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Abstract 
 
This paper investigates the asymptotic local power of the the averaged t-test of Im, Pesaran and 
Shin (2003, IPS hereafter) in the presence of both initial explosive conditions and incidental 
trends. By utilizing the least squares detrending methods, it is found that the initial condition 
plays no role in determining the asymptotic local power of the IPS test, a result strikingly 
different from the finding in Harris et al. (2010), who examined the impact of the initial 
conditions on local power of IPS test without incidental trends. The paper also presents, via an 
application of the Fredholm method discussed in Nabeya and Tanaka (1990a, 1990b), the exact 
asymptotic local power of IPS test, thereby providing theoretical justifications for its lack of 
asymptotic local power in the neighborhood of unity with the order of N-1/2T-1 while attaining 
nontrivial power in the neighborhood of unity that shrinks at the rate N-1/4T-1. This latter finding 
is consistent with Moon et al. (2007) and extends their results to IPS test. It is also of practical 
significance to empirical researchers as the presence of incidental trends in panel unit root test 
setting is ubiquitous. 
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1 Introduction

The panel unit root tests have been extensively studied in the past two decades. Some recent com-

prehensive literature surveys on this topic, for example, by Phillips and Moon (2000), Choi (2006),

Breitung and Pesaran (2008) and Westerlund and Breitung (2012), shed insights on various panel

unit root tests, e.g., the pooled t-test proposed by Levin, Lin and Chu (2002), the IPS test and the

combination tests based on Fisher-type statistics in Maddala and Wu (1999) and Choi (2001). Among

these, the IPS test is the most cited and influential.

Researchers have recently realized that the initial conditions and incidental trends could have

significant impact on the local power of the unit root tests in both time series and panel data models.

Müller and Elliot (2003) demonstrated that the power envelopes of unit root tests in time series models

display quite distinct characteristics depending on the initial values. The dependence of the power of

Dickey-Fuller type tests on the initial conditions has also been found in Harvey and Leybourne (2005)

and Harvey et al. (2009). In panel data setting, Moon, Perron and Phillips (2007, hereafter MPP)

investigated the asymptotic power envelopes of five tests (Ploberger and Phillips (2002), Moon and

Phillips (2004), Breitung (2000), Levin et al. (2002), and Moon and Perron (2008)) with or without

trends under the assumption of zero initial value. Since the IPS test can not be evaluated within

the MPP framework, no analytical power result for IPS is currently available, even though simulation

results in MPP indicate that IPS test tends to have inferior asymptotic local power when compared

to those proposed by Ploberger and Phillips (2002) and by Breitung (2000). The asymptotic local

power of the IPS test under explosive initial conditions has also been examined by Harris et al. (2010),

who concluded that the power declines monotonically with the increase of the magnitude of the initial

value.

The main goal of this paper is to fill the void of lack of analytical asymptotic local power result

for IPS test with both explosive initial conditions and incidental trends. More specifically, this paper

aims to answer whether the IPS test with time trend has nontrivial local power at rates N−1/4T−1

and N−1/2T−1 respectively. Some interesting findings of our paper are as follows. First, detrending

the data by least squares method will effectively take care of the initial condition by canceling out

its dominant components, thereby eliminating its effect on the asymptotic local power. 1 This result

will be elaborated in the next section. Second, the IPS test has no local power in the neighborhood

of unity at the rate of N−1/2T−1 but gains local power at order N−1/4T−1. This result is obtained

using the Fredholm method discussed in Nabeya and Tanaka (1990a, 1990b), and could not be derived

within the analytical framework of Harris et al. (2010).

The rest of this paper is organized as follows. Section 2 discusses the local power of the IPS test

for the model with both initial conditions and incidental trends. Monte Carlo simulation results are

reported in Section 3. The detailed proofs are present in the Appendix.

1Moon and Perron (2004) also found that the presence of incidental trend prevents their t ratio type test statistic, which
is constructed from ordinary least squares detrending, from obtaining power beyond size in a N−κT−1 neighborhood of
unity with κ > 1

6
.
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2 Local Power of the IPS test

Consider the following standard setup for the panel autoregressive model

zit = dit + yit,

yit = ρiyi,t−1 + uit,

dit = β0i + β1it,

yi0 = ξi, (2.1)

where for each i, dit is the time trend with incidental coefficients, yit is a potentially unit root process,

and yi0 gives the random initial conditions. In panel panel unit root test setting, the hypotheses are

given by

H0 : ρi = 1, for all i,

H1 : ρi < 1, for M of i,

where M satisfies limN→∞M/N = p, 0 < p ≤ 1.

Following Harris et al. (2010), the following assumptions are made:

Assumption 1 The errors uit are i.i.d. with (0, σ2u,i) across t = 1, . . . , T and also independently across

i = 1, . . . , N .

Assumption 2 Set ξi = γiσy,i, where γi is i.i.d. with (µγ , σ
2
γ) across i = 1, . . . , N with finite fourth

moment, and is independent of {uit}. Here σ2y,i is the short-run variance of yit for ρi < 1, hence,

ξi = γi
√
σ2u,i/(1− ρ2i ).

Assumption 3 Let ρi = 1 + ci/(N
1/4T ) where ci ≤ 0, i = 1, . . . , N .

Assumption 1 and 3 are standard in the panel unit root test literature. The dependence of initial

conditions on both N and T in Assumption 2 is to simplify the analysis. It is critical in Harris et

al. (2010), but not pivotal in establishing the analytical results of this paper. This is because, in our

analysis, as the time trend is estimated and removed, initial conditions will be effectively eliminated.

Our analysis relies on the standard local to unity asymptotics. From the model (2.1), it follows

that

yit = ρtiξi +

t∑
s=1

ρt−s
i uis. (2.2)

Following Müller and Elliott (2003), one can readily obtain

T−1/2(yi,[Tr] − yi,0)

⇒

{
σu,iWi(r) for ci = 0,

γiσu,i

(
erciN

−1/4 − 1
) (

−2ciN
−1/4

)−1/2
+ σu,i

∫ r
0 e

ciN
−1/4(r−s)dWi(s) else.

}
,(2.3)

as T → ∞. It is clear from (2.2) that yit consists two terms: ρtiξi and
∑t

s=1 ρ
t−s
i uis, where the first term

characterizes individual initial condition, and the second one is a stochastic trend or near unit-root
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process with ρi close to unity. By Taylor expansion, yit can be rewritten as

yit = ξi(1 + (log ρi)t+
1

2
(log ρi)

2t2) +

t∑
s=1

(1 + (log ρi)(t− s))uis +O(N−1/2
√
t5/T 2)

= ξi + (log ρi)ξit+
1

2
(log ρi)

2ξit
2 +

t∑
s=1

uis + (log ρi)

t∑
s=1

(t− s)uis +O(N−1/2
√
t5/T 2) (2.4)

Notice that when one estimates an autoregressive model and removes the time trend, both ξi and

(log ρi)ξit will be filtered out in the process as evident in (A.5) in Appendix. This causes our result to

differ from that in Harris et al. (2010). In Harris et al. (2010), the panel autoregressive with initial

conditions is considered but not with time trend, so the local power comes from ((log ρi)ξit)
2,2 the

cross product term of
∑t

s=1 uis and (log ρi)
∑t

s=1(t − s)uis, and the squared cross product term of

(log ρi)ξit and
∑t

s=1 uis. However, in our case, (log ρi)ξit is removed, and hence the local power sources

exclusively from ((log ρi)
∑t

s=1(t−s)uis)2 and the cross product term of
∑t

s=1 uis and (log ρi)
∑t

s=1(t−
s)uis. Also, the order of (

1
2(log ρi)

2ξit
2)2 isO(N−3/4(t4/T 3)), which is smaller than (

∑t
s=1 uis)

2 = O(t),

((log ρi)
∑t

s=1(t− s)uis)
2 = O(N−1/2(t3/T 2)). Hence, (12(log ρi)

2ξit
2)2 is asymptotically negligible.

