pr[x reported] =
η

(K + 1) (η − x+ ρ)

= Pr[y = x ∧ x reported] + Pr[y 6= x ∧ x reported]

=
1

K + 1
+

xL−1∑
y=0

Pr [x reported|y]
1

K + 1

=
1

K + 1
+

xL−1∑
y=0

F (ρ− y) px
1

K + 1
(31)

⇔ η

η − x+ ρ
= 1 +

xL−1∑
y=0

F (ρ− y) px. (32)

Solving for px yields

px =
1∑xL−1

y=0 F (ρ− y)

x− ρ
η − x+ ρ

.

Note that the reporting strategies characterized by px, xL, l∗ (y) and beliefs

r(x) that are all uniquely pinned down by the equilibrium value of ρ∗, indeed

constitute an equilibrium. In particular, the consistency of strategies with incen-

tive constraint (3) and beliefs with Bayesian rule (5) has been shown previously.

Besides, it is easy to verify that the remaining equilibrium condition (4) holds

for the derived px since the condition (23) is satisfied. Hence, the existence of a

unique (symmetric) equilibrium is guaranteed.

Finally, note that there can be multiple other equilibria yielding the same

distribution of messages (uniquely characterized by ρ∗ by Theorem 1). Such equi-

libria entail asymmetric lying strategies, i.e., strategies where pxly is not identical

for all y < xL(ρ∗) and l < l∗ (y). However, since ρ∗ uniquely defines r(x), xL and

l∗ (y), the total payoffs of all agents are the same in all these equilibria.
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Proposition 4 implies that in the symmetric equilibrium the likelihood as-

signed by liars to report x is increasing and convex in x. Intuitively, once the rep-

utation from reporting a number becomes low it gets less sensitive to a marginal

increase in the probability mass of agents lying to this number (by Bayes’ for-

mula). Consequently, one requires a larger increase in px to generate the same

amount of reputational loss.

At the same time, there are multiple payoff-equivalent equilibria yielding the

same distribution of messages. This result is due to the fact that for a given

cost of lying l and observed value y an agent is indifferent between all reports in

x ≥ xL. Hence, all equilibria in which pxly differs across l and y induce exactly the

same payoffs as the equilibrium where pxly = px given that the total distribution

of reported numbers remains the same. In any asymmetric equilibrium the role

of the random variable l (or y) is thus purely that of a coordination device. In

particular, there are also equilibria with partial lying where a given type of agent

does not randomize between reports but instead plays a pure strategy, and the

equilibrium distribution of reports arises due to different groups of lying agents

playing different strategies.

We have thus shown that in any equilibrium agents with sufficiently small

lying costs choose to lie when the realized number they observed is smaller than a

cut-off value xL. These agents then (generally) randomize among reports x ≥ xL.

In the next section, we investigate the determinants of this cut-off value xL in

order to further characterize equilibrium behavior.

3.3 Comparative Statics

3.3.1 Effect of a Change in the Image Concerns

We now consider how a change in the agents’ image concerns affects the equilib-

rium distribution of the reported numbers.

Proposition 5 If the agents’ image concerns η increase, then

(i) xL weakly decreases and

(ii) the likelihood that an agent lies strictly decreases.

Proof:

(i) We start with the accounting condition (23)

θ (ρ, η) =

xL(ρ)−1∑
y=0

F (ρ− y)−
K∑

x=xL(ρ)

x− ρ
ρ+ η − x

= 0. (33)
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By Theorem 1, this implicitly defines a function ρ∗(η) ∈ (max{0, K−η}, K) such

that θ(ρ∗(η), η) = 0. Consider some 0 < η′ < η′′. As θ (ρ, η) is strictly increasing

in η for a given ρ we must have that

θ (ρ∗(η′′), η′) < θ (ρ∗(η′′), η′′) = 0 = θ (ρ∗(η′), η′) (34)

such that

θ (ρ∗(η′′), η′) < θ (ρ∗(η′), η′) . (35)

At the same time, for given η, θ(ρ, η) is strictly increasing in ρ on (max{0, K −
η}, K). This together with (35) implies that

ρ∗(η′′) < ρ∗(η′)

for any η′′ > η′ > 0. It follows that ρ∗(η) is strictly decreasing in η and, by

Lemma 4, xL (ρ∗(η)) must then be (weakly) decreasing in η.

