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Abstract 

 
This paper investigates how financial market imperfections and the frequency of price 
adjustment interact. Based on new firm-level evidence for Germany, we document that 
financially constrained firms adjust prices more often than their unconstrained counterparts, 
both upwards and downwards. We show that these empirical patterns are consistent with a 
partial equilibrium menu-cost model with a working capital constraint. We then use the model to 
show how the presence of financial frictions changes profits and the price distribution of firms 
compared to a model without financial frictions. Our results suggest that tighter financial 
constraints are associated with lower nominal rigidities, higher prices and lower output. 
Moreover, in response to aggregate shocks, aggregate price rigidity moves substantially, the 
response of inflation is dampened, while output reacts more in the presence of financial 
frictions. This means that financial frictions make the aggregate supply curve flatter for all 
calibrations considered in our model. We show that this differs fundamentally from models in 
which the extensive margin of price adjustment is absent (Rotemberg, 1982) or constant (Calvo, 
1983). Hence, the interaction of financial frictions and the frequency of price adjustment 
potentially induces important consequences for the effectiveness of monetary policy. 
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1 Introduction
How do financial frictions affect macroeconomic outcomes? This paper investigates the interaction be-
tween financial frictions and the frequency of price adjustment in the economy. We document empirically
that financially constrained firms adjust prices more often than their unconstrained counterparts, both
up- and downwards. We replicate this pattern in a partial-equilibrium menu cost model with a working
capital constraint. Based on this model, we then explore the cross-sectional distribution of pricing deci-
sions in response to idiosyncratic and aggregate shocks and show how it interacts with financial frictions.
In particular, we document that financial frictions impose important asymmetries in the profits and the
price gap distribution of both financially constrained and unconstrained firms. Based on this, we show
that aggregate price rigidity and prices increase, while output falls in the presence of financial frictions.
Moreover, in response to aggregate shocks, aggregate price rigidity moves substantially, the response of
inflation is dampened, while output reacts more in the presence of financial frictions. Hence, financial
frictions potentially induce important consequences for the effectiveness of monetary policy.

We explore rich plant-level data for Germany: the ifo Business Survey, a monthly representative
panel of 3600 manufacturing firms covering the years 2002-2014. The survey contains information about
the extensive margin, i.e., whether and in what direction individual firms change prices. In addition,
the survey provides two high-frequency, direct firm-specific measures of financial constraints: Firms give
appraisals of their access to bank credit which is the predominant way of financing operational costs and
investment externally in Germany. Firms also report whether they are experiencing production shortages
due to financial constraints. Regardless of the measure of financial constrainedness used and the frequency
of data, we find that financially constrained firms adjust prices more often than unconstrained firms. In
particular, the typical financially constrained firm exhibits a significantly higher frequency for both an
upward and a downward price adjustment. These patterns are also statistically significant in different
subperiods: before, during and after the Great Recession. To check the robustness of our results, we
exploit balance-sheet based indicators of the individual access to credit for a subset of firms in our sample.

The existing empirical literature on the relationship between pricing decisions of firms and financial
constraints is relatively scarce. It has mainly focused on price adjustment along the intensive margin1
and has also mostly not included evidence on the Great Recession period. At the same time, it mostly
relies on indirect measures of individual financial conditions such as the state of the business cycle or
balance sheet measures.2 Our evidence stands out since we report high-frequency survey-based measures
and evidence for a large European economy. Since we have balance sheet information for a subset of firms
in our sample, we can compare direct and indirect measures of financial constraints. The study that is
closest to ours is a recent study for the US by Gilchrist et al. (2013). Based on balance sheet measures,
Gilchrist et al. also show that among price adjusters financially constrained firms adjust prices up more
often than unconstrained firms with the relationship being significant only during the Great Recession.
Unlike in the current paper, they focus on the intensive margin of price adjustment rather than on the
interaction between financial constraints and the frequency of price changes.

Our interpretation of the empirical facts is guided by a partial-equilibrium menu cost model with
financial frictions which provides an explicit rationale for the interactions between financial constraints
and nominal rigidities. Here, we extend the standard menu-cost model with heterogeneous firms by
adding a working capital constraint.3 In this model, financial frictions and price setting may affect each
other in several ways. On the one hand, being financially constrained may affect the pricing decision of a
firm: firms with initially low prices that sell large quantities may not be able to finance their production
inputs and may therefore find it optimal to scale down production and/or to adjust prices up. On the
other hand, firms seeking to gain market share may want to lower their prices. However, by doing so,
they may run into financial constraints when expanding production. Finally, firms trade-off current and

1See for example Chevalier and Scharfstein (1996) for the US or Gottfries (2002) and Asplund et al. (2005) for Sweden.
2Only Bhaskar et al. (1993) use a small-sample one time cross-sectional survey for small firms in the UK.
3In contrast, existing studies on the interaction between financial frictions and pricing decisions consider the intensive

margin only, i.e., the fraction of firms that adjust prices is always equal to one, see e.g. Gilchrist et al. (2013), Gottfries
(1991), Chevalier and Scharfstein (1996) or Lundin and Yun (2009). The literature on menu costs has in turn not focused
on financial frictions, e.g. Barro (1972), Caplin and Spulber (1987), Dotsey et al. (1999), Golosov and Lucas (2007) or
Gilchrist et al. (2013). Extensions as stochastic idiosyncratic menu costs and leptokurtic productivity shocks are analysed
in Dotsey and King (2005) and Midrigan (2011) respectively. Multi-sector and multi-product versions of the model are
developed by Nakamura and Steinsson (2010) and Alvarez and Lippi (2014). Vavra (2013) and Bachmann et al. (2013)
investigate the consequences of uncertainty shocks for the price distribution and the effectiveness of monetary policy.
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expected future profits and may be inclined to set prices such that future expected menu-costs can be
reduced (as the expected time until the next price adjustment is maximized).

We document that the presence of financial constraints makes the individual firm’s profit function
more concave in the price and introduces important asymmetries. Profits fall more quickly for prices
below compared to above the constrained optimal reset price, since these prices imply rationing output
which is very costly to firms. This means that the inaction region in which it is optimal for firms not to
adjust prices is more narrow and more asymmetric around the optimal constrained reset price compared
to the optimal unconstrained reset price. As a result, for any given beginning-of-period price, firms are
more likely to adjust prices. At the same time, the presence of financial frictions reduces the elasticity
of the optimal reset price with respect to productivity, i.e., the optimal reset price falls less strongly
with increasing productivity. Financial frictions also change the stationary distribution of beginning-of-
period prices as the price gap distribution becomes less dispersed. This distributional effect reduces the
frequency of price changes.

For the bulk of empirically plausible parameterizations, the width of the inaction region effect is
stronger than the distributional effect for financially constrained firms compared to financially uncon-
strained firms. Hence, our model replicates the empirical finding that financially constrained firms adjust
prices more often than unconstrained firms. We also decompose this effect for different productivity levels
of firms and show that the frequency of price changes is generally low for intermediate productivity levels.
Moreover, most unconstrained firms have intermediate productivity realizations. Financially constrained
firms tend to adjust prices down very often for high productivity realizations. At the same time, many
financially constrained firms have low productivity realizations at which the price adjustment (upwards)
is still substantial. It is important to note however, that the above holds in a world with financial fric-
tions. When comparing a world with to a world without financial frictions, the distributional effect is
very strong at all productivity levels and for all types of firms, the unconstrained firms in particular.
Hence, even though financially constrained firms adjust their prices more often than their unconstrained
counterparts, the overall frequency of price changes falls in the presence of financial frictions.

To investigate the implications of financial frictions on the economy, we consider the responses of
average inflation and real output to aggregate nominal demand shocks. In our partial-equilibrium model,
these shocks can be interpreted as responses of a single sector to aggregate business cycle shocks. Doing
so, we obviously ignore important general equilibrium effects, in particular the response of real wages.
We nevertheless believe this to be an instructive exercise as real wages might be sticky or downward
rigid in the short run. We find that, due to the asymmetry in the price distribution, firms adjust
prices more often in a boom and less often in a recession when financial constraints are present. In
addition, due to the lower average frequency of price adjustment, the aggregate demand shock induces
a smaller change in inflation and a stronger reaction of output relative to an economy without credit
market imperfections. This means that financial constraints alter a central trade-off faced by the central
bank: In order to engineer an increase in inflation by a certain amount the monetary authority needs to
generate larger changes in nominal demand. At the same time, it needs to take into account that larger
changes in nominal demand induce even stronger responses of average output. This model implication
is very similar to what has been highlighted as the “cost channel” of financial frictions by Gilchrist et al.
(2013). In our framework, this means that financial frictions decrease the slope of the aggregate supply
curve. In contrast, we show that other sources of nominal rigidities such as exogenous probabilities of
price adjustment as in Calvo (1983) or convex price adjustment costs as in Rotemberg (1982) generate
the opposite result, i.e. the inclusion of financial frictions generates larger inflation and smaller output
responses to aggregate shocks with compared to without financial frictions. Hence, menu costs and the
associated endogenous link between the fraction of price adjusters and the presence of credit market
imperfections play a crucial role for aggregate fluctuations.

The remainder of the paper is organized as follows. Section 2 documents the data and the empirical
relationship between financial frictions and the price setting of firms. Section 3 presents the model, derives
the central insights from the static model, discusses the calibration and documents the implications for
the cross-section of firms. Section 4 documents and discusses the aggregate implications, compares the
results to alternative sources of nominal rigidities, discusses robustness of the results and considers the
special case of a financial recession. Section 5 concludes.
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2 Empirical Evidence

2.1 Data
We use data from the ifo Business Survey which is a representative sample of 3600 plants in the German
manufacturing sector in 2002-2014. The survey starts as early as the 1950’s, but our sample is restricted
by the fact that the questions about financial constrainedness were added in 2002. The main advantages
of the dataset relative to data used in other studies on price stickiness are twofold. First it enables us to
link individual plant’s pricing decisions to both direct survey-based measures of plant-specific financial
constrainedness and to indirect proxies for the financial situation based on balance sheet information.
Second, the survey is conducted on a monthly basis which enables us to track important aspects of a
plant’s actual behavior over time as it undergoes both phases of easy and such of subdued access to
credit while at the same time facing the alternating states of the business cycle. Since plants respond on
a voluntary basis and, thus, not all plants respond every month, the panel is unbalanced.

In particular, we have monthly information about the extensive margin of price adjustment, i.e.
whether and in what direction firms adjust prices. More precisely, firms answer the question: ”Have
you in the last month increased, decreased or left unchanged your domestic sales prices?”.4 Since we do
not have information about the intensive margin of price adjustment in our dataset, the calibration and
implications of our model will be compared to information from other data sources (see Section 3 below).
More than 97% of the cross-sectional units in our sample are single-product plants. Additionally, some
plants fill in a separate questionnaire for each product (product group) they produce. In what follows,
we use the terms ”firm”, ”plant” and ”product” interchangeably.

The ifo survey encompasses two questions regarding the financial constrainedness of firms. In the
monthly survey, firms are asked about their access to bank lending: ”Are you assessing the willingness of
banks to lend as restrictive, normal or accommodating?”. We flag firms as financially constrained when
they answer that bank lending is restrictive and we will use this as our baseline measure of financial
constraints. Note that this answer might imply that firms experience restrictive bank lending in general,
but do not necessarily need to borrow more or have been declined credit. This means that they are
potentially not restricted in the way they invest, hire or produce.5 However, assessing the current
situation as one with restricted access to credit may still affect firm behavior, e.g. via the future lending
conditions the firm expects to face.

Bank lending is the key financing channel in Germany. Appendix A.1 exhibits information about
the financing structure in Germany in general and in the ifo dataset in particular. Generally, German
firms show a much higher share of loans in their balance sheets than their US counterparts, while the
equity share is comparable. External financing through securities and bonds is marginal in Germany.
Further, a flow-of-funds analysis of the Bundesbank documents that within equity, internal financing
works through retaining profits, while market-financing plays almost no role, not even in the Great
Recession.6 Restrictions in bank lending therefore pose serious constraints to the firms in our sample.
Below, we will additionally consider to role of firm size, multi-products or exports for the results as these
may reflect different financial possibilities of firms.

A second question in the survey relates financial and production constraints more closely: “Are your
domestic production activities currently constrained due to difficulties in financing?”. This question is
very close to the actual definition of financial constraints in the economic model that we present below.
However, it is only available at quarterly frequency. In addition, the response rate on this and other
questions about production shortages is very low. The question is only answered positively, not negatively
which means that we cannot tell apart missing data from unconstrained firms. We will use this question
in order to explore robustness. A fraction of 84% of the firms that qualify as restricted according to the
banking measure respond positively to the production shortage question.

Our sample exhibits an average of 32% of constrained firms according to the banking measure and 5%
of constrained firms according to the production measure. In Appendix A.1 we show a time-series plot

4These prices are home country producer prices and refer to the baseline or reference producer price (not to sales, etc.).
Bachmann et al. (2013) have used the same dataset to assess the effect of uncertainty shocks on price setting. Strasser
(2013) uses the dataset to study the role of financial frictions for the exchange rate pass through of exporting firms.

5Based on a similar survey with a similar question about refinancing conditions for Austria Fdrmuc, Hainz and Hoelzl
(2016) confirm that a firm’s own recent experience regarding credit negotiations with banks is by far the main driver of its
appraisals of banks’ willingness to lend. In contrast, aggregate or sector-specific conditions are of minor importance.

6See DeutscheBundesbank (2013) and DeutscheBundesbank (2014).

3



of the fraction of constrained firms according to both measures of financial constraints. One can see that
the fraction of constrained firms increases in a boom and decreases in a recession. One can also see that
the banking measure is available at monthly frequency from 2009 onwards, and semi-annually before. In
our estimations below, we interpolate all measures to monthly frequency throughout the sample.

We would like to know whether financially constrained and unconstrained firms are systematically
different in some important aspect. The literature has discussed that small rather than large firms
tend to be financially constrained.7 For our baseline measure, our data does not exhibit this feature.
In Appendix A.1, we show that firms that have restrictive access to bank lending are not significantly
smaller than other firms in terms of employment, sales or total assets. We also show that the fraction of
constrained firms varies greatly between sectors.

Existing evidence on financial constraints is primarily based on balance sheet data rather than survey
data. For a subsample of the firms in our survey, we have access to annual balance sheet information
and we can calculate liquidity ratios similar to Gilchrist et al. (2013).8 In Appendix A.1 we show that
liquidity ratios are a little lower for firms that are constrained according to our survey questions. The
difference is minimal for our baseline measure, however. The conventional balance-sheet based measure
defines firms to be financially constrained if they are below the median liquidity ratio with respect to
all firms in the sample. The overlap between this type of balance sheet measure and both of our survey
questions is very small (see Appendix). Generally, a low liquidity ratio can be the result of easy access
to credit, while not affecting production possibilities of firms. It may therefore not measure financial
constraints per se. For example, consider a firm experiencing a sudden decline in its marginal costs.
Such a firm will typically decrease its prices and try to scale up the level of operation. If expanding
the production capacity requires external funding, the firm may hit the upper limit of its financial
constraint, but may still enjoy a relatively high liquidity ratio. Hence, one may wrongly conclude that it
is financially unconstrained today. Below, we document that the relationship between price setting and
financial constrainedness does not crucially depend on the measure of financial constraints.

Table 1 shows the relationship between price adjustments and being financially constrained in our
dataset. In general few German firms adjust their prices on a monthly basis: a little more than 20%
on average. Out of these, 10% of firms adjust prices up and down on average (not shown in the Table).
These will be three central moments that we target when calibrating our model in Section 3 below.

In Appendix A.1, we document that there is a lot of variation in price changes and hence changes
in nominal rigidities over time. We also document that all firms (both constrained and unconstrained
firms) decrease prices more often and increase prices less often in a recession. Over time, financially
constrained firms decrease prices more often than unconstrained firms, regardless of the business cycle
state. While the differences between price increases of constrained and unconstrained firms is small,
more unconstrained firms leave prices constant relative to constrained firms in a recession compared to
outside a recession. Clearly, the time series variation of pricing decisions may be driven by two facts:
the business cycle itself, sector-specific aspects and a possible selection of firms over the business cycle.
Based on our estimations below, we can however exclude that these effects are driving the differences in
pricing decisions.

2.2 Estimation
In order to control for time and individual fixed effects, we decompose the correlation between price
changes and financial constrainedness using the following specification

I(∆pijt Q 0) = β0 + β1FCijt + ∆pijt−1 + cj + θt + xijt + uijt. (1)

Based on this equation, we estimate independently three linear models for which the dependent variable
measures whether the prices change, increase or decrease.9 The left-hand side, I(∆pijt Q 0), is an

7See Carpenter et al. (1994) for an early contribution on the topic.
8The data source here is the EBDC-BEP (2012): Business Expectations Panel 1/1980 12/2012, LMU-ifo Economics

and Business Data Center, Munich, doi: 10.7805/ebdc-bep-2012. This dataset links firms’ balance sheets from the Bureau
van Dyk (BvD) Amadeus database and the Hoppenstedt database to a subset of the firms in the ifo Business Survey. See
Kleemann and Wiegand (2014) for a detailed description of this data source. Liquidity ratios are defined as cash and cash
equivalents over total assets.

9We also considered a multinomial specification. Doing so does not alter the main conclusions, see Appendix A.1 for
details.
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Table 1: Financial Constraints and Price Setting

unconstrained constrained

Bank lending
Fractions 0.68 0.32
∆p = 0 0.80 0.76
∆p < 0 0.08 0.14
∆p > 0 0.13 0.10

Production shortage
Fractions 0.95 0.05
∆p = 0 0.80 0.75
∆p < 0 0.08 0.12
∆p > 0 0.11 0.13

Source: ifo Business Survey, 2002-2014. Numbers shown are sample averages of fractions of constrained and unconstrained
firms in all firms and fractions of price changes within unconstrained and constrained firms. Numbers for production
shortage question are based on quarterly data, interpolated to monthly frequency.

indicator function that takes the value 1 if the price stays constant, increases, or decreases, respectively.
The right-hand side contains the measure of being financially constrained, the lagged pricing decision
to control for the fact that firms may have been affected by different shocks previously as well as sector
and time fixed effects. The coefficient β1 then measures the within-firm variation over time between
being financially constrained and the probability of adjusting the price at all, up or down. Note that
this coefficient should not be interpreted as causal, since it may well be that price adjustments influence
whether a firm is financially constrained or not (as is motivated in the introduction and documented in
detail in Section 3 below). Instead, this specification seeks to control for variation over time, i.e., business
cycle effects, possible selection of firms into being financially constrained or not and other aspects that
could have influenced the unconditional moments in Table 1.