The IPS test can be carried out in the following two ways. (i) One way is to run the OLS regression

directly. For fixed i, one estimates a linear regression of zit on 1, t and zi,t−1 as

zit = αi + δit+ ρizi,t−1 + uit,

then one obtains the estimator for the coefficient of zi,t−1 as

ρ̂i =

(∑
t(t− t̄)2

)
(
∑

t(zi,t−1 − z̄i,t−1)(zit − z̄it))− (
∑

t(t− t̄)(zi,t−1 − z̄i,t−1)) (
∑

t(t− t̄)(zit − z̄it))

(
∑

t(t− t̄)2) (
∑

t(zi,t−1 − z̄i,t−1)2)− (
∑

t(t− t̄)(zi,t−1 − z̄i,t−1))
2 ,

(2.5)

where all the summations are taken over 2 to T , and

t̄ =
1

T − 1

T∑
s=2

s =
T + 2

2
, z̄i,t−1 =

1

T − 1

T∑
s=2

zi,s−1, z̄it =
1

T − 1

T∑
s=2

zi,s.

Then the t-statistic is given by

ti =
ρ̂i − 1

σ̂u,i

√ ∑
t(t−t̄)2

(
∑

t(t−t̄)2)(
∑

t(zi,t−1−z̄i,t−1)2)−(
∑

t(t−t̄)(zi,t−1−z̄i,t−1))
2

, (2.6)

where σ̂u,i =
√

1
T−1

∑T
t=2(zit − α̂i − δ̂it− ρ̂izi,t−1)2 is a consistent estimator for σu.

(ii) The other way to test the unit root is to detrend first, i.e. to regress zit on 1, t, then test the

estimated residuals for the unit root process. Thus, one obtains

β̂0i = z̄it − β̂1it̄,

β̂1i =

∑T
s=1(s− s̄)(zis − z̄is)∑T

s=1(s− s̄)2
,

ε̂it = zit − β̂0i − β̂1it.

2It is also worthy of pointing out that that the local power is actually not from (log ρi)ξit but from its square, which
is essentially its variance.
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Further, the t-statistic for the autoregressive regression of ε̂it is constructed as

t̃i =
ρ̃i − 1

σ̃u,i(
∑

t ε̂
2
i,t−1)

−1/2
=

∑
t ε̂i,t−1(ε̂i,t − ε̂i,t−1)

σ̃u,i
√∑

t ε̂
2
i,t−1

=

∑
t[(zi,t−1 − z̄i,t−1)− β̂1i(t− t̄)](zit − z̄it − zi,t−1 + z̄i,t−1)

σ̃u,i

√∑
t[(zi,t−1 − z̄i,t−1)− β̂1i(t− t̄)]2

,

where ρ̃i = (
∑

t ε̂
2
i,t−1)

−1
∑

t ε̂i,t−1ε̂i,t is the OLS estimator of the autoregression coefficient of ε̂it and

σ̃u,i =
√

1
T−1

∑T
t=2(ε̂it − ρ̃iε̂i,t−1)2. After some algebraic operations, one can see that, with β̂1i plugged

in, ti and t̃i are essentially the same even though ρ̂i is different from ρ̃i. That is, ti and t̃i are same

except for σ̂u,i and σ̃u,i. Therefore, without loss of generality, this paper focuses on the first method.

The IPS test statistic is constructed as the standardized statistic of t-statistic, i.e.

Zτ =

√
N [N−1

∑N
i=1 ti − E(t0)]√
V (t0)

,

where E(t0) and V (t0) are the mean and the variance of the limiting distribution of the Dickey-Full

statistic with both intercept and time trend, respectively.

Under H0, one can readily see that, as T → ∞,

ti ⇒
∫ 1
0 W

µ
i (r)dWi(r)− 12

∫ 1
0 (r −

1
2)Wi(r)dr

∫ 1
0 (r −

1
2)dWi(r)√∫ 1

0 W
µ
i (r)

2dr − 12
(∫ 1

0 (r −
1
2)Wi(r)dr

)2 def
= t0 =

U3√
V 3

,

where Wi(r) is a standard Brownian motion and Wµ
i (r) = Wi(r)−

∫ 1
0 Wi(s)ds. In addition, E(t0) =

−2.18135582 and
√
V (t0) = 0.74990847 based on the simulations in Nabeya (1999).

From the derivations in the Appendix, one can now obtain the following theorem for the asymptotic

local power of the IPS test with both explosive initial conditions and incidental trends.

Theorem 2.1 Under Assumptions 1-3, when T → ∞ followed by N → ∞,

Zτ ⇒ N(0, 1) + c2

[
E

(
B4 − 12B5B6√

F

)
+ E

(
B12 − 12B10B9√

F

)
− E

(
(B2 − 12B5B9)(B3 − 12B2

6)

2
√
F 3

)
−E

(
(B2 − 12B5B9)(B8 − 12B5B10)√

F 3

)
− E

(
(B1 − 12B6B9)(B4 − 12B5B6)√

F 3

)
+E

(
3(B2 − 12B5B9)(B4 − 12B5B6)

2

2
√
F 5

)]
/
√
V ar(t0),

where c2 = limN→∞N−1
∑N

i=1 c
2
i , F = A− 12B2

5 ,

A =

∫ 1

0
Wµ(r)2dr,

B1 =

∫ 1

0

{∫ r

0
W (s)ds−

∫ 1

0

∫ t

0
W (s)dsdt

}
dW (r),

B2 =

∫ 1

0
Wµ(r)dW (r),

B3 =

∫ 1

0

{∫ r

0
W (s)ds−

∫ 1

0

∫ t

0
W (s)dsdt

}2

dr,
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B4 =

∫ 1

0
Wµ(r)

{∫ r

0
W (s)ds−

∫ 1

0

∫ t

0
W (s)dsdt

}
dr,

B5 =

∫ 1

0
(r − 1

2
)Wµ(r)dr,

B6 =

∫ 1

0
(r − 1

2
)

{∫ r

0
W (s)ds−

∫ 1

0

∫ t

0
W (s)dsdt

}
dr,

B7 =

∫ 1

0
(r2 − 1

3
)Wµ(r)dr,

B8 =

∫ 1

0
Wµ(r)

{∫ r

0
(r − s)W (s)ds−

∫ 1

0

∫ t

0
(t− s)W (s)dsdt

}
dr,

B9 =

∫ 1

0
(r − 1

2
)dW (r) =

1

2
W (1)−

∫ 1

0
W (r)dr,

B10 =

∫ 1

0
(r − 1

2
)

{∫ r

0
(r − s)W (s)ds−

∫ 1

0

∫ t

0
(t− s)W (s)dsdt

}
dr,

B11 =

∫ 1

0
(r2 − 1

3
)dW (r),

B12 =

∫ 1

0

{∫ r

0
(r − s)W (s)ds−

∫ 1

0

∫ t

0
(t− s)W (s)dsdt

}
dW (r),

with W (r) a standard Brownian motion and Wµ(r) =W (r)−
∫ 1
0 W (s)ds.

Remark 1 From (A.6) in Appendix, it is obvious that Zτ would have local power in the neighbourhood

of unity with the order of N−1/2T−1 if E(
√
F ) + E

(
B1−12B6B9√

F

)
− E

(
(B2−12B5B9)(B4−12B5B6)√

F 3

)
̸= 0.

Indeed, by utilizing the Fredholm method discussed in Nabeya and Tanaka (1990a, 1990b), Lemma

A.1(i) shows that E(
√
F ) +E

(
B1−12B6B9√

F

)
−E

(
(B2−12B5B9)(B4−12B5B6)√

F 3

)
≡ 0, which is confirmed by

simulation study in the next section.