(ii) Lemma 3 implies

Pr [Lie] =
1

K + 1

xL(ρ
∗)−1∑

y=0

F (ρ∗ − y) . (36)

From the proof of claim (i) we know that ρ∗ is strictly decreasing in η, which

together with ρ∗ > 0 by Theorem 1 leads to the claim.

Hence, stronger image concerns reduce the fraction of liars but enlarge the set

of numbers they report. An intuition for the latter effect is that for high values

of η liars suffer more from a loss in reputation. Hence, the incentives for liars

to deviate to a lower number (which would not be conceived as a lie) become

stronger. In equilibrium this pushes xL downwards.

Next, we can show that in the limits of η the highest and the lowest feasible

values of xL are reached.

Proposition 6 (i) There is a cut-off value η̄ such that xL (η) = 1 for all η ≥ η̄.

(ii) There is a cut-off value η such that xL (η) = K for all η ≤ η.

Proof:

(i) Consider again condition (23):
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xL(ρ
∗(η))−1∑
y=0

F (ρ∗ (η)− y) =
K∑

x=xL(ρ∗(η))

(
x− ρ∗ (η)

ρ∗ (η) + η − x

)
.

Since ρ∗ (η) > 0 by Theorem 1, the right-hand side, which is continuously de-

creasing in ρ∗ on (max{0, K − η}, K), is bounded from above for a given η by

K∑
x=xL(ρ∗(η))

(
x

η − x

)

which tends to 0 if η →∞. Consequently, the left-hand side must go to 0 as well.

Since
xL(ρ

∗(η))−1∑
y=0

F (ρ∗(η)− y) ≥ F (ρ∗(η)− 0) = F (ρ∗(η)) (37)

we then obtain that F (ρ∗(η)) → 0. As F is a continuously increasing function

and F (0) = 0 , this implies that limη→∞ ρ
∗(η) = 0. This together with Lemma 4

leads to the claim.

(ii) In equilibrium, ρ∗ > K − η by Theorem 1. Consequently, at least for any

η < 1 we must have ρ∗ > K − 1 so that xL(η) = K by Lemma 4.

Note that the result of Proposition 6 (i) has potentially interesting welfare

implications. As we have seen already in the above, larger image concerns have a

dual effect on reporting strategies: on the one hand, the fraction of lies is reduced,

but on the other hand, it becomes harder to infer whether a person is telling the

truth from observing a lower report as liars also report smaller numbers. When

η ≥ η̄ so that xL = 1 an observer can never be sure that a reported message

is not a lie (except for the lowest message). If such an observer would have to

take a decision based on this information and mistakes are extremely costly, this

might preclude her from taking a (potentially welfare-improving) action given the

unavoidable risk of a mistake. Thus, image concerns of the agent may backfire

for the receiver under certain circumstances.

Finally, we can show that if image concerns become very large, lying disap-

pears even for types observing the lowest number:

Corollary 1 If η → ∞, then the rate of lying tends to 0 for all y ∈ Y . The

distribution of the observed messages converges to a uniform distribution.
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Proof:

By Proposition 6 (i), if η → ∞ then at some point xL becomes 1 so that all

agents observing y ≥ 1 tell the truth (by Proposition 2). At the same time, by

Lemma 3 the rate of lying for y = 0 is equal to F (ρ), which tends to 0 by the

proof of Proposition 6 (i).