The first column in Table 2 shows the baseline results for our bank lending measure of financial con-
straints. Financially constrained firms adjust prices more often than unconstrained firms, the difference
in probability is about 4%. This differences is composed of financially constrained firms increasing prices
about 1% more often and decreasing prices about 3% more often than unconstrained firms. All of these
differences are highly significant. The Table documents that the results are robust to various subsam-
ples. Small and medium sized firms may be particularly affected by restricted bank lending, exporting
firms may be less affected. West German firms are potentially less affected by financial frictions and
single-product firms may be less able to shift funds to avoid restrictions. In addition, we consider two
subsamples that end and start before and after the Great Recession period respectively. Our results are
robust to all of these subsamples.

Appendix A.1 shows further results investigating robustness along a number of dimensions. For
example, we add various control variables that could affect both price setting and whether firms are
financially constrained or not. These include firm size, receiving wage subsidies in the form of short-time
work programmes, lagged and current assessment of the state of business, current assessment of the state
of orders and future assessment of commercial operations. All of these variables stem from the ifo survey
and are answered qualitatively according to three categories: improved, unchanged, worsened. We also
conduct robustness with respect to different specifications. Among others, we add seasonal (quarterly)
fixed effects and an interaction term between sector j and seasonal fixed effects. We further cluster the
standard errors at the sectoral level and allow for product-specific (i.e. individual) fixed effects rather
than sectoral fixed effects. In order to investigate possible effects of attrition of the sample, we consider a
long-coverage panel (firms are in panel at least 8 years) and a completely-balanced panel. Furthermore,
in the Appendix we document that our results do not depend on the specification being linear, as a logit
model estimation leaves the results virtually unchanged.

We have replicated all of the above results using our production constraint measures instead of the
bank lending measure for financial constrainedness. The results are shown in the Appendix. Generally,
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Table 2: Financial Constraints and Price Setting: Subsample robustness

baseline SMEs west exporting post 2009 pre 2009 single product

→ -0.036*** -0.048*** -0.037*** -0.036*** -0.036*** -0.034*** -0.036***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

↑ 0.008*** 0.016*** 0.009*** 0.009*** 0.008*** 0.009** 0.008***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.011) (0.000)

↓ 0.028*** 0.032*** 0.028*** 0.027*** 0.029*** 0.025*** 0.028***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Observations 180871 77130 146647 144441 150774 30097 179589

Notes: Survey dataset. Sample: 2002:1 - 2014:12. OLS estimation with time t and sector j fixed effects. Considering
subsamples: small and medium-sized firms only (50-250 employees), west only, exporting firms only, before and after 2009,
single product firms. Results including very small firms (below 250) are not shown in the table, but available upon request.
Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.

the difference in the frequency of price adjustment between financially constrained and unconstrained
firms is slightly larger in this measure. As before, financially constrained firms adjust prices more often
than unconstrained firms, but the difference is now equally driven by upward as by downward price
adjusters.

In a related paper, Gilchrist et al. (2013) show that US firms that are financially constrained increase
prices more often than their unconstrained counterparts, but do not decrease their prices more often.
While the first finding is supported using our estimation, the second finding is not. A potential source of
this difference is the measure of financial constrainedness of firms. While we use direct survey questions
to identify financially constrained firms, Gilchrist et al. employ an indirect measure based on balance
sheet information of firms. In the Appendix we show results when using the liquidity ratio (measured as
described above) in order to measure financial constrainedness. In line Gilchrist et al. (2013), constrained
firms are those with liquidity ratios below the median value of all firms. Our analysis shows that our
results support the results by Gilchrist et al. (2013) as financially constrained firms change their prices
more often. Constrained firms increase and decrease prices more often, but only the price increases are
statistically significant. Note that potentially, our results could be very different from Gilchrist et al.
(2013), since we consider a central European economy, the manufacturing sector only and many small
firms in addition to large publicly traded firms.

3 Model
In this section, we develop a simple partial-equilibrium model which replicates the empirical facts pre-
sented in the previous section. In particular, the model combines menu costs as a source of price rigidity
with a working capital constraint as a source of a financial friction. Section 3.1 presents the model and
Section 3.2 develops the economic intuition based on a static version of the model. Section 3.3 presents
the calibration and quantitative results of the dynamic model.

3.1 Baseline Model
Our model consists of a firm’s problem only. There is a continuum of firms in the economy indexed by
i. Each firm produces using a linear technology

yit = zithit.
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Here, yit denotes the output of the firm in period t, zit denotes the productivity of the firm’s labor input
in period t, and hit is the amount of labor hired by the firm in period t. The logarithm of firm-specific
productivity follows an exogenous AR(1), or

log(zit) = ρz log(zit−1) + εit. (2)

We assume that demand cit for the good produced by firm i in period t is given by

cit =

(
pit
Pt

)−θ
Ct, (3)

where pit is the nominal price the firm charges in period t, Pt denotes the aggregate price level in period t,
and Ct determines the potential total size of the market for the firms’ goods in period t. The parameter θ
is the elasticity of substitution between different goods.10 Aggregate consumption Ct and the aggregate
nominal price level Pt are exogenously given. We assume that nominal total demand St = PtCt follows
an exogenous stochastic process. In line with Nakamura and Steinsson (2008), the logarithm of nominal
demand fluctuates around a trend:

log(St) = µ+ log(St−1) + ηt,

where µ is the average nominal demand growth rate in the economy.11
Working hours are hired at a real wage w. Following Nakamura and Steinsson (2008), w is assumed

to be constant and equal to

w =
Wt

Pt
=
θ − 1

θ
, (4)

where Wt denotes the nominal wage in period t.12
The first friction included in our theoretical set-up is a standard menu-cost. That is, the firm has to

hire an extra fixed amount of labor f in case it decides to adjust its price. We assume that the fixed
cost f has to be paid at the end of the period after revenues have been realized.

The second friction is a financial constraint in the form of a working capital constraint, i.e., we assume
that payments of wages have to be made prior to the realization of revenues. Accordingly, the firm faces
a cash flow mismatch during the period and has to raise funds amounting to lit = whit in the form of
an intra-period loan. However, the firm cannot borrow more than the a fraction of the sum of the real
liquidation value of its capital plus its sales.13

whit ≤ ξ(kit +
pit
Pt
zithit). (5)

Here, ξ is the fraction of the real value of capital (kit) plus real sales that firms can pledge as collateral
to lenders. In principle, we can allow kit to be a firm-specific choice variable. In the baseline model,
however, we abstract from heterogeneous availability of collateral across firms and assume that capital

10The demand function reflects the optimal decision of the consumer if her consumption basket is given by the CES
index:

C =

(∫ 1

i=0
ct(i)

θ
θ−1 di

) θ−1
θ

.

11In the numerical simulations we assume for simplicity that the size of the market Ct = C = 1 is constant over time.
This is without loss of generality in this partial equilibrium setting. As a consequence, the shock specification for nominal
demand is equivalent to assuming that the logarithm of the price level follows a random walk.

12We use this normalization for simplicity, it is not essential for the quantitative results. The expression of the real wage
above arises in the steady state of a general equilibrium model with a linear aggregate production function depending only
on labor input and no financial constraint, monopolistic competition among firms in the goods market, and a good-specific
demand function given by (3).

13As in Jermann and Quadrini (2012), we assume that debt contracts are not enforceable as the firm can default. Default
takes place at the end of the period before the intra-period loan has to be repaid. In case of default, the lender has the
right to liquidate the firm’s assets. However, the loan li represents liquid funds that can be easily diverted by the firm in
case of default. The implicit assumption is that firms can divert parts of their revenues, so lenders can only access part
ξ of the value of the firm’s capital stock plus its current cash-flow. The lower the resale value of capital and the more
cash-flow the firm can divert, the lower the recovery value of the lenders in case of default. The working capital constraint
can therefore be viewed as an enforcement constraint.
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is fixed, kit = k = 1 ∀t. The parameter ξ is a constant and can be interpreted as the expected real
liquidation value of capital and sales in the economy.14

Firms start the period with a given nominal price pit and observe the exogenous realizations of the
aggregate nominal price level Pt as well as idiosyncratic shocks to productivity zit, respectively. Before
producing, they choose whether to change the price to qit 6= pit or to leave the nominal price unchanged.
In case the firm is unconstrained, given the new price, the demand function then pins down the desired
level of output and the necessary amount of labor associated with that level of output. The financial
constraint, in turn, determines whether the desired demand and therefore output level is feasible or
not. If not, the financial constraint pins down the amount of labor that can be used for production and
therefore determines the output level. In case the firm leaves the price unchanged, financially constrained
firms might find it optimal to ration supply, in the sense that the financially constrained firm does not
supply the amount demanded at the given price.

The formal structure of the firm’s optimization problem is as follows: Given (pit, Pt, zit), the firm’s
real profit stream each period is given by

Πit =

(
pit
Pt
− w

zit

)
zithit. (6)

The associated value function is

V (pit/Pt, zit) = max{V a(zit), V
na(pit/Pt, zit)} (7)

with

V na(pit/Pt, zit) = max
hit


(
pit
Pt
− w

zit

)
zithit + βEtV (pit/Pt+1, zit+1)

s.t. zithit ≤ pit
Pt

−θ
C

whit ≤ ξ(1 + pit
Pt
zithit)

 (8)

and

V a(pit/Pt, zit) = max
qit 6=pit,hit


(
qit
Pt
− w

zit

)
zithit − wf + βEtV (qit/Pt+1, zit+1)

s.t. zithit ≤ qit
Pt

−θ
C

whit ≤ ξ(1 + qit
Pt
zithit)

 (9)

where V a and V na are the firm’s value functions in the case the firm adjusts its nominal price (V a)
or leaves the nominal price unchanged (V na), respectively. The fix cost f needs to be paid if the firm
decides to change its price. Note that through yit ≤ cit we allow the firm to produce less than the
amount of goods demanded.

3.2 Special Case: Myopic Firms
The most important insights from the model can be discussed in a simpler version of the model where
firms are perfectly myopic, or β = 0. To enhance readability we drop time indices wherever appropriate.
When firms adjust their price and are financially unconstrained, their optimal reset price is given by

quc

P
=

θ

θ − 1

w

z
=

1

z
, (10)

where the last equation follows from the definition of the real wage. Hence, financially unconstrained
firms optimally charge a constant mark-up over marginal costs. Figure 1 exhibits the relationship between
the real optimal price q̃uc/P and productivity z (blue dashed line).

In Appendix A.2 we show that if the firm decides to adjust the price, demand is always satisfied with
equality, independent of whether the firm is financially constrained or not. Hence, when the financial

14In Appendix A.7, we present a model version with idiosyncratic financial shocks, where we allow ξ to be time-varying
and to follow an idiosyncratic exogenous stochastic process.
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Figure 1: Pricing policy function
(a) Myopic firms (β = 0)
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(b) Dynamic Model (benchmark)
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Notes: The x-axis displays the logarithm of the productivity levels zi and the y-axis shows the logarithm of the real price of the
firm p̃i = pi/P . Panel (a) shows the policy function in the model with myopic firms, hence shutting down the intertemporal
channel. The corresponding calibration can be found in the robustness Section in the Appendix A.7. Panel (b) shows the policy
function for the benchmark calibration of the dynamic model, see Table 3. In both Panels, the blue dashed line is the optimal
reset price in case there is no financial constraint. The green lines limit the inaction region in the model without financial friction:
A firm with a pair (z, p) in the interval spanned by the green lines will optimally not adjust its price. The dashed black line is the
maximum feasible price of a firm that is financially constrained and adjusting its price (hence, the price where both the financial
constraint and demand are binding with equality). The red dashed line displays the optimal reset price in the model with financial
constraint. The purple lines limit the inaction region in the model with financial constraint.

constraint is binding, the optimal reset price is given by:

qfc

P
=

(1 + µ)

(1 + µξ)

θ

θ − 1

w

z
(11)

where µ ≥ 0 is the Lagrangian multiplier associated with the financial constraint. This means that
the financially constrained firm charges a mark-up over marginal costs w/z that is larger than the
mark-up of unconstrained firms whenever µ is strictly positive. Further, it can be shown that µ is
increasing in productivity whenever ξ < 1.15 Accordingly, any increase in productivity has two opposing
effects on the financially constrained firms’ effective marginal costs: it decreases them via the standard
marginal cost channel by reducing the term w/z but it also increases them via the Lagrangean multiplier
µ as the borrowing constraint becomes more painful. Consequently, the elasticity of the financially
constrained optimal price qfc with respect to productivity z is smaller than (or at most as large as) the
corresponding elasticity of the optimal price without a financial constraint quc.16 Figure 1 illustrates
this result graphically: the black dashed line displays price-productivity combinations for which both
the financial constraint and the firm’s demand schedule is binding. This means that price-productivity
combinations exactly on as well as below the black dashed line are associated with a binding financial
constraint, price-productivity combinations above the black dashed line imply that the constraint is slack.
Note that to the right of the intersection between the black and the blue dashed line, the unconstrained
profit maximum can no longer be achieved. For each productivity level, the red line displays the optimal
reset price in the model with financial constraint.

With menu costs, firms trade off the gain in revenue from changing the price and the cost of adjusting
the price. That gain is determined by the curvature of the profit function, especially in the neighbourhood
of the optimal reset price where most firms will be located. The higher the curvature, the larger the
profit losses for prices away from the optimal reset prices and, hence the stronger the incentives to pay
the menu costs in order to adjust the price. Accordingly, firms will adjust prices more frequently (as a
reaction to smaller shocks) if their profit function declines more steeply to the left and to the right of
the optimal reset price.

The introduction of the working capital constraint affects the behavior of an individual firm by
15Henceforth we will assume that this condition is satisfied. See Appendix A.2 for a formal proof.
16Appendix A.2 we show that revenues per unit labor employed qz are increasing in productivity. This means that the

elasticity of the price changes with respect to productivity changes is less than unity for financially constrained firms, while
it is equal to unity for unconstrained firms).
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Figure 2: Value function for z = 1, myopic firms (β = 0)
(a) Model without financial constraint

0.10

0.15

-0.10 -0.05 0.00 0.05 0.10 0.15

p
ro

fi
ts

log(real price)

profit function 
 model without FC

inaction region 
 model without FC

(b) Model with financial constraint
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changing the shape of its profit function. This is illustrated in Figure 2 for an exemplary productivity
level of log(z) = 0. In Panel (a), the concave solid blue line corresponds to the profit of a financially
unconstrained firm as a function of the logarithm of its real price p̃. The profit function has its maximum
at p̃ = 1 which corresponds to the optimal price in a world with fully flexible prices. The vertical dashed
lines around the maximum mark the inaction region: only firms whose real prices lie outside the inaction
region, e.g. due to trend inflation or the realization of exogenous shocks, will adjust their price towards
the profit maximum. Firms whose prices are still within the region spanned by the dashed vertical lines
will not adjust their price as in that case, the gain in profits would be smaller than the menu-cost. Profit
functions for different productivity levels are shown in Figure A.4 in Appendix A.4. The inaction regions
for all different price-productivity combinations are also depicted by the area in between the green lines
in Figure 1.

Panel (b) in Figure 2 shows profits in an economy without financial frictions (solid blue) and with
financial frictions (dashed red) for the same level of productivity log(z) = 0. The red profit function
displays a kink at the price where both the financial constraint and demand hold with equality. As shown
in the Appendix, this point corresponds to the constrained optimal reset price in the myopic model (for
productivity level log(z) = 0). For prices higher than the price at (or to the right of) the kink, the
constrained profit function coincides with the unconstrained one. Since the constrained optimal reset
price is higher than the unconstrained optimal reset price, profits fall more quickly when prices increase
relative to the optimal reset price. Prices lower than the price at (or to the left of) the kink correspond
to binding financial constraints. This means that for smaller prices, firms cannot finance, produce and
sell more output. In the special case of non-pledgable sales (a constraint of the form whi ≤ ξ), the profit
function becomes linear in the real price, i.e. the level of output is fixed by the constraint while any
decrease in the individual price leads to a proportional decline in unit profits and thus in total profits.
Unlike in the unconstrained case, this decline is not offset by higher demand at lower prices. Instead,
demand is slack and output is rationed. Since this is very costly to the firm, the red profit function is
substantially steeper than the blue profit curve left of the optimal reset price. Both right and left of the
constrained optimal reset price, profits decline more steeply than for the constrained price. Consequently,
the inaction region is more narrow in this case.

Figure 2 documents that the inaction region is more narrow in the presence of a working capital
constraint for a specific productivity level. The magenta lines in Figure 1 show that this holds for all
productivity levels respectively. Figure A.4 in the Appendix further establishes that most of the firms face
kinked profit functions in an economy with financial constraints. Due to the smaller width of the inaction
region, firms have a higher probability to adjust their price in the presence of financial constraints. This
effect, however, describes the individual probability of adjusting prices for a given size of a productivity
shock and a given distribution of beginning-of-period prices. This price gap distribution, however,
changes with the strength of the working capital constraint. Figure 3 shows for average productivity
log(z) = 0 that the price gap distribution for a model with financial constraints (Panel (b)) is more
bunched around the optimal reset price than in the model without financial constraints (Panel (a)). We
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call the fact that the introduction of the financial constraint changes the stationary price gap distribution
the distributional effect.

Also, the mode of the price gap distribution is no longer in the center but asymmetrically located
towards the lower bound of the inaction region. This reflects the asymmetry in the profit function in
Figure 1. This means that firms with negative productivity realizations have a higher probability to
adjust their price than firms with positive productivity realizations. Moreover, the asymmetry of the
distribution within the inaction region implies that the height and the slope of the distribution at the
inaction cutoffs is very different at both ends of the distribution with financial constraints and also
different to the respective ones without financial constraints. This will be important for the aggregate
implications discussed in Section 4 below.