Remark 2 The theoretical result further provides the direct calculation for the expectations in the

asymptotics. It follows from the derivations in (A.8) in Appendix that

E

(
B4 − 12B5B6√

F

)
+ E

(
B12 − 12B10B9√

F

)
− E

(
(B2 − 12B5B9)(B3 − 12B2

6)

2
√
F 3

)
−E

(
(B2 − 12B5B9)(B8 − 12B5B10)√

F 3

)
− E

(
(B1 − 12B6B9)(B4 − 12B5B6)√

F 3

)
+E

(
3(B2 − 12B5B9)(B4 − 12B5B6)

2

2
√
F 5

)
=

1√
2π

∫ ∞

0
[3f22(x)]

−3/2
(
− sinh(x)

x3
+

9 cosh(x)

x4
− 33 sinh(x)

x5
+

48(cosh(x)− 1)

x6

)
dx, (2.7)

where f22(x) = 4
(

1
x3 sinh(x)− 2

x4 [cosh(x)− 1]
)
from (7) and page 147 in Nabeya (1999). From (2.7),

one can directly compute the value of the expectations in the asymptotic local power. Specifically,

using approximation scheme similar to that in Nabeya (1999), one can obtain the following.

f22(x) ≈
1

3
+

1

45
x2 +

1

1, 680
x4 +

1

113, 400
x6 +

1

11, 975, 040
x8,

−sinh(x)

x3
+

9 cosh(x)

x4
− 33 sinh(x)

x5
+

48(cosh(x)− 1)

x6

≈ − 1

840
x2 − 192

10!
x4 − 480

12!
x6.
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Plugging the above approximation into (2.7), then performing numerical integration with MATLAB

yields

1√
2π

∫ ∞

0
[3f22(x)]

−3/2
(
− sinh(x)

x3
+

9 cosh(x)

x4
− 33 sinh(x)

x5
+

48(cosh(x)− 1)

x6

)
dx ≈ −0.0283. (2.8)

An immediate consequence of the calculation of the expected local power is the following corollary.

Corollary 2.2 Under Assumptions 1-3, when T → ∞ followed by N → ∞,

Zτ ⇒ N(0, 1)− 0.0283c2/
√
V ar(t0), (2.9)

where
√
V (t0) = 0.74990847.

Remark 3 Since there is no term associated with γi in Theorem 2.1 and Corollary 2.2, the explosive

initial condition has little, if any, impact on local asymptotic power, which differs remarkably from

finding in Harris et al. (2010). As evident from the derivation, this discrepancy is due solely to the fact

that the model considered in this paper assumes the the presence of both initial conditions and time

trend and that removal of the trend eliminates initial conditions simultaneously. By contrast, Harris et

al. (2010) consider only the explosive initial conditions without considering the existence of time trend

in their model, thus the initial condition matters in Harris et al. (2010). Specifically, the asymptotic

local power in this study is related to c2 = limN→∞N−1
∑N

i=1 c
2
i instead of c = limN→∞N−1

∑N
i=1 ci

because all of terms related with ci are either canceled out or asymptotically negligible, which can

be seen in (A.7) in Appendix. This is also a major obstacle we faced in the proof. The local power

in Harris et al. (2010) on the other hand results from the terms associated with c. Furthermore, in

the model with time trend, the IPS test has no local power in the neighborhood of unity with order

N−1/2T−1, but gains local power in the neighborhood of unity with order N−1/4T−1. This result

agrees with Moon et al. (2007), but is unattainable in the Harris et al. (2010) framework. This hurdle

was overcame by resorting to the Fredholm method shown in Lemma A.1(i) and Lemma A.1(ii) in the

Appendix.

3 Monte Carlo Simulations

In this section, some simulations are conducted to verify the theoretical results. The first to be verified

is a result in Lemma A.1(i):

E

[√
F +

B1 − 12B6B9√
F

− (B2 − 12B5B9)(B4 − 12B5B6)√
F 3

]
= 0.

To do this, A, B1, B2, B4, B5, B6, B9 are approximated respectively by

AT = (T − 1)−2
T∑
t=2

(

t∑
s=2

us − (T − 1)−1
T∑
t=2

t∑
s=2

us)
2,

B1T = (T − 1)2
T∑
t=2

(
t−1∑
s=1

s∑
k=1

uk − (T − 1)−1
T∑
t=2

t−1∑
s=1

s∑
k=1

uk)(ut − (T − 1)−1
T∑
t=2

ut),

B2T = (T − 1)−1
T∑
t=2

(

t−1∑
s=1

us − (T − 1)−1
T∑
t=2

t−1∑
s=1

us)(ut − (T − 1)−1
T∑
t=2

ut),
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B4T = (T − 1)−3
T∑
t=2

(

t−1∑
s=1

us − (T − 1)−1
T∑
t=2

t−1∑
s=1

us)(

t−1∑
s=1

s∑
k=1

uk − (T − 1)−1
T∑
t=2

t−1∑
s=1

s∑
k=1

uk),

B5T = (T − 1)−5/2
T∑
t=2

(t− (T − 1)−1
T∑
t=2

t)(

t−1∑
s=1

us − (T − 1)−1
T∑
t=2

t−1∑
s=1

us),

B6T = (T − 1)−7/2
T∑
t=2

(t− (T − 1)−1
T∑
t=2

t)(
t−1∑
s=1

s∑
k=1

uk − (T − 1)−1
T∑
t=2

t−1∑
s=1

s∑
k=1

uk),

B9T = (T − 1)−3/2
T∑
t=2

(t− (T − 1)−1
T∑
t=2

t)(ut − T−1
T∑
t=2

ut), (3.1)

where ut follows i.i.d. N(0, 1). Note that N times of replication are carried out and for each replication

i, AT , B1T , B2T , B4T , B5T , B6T , B9T are denoted by AiT , B1iT , B2iT , B4iT , B5iT , B6iT , B9iT

respectively. The sample averages

1

N

N∑
i=1

√AiT − 12B2
5it +

B1iT − 12B6iTB9iT√
AiT − 12B2

5iT

− (B2iT − 12B5iTB9iT )(B4iT − 12B5iTB6iT )√
(AiT − 12B2

5iT )
3

 (3.2)

are reported in Table 1 for different T = 50, 100, 250, 5000 with the number of replications N being

50,000. Clearly, as T increases, the sample average tends to 0.

Table 1: Sample average in (3.2)
T=50 T=100 T=250 T=5000

N=50,000 0.0213 0.0100 0.0042 0.0005

The next to be simulated is the asymptotic local power

E

(
B4 − 12B5B6√

F

)
+ E

(
B12 − 12B10B9√

F

)
− E

(
(B2 − 12B5B9)(B3 − 12B2

6)

2
√
F 3

)
−E

(
(B2 − 12B5B9)(B8 − 12B5B10)√

F 3

)
− E

(
(B1 − 12B6B9)(B4 − 12B5B6)√

F 3

)
+E

(
3(B2 − 12B5B9)(B4 − 12B5B6)

2

2
√
F 5

)
,

in Theorem 2.1. In addition to (3.1), B3, B8, B10, B12, F are approximated by

B3T = (T − 1)−4
T∑
t=2

(
t−1∑
s=1

s∑
k=1

uk − (T − 1)−1
T∑
t=2

t−1∑
s=1

s∑
k=1

uk)
2,

B8T = (T − 1)−4
T∑
t=2

(

t−1∑
s=1

us − (T − 1)−1
T∑
t=2

t−1∑
s=1

us)(

t−1∑
s=1

s∑
k=1

(t− s)uk − (T − 1)−1
T∑
t=2

t−1∑
s=1

s∑
k=1

(t− s)uk),

B10T = (T − 1)−9/2
T∑
t=2

(t− (T − 1)−1
T∑
t=2

t)(

t−1∑
s=1

s∑
k=1

(t− s)uk − (T − 1)−1
T∑
t=2

t−1∑
s=1

s∑
k=1

(t− s)uk),
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B12T = (T − 1)3
T∑
t=2

(

t−1∑
s=1

s∑
k=1

(t− s)uk − (T − 1)−1
T∑
t=2

t−1∑
s=1

s∑
k=1

(t− s)uk)(ut − (T − 1)−1
T∑
t=2

ut),

FT = AT − 12B2
5T .