It is important to note that the latter is of course a limit result. In equilibrium

there will always be liars as we have shown in Lemma 1. But when η becomes

very large the loss in reputation when reporting a high number is also sizeable

even if there is only a small fraction of liars, and this, in turn, prevents other

agents from lying.

3.3.2 Effect of a Change in the Fixed Costs of Lying

Let us now consider how the equilibrium is affected by a change in the distribution

of the fixed lying costs F . We consider an increase in F in the sense of first-order

stochastic dominance (FOSD). That is, assume that the family of lying costs

distributions can be parametrized by λ, such that for any λ′ < λ′′ and z > 0

Fλ′(z) > Fλ′′(z). (38)

Proposition 7 If the distribution of lying costs F increases in the sense of

FOSD, then

(i) xL weakly increases and

(ii) the likelihood that an agent lies strictly decreases.

Proof:

(i) Consider the accounting condition (23) now denoted as a function of ρ and

λ:

θ (ρ, λ) =

xL(ρ)−1∑
y=0

Fλ (ρ− y)−
K∑

x=xL(ρ)

x− ρ
ρ+ η − x

= 0. (39)

By Theorem 1, this implicitly defines a function ρ∗(λ) ∈ (max{0, K−η}, K) such

that θ(ρ∗(λ), λ) = 0. By (38), for any given ρ > 0 and any λ′ < λ′′

θ (ρ, λ′) > θ (ρ, λ′′) .

Hence, we must have that

θ (ρ∗ (λ′′) , λ′) > θ (ρ∗ (λ′′) , λ′′) = 0 = θ (ρ∗ (λ′) , λ′) (40)
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such that

θ (ρ∗ (λ′′) , λ′) > θ (ρ∗ (λ′) , λ′) . (41)

At the same time, for given λ, θ(ρ, η) is strictly increasing in ρ on (max{0, K −
η}, K). Consequently, (41) implies ρ∗ (λ′′) > ρ∗ (λ′) for any any λ′ < λ′′ and thus

ρ∗(λ) must be strictly increasing in λ. By Lemma 4, xL (ρ∗(λ)) must then be

(weakly) increasing in λ.

(ii) Lemma 3 and Theorem 1 imply

Pr [Lie] =
1

K + 1

xL(ρ
∗)−1∑

y=0

Fλ (ρ∗ − y) =
1

K + 1

K∑
x=xL(ρ∗)

x− ρ∗

ρ∗ + η − x
. (42)

From the proof of claim (i) we know that ρ∗ is strictly increasing in λ, which

together with the fact that the right-hand side of (42) is decreasing in ρ∗ leads to

the claim.

Thus, the effect of an increase in the fixed lying costs goes in the opposite

direction of the effect of an increase in the image concerns not to be perceived

as a liar: the range of reported lies shrinks as the fixed lying costs increase. The

intuition for this effect is that at higher lying costs less agents lie and thus the

reputational loss from reporting a high number decreases. In turn, the relative

incentive to disguise lies by reporting smaller values is reduced.

Next, we consider again limit results. Let us take a convention that if λ→∞
then Fλ(z)→ 0, and if λ→ 0 then Fλ(z)→ 1 for any z > 0 . First, we can show

that if lying costs get very large, agents lie only to the highest possible number.

Proposition 8 There is a cut-off value λ such that xL (λ) = K for all λ ≥ λ.

Proof:

Consider the equilibrium condition (23) which implicitly defines ρ∗ as a func-

tion of λ:

xL(ρ
∗(λ))−1∑
y=0

Fλ (ρ∗ (λ)− y) =
K∑

x=xL(ρ∗(λ))

(
x− ρ∗ (λ)

ρ∗ (λ) + η − x

)
. (43)

If λ→∞, then Fλ(ρ−y)→ 0 for any given ρ and y. Since ρ∗ (λ) is bounded from

above by K (by Theorem 1), this implies that the left-hand side of (43) and hence

the right-hand side of (43) converge to 0 for λ→∞. Since the denominator on the
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right-hand side of (43) is bounded from above and all terms in the corresponding

sum are positive (given that xL > ρ∗ by Lemma 4 and ρ∗ > K−η by Theorem 1),

this is only possible if xL = K and ρ∗(λ)→ K.