In Appendix A.4 we show the price gap distributions like the ones in Figure 3 at different productivity
levels. This provides a graphical illustration of the distributional effect. On the one hand, the distribu-
tional effect is due to the more narrow inaction region itself which makes the inaction region shrink at
all productivity levels. On the other hand, this effect is due to the lower elasticity of the optimal reset
price with respect to productivity when financial constraints are present. This means, in the model with
financial constraints, ceteris paribus, a relatively larger idiosyncratic shock is needed to make the firm
adjust its price. To understand this, note that a productivity shock of the same size leaves firms in a
position much closer to the optimal price when the slope of the optimal reset price is flat (low elasticity)
compared to when it is steep (high elasticity). This is easy to see from Figure 1). As an approximation,
one may view these as firms that switch between different productivity levels as shown in the detailed
price gap plots in Appendix A.4.17 Due to the lower elasticity of the optimal reset price in a world with
financial constraints, the inaction regions and optimal prices overlap more across productivity levels in
the model with financial constraint compared to the model without financial constraint. Hence, firms
that switch between productivity levels exhibit smaller price gaps and adjust prices less often in a world
with financial constraints.

Our calibration below documents firms adjust prices less often on average in an economy with com-
pared to without financial frictions. This means that the distributional effect drives the differences in
nominal rigidities which can also easily be seen when comparing the left to the right column in Figure
A-9 in the Appendix. It is important to note, however, that the calibrated dynamic model still gener-
ates that financially constrained firms adjust their prices more often than unconstrained firms within
an economy with financial frictions. In fact, as the calibration in Section 3.3 documents, our dynamic
model replicates our empirical findings from Section 2 well. The main reason is that the inaction width
effect is stronger than the distributional effect for financially constrained firms, so that the probability to
adjust prices, conditional on being financially constrained is larger than the probability to adjust prices
conditional on being financially unconstrained.

Intuitively, the higher frequency of price changes among constrained compared to unconstrained firms
comes from the fact that most of the optimal reset prices correspond to a binding constraint (see Figure
1) and, hence, to a narrow inaction region. At the same time, financially constrained firms tend to exhibit
positive price gaps within the inaction region and, hence, do not adjust their prices. The asymmetry of
the price gap distribution towards the lower bound of the inaction region intensifies this effect. In order to
shed further light on this result, we provide an detailed decomposition of constrained and unconstrained
firms by productivity level in Section 3.3.4.

From Figure 1, it is easy to see that the presence of financial constraints implies on average higher
prices and lower output compared to a situation without financial constraints. This is due to the firms
that adjust prices to the constrained optimal reset price which is higher than the one that firms with
the same productivity level would choose in an economy free of financial frictions. Obviously, for price
adjusting firms, the model implies that firms with a relatively high productivity are more likely to be
constrained. The intuition straightforwardly stems from the working capital constraint: a higher pro-
ductivity level is associated with lower marginal costs and thus, with a stronger relative competitiveness
position. Accordingly, high productivity firms will be willing to expand by lowering prices and thus
attracting more demand. However, the desired expansion is associated with a higher labor input, a
higher wage bill, a higher level of borrowing and a higher likelihood of being constrained. The models
proposed by Cooley and Quadrini (2001), Azariadis and Kaas (2012), Buera et al. (2013), Khan and

17Given the calibration in the benchmark model, the firms switching between productivity levels make up for the majority
(roughly 70 percent) of all price adjusting firms.
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Figure 3: Price-gap distribution
(a) Myopic firms (β = 0), no financial constraint (b) Myopic firms (β = 0), with financial constraint

(c) Dynamic model (benchmark), no financial constraint (d) Dynamic model (benchmark), with financial constraint

Notes: The histograms display the distribution of the price gap, defined as the actual (pre-adjustment) price minus the optimal
reset price, or log(pi) − log(p∗i ), where p∗i is firm i’s optimal reset price and pi is firm i’s price before price adjustment. The
solid vertical lines mark the inaction region for a firm with average productivity (i.e. log(z) = 0) in the model with and without
financial constraint, respectively. The dashed line at zero shows the location of the optimal reset price. The dotted lines in Panels
(b) and (d) are the same as the vertical solid lines for the ’No FC’-model shown in Panels (a) and (c), respectively.

Thomas (2013), Midrigan and Xu (2014) also predict a positive relationship between the level of id-
iosyncratic productivity and the likelihood of being constrained – conditional on the firm specific capital
stock. In these models, firms receiving a sequence of favourable productivity shocks tend to accelerate
the accumulation of capital which, in the long run, enables them to outgrow the credit constraint. This
mechanism is absent here as capital is assumed to be fixed.

There are three reasons why we abstract from a more complicated setup than presented here. First,
our model already delivers rich predictions about the relationship between productivity and being fi-
nancially constrained. On the one hand, the prediction that more productive firms are the ones that
are financially constrained only applies to firms that optimally choose to adjust their price. On the
other hand, among the firms that optimally decide not to adjust the price, the relationship is reversed:
relatively less productive firms will be financially constrained. These are firms that draw a negative
productivity shock that is large enough to make their financial constraint bind (due to their increased
wage bill) but not large enough to drive them out of the inaction region, so they do not find it optimal to
adjust the price.18 Second, in the dynamic version of our model, Figure 1 documents that both firms with
low and high productivity levels will end up being financially constrained even when adjusting the price.
Third, as we will show below, the aggregate implications do not depend on whether more productive

18See Appendix A.2 for a formal proof of these claims.
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or less productive firms are likely to be constrained. Instead, the effect of aggregate shocks depends on
which firms select into adjustment, which depends on the width of the inaction region, the distributional
effect and the asymmetry of the price gap distribution within the inaction region. It is important to not
that, as we discussed above, the presence of financial frictions changes the desired price gap distribution
for all firms, i.e. for both financially constrained and unconstrained firms.

Figures 1, 2 and 3 display the results of the static model for specific model parameters that align
with our benchmark calibration discussed in Section 3.3. These parameters affect the differences between
the model with and without financial constraints and therefore the aggregate implications discussed in
Section 4. For example, the more symmetric the profits without financial constraints, the larger the effect
from introducing asymmetries associated with the financial constraint. In Appendix A.7 we show that
a lower value for the demand elasticity θ increases the symmetry of the profit function of unconstrained
firms and makes the profit function flatter and the inaction region wider. In other words, the impact
of financial constraints is expected to be larger in industries with lower elasticity of substitutions. Also,
when sales can be pledged as collateral as in our benchmark model, the elasticity of the constrained
optimal reset price with respect to productivity decreases less compared to a situation in which sales are
non pledgable. This will play a role for ability of the model to match the data moments.19

3.3 Dynamic Model
In the previous section, we have documented that the interaction between financial frictions and the
pricing decisions of firms works in both directions. On the one hand, the presence of the credit constraint
affects the profit function and thus the policy function of firms by changing the location and the width
of the inaction region. The presence of credit constraints also affects the price gap distribution of firms.
On the other hand, the optimal pricing decision determines whether the firm will end up facing a binding
or a slack financial constraint. In a dynamic set-up with forward looking firms (0 < β < 1), firms now
trade-off the effect of their pricing decision on current and expected profits. Unlike in the model with
myopic firms, the flex-price optimum in a dynamic economy does no longer necessarily coincide with the
maximum of the current profit function. As Figure 1 shows, the optimal constrained and unconstrained
reset prices differ in the static and the dynamic model. As a consequence, firms are financially constrained
or unconstrained at different productivity-price combinations in both versions of the model. The presence
and size of these effects depends on the calibration of the model. Below, we discuss how the calibration
affects the policy functions of the dynamic model in detail.

3.3.1 Calibration and Parametrization

We assume that time is measured in months which is consistent with the frequency of our data. The
elasticity of substitution between individual goods θ is set to 7.25. This value implies an average mark-
up of prices over marginal costs of about 16 percent which corresponds to the estimate provided by
Christopoulou and Vermeulen (2012) for the German manufacturing sector. Producer mark-ups in the
German manufacturing sector are relatively small compared to the European average and the U.S. as
well as relative to the typical mark-ups in other sectors of the German economy like services (53%) and
construction (20%). Therefore, the value for the elasticity θ is higher relative to what is typically used in
the macro literature. We discuss implications of the high value of θ below. Without loss of generality, we
assume that C = 1, so that the log of aggregate nominal demand is equal to aggregate inflation.20 The
shock to nominal aggregate demand is calibrated to match the average growth rate and the standard
deviation of the month to month growth rate of the seasonally adjusted German manufacturing producer
price index between the years 2001 and 2015, hence we set µ = 0.001 and ση = 0.002. In addition, we
set the discount factor β at 0.961/12 which is a value commonly used in the literature. Collateralizable
capital is also normalized to k = 1.

19We have also conducted robustness with respect to decreasing returns and different values of the super-elasticity using
the Kimball (1995) aggregator. Both, more decreasing returns and higher values for the super-elasticity are associated with
flatter optimal price schedules for unconstrained firms, flatter in the sense that firms respond less to idiosyncratic shocks.
As a consequence, the difference between a world with and without financial constraint is lower. However, all these models
performed worse in matching the micro data moments when compared to the benchmark with CES demand schedule and
constant returns.

20Recall that aggregate demand is defined by St = PtCt. With Ct = 1, St = Pt for all t.
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The remaining four model parameters - the menu cost f , the autocorrelation ρz and the standard
deviation σε of the idiosyncratic productivity process and the coefficient shaping the borrowing limit
ξ are calibrated such that the model simultaneously matches four central moments: (i) the fraction of
firms that adjust prices each month P (∆p), (ii) the fraction of firms that adjust prices upwards each
month P (∆p > 0), (iii) the fraction of firms that are financially constrained each month, P (FC), and
(iv) the median percentage price change conditional on firms increasing their price. All moments are
from our firm-level evidence documented in section 2, only moment (iv) is taken from Vermeulen et al.
(2012). The criterion function used to calibrate the four model parameters (f, ρz, σε, ξ) is the sum of
squared deviations of the moments in the simulated model from those in the data. The respective values
of the distance measure are displayed in Table 3.

Our benchmark model delivers the moments that minimize our criterion function. The resulting
parameter values and moments are documented in the column ‘Benchmark’ in Table 3. The menu cost is
1.02 percent of the average wage bill, a value that is in the ballpark of fix costs used in previous literature
(see e.g. Midrigan, 2011). The standard deviation of idiosyncratic productivity shocks is equal to 4.34
percent. This is a relative high value given the relative small size of the menu cost and implies that
idiosyncratic shocks are relatively large compared to the aggregate nominal shocks. This stems from the
fact the median size of monthly price changes in German manufacturing is very large - roughly 2% per
month, as compared to the average yearly inflation rate in Germany of about 2%.

The persistence of idiosyncratic shocks is relatively low (a monthly value of 0.41).21 The persistence
of the productivity shocks is important in the model, since firms take into account that their position in
the productivity–price diagram will automatically change in the following months. A smaller persistence
means quicker reversion to the mean log(z) = 0. We will discuss the implications further below and
address robustness in section 4.3.

To approximate the value and policy functions we resort to value function iteration on a discretized
state space. The latter has two dimensions - one with respect to idiosyncratic productivity zi and the
other for the individual beginning-of-period relative real price pi/P conditional on current-period’s re-
alization of aggregate inflation (entering through the aggregate price level P ).22 For certain parameter
constellations, the value function is potentially no longer single peaked for all price-productivity com-
binations, since firms face a strong trade-off between optimizing current and future expected profits.23
This means that the optimal reset price is not necessarily unique in certain cases so that a firm may be
indifferent between the optimal constrained and unconstrained price. Also, the inaction thresholds may
not be unique in this case and the inaction region is no longer continuous. While we are not aware of any
theoretical remedy to these issues, we check numerically during our value function iteration that these
cases do not apply for our baseline calibration and different parameterizations presented here.24

3.3.2 Benchmark Model

Panel B in Table 3 displays the values of several moments implied by our benchmark model. At the
bottom, additional non-targeted moments show that the benchmark model replicates median price in-
and decreases as well as the overall fractions of upward and downward price adjustment of financially
constrained and unconstrained firms well. To further discipline the comparison between the theory and
our empirical results, we run the same regressions as the baseline in Section 2, however, on the simulated
data generated by the benchmark model. The Panel ”Regression coefficients” reports the regression

21In Appendix A.7 we report robustness with respect to persistence of the idiosyncratic shocks.
22See Appendix A.3 for further details on the numerical solution and the simulation of impulse responses.
23Notice that precisely for this reason the price policy function in the dynamic model shown in Panel (b) of Figure 1

exhibits a discrete jump at productivity level around log(z) = −0.11.
24In particular, when the firm would be indifferent between two prices, we assume that it would choose the unconstrained

price. However, this never happens in any of our simulations, most likely due to the fact that we have discretized the state
space. In addition, we check whether for any given productivity level z there are no more than two inaction thresholds, so
that there is only one inaction region for any given productivity level. This is also always satisfied in any of our simulations.
To further deal with this issue, we restrict the productivity grid to lie in the range [−2σz , 2σz ]. This allows us to make
sure that the value function is single peaked for any productivity/price pairs for all parameter combinations considered
when matching the moments in the calibration exercise. As shown in Appendix A.7, the numerical results of the truncated
model are not distinguishable from the benchmark model and the calibrated parameters are very similar. The reason is
that this range is not restrictive at all as it contains 95 percent of all firms in the simulated stationary distribution. We
therefore conclude that potential double peaks of the value function for some productivity levels is not an issue for our
main quantitative results.
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Table 3: Calibration

(1) (2) (3)
Dataa Benchm No FC No FC recal.

A. Parameter values
Assigned
θ 7.25 7.25 7.25
β (annualized) 0.96 0.96 0.96
µ (percent) 0.10 0.10 0.10
ση (percent) 0.20 0.20 0.20
C 1 1 1
k 1 1 1

∆pgrid (percent) 0.01 0.01 0.01
∆zgrid (percent) 0.09 0.09 0.09

Calibrated
f (percent of wages) 1.02 1.02 1.47
σε (percent) 4.34 4.34 4.34
ρz 0.41 0.41 0.41
ξ 0.35 - -

B. Moments
Used in calibrationb
1. P (∆p) 0.22 0.20 0.31 0.22
2. P (∆p > 0) 0.12 0.15 0.17 0.12
3. P (FC) 0.32 0.32 0.00 0.00
4. Median price change 0.02 0.02 0.07 0.07

Regression coefficients
5. β̂consFC -0.04 -0.11 - -
6. β̂upFC 0.01 0.01 - -
7. β̂downFC 0.03 0.09 - -

Additional Moments
8. Median price incr. 0.02 0.01 0.06 0.07
9. Median price decr. 0.02 0.03 0.07 0.07

10. P (∆p = 0|FC) 0.75 0.72 - -
11. P (∆p = 0|UC) 0.80 0.84 0.69 0.78
12. Sales(FC)/Sales(UC) 0.95 1.00 - -

Notes: Values refer to monthly frequency unless indicated otherwise.
aData on median price changes of German manufacturing producer prices are from Vermeulen et al. (2012). The remaining
data moments come from the Ifo panel data, for details see the empirical section.
bThe benchmark model in column (1) is calibrated on all empirical moments listed. Model (2) has the same calibration
as the benchmark model but removing the financial constraint. Model (3) is based on the parameters of the productivity
process as calibrated in the benchmark model but on a recalibrated menu cost. Moments not included in the criterion
function in the calibration are underlined.
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coefficients on the dummy variable indicating wether a firm is financially constrained or not. As can be
seen, becoming financially constrained makes firms adjust prices more often (row 5). As in the data, our
model implies a significantly higher frequency of both upward and downward adjustments (rows 6 and
7). As discussed in Section 3.2, the main effect responsible for this is the more narrow inaction region in
the area where the optimal reset price is associated with a (just) binding working capital constraint.

Panel (b) of Figure 1 shows the price policy function for the benchmark model. As in the static
economy described in section 3.2, the red line reflecting the optimal reset price becomes flatter around
the mean productivity level log(z) = 0. However, the dynamic optimal reset price differs from the static
optimal reset price, in particular in the neighbourhood of the mean productivity level of log(z) = 0.
The reason is that in the dynamic model, the firm trades off the maximization of current profits against
operating near the static profit maximum and avoiding payments of menu costs in the future. In doing
this, it takes into account expected productivity realizations. In particular, if the autocorrelation of
idiosyncratic productivity is relatively low, the firm rationally anticipates that, in the following periods,
its productivity will quickly converge towards the mean log(z) = 0. Accordingly, in the case of a positive
draw log(z) > 0, it is optimal to set a price which is lower than the one maximizing current profits
since, by doing this, future deviations from the profit maximum and the associated payments of menu
costs can be avoided for a longer period of time. The same but with opposite sign happens in the case
of a negative shock log(z) < 0. However, if the level of idiosyncratic productivity deviates sufficiently
strongly from its mean, i.e. log(z) >> 0 or log(z) << 0, foregone profits today become much more
important relative to possible future menu costs. Accordingly, for z-values sufficiently far away from its
mean, the optimal reset price is again very close to the one that maximizes the current profit function,
i.e. the static optimal reset price.

Moreover, for a higher autocorrelation in idiosyncratic productivity, the optimal reset price around
log(z) = 0 becomes steeper,25 thus, lying closer to the price that maximizes current profits. The reason
is that in this case, the firm rationally expects to retain its current productivity level over an extended
period of time. Accordingly, possible deviations from the static profit maximum and the associated
payments of menu-costs are pushed further into the future and thus, become much less important than
maximizing current profits.

Note that the effects described above break the direct link between productivity, output and being
financially constrained. This then explains that the dynamic benchmark model generates a ratio of sales
of constrained versus unconstrained firms of about one which is close to the one observed in the data
(row 12 in Table 3). These effects become smaller (i.e. the region in which the constraint is not binding
spans a wider interval of productivity levels) when autocorrelation of productivity shocks is higher and,
hence, mean reversion is slower (see Panel (a) in Figure A-12 for policy plots whit ρz = 0.9). The
effects are stronger if sales are not pledgable, since the constrained optimal reset price falls even less with
increasing productivity (see Panel (b) in Figure A-12). Our benchmark model therefore replicates the
cross-sectional moments in our data in the best possible way. Tables A-16 and A-17 in the Appendix
show robustness of our calibration results to various model specifications.