Again, N times of replication in simulation are carried out, and for each replication i, B1T , B2T ,

B3T , B4T , B5T , B6T , B8T , B9T , B10T , B12T , FT are denoted respectively by B1iT , B2iT , B3iT , B4iT ,

B5iT , B6iT , B8iT , B9iT , B10iT , B12iT , FiT . The sample averages

1

N

N∑
i=1

[
B4iT − 12B5iTB6iT√

FiT
+
B12iT − 12B10iTB9iT√

FiT
−

(B2iT − 12B5iTB9iT )(B3iT − 12B2
6iT )

2
√
F 3
iT

−(B2iT − 12B5iTB9iT )(B8iT − 12B5iTB10iT )√
F 3
iT

− (B1iT − 12B6iTB9iT )(B4iT − 12B5iTB6iT )√
F 3
iT

+
3(B2iT − 12B5iTB9iT )(B4iT − 12B5iTB6iT )

2

2
√
F 5
iT

]
(3.3)

are summarized in Table 2 for different T = 50, 100, 250, 5000 with the number of replications N

being 50,000. As evident in Table 2, the simulated values get closer to the value calculated by the

Fredholm method in (2.8) as T increases.

Table 2: Sample average in (3.3)
T=50 T=100 T=250 T=5000

N=50,000 -0.0242 -0.0266 -0.0277 -0.0278

Finally, we want to validate the findings from our analytical derivation by simulations. More

specifically, the aim is to verify the following three results: (i) The initial condition does not have

any impact on the asymptotic local power when we consider the IPS test with time trend. (ii) The

IPS test with time trend dose not have local power in the neighborhood of unity with the order of

N−1/2T−1 but attains local power in the neighborhood of unity with the order of N−1/4T−1. (iii) The

local power for the IPS test increases with c2. In addition, the theoretical asymptotic local powers

based on Corollary 2.2 are computed, and the results are presented in Table 5. To achieve these aims,

the following data generating processes similar to that in Moon et al. (2007) are adopted.

zit = b0i + b1it+ yit,

yit =
(
1− ci

nαT

)
yi,t−1 + σieit,

yi,0 = ξi = γi

√
σ2i /(1− ρ2i ), b0i, b1i, eit ∼ iid N(0, 1), γi ∼ (µγ , σ

2
γ),

σ2i ∼ U [0.5, 1.5].

Various different cases are being considered where ci follows different distributions, i.e., (1) ci ∼
iid U [0, 1]; (2) ci ∼ iid U [0, 8]; (3) ci ∼ iid χ2(1); (4) ci ∼ iid χ2(6); (7) ci = 1, (8) ci = 8. N and T

8



are selected from {10, 25, 100} and {50, 100, 250} respectively. The results at 5% significance level are

reported in Table 3 and Table 4 with 2,000 replications. Also, we set α = 1/2 in Table 3 and α = 1/4

in Table 4.

Table 3: Power of IPS test in the neighborhood of N−1/2T−1

γi = 0 γi ∼ U [0.5, 1.5]

T=50 T=100 T=250 T=50 T=100 T=250

N=10

ci ∼ iid U [0, 1] 0.0535 0.0525 0.0530 0.0535 0.0530 0.0525
ci ∼ iid U [0, 8] 0.0785 0.0745 0.0715 0.0790 0.0750 0.0730
ci ∼ iid χ2(1) 0.0690 0.0505 0.0530 0.0710 0.0505 0.0545
ci ∼ iid χ2(6) 0.0880 0.1030 0.0870 0.0815 0.1075 0.0820

ci = 1 0.0585 0.0595 0.0510 0.0580 0.0600 0.0505
ci = 8 0.1265 0.1140 0.1040 0.1150 0.1065 0.1035

N=25

ci ∼ iid U [0, 1] 0.0545 0.0540 0.0460 0.0540 0.0535 0.0460
ci ∼ iid U [0, 8] 0.0670 0.0555 0.0530 0.0660 0.0545 0.0510
ci ∼ iid χ2(1) 0.0565 0.0530 0.0505 0.0565 0.0520 0.0505
ci ∼ iid χ2(6) 0.0810 0.0710 0.0705 0.0745 0.0710 0.0690

ci = 1 0.0590 0.0570 0.0460 0.0575 0.0570 0.0465
ci = 8 0.0880 0.0905 0.0850 0.0825 0.0880 0.0780

N=100

ci ∼ iid U [0, 1] 0.0645 0.0580 0.0395 0.0655 0.0580 0.0395
ci ∼ iid U [0, 8] 0.0565 0.0640 0.0620 0.0565 0.0670 0.0615
ci ∼ iid χ2(1) 0.0505 0.0565 0.0500 0.0490 0.0565 0.0515
ci ∼ iid χ2(6) 0.0625 0.0630 0.0710 0.0640 0.0645 0.0680

ci = 1 0.0495 0.0580 0.0540 0.0490 0.0580 0.0540
ci = 8 0.0715 0.0710 0.0825 0.0715 0.0670 0.0795

Clearly, the simulation results support our theoretical findings. Firstly, by comparing the cases

where γi = 0 and γi ∼ U [0.5, 1.5] within each table, there is not much difference in the local power.

This agrees with our conclusion that the effect on local power from the initial condition is eliminated

effectively when trends are present and removed . Secondly, Table 3 and Table 4 signal that IPS test

with time trend has no local power in the neighborhood of unity with the order of N−1/2T−1 but has

nontrivial local power in the neighborhood of unity with the order of N−1/4T−1, even though when

c2 is small, the difference is not substantial. Table 3 indicates that local power falls as either N or T

increases for the case of N−1/2T−1. By contrast, Table 4, the local power increases with either N or T

for the case of N−1/4T−1. Finally, Table 4 suggests that the local power increases substantially when

c2 is getting larger. For example, when ci increases from 1 to 8, i.e., c2 increases from 1 to 64, the

local power jumps to 0.4380 which is almost 9 times larger than 0.0565 that is corresponding to c2 = 1

when N = 100 and T = 250. When we compare ci ∼ iid χ2(1) and ci ∼ iid χ2(6), c2 increases from 3

to 48, the local power increases from 0.0620 to 0.2590 when N = 100 and T = 100. Also, the values

in Table 4 are consistent with the theoretical values in Table 5, even though the simulated values are

slightly smaller than the theoretical values, a phenomenon also observed in Table 2 in Moon et al.