Moreover, analogously to the previous case, one can show that lying disappears

once the fixed lying costs get very large.

Corollary 2 If λ → ∞, then the rate of lying tends to 0 for all y ∈ Y . The

distribution of the observed messages converges to a uniform distribution.

Proof:

As shown in the proof of Proposition 8, if λ→∞ then
∑xL(ρ

∗)−1
y=0 Fλ (ρ∗ − y)

→ 0. By Lemma 3, this implies that the total likelihood of lying also converges

to 0.

At the same time, it is not generally true that xL converges to the minimal

possible value of 1 if λ approaches 0 (given that it is increasing in λ by Proposi-

tion 7). As the following result shows, limλ→0 xL can be as high as K depending

on the size of the agents’ image concerns η:12

Proposition 9 i) If η is sufficiently large, then limλ→0 xL = 1.

ii) If η is sufficiently small, then limλ→0 xL = K.

Proof:

(i) Proposition 6 implies that for any given λ and sufficiently large η we must

have xL(λ, η) = 1. Since xL(λ, η) is non-decreasing in λ by Proposition 7, the

claim holds.

(ii) By Theorem 1, ρ∗ > K − η. Consequently, at least for any η < 1 we must

have ρ∗ > K − 1 so that xL(ρ∗) = K for any distribution Fλ.

If the lying costs become very small in the population of agents, the intrinsic

incentives to truthfully report numbers lower than K disappear. Yet, the image

concerns not to be perceived as a liar remain. If η is large this still provides an

incentive to report low numbers to disguise the lie. If, however, η is small, this

incentive becomes weaker and agents focus on reporting the highest number for

any lying costs.

12More generally, one can show that limλ→0 xL can take any value between 1 andK depending
on η. The proof is available upon request.
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Proposition 9 shows that partial lying to reports below K – the main feature

of the characterized equilibrium – can emerge also if the fixed lying costs are

negligible.13 At the same time, the next result demonstrates that intrinsic lying

costs are still required to explain the typical pattern observed in experiments

using the paradigm that at the same time i) at least several lowest numbers are

not overreported (i.e., xL ≥ 2; that is there are at least two lowest reports which

are reported with a probability between 0 and 1
K+1

), and (ii) the reported numbers

have full support on Y (i.e., even x = 0 is reported with a positive probability).

In particular, if the fixed lying costs converge to 0 while limλ→0 xL ≥ 2, the lowest

number is almost never reported in contrast to this evidence.

Proposition 10 If η is such that limλ→0 xL ≥ 2, then limλ→0 Pr[x = 0] = 0.

Proof:

Note that for any λ

ρ∗(λ) ≥ xL(λ)− 1 ≥ 1, (44)

where the first inequality is by Lemma 4, and the second inequality is due to

Proposition 7 and limλ→0 xL ≥ 2. Hence, ρ∗(λ) is bounded from below by 1. By

Lemma 3, the lying rate conditional on observing 0 is Fλ (ρ∗) which converges to

1 when λ→ 0 (and ρ∗ is bounded from below) such that limλ→0 Pr[x = 0] = 0.

Hence, having non-negligible fixed costs of lying in the model (besides im-

age concerns - recall Proposition 1) is necessary to explain the whole pattern of

experimental data.14

3.3.3 Effect of a Change in the Monetary Stakes

As a final step in the theoretical analysis, we consider the effect of the size of

monetary stakes on the structure of the equilibrium reporting behavior. Thus

assume now that the agent’s utility is

u (l, x, y) = s · x− l · IL(x, y)− η · Pr [y 6= x|x] ,

where s denotes the stake size. Note that the agent’s choice problem is equivalent

to maximizing

x− l

s
· IL(x, y)− η

s
· Pr [y 6= x|x]

13Note that we still need F (0) = 0, i.e., the assumption that people avoid the lie when they
are otherwise indifferent between lying and telling the truth, to ensure the existence of the
considered equilibrium (see the proof of Theorem 1).