3.3.3 The Role of Financial Frictions for the Overall Price Adjustment

In addition to our benchmark model, Table 3 exhibits the parameters and output from the model without
financial frictions. In the first version (column (2)), we keep all parameters from the benchmark and set
ξ such that the financial constraint never binds. Without financial frictions, nominal rigidities decrease,
i.e. firms adjust their price more often (31 percent versus 20 percent in the model with frictions and the
data). They also change prices by more both upwards and downwards. We can understand these effects
from the price gap distributions which are displayed in Panels (c) and (d) in Figure 3. These distributions
exhibit similar differences between the model with and without financial frictions as the static model
discussed in section 3.2. As we have discussed for the static model, the smaller width of the inaction
region in the model with financial constraints makes every single firm reset prices more often when
financially constrained. However, the distributional effect changes the typical position of every single
firm in the productivity-price space when financial frictions are present. In particular, the price gap
distribution is less dispersed in the presence of the financial constraint which decreases the probability to
reset the price if menu costs stay the same. For the comparison of an economy with compared to without

25See Panel a) in Figure A-12 in the Appendix for the optimal price policy function for ρz = 0.9. With higher persistence
the value function is always single-peaked and there is no discrete jump in the policy function.
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Table 4: Decomposition of price adjustment in the benchmark model with financial frictions

X
UC FC

Z P (∆p 6= 0|Z,X) P (Z|X) P (∆p 6= 0|Z,X) P (Z|X)

high product. 7.88 27.74 68.81 19.26
mid product. 14.27 58.16 6.44 33.66
low product. 42.51 14.10 27.17 47.07

P (∆p 6= 0|X) 16.48 28.21

Notes: This table shows the probabilities of price adjustment conditional on financial constrained status and conditional on
productivity level. FC refers to financially constrained, UC to unconstrained firms. Denote by X = FC,UC the financial
constrained status. Then the overall price adjustment, conditional on X, is computed as P (∆p 6= 0|X) =

∑
Z P (∆p 6=

0|Z,X)P (Z|X).

financial frictions, the second channel dominates. Moreover, smaller inaction bounds in the presence of
financial frictions imply that firms typically adjust their prices by relatively smaller amounts.

The second model without financial constraints keeps the productivity process constant compared
to the other model versions, but recalibrates the menu cost to match the percentage of price adjusters
in our data (column (3) in Table 3). Also in the recalibrated version of the model without financial
constraints, the intensive margin of price adjustment is too large compared to the respective moments
in the data. When recalibrating the model without financial frictions, matching the empirical price
adjustment probability of 20% means that the menu cost increases. This represents the mirror image of
the above result: The presence of financial frictions increases nominal rigidities.

3.3.4 Why Do Financially Constrained Firms Adjust More Often Than Unconstrained
Firms On Average?

As discussed in Section 3.2 above, our model predicts both the fact that the presence of financial friction
increases nominal rigidities and the fact that financially constrained firms adjust prices more often than
unconstrained firms in a world with financial frictions. While we have just argued that the distributional
effect drives the first phenomenon, the inaction width effect now dominates the second fact that is also
reflected in our empirical findings. Below, we decompose the overall effect for financially constrained
and unconstrained firms, respectively, by productivity level. This exercise is useful because it reveals
that the relative strength of the inaction width and the distributional effect is not uniformly distributed
across productivity levels.

Table 4 displays the probabilities of price adjustment conditional on being financially constrained or
unconstrained (X = FC,UC) and conditional on three productivity levels (Z): low, middle and high.26
Low productivity refers to productivity levels below the first quartile of the productivity distribution,
intermediate productivity refers to productivity levels within the first and the third quartile, and high
productivity refers to productivity levels above the third quartile of the productivity distribution. This
means that low and high productivity levels each contain 25 percent of all firms in the productivity
distribution and intermediate productivity levels contain 50 percent of all firms. One can then decompose
the overall price adjustment probability of constrained and unconstrained firms into P (∆p 6= 0|X) =∑
Z P (∆p 6= 0|Z,X)P (Z|X).
First, consider the probabilities of price adjustment P (∆p 6= 0|Z,X). For financially constrained

firms, the probability to adjust prices conditional of productivity P (∆p 6= 0|Z,FC) is u-shaped in the
productivity level. 68.81 percent of the firms that have both high productivity realizations and are
financially constrained firms adjust their prices. Most of these price changes are price decreases (not
shown). In contrast, only 6.44 percent of the financially constrained firms with intermediate productivity
levels adjust their price. For low productivity levels, the probability of price adjustment for financially

26Table A-11 in the appendix shows the underlying joint probability distribution by productivity levels and financial
constraint status, as well for price increases and decreases separately.

17



constrained firms increases again to 27.17 percent. Most of these price changes are price increases (not
shown). For financially unconstrained firms the probability to adjust prices conditional on productivity
P (∆p 6= 0|Z,UC) is decreasing in productivity. 7.88 percent of unconstrained firms with high produc-
tivity levels adjust their price, while 42.51 percent of unconstrained firms with low productivity levels
change their price. This means that for high productivity levels, the inaction width effect relative to the
effect on the price gap distribution has to be relatively stronger for the financially constrained firms than
for unconstrained firms. In contrast, the opposite is true for intermediate and low productivity levels.
For high productivity levels, most firms that adjust are financially constrained. For low and intermediate
productivity levels, unconstrained firms adjust prices more often than constrained firms. Note that price
adjustment of all firms is very low in general for intermediate productivity. In this productivity range,
the distributional effect is very strong (Figure A-9 documents this). For low productivity, the price
adjustment of constrained firms is lower than that of constrained firms, but is still substantial. This can
be understood from the asymmetry of the optimal reset price towards the lower bound of the price gap
distribution. Firms towards this lower bound tend to be financially constrained. For these firms, the
very narrow inaction region towards the lower bound buffers parts of the strong distributional effect.

Second, note that firm composition is important to understand the overall adjustment probabilities
of financially constrained and unconstrained firms. In fact, the conditional distribution of productivity
levels differs fundamentally between financially constrained and unconstrained firms. For unconstrained
firms the conditional distribution looks still very similar to the unconditional probability distribution (in
percent from low to high productivity: 25-50-25 versus 14-58-28, see column three in Table 4). Hence, 58
percent of the unconstrained firms are located in intermediate productivity levels where their conditional
probability of adjustment is relatively low and their overall probability of adjustment is mainly driven
by these intermediate productivity firms. The conditional distribution of productivity levels looks very
different for financially constrained firms (in percent from low to high productivity: 47-34-19, see column
five in Table 4). One can show that the probability to be financially constrained is generally decreasing in
productivity (not shown). And, almost half of the financially constrained firms have a low productivity
realization. As for these firms price adjustment is still substantial and it is very high for the high
productivity constrained firms, the overall price adjustment for financially constrained firms exceeds the
probability of price adjustment of unconstrained firms.27

4 Aggregate Implications
In this section, we study the implications of aggregate nominal demand shocks on the fraction of price
changes, inflation and output. Due to the partial equilibrium nature of our model, one can best view
this exercise as the response of a single sector to an aggregate nominal shock or the response of a small
open economy to a sudden shift in the nominal value of demand from the rest of the world (e.g. due
to a monetary impulse abroad). To study the relative contribution of the financial friction, respectively,
we compare the responses for our benchmark model with a counter-factual scenario in which we shut
down the financial constraints (our model (2) in Table 3). For details on how impulse responses are
constructed, see Appendix A.3.

4.1 Shocks to Nominal Aggregate Demand
Figure 4 shows the response of the fraction of firms that change prices to a positive one-standard deviation
shock to nominal demand. In the chart, panel (a) depicts the case of an expansionary disturbance while
panel (b) refers to a contractionary shock. As can be seen, the presence of financial frictions substantially
increases the responsiveness of the share of price adjusting firms relative to the standard menu cost model
without financial frictions. The difference in the response of the fraction of price adjusting firms is mainly
due to the model-specific shape of the price gap distribution. As discussed by Midrigan (2011), the
probability mass concentrated at the lower and upper inaction bounds and the slope of the distribution
function in the neighbourhood of those bounds is particularly important.

In a demand expansion, the price gap distribution shown in Figure 3 shifts to the left28. Changes in
27A similar decomposition can be made with price decreases and increases, respectively, which we have omitted for space

considerations.
28Figure A-10 in the Appendix illustrates this shift
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Figure 4: Fraction of price changes, all firms
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both the intensive and extensive margin of prices refer to changes in the distribution to the left and to
the right of the inaction thresholds. Absent financial constraints, the distribution shifts symmetrically.
More firms adjust their prices upwards while less firms adjust downwards. Due to the near symmetry of
the distribution, the increase in the fraction of firms increasing their price almost offsets the decrease in
the fraction of price reductions. Therefore, the overall fraction of price changes reacts only very mildly
to aggregate shocks. As noted in Section 3.2, the presence of financial constraints implies an asymmetric
price gap distribution such that the mass is not concentrated in the center of the inaction region and
such that the slope at the left inaction threshold is higher than the slope at the right inaction threshold.
This means that the increase in the number of firms that adjust prices upwards is stronger than the
drop in the number of firms who adjust prices downwards after a positive shock. Hence, the fraction
of price changes goes up. Due to this asymmetry, the frequency of price adjustments decline after a
negative demand shock (but the effect is smaller compared to the positive shock). These changes in
the composition of price adjusting firms are at the heart of the so called selection effect emphasized in
Golosov and Lucas (2007), Midrigan (2011) and others.

Figure 5 depicts the responses of inflation and output, averaged over all firms. Average inflation is
defined as the monthly percentage change of the average price P̄t =

∑N
i=1 pit, where N is the number

of firms. Similarly, average output is ȳt =
∑N
i=1 yit. As can be seen, the presence of menu costs

induces some degree of non-neutrality of the aggregate shock - the response of average inflation is weaker
than the nominal shock itself which translates into a non-zero reaction in average output. This non-
neutrality substantially increases when firms are subject to the working capital constraint. The latter
attenuates the reaction of average inflation by about one third while almost doubling the response of
output. To understand these results, Appendix A.5 decomposes the impact response of average inflation
and output into changes in the extensive and intensive margin. It is evident from that both models’
response of inflation is almost entirely driven by the extensive margin (see Tables A-12 and A-13). In the
economy without financial frictions, the extensive margin of price increasers, whose number increases,
contributes almost equally strong to average inflation as the extensive margin of price lowering firms,
whose number declines. In our benchmark model, the contribution of the extensive margin of price
increasers is much larger as the rise in their fraction is significantly stronger than the drop in the number
of price decreases as was already discussed above. The inaction regions and price gap distribution of
firms at different productivity levels are similarly affected by the introduction of the credit constraint29.
Thus, the behavior of the extensive margin in our benchmark model is not only driven by firms in regions
where the maximum of the value function is associated with a binding working capital constraint, but

29In particular, we can show that firms with below average productivity (log(z) ∈ [−0.10,−0.03]), medium productivity
(log(z) ∈ [−0.03, 0.03]) and above average productivity (log(z) ∈ [0.03, 0.1]) provide an almost equal contribution to the
change in the extensive margin. These price gap distributions are available upon request from the authors.
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also by firms for which the corresponding maximum implies a slack financial restriction.
However, although the fraction of price adjusters in the benchmark model exhibit a much stronger

positive reaction than the corresponding fractions in the economy without financial frictions, the bench-
mark model implies a weaker reaction of average inflation. This is due to the smaller steady-state
magnitude of price changes in the benchmark economy which more than compensates the substantially
more pronounced selection effect compared to the model without financial constraints. In fact, a posi-
tive aggregate nominal demand shock reduces average price changes even further in the economy with
financial frictions, while it increases average price changes in the economy without financial frictions.
The reason is that the price gap distribution is more compressed with more mass at the lower bound of
the inaction region (see panel (d) in Figure 3). As a result of this distributional asymmetry, a large mass
of firms increase prices by very small amounts as their prices lie only slightly below the optimal reset
price. Since many more firms now increase prices by very little, the average price increase falls. Likewise,
the mass of firms with small price decreases now declines, since these firms now optimally choose not
to adjust their price. This results in an rise of the average price decrease. However, the latter effect is
weaker as the mass at the inaction cutoff below the optimal reset price is smaller than to above. On
the contrary, the fatter-tailed and more evenly dispersed price gap distribution in the economy without
financial frictions is associated with an amplification of upward and an attenuation of downward price
adjustments in the case of an expansionary aggregate shock. Put differently, surprising changes in the
aggregate nominal price Pt are passed through to the average nominal price to a larger extent in the
economy without financial frictions.

Finally, to understand why the benchmark model implies a relatively stronger output reaction to
nominal aggregate shocks, note that the two models are identical regarding the economy wide demand
schedule. The latter is governed by only one parameter, the demand elasticity θ, and one exogenous
variable, the aggregate nominal price level Pt. Moreover, the financial friction leaves the demand side of
the economy completely unaffected. Hence, the aggregate shock shifts the demand schedule by exactly
the same amount in each of the two models. Along identical demand curves, a weaker inflation increase
can be only associated with a more pronounced increase in output and vice versa. The implied flattening
of the supply curve means that financial constraints alter a central trade-off faced by the central bank: In
order to engineer an increase in inflation by a certain amount the monetary authority needs to generate
larger changes in nominal demand. At the same time, it needs to take into account that larger changes
in nominal demand induce even stronger responses of average real output.

4.2 Comparison to other models of price stickiness
In this section, we compare the response of our partial equilibrium economy with a fixed menu cost to one
with two different sources of price rigidity: convex price adjustment costs (Rotemberg (1982)) or a Calvo-
type nominal friction, i.e. an exogenous probability of being allowed to adjust prices (Calvo (1983)).
While the aggregate supply curve becomes flatter in our benchmark economy, the introduction of our
financial constraint makes the aggregate supply curve steeper in the presence of Rotemberg adjustment
costs or Calvo frictions. Table 5 compares the on impact impulse responses to an aggregate positive
nominal shock of the benchmark menu cost model to the Calvo model and the Rotemberg model. In
contrast to the benchmark menu cost model, in the Calvo and Rotemberg model the inclusion of our
borrowing constraint weakens the response of average output while amplifying (or leaving unchanged in
the Calvo model) the reaction of average inflation to aggregate nominal demand shocks.30

From this, one can draw two main conclusions. First, the precise modeling of price stickiness is of
crucial importance when discussing the effects of working capital constraints. Second, the qualitative
difference between the menu-cost model and the Rotemberg/Calvo specifications suggests that allowing
for an endogenous probability of price adjustment with the associated selection effect is of primary
importance. Recall that, in the presence of menu costs, the introduction of a credit constraint affects the
average fraction of firms that change prices as well as - via altering the strength of the selection effect -
the intensive margin of price adjustment. In the Rotemberg model the fraction of price adjusting firms is
always equal to 100%, while price adjusters are selected randomly with an exogenously fixed probability
in the Calvo model. Hence, in these frameworks, there is no link between the presence of a financial

30See Appendix A.6 for details of the models, the calibration and Figure A-11 for full impulse-responses regarding the
comparison of the three sources of price rigidity.
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Figure 5: Average inflation and output
(a) Average prices
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Table 5: On impact impulse responses of aggregate variables, model comparison
Fraction of price adj. Av. inflation Av. output

FC No FC FC No FC FC No FC

Benchmark 3.41 0.23 0.12 0.15 0.53 0.33
Calvo 0.00 0.00 0.04 0.04 0.71 1.15
Rotemberg 0.00 0.00 0.09 0.04 0.55 1.15

Notes: This table shows the on impact impulse responses to a positive aggregate nominal demand shock. We just show the on
impact responses because the dynamics are qualitatively very similar across models. For dynamics of the impulse responses, see
Appendix. The label ’FC’ refers to the simulated model with financial constraints, ’no FC’ refers to the model without financial
constraint (leaving all other parameter values constant).

constraint on the one hand and the extensive margin of price adjustment and a selection effect on the
other.

While the dynamics in the Rotemberg model and Calvo model are similar, the underlying mechanism
is inherently different.31 Since price adjusting firms are randomly selected in the Calvo model and the
probability of price adjustment is exogenous, there exists no interaction between financial constraints
and the composition of price adjusting firms. Furthermore, the firms allowed to change prices completely
pass through permanent increases in nominal aggregate demand to their individual prices, irrespective
of whether they are financially constrained or not. As a consequence, the inflation response to aggregate
nominal shocks is independent of whether firms face a borrowing constraint or not. This can be seen
in Table 5. The difference between the economy with and the one without financial frictions then only
concerns aggregate output and stems solely from the behavior of firms who are not allowed to adjust
prices in the period of the shock and its immediate aftermath. In particular, in the presence of our
borrowing constraint, the non-adjusters that face a binding credit restriction will be forced to produce
off their demand schedule and ration output. The fraction of such firms tends to increase when positive
aggregate nominal shocks hit the economy and the fraction of price adjusters cannot adjust at the same
time. The opposite happens for negative demand shocks. These time varying output losses due to
rationing dampen the output response relative to a Calvo-economy without financial frictions.

In the case of Rotemberg adjustment costs, firms facing a binding financial constraint pass changes in
the aggregate price level completely through to their individual prices. The reason is that the borrowing
restriction acts as a capacity limit. As soon as ”full capacity” is reached, the firm-specific supply curve is
approximately vertical and any further demand increases can only be accompanied by raising prices. In
contrast, the degree of pass-through is incomplete for unconstrained firms. Accordingly, as long as the
fraction of financially constrained firms is larger than zero, the pass-through of economy-wide nominal
demand shocks to the average price level will be stronger relative to an economy without financial
frictions. Consequently, the response of average output will be lower in an economy with compared to
one without financial frictions. To summarize, price-adjusting firms in the Calvo model pass-through
nominal shocks completely independent of their financial status, but ration output when financially
constrained. In the Rotemberg model, no firm rations output, but financially constrained firms pass
through nominal shocks to a larger extent than unconstrained firms, as shown in the appendix.

4.3 Robustness
We have conducted a wide variety of robustness checks for two purposes. First, to understand which
parameters/model elements are important to qualitatively and quantitatively explain the moments from
the micro data we have documented in the empirical section of this paper. Second, whether and how
the aggregate implications are affected by different parameter values. Here we just summarize the main
findings. The robustness section in Appendix A.7 reports detailed tables on the calibrated parameter
values, the implied moments, the model fit to the micro data, and the implied on impact impulse responses
to an aggregate demand shock for all model versions considered here.