(2007).
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Table 4: Power of IPS test in the neighborhood of N−1/4T−1

γi = 0 γi ∼ U [0.5, 1.5]

T=50 T=100 T=250 T=50 T=100 T=250

N=10

ci ∼ iid U [0, 1] 0.0580 0.0540 0.0455 0.0595 0.0525 0.0465
ci ∼ iid U [0, 8] 0.0975 0.1125 0.1250 0.0975 0.1150 0.1170
ci ∼ iid χ2(1) 0.0690 0.0610 0.0645 0.0690 0.0610 0.0610
ci ∼ iid χ2(6) 0.2350 0.1240 0.2170 0.2265 0.1190 0.2120

ci = 1 0.0700 0.0565 0.0470 0.0700 0.0555 0.0470
ci = 8 0.2800 0.2645 0.2615 0.2775 0.2670 0.2665

N=25

ci ∼ iid U [0, 1] 0.0480 0.0500 0.0490 0.0480 0.0475 0.0490
ci ∼ iid U [0, 8] 0.1210 0.1220 0.1280 0.1205 0.1150 0.1155
ci ∼ iid χ2(1) 0.0615 0.0560 0.0590 0.0590 0.0545 0.0585
ci ∼ iid χ2(6) 0.2665 0.2060 0.1685 0.2535 0.1995 0.1520

ci = 1 0.0590 0.0645 0.0510 0.0590 0.0645 0.0505
ci = 8 0.3725 0.3710 0.3725 0.3620 0.3455 0.3465

N=100

ci ∼ iid U [0, 1] 0.0500 0.0565 0.0555 0.0505 0.0565 0.0545
ci ∼ iid U [0, 8] 0.1270 0.1340 0.1505 0.1155 0.1320 0.1380
ci ∼ iid χ2(1) 0.0560 0.0620 0.0580 0.0555 0.0625 0.0580
ci ∼ iid χ2(6) 0.2920 0.2590 0.2390 0.2695 0.2395 0.2240

ci = 1 0.0440 0.0640 0.0565 0.0450 0.0630 0.0595
ci = 8 0.4205 0.4290 0.4380 0.3925 0.3855 0.4035

Table 5: Theoretical asymptotic local power of IPS test in the neighborhood of N−1/4T−1

ci ∼ iid U [0, 1] U [0, 8] χ2(1) χ2(6) ci = 1 ci = 8

Theoretical values 0.0513 0.2005 0.0628 0.5661 0.0540 0.7794

4 Conclusion

This paper derives the analytical asymptotic local power of the IPS test when both the initial conditions

and incidental trends are present in the panel data. An important empirical consequence of the present

investigation is that, in the presence of incidental time trends, initial conditions no longer have any

nonnegligible impact on the asymptotic local power in IPS test as least squares detrending effectively

eliminates the initial conditions. Consistent with the findings in Moon et al. (2007), the IPS test has

no asymptotic local power in the neighborhood of unity with the order N−1/2T−1 but gains nontrivial

local power in the neighborhood of unity that shrinks at the rate N−1/4T−1 when incidental trends are

fitted. Since no analytical power result is currently available for the IPS test, these results obtained

by utilizing the Fredholm method proposed in Nabeya and Tanaka (1990a, 1990b), fill this void and

complement those in Moon et al. (2007).
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Appendix

From the model (2.1), we have that

zit = β0i + β1it+ yit = β0i + β1it+ ρiyi,t−1 + uit. (A.1)

Then,

zi,t−1 = β0i + β1i(t− 1) + yi,t−1, (A.2)

yi,t−1 = zi,t−1 − β0i − β1i(t− 1). (A.3)

By plugging (A.3) into (A.1), we have

zi,t = β0i + β1it+ ρi(zi,t−1 − β0i − β1i(t− 1)) + uit

= (1− ρi)β0i + β1iρi + (1− ρi)β1it+ ρizi,t−1 + uit
def
= αi + δit+ ρizi,t−1 + uit,

and from (A.2), we have

zi,t−1 − z̄i,t−1 = β1i(t− t̄) + yi,t−1 − ȳi,t−1. (A.4)

Also, by Assumption 1 and the standard Law of Large Number, we have

σ̂u,i =

√√√√ 1

T − 1

T∑
t=2

(zit − α̂i − δ̂it− ρ̂izi,t−1)2
p→ σu.

Then, by plugging (2.5) and (A.4) into (2.6) and applying (2.3), we have that as T → ∞

ti =
ρ̂i − 1

σ̂u,i

√ ∑
t(t−t̄)2

(
∑

t(t−t̄)2)(
∑

t(zi,t−1−z̄i,t−1)2)−(
∑

t(t−t̄)(zi,t−1−z̄i,t−1))
2

=
1

σ̂u,i

(
(ρi − 1)

√√√√(∑
t

(zi,t−1 − z̄i,t−1)2

)
−

(
∑

t(t− t̄)(zi,t−1 − z̄i,t−1))
2∑

t(t− t̄)2

+

(∑
t(t− t̄)2

)
(
∑

t(zi,t−1 − z̄i,t−1)((1− ρi)β1,i(t− t̄) + (uit − ūit)))√∑
t(t− t̄)2

√
(
∑

t(t− t̄)2) (
∑

t(zi,t−1 − z̄i,t−1)2)− (
∑

t(t− t̄)(zi,t−1 − z̄i,t−1))
2

−
(
∑

t(t− t̄)(zi,t−1 − z̄i,t−1)) (
∑

t(t− t̄)((1− ρi)β1,i(t− t̄) + (uit − ūit)))√∑
t(t− t̄)2

√
(
∑

t(t− t̄)2) (
∑

t(zi,t−1 − z̄i,t−1)2)− (
∑

t(t− t̄)(zi,t−1 − z̄i,t−1))
2

)

=
1

σ̂u,i

(
ci

TN1/4

√√√√(∑
t

(zi,t−1 − z̄i,t−1)2

)
−

(
∑

t(t− t̄)(zi,t−1 − z̄i,t−1))
2∑

t(t− t̄)2

+

(∑
t(t− t̄)2

)
(
∑

t(zi,t−1 − z̄i,t−1)(uit − ūit))− (
∑

t(t− t̄)(zi,t−1 − z̄i,t−1)) (
∑

t(t− t̄)(uit − ūit))√∑
t(t− t̄)2

√
(
∑

t(t− t̄)2) (
∑

t(zi,t−1 − z̄i,t−1)2)− (
∑

t(t− t̄)(zi,t−1 − z̄i,t−1))
2

)

=
1

σ̂u,i

(
ci

TN1/4

√√√√(∑
t

(yi,t−1 − ȳi,t−1)2

)
−

(
∑

t(t− t̄)(yi,t−1 − ȳi,t−1))
2∑

t(t− t̄)2

+

(∑
t(t− t̄)2

)
(
∑

t(yi,t−1 − ȳi,t−1)(uit − ūit))− (
∑

t(t− t̄)(yi,t−1 − ȳi,t−1)) (
∑

t(t− t̄)(uit − ūit))√∑
t(t− t̄)2

√
(
∑

t(t− t̄)2) (
∑

t(yi,t−1 − ȳi,t−1)2)− (
∑

t(t− t̄)(yi,t−1 − ȳi,t−1))
2

)
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⇒ ci

N1/4

√∫ 1

0
Kµ

i,ci
(r)2dr − 12

(∫ 1

0
(r − 1

2
)Kµ

i,ci
(r)dr

)2

+

∫ 1
0 K

µ
i,ci

(r)dWi(r)− 12
∫ 1
0 (r −

1
2)K

µ
i,ci

(r)dr
∫ 1
0 (r −

1
2)dWi(r)√∫ 1

0 K
µ
i,ci

(r)2dr − 12
(∫ 1

0 (r −
1
2)K

µ
i,ci

(r)dr
)2 ,

where Kµ
i,ci

(r) = Ki,ci(r)−
∫ 1
0 Ki,ci(s)ds, and

Ki,ci(r) = γi

(
erciN

−1/4 − 1
)(

−2ciN
−1/4

)−1/2
+

∫ r

0
eciN

−1/4(r−s)dWi(s)

= γi

(
erciN

−1/4 − 1
)(

−2ciN
−1/4

)−1/2
+Wi(r) + ciN

−1/4

∫ r

0
eciN

−1/4(r−s)Wi(s)ds.