14This is consistent with the results of Abeler et al. (2016) who came to a similar conclusion
within their modeling framework.
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such that an increase in stake size can be analogously expressed as a joint decrease

in image concerns and lying costs. Then, we can apply all of our earlier results

substituting the image concerns parameter and costs of lying appropriately. In

particular, an increase in the stake size (i.e., s > 1) corresponds to a shift in the

distribution of the costs of lying in the sense of FOSD since for any z > 0

F (z) = Pr[l ≤ z] < Pr[l/s ≤ z] = Fs(z), (45)

where Fs(z) is the distribution of the normalized lying costs.

Proposition 11 An increase in monetary stakes raises the likelihood that an

agent lies.

Proof:

For any η′ < η′′ and λ′ < λ′′ we must have that

Pr[Lie|η′, λ′] > Pr[Lie|η′, λ′′] > Pr[Lie|η′′, λ′′], (46)

where the first inequality follows from Proposition 5 (ii) and the second from

Proposition 7 (ii). Hence, any joint reduction in η and λ (which is outcome

equivalent to an increase in s as shown above) causes a (strict) increase in the

lying rate.

Proposition 11 is in line with the experimental evidence of Kajackaite and

Gneezy (2015) who show that the total rate of lying significantly increases with

the stake size once controlling for the perceived negative consequences from being

eventually detected as a liar (which in turn might be correlated with monetary

stakes).15

At the same time, our model does not provide clear directional predictions

regarding the effect of the stake size on the range of reported lies, i.e., on xL. As

outlined above, an increase in the stake size is equivalent to a joint decrease in

both the reputational lying costs (η) and the fixed lying costs (λ). Yet, according

to Propositions 5 and 7, these two effects push xL in the opposite directions.

15In some other studies not controlling for this (e.g., Mazar et al., 2008) the evidence for the
stake size effect on lying is ambiguous. In terms of our model, an increase in the perceived
negative consequences of lying with the monetary stakes would correspond to an exogenous
increase in λ, thus indeed countervailing the positive effect of the stake size on lying.

The meta-study by Abeler et al. (2016) doesn’t find stake size effects when comparing lying
behavior across different experiments in different labs. However, if they analyze only studies
in which the stake size is varied within the the same experiment, they find positive stake size
effects.
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The net effect depends on the parameter values, in particular on the form of

distribution F . If the resulting decrease in the relative fixed lying costs is more

prominent, the range of reported lies can expand with s (see Appendix for a

numerical example). Notably, this is in line with the effect of the stake size

in Fischbacher and Föllmi-Heusi (2013) who observed a shift in reporting the

second-highest number of 4 from 17.72% to 27.50% (with only the second value

being significantly different from 1/6) as the stake size was tripled.16

4 Empirical Calibration

The model predicts the main qualitative patterns observed in Fischbacher and

Föllmi-Heusi (2013)-type cheating games. In particular, it rationalizes the exis-

tence of a threshold xL with numbers below (above) xL being under(over)reported

(see Proposition 3). And, moreover, it shows why there are “partial lies”, i.e.,

why not all liars report the payoff maximizing number.

Of course, there may be other behavioral mechanisms at work in addition to

those we capture in our model. But it is yet instructive to verify how well the

model can be calibrated to fit the actual experimental data in Fischbacher and

Föllmi-Heusi (2013). For the distribution of lying costs F , we assume that it is

drawn from a normal distribution with mean 0 and standard deviation σ, while

being left-truncated at 0.17 The calibration was obtained by finding the values of

η and σ which minimize the sum of squared deviations of the predicted and the

observed values.