Myopic firms. A model with myopic firms (β = 0) is instructive because it shows whether considering
a dynamic model is important in order to match the micro evidence documented in the empirical section

31See also Appendix A.6 for a more detailed discussion.
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of this paper and how important that is for the aggregate implications of the model. Both regarding
the micro moments and the aggregate implications, the model is very similar to the dynamic benchmark
model. However, the model with myopic firms displays a lower fit to the targeted micro moments.
Regarding the pricing implications, the model with myopic firms predicts that financially constrained
firms adjust prices more often than unconstrained firms in line with the benchmark model. However, the
myopic model model only predicts that financially constrained firms adjust prices more often downwards
but not upwards. The reason was already mentioned in Section 3 above: The myopic model implies that
more productive firms are more likely to be financially constrained, i.e. those firms that have strong
incentives to decrease their prices.

Persistence of the idiosyncratic productivity shock. The persistence of the shocks are important
to explain the moments in the data, in particular the relative price adjustment frequencies of financially
constrained and unconstrained firms. When the persistence of the shock is very high, the dynamic
model behaves very similar to a model with myopic firms. That is, the slower the mean reversion,
the more important are current profits relative to expected profits for the optimal price decision of the
firm. Ceteris paribus, higher persistence levels are associated with more price adjustment of all firms
because with higher persistence the unconditional volatility of the idiosyncratic shock increases. For
all persistence parameters considered, financially constrained firms adjust prices more often, however,
it seems that there is a non-monotonic relationship between the persistence and how much more often
financially constrained firms adjust.

Model where sales are not collateralizable. With this robustness check we investigate the role of
sales as collateral. Sales as collateral are qualitatively and quantitatively important to explain the firm
level pricing moments, in particular to explain the fact that financially constrained firms adjust prices
more often upwards than unconstrained firms. The reason is related to the discussion above. Sales in
the constraint change the elasticity of the optimal constrained reset prices with respect to idiosyncratic
shocks. And this is important in a model with forward looking firms.

Elasticity of substitution. A crucial parameter in this model is the elasticity of substitution. We
repeat the calibration exercise for a lower and a higher demand elasticity, so that implied average mark-
ups in those alternative calibrations are 12.5 and 20 percent, respectively. The model fit does not improve
compared to the benchmark model. Furthermore, the model with lower demand elasticity generates
quantitatively too much price adjustment of financially constrained firms while the model with higher
demand elasticity generates too little price adjustment of financially constrained firms (in particular
upward adjusters) relative to unconstrained firms and therefore performs less well in this respect than
the benchmark model. The aggregate implications are qualitatively similar to the benchmark model.

Idiosyncratic financial shocks. In the Appendix, we show a model version with both idiosyncratic
productivity and idiosyncratic financial shocks. For the benchmark targets, in particular targeting a
fraction of 32 percent of financially constrained firms (see Table 1 section ’bank lending’) this does not
improve the model fit. However, when targeting a fraction of financially constrained firms that is lower
(the fraction of constrained firms is equal to 6 percent, see section labeled ’production constrained’ in
Table 1) idiosyncratic financial shocks help to reconcile model and the data. In particular, the model with
idiosyncratic financial shocks makes sure that financially constrained and unconstrained firms are similar
in terms of average sales as in the data. Regarding the pricing behavior, the model performs very similar
to the benchmark model: Financially constrained firms adjust price more often upwards and downwards.
Quantitatively, however, the model with financial shocks overestimate the fraction of constrained firms
that adjust upwards and downwards and therefore the overall difference between financially constrained
and unconstrained firms. The aggregate implications are qualitatively similar to the benchmark model.32

32The impulse responses of the model with idiosyncratic financial shocks are available upon request.
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5 Conclusion
This paper investigates how financial market imperfections and nominal rigidities interact. Based on
new firm-level evidence for Germany, we document that financially constrained firms adjust prices more
often than their unconstrained counterparts, both upward and downward. We show that these empirical
patterns are consistent with a partial equilibrium menu-cost model with a working capital constraint.
Our results suggest that the presence of financial constraints is associated with a higher degree of nominal
rigidities, i.e. lower frequency of price changes, higher prices and lower output. Furthermore, the presence
of financial constraints results in a time varying frequency of price adjustments. In particular, we find
that, due to the asymmetry in the price distribution, firms adjust prices more often in boom and less often
in a recession when financial constraints are present. In addition, due to the lower average frequency of
price adjustment, monetary policy shocks induce a smaller change in inflation and a stronger reaction
of output relative to an economy without credit market imperfections. Accordingly financial constraints
alter a central trade-off faced by the central bank: In order to raise inflation by a certain amount the
monetary authority needs to accept relatively stronger responses of average output. In contrast, we
show that other sources of nominal rigidities such as exogenous probabilities of price adjustment as in
Calvo (1983) or convex price adjustment costs as in Rotemberg (1982) generate the opposite result, i.e.
the inclusion of financial frictions generates larger inflation and smaller output responses to aggregate
shocks with compared to without financial frictions. Hence, menu costs and the associated endogenous
link between reaction of the fraction of price adjusters and the presence of financial imperfections are
important.
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A Appendix

A.1 Additional empirical evidence
The empirical papers in this subsection document additional empirical results and robustness checks.
These robustness checks reveal that the main finding of the paper is robust to all specifications we have
considered: financially constrained firms are associated with on average more price adjustment compared
to financially unconstrained firms. Tables A-1 and A-2 exhibit information about the financing structure
in Germany in general and in the ifo dataset in particular. Figure A-1 shows a time-series plot of the
fraction of constrained firms according to both measures of financial constraints, our benchmark survey
question on bank lending and the other survey measure based on the question whether firms’ domestic
operations are restricted due to financing problems. Table A-3 shows that firms have restrictive access
to bank lending are not significantly smaller than other firms in terms of employment, sales or total
assets. Figure A-2 shows the fraction of constrained firms (according to the benchmark bank lending
measure) by sector and shows that the fraction of constrained firms varies greatly between sectors. Table
A-3 shows that liquidity ratios are a little lower for firms that are constrained according to our survey
questions. Figure A-3 documents that the overlap between the conventional balance-sheet based measure
(defining firms to be financially constrained if they are below the median liquidity ratio with respect to
all firms in the sample) and both of our survey questions is very small.

Table A-1: Financing structure Germany and the US
Germany US
OECD/BB FED

equity 49.8 51.8
securities/bonds 2.9 15.5
loans 30.7 6.7
other 16.7 26.0

Notes: Sources: Germany - OECD, ”Financial Balance Sheets, SNA 1993: Consolidated stocks, annual (Edition 2015)”,
http://dx.doi.org/10.1787/da313c3b-en; US - Board of Governors of the Federal Reserve System , ”Z.1 Financial
Accounts of the United States (First Quarter 2016)”, http://www.federalreserve.gov/releases/Z1/default.htm

Table A-2: Financing structure in the ifo data
equity 30.7 30.7 30.7
liabilities 69.3
bank debt 18.1
provisions and other debt 51.2
short-term debt 33.7
long-term debt 16.4
provisions 19.2

Notes: Sources: EBDC-BEP (2012): Business Expectations Panel

Figures A-4 to A-6 show time-series plots of pricing decisions of financially constrained and uncon-
strained firms respectively using the survey measures. First, there is a lot of variation in price changes,
hence changes in nominal rigidities over time. One can see that all firms (both financially unconstrained
and constrained firms) decrease prices more often and increase prices less often in a recession. Over
time, financially constrained firms decrease prices more often than unconstrained firms, regardless of the
business cycle state (see also Table 1).

Table A-4 adds various control variables that could affect both price setting and whether firms are
financially constrained or not. Table A-5 addresses robustness to the specification. Here, we add seasonal
(quarterly) fixed effects and an interaction term between sector j and seasonal fixed effects. Table A-6
in the Appendix further documents that our results do not depend on the specification being linear,
as logit model estimation leaves the results virtually unchanged. Tables A-7 to A-9 show the results
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Table A-3: Financial constraints and firm characteristics
unconstrained constrained

Bank lending
firm size (employees)
average 1009.1 1191.6
median 120.0 114.0
sales (in million euros)
average 329.0 325.8
median 44.8 42.4
balance sheet information
total assets (in million euros) 196 191
liquidity ratio 0.11 0.09

Production constraints
firm size (employees)
average 1582.1 207.4
median 140.0 60.0
sales (in million euros)
average 406.9 57.2
median 64.4 14.5
balance sheet information
total assets (in million euros) 281 36
liquidity ratio 0.09 0.05

Notes: Sources: EBDC-BEP (2012): Business Expectations Panel. Total assets are end of year. Liquidity ratio measured
as cash and cash equivalents over total assets (end of year)

Table A-4: Financial Constraints and Price Setting

baseline firm size short-time work curr SofB exp CoOp lag SofB orders

→ -0.036*** -0.036*** -0.034*** -0.028*** -0.034*** -0.029*** -0.033***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

↑ 0.008*** 0.008*** 0.009*** 0.012*** 0.009*** 0.009*** 0.013***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

↓ 0.028*** 0.028*** 0.025*** 0.016*** 0.025*** 0.020*** 0.020***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Observations 180871 180871 61957 180791 180440 180777 180080

Notes: Survey dataset. Sample: 2002:1 - 2014:12. OLS estimation with time t and sector j fixed effects. Adding
firms-specific controls: Firm size in number of employees, short-time work dummy (1 if firm receives stw subsidies),
current and lagged state of business, expected commercial operations and orders (improved, unchanged, worsened).

Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A-5: Financial Constraints and Price Setting: Specification robustness

baseline seas FE seassec FE sec clust ind FE LC panel bal panel

→ -0.036*** -0.036*** -0.041*** -0.036*** -0.021*** -0.038*** -0.166***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

↑ 0.008*** 0.008*** 0.003** 0.008** 0.004** 0.012*** 0.047*
(0.000) (0.000) (0.033) (0.017) (0.049) (0.000) (0.067)

↓ 0.028*** 0.028*** 0.038*** 0.028*** 0.017*** 0.026*** 0.119***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Observations 180871 180871 180871 180871 181167 113048 728

Notes: Survey dataset. Sample: 2002:1 - 2014:12. OLS estimation with time t and sector j fixed effects. Specifications:
sector j and seasonal (quarterly) fixed effects, interaction between sector j and seasonal FE, sector j FE with standard
errors clustered at sectoral level, individual FE, individual FE with se clustered at sectors not shown in the table, but
available upon request. Long-coverage panel (firms are in panel at least 8 years), balanced panel. Standard errors in

parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.

using our production constraint measures instead of the bank lending measure for financial constrained-
ness. Generally, the difference in the frequency of price adjustment between financially constrained and
unconstrained firms is slightly larger in this measure. As before, financially constrained firms adjust
prices more often than unconstrained firms, but the difference is now equally driven by upward as by
downward price adjusters. Table A-10 shows the results when using the liquidity ratio (measured as
described above) in order to measure financial constrainedness.
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Table A-6: Financial Constraints and Price Setting: OLS versus Logit

PM: base, no price lag PM: logit BL: base, no price lag BL: logit

→ -0.061*** -0.055***
(0.000) (0.000)

→ -0.037*** -0.036***
(0.000) (0.000)

↑ 0.033*** 0.031***
(0.000) (0.000)

↑ -0.001 -0.001
(0.615) (0.524)

↓ 0.028*** 0.023***
(0.000) (0.000)

↓ 0.038*** 0.033***
(0.000) (0.000)

Observations 133131 132922 198382 198185

Notes: Survey dataset. Sample: 2002:1 - 2014:12. OLS estimation with time t and sector j fixed effects. LOGIT shows
average marginal effects and bootstrapped standard errors. Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p

< 0.1.

Table A-7: Financial Constraints and Price Setting: Production constraints I

baseline firm size short-time work curr SofB exp CoOp lag SofB orders

→ -0.056*** -0.056*** -0.057*** -0.049*** -0.056*** -0.050*** -0.053***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

↑ 0.034*** 0.034*** 0.036*** 0.038*** 0.034*** 0.035*** 0.037***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

↓ 0.023*** 0.023*** 0.021*** 0.011*** 0.022*** 0.015*** 0.015***
(0.000) (0.000) (0.000) (0.005) (0.000) (0.000) (0.000)

Observations 119871 119871 114478 119831 119531 119816 119283

Notes: Survey dataset. Sample: 2002:1 - 2014:12. OLS estimation with time t and sector j fixed effects. Adding
firms-specific controls: Firm size in number of employees, short-time work dummy (1 if firm receives stw subsidies),
current and lagged state of business, expected commercial operations and orders (improved, unchanged, worsened).

Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A-8: Financial Constraints and Price Setting: Production constraints II

baseline SMEs west exporting post 2009 pre 2009 single product

→ -0.056*** -0.049*** -0.072*** -0.069*** -0.068*** -0.046*** -0.056***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

↑ 0.034*** 0.031*** 0.041*** 0.039*** 0.036*** 0.032*** 0.033***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

↓ 0.023*** 0.018*** 0.031*** 0.030*** 0.032*** 0.015*** 0.023***
(0.000) (0.003) (0.000) (0.000) (0.000) (0.003) (0.000)

Observations 119871 49050 97301 95324 54697 65174 117850

Notes: Survey dataset. Sample: 2002:1 - 2014:12. OLS estimation with time t and sector j fixed effects. Considering
subsamples: small and medium-sized firms only (50-250 employees), west only, exporting firms only, before and after

2009, single product firms. Results including very small firms (below 250) are not shown in the table, but available upon
request. Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.

Table A-9: Financial Constraints and Price Setting: Production constraints III

baseline seas FE seassec FE sec clust ind FE LC panel bal panel

→ -0.056*** -0.056*** -0.059*** -0.056*** -0.048*** -0.061*** -0.326***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

↑ 0.034*** 0.034*** 0.032*** 0.034*** 0.035*** 0.041*** 0.209***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.005)

↓ 0.023*** 0.023*** 0.027*** 0.023*** 0.013*** 0.020*** 0.117*
(0.000) (0.000) (0.000) (0.000) (0.006) (0.000) (0.064)

Observations 119871 119871 119871 119871 120069 75543 449

Notes: Survey dataset. Sample: 2002:1 - 2014:12. OLS estimation with time t and sector j fixed effects. Specifications:
sector j and seasonal (quarterly) fixed effects, interaction between sector j and seasonal FE, sector j FE with standard
errors clustered at sectoral level, individual FE, individual FE with se clustered at sectors not shown in the table, but
available upon request. Long-coverage panel (firms are in panel at least 8 years), balanced panel. Standard errors in

parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A-10: Financial Constraints and Price Setting: Liquidity constraints

baseline long coverage panel balanced panel base, no price lag logit

→ -0.007** 0.001 -0.011 -0.009*** -0.009***
(0.019) (0.870) (0.249) (0.002) (0.002)

↑ 0.005** 0.003 0.008 0.008*** 0.009***
(0.022) (0.259) (0.289) (0.001) (0.000)

↓ 0.002 -0.004* 0.003 0.001 0.001
(0.269) (0.094) (0.578) (0.509) (0.535)

Observations 68364 42675 8102 72458 72241

Notes: Balance sheet dataset. Sample: 2002:1 - 2011:12. OLS and LOGIT estimation with time t and sector j fixed
effects. Long-coverage panel (firms are in panel at least 8 years), balanced panel. Standard errors in parentheses, *** p <

0.01, ** p < 0.05, * p < 0.1.
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Figure A-1: Fraction of constrained firms over time
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Notes: Fraction of constrained firms according to bank lending measure (left panel) and production constraint measure
(right panel) in all firms in a given month.

Figure A-2: Share of financially constrained firms across sectors
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Figures show the histogram of various shares of financially constrained firms for wz93 classification of sectors. Examples for very constrained
(90-100%) in bank lending: textile manufacturing (17150 and 17300 according to wz93 classification). Examples for not very constrained (below
10%)in bank lending: manufacturing of electric equipment, 31600. Examples for very constrained for production constraint: 17300 (textile) 22%,

26240 (ceramics for technical use) 33%, 36200 (jewelery) 34%.

Figure A-3: Survey measures and balance sheet information
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Figures show the histogram of liquidity ratios for all firms and firms that are constrained according to the survey measures. The median liquidity
ratio of all firms is equal to 0.036. For firms constrained according to the bank lending measure, the median liquidity ratio is 0.026. For firms

constrained according to the production constraint measure, the median liquidity ratio is 0.014

Figure A-4: Fraction of prices constant over time
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Notes: Fraction of firms not changing prices within constrained and unconstrained firms. Left panel: Bank lending survey
measure. Right panel: Production constraint survey measure.
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Figure A-5: Fraction of price increases over time
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Notes: Fraction of firms increasing prices within restricted and unrestricted firms using the bank lending survey question.

Figure A-6: Fraction of price decreases over time
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Notes: Fraction of firms decreasing prices within constrained and unconstrained firms. Left panel: Bank lending survey
measure. Right panel: Production constraint survey measure.
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A.2 The model with myopic firms
The purpose of this subsection is threefold. First, we provide the formal proofs to the claims in the main
text for the simplified model with β = 0. Second, we show that there is no unambiguous relationship
between firm productivity and a binding financial constraint. In fact, this depends crucially on whether
the firm decides to adjust the price or not; in case of no price adjustment, low productivity firms are more
likely to be financially constrained, while in the case of price adjustment, firms with relatively higher
productivity will be more likely financially constrained. Third, we show that financially constrained firms
that optimally adjust the price charge a mark-up over marginal costs that is increasing in productivity.
This implies that financially constrained firms, on average, have higher mark-ups.

A.2.1 Problem of the firm

For simplicity, we normalize the aggregate price level P = 1. Hence, the firm’s nominal price is also
its real price. To save on notation, we drop all time indices. In addition, we normalize the aggregate
consumption level C = 1. Also recall that we have normalized real wages by w = (θ−1)/θ. The problem
of the firm can then be written as

V (p, z) = max{V a(p, z), V na(p, z)}

where the value of price adjustment is given by

V A(p, z) = max
h,q 6=p

{
zh

(
q − w

z

)
− fw

}

subject to

zh ≤ q−θ (φ)

wh ≤ ξ(1 + qzh) (µ)

and the value of not adjusting the price is given by

V NA(p, s) = max
h

zh

(
p− w

z

)
subject to

zh ≤ p−θ (φ)

wh ≤ ξ(1 + pzh) (µ)

where as in the main text we have normalized capital, ki = 1 for all i.