Also, we have
T∑
t=2

(t− t̄)2 =
1

12
(T − 1)((T − 1)2 − 1) =

1

12
T 3 − 1

4
T 2 +

1

6
T.

Similar as that in the Appendix of Harris et al. (2010), we have that for any x

exciN
−1/4

= 1 + xciN
−1/4 +

1

2
x2c2iN

−1/2 +O(N−3/4),

and

Ki,ci(r) = γirci(−2ci)
−1/2N−1/8 +

1

2
γir

2c2i (−2ci)
−1/2N−3/8 +Wi(r)

+ciN
−1/4

∫ r

0
Wi(s)ds+ c2iN

−1/2

∫ r

0
(r − s)Wi(s)ds+Op(N

−5/8),

Kµ
i,ci

(r) = γi(r −
1

2
)ci(−2ci)

−1/2N−1/8 +
1

2
γi(r

2 − 1

3
)c2i (−2ci)

−1/2N−3/8 +Wµ
i (r)

+ciN
−1/4

{∫ r

0
Wi(s)ds−

∫ 1

0

∫ t

0
Wi(s)dsdt

}
+c2iN

−1/2

{∫ r

0
(r − s)Wi(s)ds−

∫ 1

0

∫ t

0
(t− s)Wi(s)dsdt

}
+Op(N

−5/8).

Thus, we have∫ 1

0
(r − 1

2
)Kµ

i,ci
(r)dr

=

∫ 1

0
γi(r −

1

2
)2ci(−2ci)

−1/2N−1/8dr +
1

2

∫ 1

0
γi(r −

1

2
)(r2 − 1

3
)c2i (−2ci)

−1/2N−3/8dr

+

∫ 1

0
(r − 1

2
)Wµ

i (r)dr + ciN
−1/4

∫ 1

0
(r − 1

2
)

{∫ r

0
Wi(s)ds−

∫ 1

0

∫ t

0
Wi(s)dsdt

}
dr

+

∫ 1

0
(r − 1

2
)c2iN

−1/2

{∫ r

0
(r − s)Wi(s)ds−

∫ 1

0

∫ t

0
(t− s)Wi(s)dsdt

}
dr +Op(N

−5/8)

=
1

12
γici(−2ci)

−1/2N−1/8 +
1

24
γic

2
i (−2ci)

−1/2N−3/8

+

∫ 1

0
(r − 1

2
)Wµ

i (r)dr + ciN
−1/4

∫ 1

0
(r − 1

2
)

{∫ r

0
Wi(s)ds−

∫ 1

0

∫ t

0
Wi(s)dsdt

}
dr

+c2iN
−1/2

∫ 1

0
(r − 1

2
)

{∫ r

0
(r − s)Wi(s)ds−

∫ 1

0

∫ t

0
(t− s)Wi(s)dsdt

}
dr +Op(N

−5/8),
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and ∫ 1

0
Kµ

i,ci
(r)2dr − 12

(∫ 1

0
(r − 1

2
)Kµ

i,ci
(r)dr

)2

= Ai + γ2i c
2
i (−2ci)

−1N−1/4/12 + c2iN
−1/2B3i + γ2i c

3
i (−2ci)

−1N−1/2/12 + 2γici(−2ci)
−1/2N−1/8B5i

+2γic
2
i (−2ci)

−1/2N−3/8B6i + γic
2
i (−2ci)

−1/2N−3/8B7i + 2ciN
−1/4B4i + 2c2iN

−1/2B8i

−12B2
5i − γ2i c

2
i (−2ci)

−1N−1/4/12− 12c2iN
−1/2B2

6i − γ2i c
3
i (−2ci)

−1N−1/2/12− 2γici(−2ci)
−1/2N−1/8B5i

−2γic
2
i (−2ci)

−1/2N−3/8B6i − γic
2
i (−2ci)

−1/2N−3/8B5i − 24B5iciN
−1/4B6i − 24B5ic

2
iN

−1/2B10i

+Op(N
−5/8)

= Ai − 12B2
5i + 2ciN

−1/4(B4i − 12B5iB6i) + γic
2
i (−2ci)

−1/2N−3/8(B7i −B5i) + c2iN
−1/2(B3i − 12B2

6i)

+2c2iN
−1/2(B8i − 12B5iB10i) +Op(N

−5/8). (A.5)

By plugging the previous results into ti, we have that

ti

⇒ ciN
−1/4

√
Ai − 12B2

5i + 2ciN−1/4(B4i − 12B5iB6i) +Op(N−3/8)

+
(
B2i + (1/2)γic

2
i (−2ci)

−1/2N−3/8B11i + ciN
−1/4B1i + c2iN

−1/2B12i

−(1/2)γic
2
i (−2ci)

−1/2N−3/8B9i − 12B5iB9i − 12ciN
−1/4B6iB9i − 12c2iN

−1/2B10iB9i +Op(N
−5/8)

)
/(

Ai − 12B2
5i + 2ciN

−1/4(B4i − 12B5iB6i) + γic
2
i (−2ci)

−1/2N−3/8(B7i −B5i) + c2iN
−1/2(B3i − 12B2

6i)

+2c2iN
−1/2(B8i − 12B5iB10i) +Op(N

−5/8)
)1/2

= ciN
−1/4

√
Ai − 12B2

5i + 2ciN−1/4(B4i − 12B5iB6i) +Op(N−3/8)

+
(
B2i − 12B5iB9i + ciN

−1/4(B1i − 12B6iB9i) + (1/2)γic
2
i (−2ci)

−1/2N−3/8(B11i −B9i)

+c2iN
−1/2(B12i − 12B10iB9i) +Op(N

−5/8)
)
/
(
Ai − 12B2

5i + 2ciN
−1/4(B4i − 12B5iB6i)

+γic
2
i (−2ci)

−1/2N−3/8(B7i −B5i) + c2iN
−1/2(B3i − 12B2

6i) + 2c2iN
−1/2(B8i − 12B5iB10i) +Op(N

−5/8)
)1/2

,

where

Ai =

∫ 1

0
Wµ

i (r)
2dr,

B1i =

∫ 1

0

{∫ r

0
Wi(s)ds−

∫ 1

0

∫ t

0
Wi(s)dsdt

}
dWi(r),

B2i =

∫ 1

0
Wµ

i (r)dWi(r),

B3i =

∫ 1

0

{∫ r

0
Wi(s)ds−

∫ 1

0

∫ t

0
Wi(s)dsdt

}2

dr,

B4i =

∫ 1

0
Wµ

i (r)

{∫ r

0
Wi(s)ds−

∫ 1

0

∫ t

0
Wi(s)dsdt

}
dr,

B5i =

∫ 1

0
(r − 1

2
)Wµ

i (r)dr,
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B6i =

∫ 1

0
(r − 1

2
)

{∫ r

0
Wi(s)ds−

∫ 1

0

∫ t

0
Wi(s)dsdt

}
dr,

B7i =

∫ 1

0
(r2 − 1

3
)Wµ

i (r)dr,

B8i =

∫ 1

0
Wµ

i (r)

{∫ r

0
(r − s)Wi(s)ds−

∫ 1

0

∫ t

0
(t− s)Wi(s)dsdt

}
dr,

B9i =

∫ 1

0
(r − 1

2
)dWi(r) =

1

2
Wi(1)−

∫ 1

0
Wi(r)dr,

B10i =

∫ 1

0
(r − 1

2
)

{∫ r

0
(r − s)Wi(s)ds−

∫ 1

0

∫ t

0
(t− s)Wi(s)dsdt

}
dr,

B11i =

∫ 1

0
(r2 − 1

3
)dWi(r),

B12i =

∫ 1

0

{∫ r

0
(r − s)Wi(s)ds−

∫ 1

0

∫ t

0
(t− s)Wi(s)dsdt

}
dWi(r),

and Wµ
i (r) =Wi(r)−

∫ 1
0 Wi(s)ds. Clearly, we can see the terms involving γ2i are canceled out. Recall

that γi is from the explosive initial condition. This means the initial condition effect is eliminated by

the least squares detrending. Even though, there is one term with γi left, we can show that this term

is asymptotically negligible in Lemma A.1(ii).