The parameter values yielding the best fit of the message frequencies predicted

by the model to the data in the Baseline treatment of Fischbacher and Föllmi-

Heusi (2013) are η = 3.65 and σ = 2.96 (Fig. 1). One can see that the model

predicts the main data patterns from the experiment, in particular the substantial

amount of partial lying to x = 4, as well as a positive fraction of subjects reporting

0.18 Notably, setting η = 0, i.e., using the benchmark model without reputational

concerns results in a much worse fit than that of the main model (see Fig. 2).19

16The rates of reporting smaller numbers were lower than 1/6 in both treatments. The
control treatment was formed within the same subject sample, and hence was different from
the baseline treatment reported in our Section 4.

17We assume that the distribution of lying costs is shifted towards 0 given the frequent
experimental observation that the probability mass of individual social preference parameters
is shifted towards payoff maximization (see, e.g., Engel, 2011).

18Similarly good fit is obtained by calibrating the model to the aggregated data from the
meta-study of Abeler et al. (2016).

19The mean squared error is 6.79 in the main model with image concerns and 29.90 in the
benchmark model (in terms of percentage points). According to the F-test, the first model fits
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Figure 1: Empirical calibration of the main model to the Baseline Treatment in
Fischbacher and Föllmi-Heusi (2013).

Figure 2: Empirical calibration of the benchmark model without reputational
concerns (η = 0) to the Baseline Treatment in Fischbacher and Föllmi-Heusi
(2013).

Finally, the model is also capable to explain some of the comparative statics

results observed in the experimental cheating games. As noted above, Kajackaite

and Gneezy (2015) compared two treatments which differed in whether the ex-

perimenter was able to verify (ex-post) the true number rolled by the participant

(as in one case the number was protocoled by the computer software). Note that

in the limit case when the agent is absolutely sure that her lying will be ex-post

verified by the observer, x is not informative about the likelihood of lying anymore

(which would imply η = 0 in our model), while the image loss from lying would

be captured instead by the fixed cost of lying l. In line with this prediction, cal-

ibrating the empirical results from the two treatments in Kajackaite and Gneezy

the data significantly better (p = 0.021).
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Figure 3: Empirical calibration of the main model to the experimental treatments
in Kajackaite and Gneezy (2015).

(2015) with the model results in that the treatment with privately observed die

roll corresponds to relatively larger sensitivity to the inference-driven image loss

(η = 3.18 vs. η = 2.44) while yielding relatively lower estimate of the fixed costs

of lying (σ = 4.27 vs. σ = 9.06), see Fig. 3. Note also that the estimation of η

in the private treatment in Kajackaite and Gneezy (2015) is close to that in the

Baseline treatment of Fischbacher and Föllmi-Heusi (2013) (3.18 vs. 3.65).

5 Conclusion

We have shown that incomplete lying behavior naturally arises in the Fischbacher

and Föllmi-Heusi (2013) setting when agents have (i) a fixed cost of lying and (ii)

image concerns not to be perceived as a liar. When image concerns are sufficiently

strong agents can “disguise” a lie only when liars randomize over a set of reports.

This allows to reduce larger reputational losses occurring when all liars report

the highest feasible report. In particular, as we have shown an agent’s reputation

to be honest must be strictly decreasing in the reported number so that any

monetary gain is offset by an equivalent loss in reputation.

We furthermore have shown how the distribution of the reported numbers

changes with the agents’ image concerns. When they are weak, all liars report

the number yielding the maximum feasible payoff. As image concerns increase,

the lower bound of the set of numbers reported by the liars shifts to the left.

In the limit, liars randomize over all but the lowest feasible number. Hence,

higher image concerns of the agent may actually backfire in terms of the quality

of information transmission: in the limit case, the receiver can never be sure that

the reported number is not a lie, except for the lowest message. In contrast,
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higher fixed costs of lying always lead to a reduction in the range of reported lies.