A.2.2 No price adjustment

Conditional on not adjusting the price, the firm chooses hours to maximize profits. The first order
conditions read as

0 =

(
p− w

z

)
− φ+ µ

(
ξp− w

z

)
zh ≤ p−θ ⊥ φ ≥ 0

wh ≤ ξ(1 + pzh) ⊥ µ ≥ 0

For z ≤ w/p the optimal solution is h = y = φ = µ = 0. That is, for a given price, firms with sufficiently
low productivity do not produce. In what follows assume pz > w and consider the following cases:
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1. Demand holds with equality while the financial constraint is slack. Complementary slackness
requires µ = 0. From the demand equation we have

h =
1

z
p−θ

φ =

(
p− w

z

)
Note that in this case it has to be true that

z >
w

ξ(pθ + p)
(A.1)

that is, firms with sufficiently high productivity (given the price) are unconstrained. Notice that
this condition only gets some bite if we further assume that w

ξ(pθ+p)
> w/p or ξ < p

pθ+p
at least for

some p. Otherwise, (A.1) would be always the trivially satisfied for all firms (recall by assumption
pz > w).

2. Demand is slack while the financial constraint is binding. Complementary slackness requires φ = 0.
Then we have

h =
ξ

w − ξpz

µ =
pz − w
w − ξpz

(A.2)

This solution assumes that φ = 0. This is the case whenever z ≤ w
ξ(pθ+p)

which is just the
complement of the requirement in case 1 above. Notice that when this condition is met, it is
also true that z < w

pξ which is the requirement for µ ≥ 0. This means that for given p and ξ,
firms productivity below this threshold are constrained. Furthermore, inspecting equation (A.2)
reveals that for a given price, the Lagrange multiplier µ is increasing in productivity z. This is
intuitive because for higher productivity firms the shadow value of relaxing the financial constraint
marginally is higher than for firms with relatively less productivity (more precisely the gradient
of the Lagrange function increases for higher productivity because the profit function is increasing
in z). However, once productivity is high enough the firm needs so little labor input to satisfy
the demand at the current price that the financial constraint is no longer binding. The Lagrange
multiplier then falls to zero.

To summarize, it is worth highlighting that conditional on not adjusting the price, the firms with low
productivity are financially constrained. On the other hand, firms with sufficiently high productivity
above a certain threshold are financially unconstrained.

A.2.3 Price adjustment

In case the firm chooses to adjust the price optimally, i.e. conditional on paying the fix cost, the first
order conditions for prices, hours, and output are given by

0 = zh+ µξzh− φθq−θ−1

0 =

(
q − w

z

)
− φ− µ

(w
z
− ξp

)
zh ≤ q−θ ⊥ φ ≥ 0

wh ≤ ξ(1 + pzh) ⊥ µ ≥ 0

Consider the following cases:

1. The financial constraint is binding and the demand function is slack. In this case, by hypothesis
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φ = 0 and

h =
ξ

w − ξqz
0 = zh(1 + ξµ)

µ =
(w
z
− ξq

)−1
((

q − w

z

))
.

This implies h = 0, a contradiction unless ξ = 0, assuming that productivity is always positive
z > 0 and focusing on positive prices q > 0 (which is without loss of generality as demand is infinite
for a zero price). Henceforth, we exclude this case by assuming that ξ > 0. Therefore, in case the
firm finds it optimal to adjust its price, it will always satisfy demand.

2. The financial constraint is not binding and demand is satisfied. This implies that µ = 0 and

h =
1

z
q−θ

0 = zh− φθq−θ−1

φ =

(
q − w

z

)
so that

0 = 1− θ
(
q − w

z

)
q−1

or
q =

θ

θ − 1

w

z
(A.3)

which is the familiar result that optimal price is a constant mark-up θ/(θ− 1) over marginal costs
w/z.

3. Both, the demand function and the financial constraint are satisfied with equality. Then

h =
ξ

w − ξqz
q−θ = zh

φ =
1

θ
zhq1+θ(1 + ξµ)

µ =
(w
z
− ξq

)−1
((

q − w

z

)
− φ

)
. (A.4)

Hence, the price of the constrained firm solves

q−θ =
ξz

w − ξqz
(A.5)

Alternatively, as in the main text, the optimal constrained adjusting price can be expressed in
terms of the Lagrange multiplier that is attached to the financial constraint:

q =
(1 + µ)

(1 + µξ)

θ

θ − 1

w

z

where the Lagrange multiplier µ solves equation (A.4). Notice that in principle equation (A.5)
can have multiple and complex solutions. However, as this equation is a polynomial of degree θ
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with only one sign change, there is at most one positive solution.33 So any other (complex or real)
solutions to equation (A.5) are non-positive. We can exclude solutions involving negative prices
because in that case the Lagrange multiplier µ is negative, clearly a contradiction. Henceforth, we
focus on positive real solutions to equation (A.5).34 It is straightforward to show that the solution
to equation (A.5) that is consistent with a positive Lagrange multiplier µ ≥ 0 lies in the interval
q ∈ [ 1

z ,
1
ξz ) if and only if ξ < 1.35 With other words, ξ < 1 is a necessary and sufficient condition

for the existence of a unique positive solution to equations (A.5) that is consistent with a positive
Lagrange-multiplier.

We now are ready to show that the Lagrange multiplier µ is increasing in productivity. First, we
use a change of variables x = qz and rewrite (A.4) as µ(1− ξx) = (x− 1). Notice that x ∈ [1, 1/ξ)
whenever ξ < 1 (see above). Taking the total derivative and rearranging we obtain

dµ =
1 + ξµ

1− ξx
dx, (A.6)

which says that the Lagrange multiplier is increasing in x for ξ < 1. Using the same change of
variables and taking the total derivative of equation (A.5) we obtain the result that x is increasing
in z:

dx = ξ
x

1− ξx

(x
z

)θ
dz (A.7)

Recall that θ > 1 and x ∈ [1, 1/ξ) for ξ < 1, so that the right side is positive for positive
changes in z. This means that x = pz – the revenue per unit labor employed – is increasing in
productivity. Finally, combining (A.6) and (A.7) gives the result that the Lagrange multiplier
is increasing in productivity. With other words, the mark-up of financially constrained firms is
monotonically increasing in productivity because the mark-up depends on the Lagrange multiplier
which is increasing in productivity.

Finally, together with the result that the mark-up of unconstrained price adjusting firms is constant
(see equation (A.3)), this implies that there is a productivity cut-off for which the firms become
financially constrained: only firms with sufficiently high productivity z ≥ z̃ are financially con-
strained. One can solve for the threshold productivity z̃ by equating the unconstrained price with
the financially constrained price and then using (A.5) to solve for productivity. Formally, firms are
financially constrained if and only if

z ≥
(

ξ

w − ξ

) 1
θ−1

and unconstrained otherwise (case 2. above). Notice that this threshold productivity is strictly
positive if and only if ξ < w where by normalization w < 1. In all calibrations in the main text we
assume that ξ < w.36

33To see this, rewrite (A.5) as ξ(qθ + q)− w/z = 0.
34For θ = 2 we can solve for the price analytically and show that there are two real solutions, one negative and one

positive. Abstracting from the negative solution (as this would imply a negative Lagrange multiplier), the optimal adjusting
price is given by q = 0.5(

√
(1 + 4w/(ξz))− 1) which is strictly positive for any w, ξ, z > 0. In addition, at this price hours

worked are positive (h > 0) for any w, ξ, z > 0.
35Suppose ξ < 1. First we show that qz < 1/ξ so that the inverse term on the right hand side of equation (A.4) is well

defined and strictly positive. Combine equations (A.4) and (A.5) and use the normalization of wages w = (θ− 1)/θ to get

qz <
1

ξ
⇔

(1 + µ)

(1 + µξ)
<

1

ξ
⇔ ξ < 1

where we have used the fact that µ ≥ 0 by assumption. Second, we show that qz ≥ 1. Use the normalization of wages and
rewrite equation (A.4) as

µ =

(
1

z
− ξq

)−1 (
q −

1

z

)
The first inverse term is strictly positive for ξ < 1 as shown above. This implies that µ ≥ requires q ≥ 1/z.

36To be more precise, for all calibrations the guess of ξ for the numerical solver is set to a value below w. In all simulations
and all iterations, the numerical solver always selected lower values of ξ and never considered selected values close or above
w.
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The last remark concerns the pass-through of idiosyncratic shocks: the optimal price of financially
constrained firms responds less to productivity shocks than the price of adjusting unconstrained
firms. To see this, note that equation (A.3) implies that revenue per unit labor xuc = qucz does not
change when productivity changes, or formally dxuc = dz = 0; this is only possible if unconstrained
optimal prices decrease (increase) one for one with positive (negative) productivity shocks. On the
other hand, in equation (A.7), we have shown that for constrained firms dxfc = dz > 0. This means
the constrained price qfc changes less than one for one with productivity shocks, or |dqfc| < |dz|.
With other words, for financially constrained firms, there is incomplete pass-through of idiosyncratic
shocks. This result is key for understanding the stationary price distribution and the transmission
of aggregate nominal shocks. We provide more intuition in the following subsection.

A.2.4 Summary and intuition

In case the firm does not adjust the price, for example because the menu cost is large, condition (A.1)
tells us that firms with sufficiently low productivity levels are financially constrained. The intuition
behind this result is the following. For low productivity levels, firms need a relatively large amount of
labor input in order to produce the amount that is demanded at the given price. For those firms the wage
bill that has to be financed is relatively high and it is therefore more likely that those low productivity
firms face a binding constraint. Once productivity increases, the required labor input decreases, the wage
bill that has to be financed decreases, and this relaxes the financial constraint. If productivity is large
enough the constraint becomes eventually non-binding.

In case of price adjustment, firms with higher productivity levels are likely to be more constrained.
This is an implication from the fact that the Lagrange multiplier is increasing in productivity z, as shown
analytically above. As mentioned above, for firms with higher productivity, the optimal constrained price
lies further away from the optimal unconstrained price (the latter exhibiting a constant markup). The
reason for the positive relationship between µ and z can be understood by noting that the Lagrangean
multiplier µ measures the marginal rise in profits resulting from an infinitesimal loosening of a binding
financial constraint. To see this, recall that when both, the financial and the demand constraint bind,
the first derivative of firm i’s Lagrange function with respect to the individual nominal price pi imply

µi =
∂Πi

∂pi︸︷︷︸
A

·

B︷ ︸︸ ︷(
1

w
z
∂Di
∂pi

)
,

where Πi and Di denote firm i’ profits and demand respectively. Note further, that the term in brackets
B equals the amount of the nominal price decrease which becomes possible due to an infinitesimal
loosening of the credit constraint. The term A measures the change in profits induced by an unit
infinitesimal change in pi. It is easy to show, that both, ∂Πi

∂pi
and w

z
∂Di
∂pi

increase in absolute value in
the level of idiosyncratic productivity zi. However, the slope of the profit function ∂Πi

∂pi
is substantially

more sensitive to variation in zi than the marginal change in costs w
z
∂Di
∂pi

. To see this, note first, that
a higher zi allows to lower the nominal price which, in turn is associated with an increase in demand
Di and a much larger increase in the steepness of the demand function ∂Di/∂pi. However, the amount
of the possible price decrease is relatively small. To see this consider the simpler case of the financial
constraint omitting the sales on the right hand side, or wh ≤ ξ. When the financial constraint is binding,

we have pi =
(
w
ξzi

) 1
θ

P instead of pi = θ
θ−1

w
zi
P . This incomplete pass-through of idiosyncratic shocks

dampens the increase in the slope of demand ∂Di
∂pi

. The latter is in fact largely offset by the decrease in
marginal costs w/zi. In contrast, the same incomplete pass-through implies that a lower zi is associated
with higher unit profits pi − w/zi. Since the slope of the profit function is given by

∂Πi

∂pi
=
∂Di

∂pi
(pi −

w

zi
) +Di,

the increase in the steepness of demand ∂Di
∂pi

is not offset but rather scaled up by the increase in unit
profits. Note further that the sensitivity of the level of demand Di with respect to pi is an order of
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magnitude smaller than that of the slope ∂Di
∂pi

. Consequently, a higher productivity level zi translates
into a substantially steeper profit function, driven by the increase in the term ∂Di

∂pi
(pi− w

zi
). The intuition

in the case of a financial constraint given by whi ≤ ξ(1 + pizihi) is similar.

A.3 Details on the numerical simulation
A.3.1 Details on the simulation of the model and calibration

To simulate the dynamic model of section 3, we iterate the Bellman operator in equation (7) on a
logarithmic grid of productivity zit and the firm’s real initial period price (before price adjustment)
pit/Pt. The grid for the price is chosen such that an increment is no greater than 0.01% change in the
price (typically around 4000 grid points). The grid for productivity is chosen such that an increment is no
greater than 0.1 % in productivity (typically around 500 grid points) and so it covers ±4.5 unconditional
standard deviations for the stochastic shock. There are two shocks to the model for which firms have
to form expectations. First, the aggregate price level Pt follows a random walk with drift ln(Pt) =
ln(π) + ln(Pt−1) + ηt where ηt is a normal distributed random variable. Furthermore throughout the
simulations, we assume Ct = 1 for all t. With these assumptions, aggregate nominal demand St = PtCt
follows the same process as the aggregate price level. Second, firms face idiosyncratic productivity
shocks that follow the AR(1) process ln(zit) = ρz ln(zit−1) + εit. We assume that realizations of the
productivity shock are stochastically independent from realizations of the aggregate shock. Given the
grid for productivity and the real price level, we obtain the transition matrix of exogenous shocks using
the Tauchen (1986) method.

Given the grid and the transition matrices, we iterate the Bellman operator to find policy functions
given initial price and productivity level. Once we have the firm’s policy functions, we then simulate
a panel of firms similar to the one in the empirical section of the paper. More precisely, all reported
moments come from a panel of 5000 firms of 144 months where aggregate shocks are drawn randomly. We
first simulate the model for 1000 adjustment periods so that the moments stationary distribution is not
affected by initial conditions. The stationary price gap distributions come from the pooled cross-section
of the simulated panel (in total 720000 observations). We then repeat the same regressions in the model
as in the empirical section. In particular, we control for aggregate time dummies or the aggregate shocks
directly but including them or not had no effect on the quantitative results.

For one robustness check we also add idiosyncratic financial shocks. We assume that the collateral-
izable fraction ξ follows a stochastic process log(ξit) = ρξ log(ξi,t−1) + εξ,i,t. This is a reduced form way
to capture that heterogeneity in firm financing possibilities even after controlling for capital and sales.
Alternatively, we could have assumed that firm’s capital resale value ki,t follows an exogenous process
and obtain similar results. For the results reported in this appendix, the grid of the financial shock has
9 grid points and spans ±3 of the unconditional standard deviation; the transition matrix was obtained
using Tauchen (1986) procedure.

A.3.2 Details on the impulse responses

Here we describe in more detail on how we construct the impulse responses that are in Section 4. Impulse
response in period t of economic variables like the nominal price level and output are computed as the
differences of the period t average log price (log output), averaged over N firms, coming from a model
simulation with aggregate shock and the period t average log price (log output) of a model simulation
without the aggregate shocks. Impulse responses of probabilities are shown as the absolute difference of
the probabilities in the model simulation with aggregate shock and the probabilities in the simulation
without shock. Averages are computed over N = 5000 firms and the impulse responses are averaged over
K = 1000 simulations.

Formally, the evolution of variable x in period t are computed as follows:

∆xt =
1

K

K∑
k=1

(
1

N

N∑
i=1

ln(xSitk)− 1

N

N∑
i=1

ln(xNSitk )

)
t = 0, . . . , T
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or

∆xt =
1

KN

K∑
k=1

N∑
i=1

(
ln(xSitk)− ln(xNSitk )

)
t = 0, . . . , T

where the superscript S denotes values of x from the model simulation with aggregate shock and NS
denotes values of x from the model simulation absent aggregate shocks. For each simulation k, the model
with and without aggregate shock are simulated using the same set of N random draws of idiosyncratic
productivity. For any simulation k1 6= k2 the random draws of the idiosyncratic shock are allowed to
differ.

Analogously we compute the impulse response of probability of event A, Pr(A), in period t as

∆Pr(A)t =
1

K

K∑
k=1

(
ˆPr(A)

S

tk − ˆPr(A)
NS

tk

)
t = 0, . . . , T.