Let

Fi = Ai − 12B2
5i,

Gi = 2ciN
−1/4(B4i − 12B5iB6i) + γic

2
i (−2ci)

−1/2N−3/8(B7i −B5i)

+c2iN
−1/2(B3i − 12B2

6i) + 2c2iN
−1/2(B8i − 12B5iB10i) +Op(N

−5/8).

We have that

(Fi +Gi)
−1/2

=
1√
F i

− Gi

2
√
F 3
i

+
3G2

i

8
√
F 5
i

+Op(N
−3/4)

=
1√
F i

− 2ciN
−1/4(B4i − 12B5iB6i) + γic

2
i (−2ci)

−1/2N−3/8(B7i −B5i)

2
√
F 3
i

−c
2
iN

−1/2(B3i − 12B2
6i) + 2ciN

−1/2(B8i − 12B5iB10i)

2
√
F 3
i

+
3c2iN

−1/2(B4i − 12B5iB6i)
2

2
√
F 5
i

+Op(N
−5/8),

and
√
Fi +Gi =

√
Fi + ciN

−1/4 (B4i−12B5iB6i)√
Fi

+Op(N
−3/8).

Hence, by further expansion we have that

ti ⇒ B2i − 12B5iB9i√
Fi

+ ciN
−1/4

√
Fi + ciN

−1/4B1i − 12B6iB9i√
Fi

− ciN
−1/4 (B2i − 12B5iB9i)(B4i − 12B5iB6i)√

F 3
i

+(1/2)γic
2
i (−2ci)

−1/2N−3/8

(B11i −B9i)√
Fi

− (B2i − 12B5iB9i)(B7i −B5i)√
F 3
i


+c2iN

−1/2B4i − 12B5iB6i√
Fi

+ c2iN
−1/2B12i − 12B10iB9i√

Fi
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−c2iN−1/2 (B2i − 12B5iB9i)(B3i − 12B2
6i) + 2(B2i − 12B5iB9i)(B8i − 12B5iB10i)

2
√
F 3
i

−c2iN−1/2 (B1i − 12B6iB9i)(B4i − 12B5iB6i)√
F 3
i

+ c2iN
−1/2 3(B2i − 12B5iB9i)(B4i − 12B5iB6i)

2

2
√
F 5
i

+Op(N
−5/8). (A.6)

From Lemma A.1, the standard CLT and LLN, we have

Zτ =

√
N(N−1

∑N
i=1 ti − E(t0))√

V ar(t0)

⇒ N(0, 1) + c2

[
E

(
B4 − 12B5B6√

F

)
+ E

(
B12 − 12B10B9√

F

)
− E

(
(B2 − 12B5B9)(B3 − 12B2

6)

2
√
F 3

)
−E

(
(B2 − 12B5B9)(B8 − 12B5B10)√

F 3

)
− E

(
(B1 − 12B6B9)(B4 − 12B5B6)√

F 3

)
+E

(
3(B2 − 12B5B9)(B4 − 12B5B6)

2

2
√
F 5

)]
/
√
V ar(t0),

which completes the proof.

Lemma A.1 As N → ∞, we have

(i) N−1
∑N

i=1

[√
Fi +

B1i−12B6iB9i√
Fi

− (B2i−12B5iB9i)(B4i−12B5iB6i)√
F 3
i

]
= Op(N

−1/2),

(ii) N−1
∑N

i=1 γic
2
i (−2ci)

−1/2

(
(B11i−B9i)√

Fi
− (B2i−12B5iB9i)(B7i−B5i)√

F 3
i

)
= Op(N

−1/2),

(iii) N−1
∑N

i=1

[
c2i

B4i−12B5iB6i√
Fi

+c2i
B12i−12B10iB9i√

Fi
−c2i

(B2i−12B5iB9i)(B3i−12B2
6i)+2(B2i−12B5iB9i)(B8i−12B5iB10i)

2
√

F 3
i

− c2i
(B1i−12B6iB9i)(B4i−12B5iB6i)√

F 3
i

+ c2i
3(B2i−12B5iB9i)(B4i−12B5iB6i)

2

2
√

F 5
i

]
p→ c2

[
E
(
B4−12B5B6√

F

)
+ E

(
B12−12B10B9√

F

)
− E

(
(B2−12B5B9)(B3−12B2

6)

2
√
F 3

)
−E

(
(B2−12B5B9)(B8−12B5B10)√

F 3

)
− E

(
(B1−12B6B9)(B4−12B5B6)√

F 3

)
+ E

(
3(B2−12B5B9)(B4−12B5B6)2

2
√
F 5

)]
.

Proof of Lemma A.1.

(i) We need to show that

E

[√
F +

B1 − 12B6B9√
F

− (B2 − 12B5B9)(B4 − 12B5B6)√
F 3

]
= 0.

From the simulation results, we can see that the mean of this term is close to 0. We can show this

result based on the direct calculation of the characteristic function of ti using the Fredholm method

proposed in Nabeya and Tanaka (1990) or Nabeya and Sørensen (1994).
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Substituting θ = iu/2, x = −v/u and c = ciN
−1/4 into φ4(θ; c, 1, x) of Theorem 4 in Nabeya and

Tanaka (1990), we have the joint m.g.f. for (U3, V3) as

ψ3(u, v)

= e−
u
2

[
e−ciN

− 1
4
[ (ciN−1/4)5 − (ciN

−1/4)4u− 4((ciN
−1/4)2 + 3ciN

−1/4 + 27)u2 − 8v((ciN
−1/4)2 − 3ciN

−1/4 − 3)

(2v − c2iN
−1/2)2

×
sin
√

2v − c2iN
−1/2√

2v − c2iN
−1/2

+
24((ciN

−1/4)4u+ 8vu2 − 4(ciN
−1/4 + 1)(v2 − 3u2))

(2v − c2iN
−1/2)3

(
sin
√

2v − c2iN
−1/2√

2v − c2iN
−1/2

+
cos
√

2v − c2iN
−1/2

2v − c2iN
−1/2

− 1

2v − c2iN
−1/2

)
+

(
c4iN

−1

(2v − c2iN
−1/2)2

− 8(c4iN
−1u− c3iN

−3/42v + 4(c2iN
−1/2 + 3ciN

−1/4 + 6)u2)

(2v − c2iN
−1/2)3

)

× cos
√

2v − c2iN
−1/2 − 4(c4iN

−1u+ 4(c2iN
−1/2 + 3ciN

−1/4 − 3)u2 − 2c2iN
−1/2v(ciN

−1/4 + 3))

(2v − c2iN
−1/2)3

]]−1/2

.

Then, we have

∂

∂u
ψ3(u,−v)

∣∣∣∣
u=0

= −1

2

[
e−ciN

− 1
4
[(ciN−1/4)5 + 8v((ciN

−1/4)2 − 3ciN
−1/4 − 3)

(−2v − c2iN
−1/2)2

sin
√

−2v − c2iN
−1/2√

−2v − c2iN
−1/2

+
24(−4(ciN

−1/4 + 1)v2)

(−2v − c2iN
−1/2)3

(
sin
√

−2v − c2iN
−1/2√

−2v − c2iN
−1/2

+
cos
√

−2v − c2iN
−1/2

−2v − c2iN
−1/2

− 1

−2v − c2iN
−1/2

)

+

(
c4iN

−1

(−2v − c2iN
−1/2)2

− 8(c3iN
−3/42v)

(−2v − c2iN
−1/2)3

)
cos
√

−2v − c2iN
−1/2 − 4(2c2iN

−1/2v(ciN
−1/4 + 3))

(−2v − c2iN
−1/2)3

]]−1/2

−1

2

[
e−ciN

− 1
4
[(ciN−1/4)5 + 8v((ciN

−1/4)2 − 3ciN
−1/4 − 3)