The model can explain the stylized facts identified by Fischbacher and Föllmi-

Heusi (2013): a) the fraction of people reporting a payoff of 0 is positive, b) the

fraction of people reporting 5 is above 1/6; c) the fraction of people reporting 4 is

above 1/6. Moreover, the model can replicate the observed difference in behavior

once the experimenter is able to verify lying ex-post (as in Kajackaite and Gneezy,

2015), attributing this to a shift in both lying costs and inference-based image

concerns.

Overall, our model provides a useful workhorse for the analysis of empirical

data from cheating experiments. The model may of course be extended in sev-

eral directions. For instance, one could allow that lying costs depend upon the

distance between the true and reported number. Note, however, that even size-

dependent (fixed) costs of lying cannot alone explain the overreporting of the

second-highest number (see footnote 6). Thus, the key ingredient yielding partial

lying in the considered setting is an image concern not to be perceived as a liar,

which we aimed to demonstrate in the clearest way putting aside additional in-

teractions with more complex preferences. Moreover, with only two components,

i.e., fixed costs of lying and image concerns, our model attains already a rea-

sonably good fit to the actually observed distribution of lies in cheating games.

Future experiments may further verify the predictions of the model for instance

by exogenously manipulating the strength of image concerns by varying the au-

dience of outside observers (as in Ariely et al., 2009) or exogenously changing the

costs of lying by imposing random monitoring and punishments for liars.

6 Appendix: Numerical Simulation of the Ef-

fect of the Monetary Stakes on xL

When we substitute l and η according to a shift in the stake size to s·x, equilibrium

condition (23) becomes

θ (ρ, s) =

xL(ρ,s)−1∑
y=0

Fs (ρ− y)−
K∑

x=xL(ρ,s)

x− ρ
ρ+ η

s
− x

= 0, (47)

where Fs(z) is given by (45) (see Section 3.3.3). The equilibrium is characterized

by a unique value ρ∗ ∈ (max{0, K − η
s
}, K) solving the equation.

Consider an example with K = 5, η = 3.65, and F being a normal distribution

with mean µ and standard deviation σ = 1 (left-truncated at 0) so that Fs(z) =
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F (z|µ/s, σ/s). Then, if µ = 0 and s increases from 1 to 2, the value of ρ∗ ∈
(max{0, K− η

s
}, K) solving equation (47) changes from 2.681 to 3.584, and hence

xL increases from 3 to 4. At the same time, if µ = 5, then the same increase in s

leads to a decrease in ρ∗ from 4.237 to 3.840 so that xL drops from 5 to 4.

References

Abeler, J., D. Nosenzo, and C. Raymond (2016). Preferences for truth-telling - a

meta study. CESifo Working Paper Series 6087, CESifo Group Munich.

Ariely, D., A. Bracha, and S. Meier (2009). Doing good or doing well? Image mo-

tivation and monetary incentives in behaving prosocially. American Economic

Review 99 (1), 544–555.

Battigalli, P. and M. Dufwenberg (2009). Dynamic psychological games. Journal

of Economic Theory 144 (1), 1–35.

Bénabou, R. and J. Tirole (2006). Incentives and prosocial behavior. American

Economic Review 96 (5), 1652–1678.

Bernheim, B. D. (1994). A theory of conformity. Journal of Political Econ-

omy 100, 841–847.

Charness, G. and M. Dufwenberg (2006). Promises and partnership. Economet-

rica 74 (6), 1579–1601.

Ellingsen, T. and M. Johannesson (2008). Pride and prejudice: The human side

of incentive theory. American Economic Review 2011, 990–1008.

Engel, C. (2011). Dictator games: A meta study. Experimental Economics 14 (4),

583–610.

Erat, S. and U. Gneezy (2012). White lies. Management Science 58 (4), 723–733.
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