The probability in each simulation are estimated using the relative frequencies of occurrence of the event.
For example, the change in the probability of price adjustment is computed as

∆Pr(adj)t =
1

K

K∑
k=1

(
NS
adj,t,k

N
−
NNS
adj,t,k

N

)
t = 0, . . . , T.

where NS
adj,t,k denotes the number of firms that adjust their price in period t in the model simulation

with aggregate shocks (denoted by the superscript S); analogously, NNS
adj,t,k denotes the number of firms

that adjust their price in period t in the model simulation without aggregate shocks.
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A.4 Profit plots and price gap distributions for different productivity levels

Figure A-7: Value function for myopic firms (β = 0) at different productivity ranges
(a) No FC, low productivity
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(b) FC, low productivity
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(c) No FC, medium productivity
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(d) FC, medium productivity
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(e) No FC, high productivity
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(f) FC, high productivity
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Notes: The left-hand side column shows value function plots for the myopic model without financial constraints, the right-hand
side column repeats the same value function (blue line) and compares it with the corresponding plot in the myopic model with
financial constraints (red line).
The plots show averages for three productivity levels: All firms below the first quartile (labeled low productivity), firms between
the first and the third quartile (labeled medium productivity) and firms above the third quartile (labeled high productivity) of the
productivity distribution.
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Figure A-8: Real price distributions (before adjustment) in the myopic model with and without financial
constraint by productivity level

(a) Model without financial constraint, low productivity (b) Model with financial constraint, low productivity

(c) Model without financial constraint, medium productivity (d) Model with financial constraint, medium productivity

(e) Model without financial constraint, high productivity (f) Model with financial constraint, high productivity

Notes: The histograms display the distribution of real prices log(pi), where pi is firm i’s price before price adjustment. The
solid vertical lines mark the respective inaction region for firms exactly at the cutoff. Unlike in Figure 3 in the main text, the
distributions are not normalized by the optimal reset price.
The left-hand side column shows plots for the myopic model without financial constraints, the right-hand side column documents
the corresponding plot in the myopic model with financial constraints.
All firms below the first quartile (labeled low productivity), firms between the first and the third quartile (labeled medium
productivity) and firms above the third quartile (labeled high productivity) of the productivity distribution.
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Figure A-9: Real price distributions (before adjustment) in the dynamic model with and without financial
constraint by productivity level

(a) Model without financial constraint, low productivity (b) Model with financial constraint, low productivity

(c) Model without financial constraint, medium productivity (d) Model with financial constraint, medium productivity

(e) Model without financial constraint, high productivity (f) Model with financial constraint, high productivity

Notes: The histograms display the distribution of real prices log(pi), where pi is firm i’s price before price adjustment. The
solid vertical lines mark the respective inaction region for firms exactly at the cutoff. Unlike in Figure 3 in the main text, the
distributions are not normalized by the optimal reset price.
The left-hand side column shows plots for the myopic model without financial constraints, the right-hand side column documents
the corresponding plot in the myopic model with financial constraints.
All firms below the first quartile (labeled low productivity), firms between the first and the third quartile (labeled medium
productivity) and firms above the third quartile (labeled high productivity) of the productivity distribution.
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Table A-11: Decomposition of price adjustment in the benchmark model with financial frictions

(1) (2) (3)
∆p > 0 ∆p < 0 ∆p = 0 Sum Cols (1)-(3)

Model with financial constraint
All 14.90 5.38 79.72 100.00

a. high prod 1.36 4.40 19.24 25.00
FC 0.85 3.43 1.93 6.22
UC 0.51 0.97 17.30 18.78

b. mid prod 5.70 0.62 43.92 50.24
FC 0.56 0.14 10.16 10.87
UC 5.14 0.48 33.76 39.38

c. low prod 7.83 0.35 16.57 24.76
FC 3.98 0.15 11.08 15.20
UC 3.86 0.20 5.49 9.55

Notes: This table shows a decomposition of price adjustment and non-adjustment for the benchmark model, see column
(1) of table 3. The values refer to the respective joint probabilities of price adjustment, financial constraint status and
productivity level. The marginal distributions, i.e. the fraction of each subgroup relative to all firms, is shown in the
last column. Low productivity are all productivity levels smaller than the first quartile in the productivity distribution
(i.e. 25 percent of all firms). Middle productivity levels are all productivity levels within the first and the third quartile,
corresponding to 50 percent of all firms. High productivity levels refer to productivity levels above the third quartile of the
productivity distribution (25 percent of all firms).

In this subsection we report results on the profits, price gap distribution, and decomposition of the
extensive price adjustment margin for firms with different productivity levels. We divide firms into
three productivity brackets: low productivity firms are all firms with a productivity level below the first
quartile of the productivity distribution, medium productivity firms are all firms whose productivity
level falls between the first and the third quartile and firms above the third quartile are labeled high
productivity firms. Figure A.4 plots the profit functions for the different productivity levels for the
model without financial constraint (left panels) and the model with financial constraints (right panels)
against the firm’s real price on the x-axis. In this figure firms are myopic, therefore the profit functions
correspond at the same time to the firms value functions for a given real price and productivity level.

Figure A-8 shows the corresponding distributions of individual firms’ pre-adjustment real prices,
conditional on different productivity levels, in the model with myopic firms. Hence, in contrast to the
price gap distributions in the main text, we have not normalized the real pre-adjustment prices by
the optimal reset price. Analogously, Figure A-9 plots the pre-adjustment price distributions in the
benchmark model.

Table A-11 decomposes the extensive margin of price adjustment for the firms with low, medium,
and high productivity, and also by financial constrained status within each productivity bracket. These
numbers are the basis of the numbers in table A-11 in the main text.
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A.5 Price distribution and decomposition of aggregate effects in the bench-
mark model

Figure A-10: Price distribution and positive demand shocks
(a) Model without financial constraint (b) Model with financial constraint

Notes: The histograms display the price gap distribution, defined as the actual (pre-adjustment) price minus the optimal reset
price, or log(pi) − log(p∗i ), where p∗i is firm i’s optimal reset price and pi is firm i’s price before price adjustment. The solid
vertical lines mark the inaction region for a firm with average productivity (i.e. log(z) = 0) in the model with and without
financial constraint, respectively. The dashed line at zero shows the location of the optimal reset price. The dotted lines in panel
(b) are the same as the vertical solid lines for the ’No FC’-model shown in Panel (a). The blue bars show the ergodic distribution.
The red bars show the distribution conditional on high demand (nominal demand greater or equal to one-standard deviation above
average).
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Table A-12: Decomposition of Inflation Response: Benchmark Model
∆p > 0 ∆p < 0 ∆p = 0 All firms

No shock
1. Frac 14.22 5.00 80.78 100.00
2. ∆ ln(p) 1.85 -3.29 0.00 0.10

Positive demand shock
3. d(Frac) 4.63 -1.12 -3.51
4. d(∆ ln(p)) -0.02 -0.06 0.00
5. Ext. Marg. (3. × 2.) 0.09 0.04 -0.00
6. Int. Marg. (1. × 4.) -0.00 -0.00 0.00
7. Ext. + Int. (5. + 6.) 0.08 0.03 0.00 0.12

Negative demand shock
8. d(Frac) -3.68 1.55 2.12
9. d(∆ ln(p)) 0.03 0.05 0.00
10. Ext. Marg. (8. × 2.) -0.07 -0.05 0.00
11. Int. Marg. (1. × 9.) 0.00 0.00 0.00
12. Ext. + Int. (10. + 11.) -0.06 -0.05 0.00 -0.11

Decomposition of the impact response of average inflation according to

d(inflation) = ∆̃ ln(p) · d(Frac) + F̃rac · d(∆ ln(p)),

Here, the first component refers to changes in the extensive margin and the second refers to changes in the intensive
margin. Frac - fraction of price adjustments in the particular direction, ∆ ln(p) - average price adjustment in the particular
direction, d(Frac) - change in the fraction of price changes in the particular direction, d(∆ ln(p)) - change in the average
price adjustment in the particular direction, Ext.Marg. - extensive margin, Int.Marg. - intensive margin.

Table A-13: Decomposition of Inflation Response: Model without FC
∆p > 0 ∆p < 0 ∆p = 0 All firms

No shock
1. Frac 16.78 14.55 68.66 100.00
2. ∆ ln(p) 6.97 -7.36 0.00 0.10

Positive demand shock
3. d(Frac) 1.13 -0.89 -0.24
4. d(∆ ln(p)) 0.03 0.04 0.00
5. Ext. Marg. (3. × 2.) 0.08 0.07 -0.00
6. Int. Marg. (1. × 4.) 0.01 0.01 0.00
7. Ext. + Int. (5. + 6.) 0.08 0.07 0.00 0.16

Negative demand shock
8. d(Frac) -1.11 0.94 0.17
9. d(∆ ln(p)) -0.03 -0.04 0.00
10. Ext. Marg. (8. × 2.) -0.08 -0.07 0.00
11. Int. Marg. (1. × 9.) -0.00 -0.01 0.00
12. Ext. + Int. (10. + 11.) -0.08 -0.07 0.00 -0.16

Decomposition of the impact response of average inflation according to

d(inflation) = ∆̃ ln(p) · d(Frac) + F̃rac · d(∆ ln(p)),

Here, the first component refers to changes in the extensive margin and the second refers to changes in the intensive
margin. Frac - fraction of price adjustments in the particular direction, ∆ ln(p) - average price adjustment in the particular
direction, d(Frac) - change in the fraction of price changes in the particular direction, d(∆ ln(p)) - change in the average
price adjustment in the particular direction, Ext.Marg. - extensive margin, Int.Marg. - intensive margin.
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Table A-14: Decomposition of Output Response: Benchmark Model
∆p > 0 ∆p < 0 ∆p = 0 All firms

No shock
1. Frac 14.22 5.00 80.78 100.00
2. ∆ ln(y) -11.29 24.69 0.47 0.01

Positive demand shock
3. d(Frac) 4.63 -1.12 -3.51
4. d(∆ ln(y)) 1.60 1.89 1.27
5. Ext. Marg. (3. × 2.) -0.52 -0.28 -0.02
6. Int. Marg. (1. × 4.) 0.23 0.09 1.03
7. Ext. + Int. (5. + 6.) -0.30 -0.18 1.01 0.54

Negative demand shock
8. d(Frac) -3.68 1.55 2.12
9. d(∆ ln(y)) -1.69 -1.80 -1.27
10. Ext. Marg. (8. × 2.) 0.42 0.38 0.01
11. Int. Marg. (1. × 9.) -0.24 -0.09 -1.03
12. Ext. + Int. (10. + 11.) 0.18 0.29 -1.02 -0.54

Decomposition of the impact response of average output according to

d(output) = ∆̃ ln(y) · d(Frac) + F̃rac · d(∆ ln(y)),

Here, the first component refers to changes in the extensive margin and the second refers to changes in the intensive margin.
Frac - fraction of output adjustments in the particular direction, ∆ ln(y) - average output adjustment in the particular
direction, d(Frac) - change in the fraction of output changes in the particular direction, d(∆ ln(y)) - change in the average
output adjustment in the particular direction, Ext.Marg. - extensive margin, Int.Marg. - intensive margin.

Table A-15: Decomposition of Output Response: Model without FC
∆p > 0 ∆p < 0 ∆p = 0 All firms

No shock
1. Frac 16.78 14.55 68.66 100.00
2. ∆ ln(y) -49.83 54.06 0.72 0.00

Positive demand shock
3. d(Frac) 1.13 -0.89 -0.24
4. d(∆ ln(y)) 1.21 1.16 1.45
5. Ext. Marg. (3. × 2.) -0.56 -0.48 -0.00
6. Int. Marg. (1. × 4.) 0.20 0.17 0.99
7. Ext. + Int. (5. + 6.) -0.36 -0.31 0.99 0.32

Negative demand shock
8. d(Frac) -1.11 0.94 0.17
9. d(∆ ln(y)) -1.24 -1.16 -1.45
10. Ext. Marg. (8. × 2.) 0.55 0.51 0.00
11. Int. Marg. (1. × 9.) -0.21 -0.17 -0.99
12. Ext. + Int. (10. + 11.) 0.34 0.34 -0.99 -0.31

Decomposition of the impact response of average output according to

d(output) = ∆̃ ln(y) · d(Frac) + F̃rac · d(∆ ln(y)),

Here, the first component refers to changes in the extensive margin and the second refers to changes in the intensive margin.
Frac - fraction of output adjustments in the particular direction, ∆ ln(y) - average output adjustment in the particular
direction, d(Frac) - change in the fraction of output changes in the particular direction, d(∆ ln(y)) - change in the average
output adjustment in the particular direction, Ext.Marg. - extensive margin, Int.Marg. - intensive margin.
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A.6 Partial equilibrium models with alternative mechanisms to generate
price stickiness

The subsection discusses the implications for price adjustment of working capital constraints in a model
with nominal rigidities in the tradition of Calvo (1983) and a model with convex price adjustment costs
as in Rotemberg (1982). The first purpose of this subsection is to show analytically why in these type
of models aggregate output responds less when financial frictions are present compared to the situation
when the financial constraint is removed. For this purpose we use log-linearization techniques. Second,
we briefly describe how we numerically implement and parameterize the models.

A.6.1 Exogenous Probability of Price Adjustment (Calvo (1983))

In this subs section, we replace the fixed menu cost of price adjustment by nominal rigidities in the
tradition of Calvo (1983) which means that every firm faces an exogenously given probability f ∈ (0, 1)
per period for not being allowed to adjust its price. With probability (1 − f) the firm is allowed to
optimally reset its price. Adjustments are assumed to be costless irrespective of their magnitude. f
corresponds to the so called Calvo parameter. Non-adjusters simply continue to sell their products at
previous period’s price: pnait = pit−1. When choosing the optimal price pait, adjusters take into account
that with certain probability, the nominal price chosen today will be retained in the future, e.g. pit+1 = pait
with probability f . The law of large numbers implies that in each period the fraction of non-adjusters
is equal to f and their average price is equal to previous period’s economy-wide average nominal price,
i.e. P̄nat = P̄t−1.

The Lagrangean for the problem of a firm allowed to adjust its price in period t reads

L = Et

∞∑
j=0

βjf j
{
pit
Pt+j

zit+jhit+j − whit+j
}

+ Et

∞∑
j=0

βjf j
{
γit+j

(
ξ + ξ

pit
Pt+j

zit+jhit+j − whit+j
)}

(A.8)

+ Et

∞∑
j=0

βjf j

{
δit+j

((
pit
Pt+j

)−θ
Ct+j − zit+jhit+j

)}
,

where δit denotes the Lagrangean multiplier associated with the demand constraint, Et is the expectation
operator conditional on period t information, hit is labor input of fimr i, zit denotes the productivity
shock of firm i, and Pt,Ct denote the aggregate nominal price level and aggregate demand, respectively.
The first order conditions with respect to hit and pit read:

δit = (1 + γitξ)
pit
Pt
− (1 + γit)

w

zit
, (A.9)

Et

∞∑
j=0

βjf j

{
(1 + γit+jξ)

zit+jhit+j
Pt+j

− θδit+j
(
pit
Pt+j

)−θ−1
Ct+j
Pt+j

}
= 0, (A.10)

γit

{
ξ

(
1 +

pit
Pt
zithit

)
− whit

}
= 0

(A.11)

γit ≥ 0, ξ

(
1 +

pit
Pt
zithit

)
≥ whit.
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δit

{(
pit
Pt

)−θ
Ct − zithit

}
= 0

(A.12)

δit ≥ 0,

(
pit
Pt

)−θ
Ct ≥ zithit.

Since we focus on the reaction to an unexpected change in the aggregate price level Pt, we assume
that idiosyncratic productivity does not deviate from the path expected prior to the occurrence of the
aggregate shock. For simplicity, we assume {zit+j}∞j=0 = z. Replacing this flat profile by a given
but non-constant path, will make the derivations considerably more tedious without delivering different
implications or further insights. Next, recall that by assumption, nominal aggregate demand St =
PtCt follows a Random Walk with drift µ, logSt = µ + logSt−1 + ηt. Since throughout the paper
we assume Ct = C ∀t, the disturbances ηt correspond to one-time shifts in the aggregate inflation rate
logPt− logPt−1 and, at the same time, to permanent shifts in the nominal price level Pt. The permanent
nature of the changes in Pt combined with the purely static structure of the two constraints on the one
hand and the assumption on the path of zit, implies that if a constraint is binding (non-binding) today
it will be expected to be binding (non-binding) over the entire future. Furthermore, it is straightforward
to show that, as in the menu-cost model as well as the Rotemberg model, a price adjuster will always
decide to be located on her demand schedule, i.e. will avoid rationing.

Accordingly, we have
(
pit
Pt

)−θ
Ct = zithit while equation (A.9) simply determines the value of the

Lagrangean multiplier δit for given paths of the other endogenous variables. Moreover, we can reduce
the system (A.9) through (A.12) to

(θ − 1)Et

∞∑
j=0

βjf j

{
(1 + γit+jξ)

(
pit
Pt+j

)−θ
Ct+j
Pt+j

}
=

(A.13)

= θEt

∞∑
j=0

βjf j

{
(1 + γit+j)

w

zit+j

(
pit
Pt+j

)−θ−1
Ct+j
Pt+j

}
,

and

γit

{
ξ

(
1 +

(
pit
Pt

)1−θ

Ct

)
− w

zit

(
pit
Pt

)−θ
Ct

}
= 0

(A.14)

γit ≥ 0, ξ

(
1 +

(
pit
Pt

)1−θ

Ct

)
≥ w

zit

(
pit
Pt

)−θ
Ct.

To derive the dynamics resulting from (A.13) and (A.14), we log-linearize these conditions and view
the system as a piecewise linear one in the sense of Guerrieri and Iacoviello (2015). Without loss of
generality, we log-linearize around pi = P and zi = 1. There are two relevant cases: a slack and a
binding financial constraint. In the former, the Lagrange multiplier {γit+j}∞j=0 = 0 and (A.13) reduces
to its well known form lying at the heart of the New Keynesian Phillips Curve:

(θ − 1)Et

∞∑
j=0

βjf j

{(
pit
Pt+j

)−θ
Ct+j
Pt+j

}
= θEt

∞∑
j=0

βjf j

{
w

zit+j

(
pit
Pt+j

)−θ−1
Ct+j
Pt+j

}
.
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Log-linearizing and rearranging yields

1

1− βf
p̂it =

∞∑
j=0

βjf jEtP̂t+j −
∞∑
j=0

βjf jEtẑit+j .

Thus, if ẑit = 0 ∀t and the shock to the aggregate price level is permanent, i.e. P̂t = P̂t+j ∀j ≥ 1, we
obtain

p̂it = P̂t − (1− βf)

∞∑
j=0

βjf jEtẑit+j .

In other words, unconstrained adjusters approximately completely pass-through permanent shifts in Pt
to their individual nominal prices pit. The same holds for price adjusters facing a binding borrowing con-

straint. For in that case the choice of the optimal price is restricted by (A.14) with ξ
(

1 +
(
pit
Pt

)1−θ
Ct

)
=

w
zit

(
pit
Pt

)−θ
Ct while (A.13) simply determines the path of the Lagrangean multiplier γit for a given path

of the individual nominal price. Log-linearization and rearranging yields

p̂it = P̂t −
w

ξ(1− θ) + θw
ẑit.

In sum, price adjusters choose a complete pass-through of changes in the aggregate price level Pt to
their individual prices pit, irrespective of whether they face a slack or a binding financial constraint. In
fact, independent of the presence of a financial constraint, the average price P̄t responds to permanent
changes in Pt as follows: ˆ̄Pt = (1− f)P̂t, ˆ̄Pt+1 = f(1− f)P̂t, ˆ̄Pt+2 = f2(1− f)P̂t and so on. This is the
case since in each period, a new fraction (1− f) of the firms who had not yet been able to react to the
shock in Pt are given this opportunity. They respond by applying complete pass-through.