(−2v − c2iN
−1/2)2

sin
√

−2v − c2iN
−1/2√

−2v − c2iN
−1/2

+
24(−4(ciN

−1/4 + 1)v2)

(−2v − c2iN
−1/2)3

(
sin
√

−2v − c2iN
−1/2√

−2v − c2iN
−1/2

+
cos
√

−2v − c2iN
−1/2

−2v − c2iN
−1/2

− 1

−2v − c2iN
−1/2

)

+

(
c4iN

−1

(−2v − c2iN
−1/2)2

− 8(c3iN
−3/42v)

(−2v − c2iN
−1/2)3

)
cos
√

−2v − c2iN
−1/2 − 4(2c2iN

−1/2v(ciN
−1/4 + 3))

(−2v − c2iN
−1/2)3

]]−3/2

×e−ciN
− 1

4
[ −c4iN−1

(−2v − c2iN
−1/2)2

sin
√

−2v − c2iN
−1/2√

−2v − c2iN
−1/2

+
24c4iN

−1

(−2v − c2iN
−1/2)3

(
sin
√

−2v − c2iN
−1/2√

−2v − c2iN
−1/2

+
cos
√
−2v − c2iN

−1/2

−2v − c2iN
−1/2

− 1

−2v − c2iN
−1/2

)
+

(
− 8c4iN

−1

(−2v − c2iN
−1/2)3

)
cos
√

−2v − c2iN
−1/2

− 4c4iN
−1

(−2v − c2iN
−1/2)3

]
.
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Further, we have

∂

∂u
ψ3(u,−v)

∣∣∣∣
u=0

= −1

2

[
(1− ciN

− 1
4 +

1

2
c2iN

− 1
2 +O(N−1))

[8v(c2iN−1/2 − 3ciN
−1/4 − 3)

(−2v − c2iN
−1/2)2

sin
√

−2v − c2iN
−1/2√

−2v − c2iN
−1/2

+
24(−4(ciN

−1/4 + 1)v2)

(−2v − c2iN
−1/2)3

(
sin
√

−2v − c2iN
−1/2√

−2v − c2iN
−1/2

+
cos
√

−2v − c2iN
−1/2

−2v − c2iN
−1/2

− 1

−2v − c2iN
−1/2

)

− 4(6c2iN
−1/2v)

(−2v − c2iN
−1/2)3

]
+O(N−3/4)

]−1/2

+O(N−1)

= −1

2

[[8v(c2iN−1/2 − 3ciN
−1/4 − 3)

(−2v − c2iN
−1/2)2

sin
√

−2v − c2iN
−1/2√

−2v − c2iN
−1/2

+
24(−4(ciN

−1/4 + 1)v2)

(−2v − c2iN
−1/2)3

(
sin
√

−2v − c2iN
−1/2√

−2v − c2iN
−1/2

+
cos
√

−2v − c2iN
−1/2

−2v − c2iN
−1/2

− 1

−2v − c2iN
−1/2

)

− 4(6c2iN
−1/2v)

(−2v − c2iN
−1/2)3

]
−
[8v(−3c2iN

−1/2 − 3ciN
−1/4)

(−2v − c2iN
−1/2)2

sin
√

−2v − c2iN
−1/2√

−2v − c2iN
−1/2

+
24(−4(c2iN

−1/2 + ciN
−1/4)v2)

(−2v − c2iN
−1/2)3

(
sin
√

−2v − c2iN
−1/2√

−2v − c2iN
−1/2

+
cos
√

−2v − c2iN
−1/2

−2v − c2iN
−1/2

− 1

−2v − c2iN
−1/2

)]

+
[ 4v(−3c2iN

−1/2)

(−2v − c2iN
−1/2)2

sin
√

−2v − c2iN
−1/2√

−2v − c2iN
−1/2

+
24(−2(c2iN

−1/2)v2)

(−2v − c2iN
−1/2)3

(
sin
√

−2v − c2iN
−1/2√

−2v − c2iN
−1/2

+
cos
√
−2v − c2iN

−1/2

−2v − c2iN
−1/2

− 1

−2v − c2iN
−1/2

)]
+O(N−3/4)

]−1/2

+O(N−1)

= −1

2

[[ 4v(5c2iN−1/2 − 6)

(−2v − c2iN
−1/2)2

sin
√

−2v − c2iN
−1/2√

−2v − c2iN
−1/2

+
24(−4v2 + 2c2iN

−1/2v2)

(−2v − c2iN
−1/2)3

(
sin
√

−2v − c2iN
−1/2√

−2v − c2iN
−1/2

+
cos
√
−2v − c2iN

−1/2

−2v − c2iN
−1/2

− 1

−2v − c2iN
−1/2

)
− 4(6c2iN

−1/2v)

(−2v − c2iN
−1/2)3

]
+O(N−3/4)

]−1/2

+O(N−1).(A.7)

Clearly, we can see that the terms involving N−1/4 are canceled out, and there is no O(N−1/4) term

in (A.7). Also, we know that
√
F + B1−12B6B9√

F
− (B2−12B5B9)(B4−12B5B6)√

F 3
is corresponding to N−1/4

term asymptotically. Therefore,

E

[√
F +

B1 − 12B6B9√
F

− (B2 − 12B5B9)(B4 − 12B5B6)√
F 3

]
= 0.

Our result here can provide the direct calculation for the expectation in Lemma A.1(iii). Recall
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that ti =
U3√
V 3

, and from Sawa (1972), we have

E(ti) = E

(
U3√
V 3

)
=

1

Γ(12)

∫ ∞

0

1√
v

∂

∂u
ψ3(u,−v)

∣∣∣∣
u=0

dv.

Therefore, by the change of variable as x =
√
2v and a Taylor expansion, we have

E(Zτ )

= (V ar(t0))
−1/2N1/2N−1

N∑
i=1

(E(ti)− E(t0))

= (V ar(t0))
−1/2N1/2

(
− 1√

2π

∫ ∞

0

[
3f22(x) + (N−1

N∑
i=1

c2i )N
−1/2

(−2 sinh(x)

x3
+

18 cosh(x)

x4
− 66 sinh(x)

x5

+
96 cosh(x)− 96

x6

)
+O(N−3/4)

]−1/2

dx+O(N−1)−E(t0)

)

= V ar(t0))
−1/2N1/2

(
− 1√

2π

∫ ∞

0
[3f22(x)]

−1/2dx+
(N−1

∑N
i=1 c

2
i )N

−1/2

2
√
2π

∫ ∞

0
[3f22(x)]

−3/2
(
− 2 sinh(x)

x3

+
18 cosh(x)

x4
− 66 sinh(x)

x5
+

96 cosh(x)− 96

x6

)
dx+O(N−3/4)− E(t0)

)

= V ar(t0))
−1/2

(
c2√
2π

∫ ∞

0
[3f22(x)]

−3/2
(
− sinh(x)

x3
+

9 cosh(x)

x4
− 33 sinh(x)

x5
+

48(cosh(x)− 1)

x6

)
dx

+O(N−1/4)

)
, (A.8)

where f22(x) = 4
(

1
x3 sinh(x)− 2

x4 [cosh(x)− 1]
)
, and E(t0) = − 1√

2π

∫∞
0 [3f22(x)]

−1/2dx from (7) and

page 147 in Nabeya (1999).

Clearly, this shows that Zτ = Op(N
−1/2) and

N−1
N∑
i=1

√Fi +
B1i − 12B6iB9i√

Fi
− (B2i − 12B5iB9i)(B4i − 12B5iB6i)√

F 3
i

 = Op(N
−1/2).

(ii) As B5i, B7i, B9i and B11i are odd functionals and B2i is the even functional of Wi(r), following

similar proof in Harris et al. (2010), we have the result.

(iii) From the standard Law of Large Numbers, we get the result.
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