The only difference between the economy with and the one without the financial friction results from
non-adjusters. In a world without credit market frictions, each firm operates at its demand curve. If,
however, firm’s behavior is restricted by a borrowing limit, some non-adjusters - those facing a binding
financial constraint - will have to produce off their demand schedule and thus ration demand. Since the
fraction of such firms increases in the case of a positive innovation to the aggregate price level Pt, output
losses due to rationing increase, causing the output to increase by less than in a world without financial
frictions.

A.6.2 Convex Price-Adjustment Costs (Rotemberg (1982))

In this section, we replace the fixed menu cost of price adjustment by a convex price-adjustment cost
function like in Rotemberg (1982). Everything else remains unchanged. For simplicity and as usually
done in the literature, we assume that the price-adjustment cost function is quadratic and equal across
firms. In particular, each change of the individual nominal price is associated with costs amounting to
κ
2

(
pit
pit−1

−Π
)2

Ct where κ > 0 and Ct is aggregate demand. The parameter κ measures the degree of
price rigidity and, as we will show below, affects the slope of the individual supply curve. Π = 1 + µ is
the gross rate of growth in nominal aggregate demand.37

Each firm chooses its nominal price pit such that the present discounted value of current and future
profits is maximized subject to the demand and the borrowing constraint. It is easy to show that the

demand constraint is always binding. Thus, we can replace yit by the demand function
(
pit
Pt

)−θ
Ct. The

37If Ct = C ∀t, then µ corresponds to the aggregate inflation rate.
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resulting Langrangean reads

L =

(
pit
Pt

)−θ
Ct

(
pit
Pt
− w

zit

)
− κ

2

(
pit
pit−1

−Π

)2

Ct

+ γit

(
ξ

(
1 +

(
pit
Pt

)1−θ

Ct

)
− w

zit

(
pit
Pt

)−θ
Ct

)
(A.15)

+ Et

{
β

(
...− κ

2

(
pit+1

pit
−Π

)2

Ct+1 + ...

)}
+ ...,

where γit is the Lagrange multiplier associated with the financial constraint and, to save on space, we
neglect terms independent of pit. The first order condition with respect to pit reads

(1− θ)
(
pit
Pt

)−θ
+ θ(1 + γit)

w

zit

(
pit
Pt

)−θ−1

+ γitξ(1− θ)
(
Pit
Pt

)−θ
=

(A.16)

θ(Πit −Π)Πit

(
pit
Pt

)−1

− βθEt

{
(Πit+1 −Π)Πit+1

(
pit
Pt

)−1
Ct+1

Ct

}
,

and

γit

{
ξ

(
1 +

(
pit
Pt

)1−θ

Ct

)
− w

zit

(
pit
Pt

)−θ
Ct

}
= 0

(A.17)

γit ≥ 0, ξ

(
1 +

(
pit
Pt

)1−θ

Ct

)
≥ w

zit

(
pit
Pt

)−θ
Ct.

where Πit = pit/pit−1 is the firm-specific gross rate of inflation. Equations (A.16) and (A.17) represent
the firm specific supply curve. If the financial constraint does not bind, the optimal pricing decision
is determined by (A.16) with γit = 0. In contrast, if the financial constraint binds, pit is derived from

(A.17) with ξ

(
1 +

(
pit
Pt

)1−θ
Ct

)
= w

zit

(
pit
Pt

)−θ
Ct while (A.16) determines the value of the Lagrange

multiplier γit.
The easiest way to derive the main tendencies implied by (A.16) and (A.17) is by log-linearizing

them and viewing the system as a piecewise linear one in the sense of Guerrieri and Iacoviello (2015).
Without loss of generality, we log-linearize around pi = P and zi = 1. In addition, since we focus on the
effects of unexpected changes in Pt, we assume that zit does not deviate from its initial value zi. If the
financial constraint is not binding, the optimal pricing decision is approximately determined according
to the log-linear version of (A.16) with γit = 0:

p̂it =
θ − 1

θ − 1 + κ(1 + β)
(P̂t − ẑit)

+
κ

θ − 1 + φ(1 + β)
p̂it−1 +

βκ

θ − 1 + κ(1 + β)
Etp̂it+1, (A.18)

where x̂t = (xt− x)/x denotes a relative deviation from the point around which we linearize. It is easily
seen from (A.18) that in the short run, temporary as well as permanent shocks to the aggregate price level
Pt are incompletely passed through to changes in the individual nominal price pit since the coefficient in
front of P̂t, θ−1

θ−1+κ(1+β) , lies within the open interval (0, 1).38 In contrast, when the financial constraint

38Note that the short-run pass-through of movements in Pt to changes in pit is incomplete even if the shift in Pt is
permanent as is the case with our assumed process for Pt, i.e. log(St) = µ + log(St−1) + ηt where nominal demand
St = PtCt and Ct = const. To see this, consider two polar cases: Etp̂it+1 = P̂t and Etp̂it+1 = p̂it. In the former, the
coefficient linking p̂it and P̂t in the short run becomes θ−1+βκ

θ−1+f(1+β)
which is strictly larger than zero and smaller than
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binds, the firm sets its price according to the constraint itself,

ξ

(
1 +

(
pit
Pt

)1−θ

Ct

)
=

w

zit

(
pit
Pt

)−θ
Ct.

Log-linearizing the last equation yields

p̂it = P̂t −
w

ξ(1− θ) + θw
ẑit. (A.19)

Obviously, (A.19) implies that if the firm is restricted by its borrowing limit, its optimal pricing decision
will be approximately associated with full pass-through of movements in the aggregate price level Pt to
changes in the individual price pit. The intuition is as follows: The borrowing limit actually works as a
capacity constraint imposing an upper bound on the quantity the firm is able to produce. As soon as full
capacity is reached, the individual supply curve becomes approximately (up to a linear approximation)
vertical. Any further increases of demand can only be accommodated by raising firm’s prices but not by
expanding production. In other words, any shifts of the demand curve - due to changes in the economy-
wide variables Pt or in Ct - represent shifts along an approximately vertical individual supply schedule
and thus, are associated with no quantity but a relatively strong price reaction.

Based on the discussion in this section, it is easy to understand why an economy free of financial
frictions will respond to exogenous permanent shifts in the aggregate price level Pt differently from
an economy subject to our borrowing constraint. In the former, each firm sets its optimal nominal
price according to (A.18). Hence, the shock to Pt is not fully transmitted to the average price level
P̄t =

∑N
i=1 pit, where N is the number of firms, with the degree of pass-through being approximately

equal across firms. In contrast, if the economy is subject to our financial friction and there is a strictly
positive fraction of firms facing a binding constraint, only part of the firms - the unconstrained ones
- will set prices according to (A.18). The rest - for which the constraint binds - will choose to fully
pass the shift in Pt through to their individual prices pit. Accordingly, the pass-through from Pt to
the average nominal price level P̄t will be relatively more complete. Consequently, given the downward
sloping demand curve, the average output response in an economy subject to the financial constraint
will tend to be relatively weaker. Note further, that in the case of positive shocks to Pt, the difference
between the two economies is further magnified as the fraction of financially constrained firms increases.
The opposite happens - the difference between the economy with and the one without financial frictions
becomes smaller - when there is a permanent drop in Pt since the number of firms with a binding credit
constraint decreases.

A.6.3 Numerical Implementation and Parametrization

For the results reported in the main text we solve both the Calvo and the Rotemberg model by value
function iteration. To be more precise, we solve a version of the Calvo model as in Nakamura and
Steinsson (2010) where firms with probability 1− α draw a fix cost (fH) and with probability α draw a
low fix cost (fL). We then solve the model by value. In practice we set fL = 0 and fH to a very high
value, so that firms that draw the high fix cost never adjust prices and firms that draw the zero fix cost
always adjust. We then calibrate the fraction 1− α to match the average frequency of price adjustment
in our data.

For the Rotemberg model, we set the menu cost to zero but introduce quadratic adjustment costs.
Given the firm’s beginning of period nominal price pit, the end-of-period nominal price qit, the aggregate
price level Pt, and idiosyncratic productivity zit, the value function of firm i in the Rotemberg model is
given by

V (pit/Pt, zit) = max
qit,hit


(
qit
Pt
− w

zit

)
zithit − κ

2

(
qit
pit
− eµ

)2

C + βEtV (qit/Pt+1, zit+1)

s.t. zithit ≤ qit
Pt

−θ
C

whit ≤ ξ(1 + qit
Pt
zithit)


unity. In the case Etp̂it+1 = p̂it, the corresponding coefficient becomes θ−1

θ−1+f
which also lies within (0, 1).
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Figure A-11: Impulse responses of aggregate variables, Calvo and Rotemberg model versus menu cost
benchmark model
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where we have assumed that Ct = C for all t and that the adjustment costs are defined relative to the
average gross inflation rate eµ. As in the benchmark model, we solve both models presented here using
value function iteration on a discretized productivity and price grid.

We have parameterized the models in the following way. The discount factor and the demand elasticity
are calibrated as in the benchmark model, equal to 7.25 and 0.961/12, respectively. For simplicity, the
parameters of the shock process are calibrated as in the benchmark model. The probability of price
adjustment in the Calvo model is set to (1 − α) = 0.22 to match the empirical moment from our
data. The adjustment cost parameter in the Rotemberg model κ is set such that the Calvo model and
the Rotemberg model imply the same level of aggregate nominal rigidity in the absence of financial
constraints.

A.6.4 Impulse responses

Figure A-11 show the impulse responses of average output and inflation to a positive nominal demand
shock in the Calvo and Rotemberg model, respectively, and compare them to the impulse responses of
the benchmark menu cost model.
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A.7 Robustness
A.7.1 Profit and policy functions for different parameter values

Figure A-12: Pricing policy functions
(a) High persistence
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(b) Sales not collateralizable
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Notes: The x-axis displays the logarithm of the productivity levels zi and the y-axis shows the logarithm of the real price of the
firm p̃i = pi/P (or q̃i = qi/P if the price is changed). The blue dashed line is the optimal price of the adjusting firm in case
there is no financial constraint. The green lines limit the inaction region in the model without financial friction; i.e. a firm with
a pair (z, p) the interval spanned by the green lines will not adjust its price. The dashed black line is the maximum feasible price
of a firm that is financially constrained and adjusting its price (hence, the price where both the financial constraint and demand
are binding with equality). The red line displays the optimal adjusting price policy in the model with a financial constraint. The
purple lines limit the inaction region in the model with financial constraint.

Panel (a) of Figure A-12 shows the pricing policy function for a calibration with high persistence.
The policy looks generally similar to our benchmark model. With high persistence, the expectation
component in the value function becomes less important and current profits become more important.
Therefore, firms with low productivity choose a price above the dashed black line such that for these
firms the working capital constraint does not bind unlike in the benchmark economy. Panel b) of Figure
A-12 shows the pricing policy function for the model where sales are not collateralizable, i.e. for the
model where the financial constraint is given by wh ≤ ξ. Qualitatively, it looks very similar to the
benchmark model.

Figure A-13 plots the current profit function for a firm with average profits (z = 1) and for different
values of the demand elasticity of substition, namely for θ = 7.25 (our benchmark value) and θ = 6.
For lower values of θ, that is the less elastic the demand function with respect to price changes, the
flatter and more symmetric the firm’s profit function around the profit maximum (see red dashed line).
As a consequence of the flattening of the profit function, the price adjustment thresholds lie more
symmetrically around the profit maximizing price. Put differently, the higher the demand elasticity the
more asymmetric the profit function becomes around the profit maximizing price (compare the blue
solid line and the red dashed line). In particular, the profit function becomes steeper to the left of the
maximum which implies that the lower threshold lies closer the profit maximizing price than the upper
threshold.

A.7.2 Calibration of different model versions

Table A-16 shows robustness of our calibration results to various model specifications. In particular, in
column (2) we contrast the benchmark calibration to the model version with myopic firms. This version
performs surprisingly well in matching the calibration targets (slightly worse distance measure after
second digit, not shown). Also the calibrated values for the key parameters are very similar. In terms
of pricing behavior, the model with myopic firms predicts that financially constrained firms adjust more
often than unconstrained firms, see row 5. However, it overestimates the fraction of constrained firms
that decreases the price and underestimates the fraction of constrained firms that decrease the price.
This reflects the positive link between productivity and being financially constrained for price adjusting
firms in this version of the model. For the same reason, the ratio of sales of constrained firms relative to
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Figure A-13: Profit function for z = 1, β = 0 and different values of θ
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Notes: The figure displays the firms’ current profits as a function of the real price in logarithms for different values of the
elasticity of substitution θ. The hump-shaped blue solid line are firm profits for θ = 6 and the the dashed vertical blue lines
are the corresponding boundaries of the inaction region. The hump-shaped dashed red line are firm profits for θ = 7.25
and the solid red vertical lines are the corresponding boundaries of the inaction region.

sales of unconstrained firms is larger than one and hence larger than in the benchmark model, see row
12.

In column (3) we truncate the grid for log productivity between [−2σz, 2σz]; we do so in order to
exclude productivity levels for which the value function is potentially double peaked. The results are
virtually unchanged relative to the benchmark model.

Column (4) show robustness with respect to sales as collateral in the financial constraint. Including
sales as collateral is quantitatively important in order to match the targeted moments (compare rows 1
to 4 in model (1) and model (4)) and in order to generate regression coefficients with the correct sign
(in particular for upward adjusters, compare row 6 in columns (1) and (4)).

Column (5) recalibrates the model to the alternative measure of being financially constrained in the
data: the production shortage survey question. According to this measure around 6 percent of the firms
are constrained on average. The model has a similar fit in terms of targeted moments as the benchmark.
The model predicts that financially constrained firms adjust more often than unconstrained firms, see row
5. However, it overestimates the fraction of constrained firms that decreases the price and underestimates
the fraction of constrained firms that decrease the price. The reason is the same as in the model with
myopic firms: There is a strong positive link between productivity and being financially constrained for
price adjusting firms. Due to the low fraction of constrained firms, the constraint is not tight enough
to affect the intertemporal decision of firms with productivity levels around the mean. Accordingly, the
ratio of sales of constrained firms relative to sales of unconstrained firms is larger than one and hence
larger than in the benchmark model, see row 12.

Columns (6) and (7) show the calibration results when we consider values for the elasticity of demand
that are lower and higher, respectively, as compared to the benchmark. The model implications are
similar to the benchmark model. However, the model (6) largely overestimates the fraction of constrained
firms that increase their price (row 6) and therefore overestimates the price adjustment probability of
financially constrained firms (row 5). The model with higher elasticity of substitution underestimates the
upward price adjustment of financially constrained firms relative to unconstrained firms (row 6) while
leaving the downward price adjustment of financially constrained firms unaffected (row 7) compared to
the benchmark.

Table A-17 reports robustness results with respect to the idiosyncratic shock persistence. Here, we
increase the shock persistence leaving all other parameters as in the benchmark calibration in order
to show the ceteris paribus effect of higher persistence. Two results stand out: First, the only targeted
moments that are sensitive to different values of shock persistence are the fractions of price changes. This
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is intuitive as a ceteris paribus change in the persistence changes the variance of the productivity shock.
Hence, higher persistence means larger shocks and a higher probability to be outside the inaction region
if menu costs stay the same. Second, shock persistence affects quantitatively our regressions results (see
row 5-7). The main conclusion however is unaffected: for all productivity levels, the model predicts that
financially constrained firms adjust prices more often than unconstrained firms.

Table A-18 reports the results for a model version where we allow for two types of idiosyncratic shocks:
productivity and financial shocks. Financial shocks are modeled as shocks to ξ, i.e. the collateralizable
fraction of capital and sales. In particular log(ξ) follows an AR(1) process with standard deviation σξ
and persistence ρξ.39 In the calibration shown here we assume that financial and productivity shocks
have the same persistence ρz = ρξ. We calibrate the variance of the financial shock so that median
sales are the same for financially constrained and unconstrained firms, see row 5. Column (1) uses
the benchmark calibration strategy targeting a fraction of 32 percent of financially constrained firms.
This model does not perform better than the benchmark without financial shocks. Column (2) uses the
alternative target of 6 percent of constrained firms as suggested by the production shortage question
in the survey data. In this case, the model performance improves as the model now also predicts that
financially constrained firms adjust more often than unconstrained firms, see regression coefficient in row
7. These are likely firms that are hit by a negative financial shock and therefore have to increase their
price as the unconstrained price is no longer attainable given their productivity level.

A.7.3 Aggregate implications of different model versions

Table A-19 shows the on impact impulse responses to a positive aggregate nominal demand shock compar-
ing the different model versions to the benchmark model. All models have the same qualitative message:
the model with financial constraints exhibits smaller inflation responses and larger output responses
than the model without financial constraint. In all model versions the fraction of price adjusting firms
increases significantly in response to the shocks in contrast to the models without financial constraints.

Table A-19: On impact impulse responses to positive nominal demand shock, model robustness
Fraction of price adj. Av. inflation Av. output

FC No FC FC No FC FC No FC

Benchmark 3.41 0.23 0.12 0.15 0.53 0.33
Myopic 3.40 0.30 0.13 0.14 0.44 0.41
Trunc. z 3.61 0.24 0.12 0.16 0.54 0.34
No sales 5.72 0.23 0.12 0.17 0.48 0.19
Prod. shortage 2.34 0.30 0.14 0.14 0.40 0.41
Low demand elast. 2.97 0.27 0.11 0.13 0.47 0.41
High demand elast. 4.69 0.28 0.13 0.17 0.55 0.27

Notes: This table shows the on impact impulse responses to a positive aggregate nominal demand shock for different model versions.
We just show the on impact responses because the dynamics are qualitatively very similar across models.

39Theoretically log(ξ) follows a truncated normal distribution, so that ξ lies in the interval (0,1). In practice, since we
discretize the state space the bounds are not relevant for the simulation.
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Table A-16: Model robustness, different specifications

(1) (2) (3) (4) (5) (6) (7)
Dataa Benchm Static Trunc

z
No
Sales

Prod.
Short.

Low
de-
mand
elast.

High
de-
mand
elast.

A. Parameter values
Assigned
θ 7.25 7.25 7.25 7.25 7.25 6.00 9.00
β 0.961/12 0.001/12 0.961/12 0.961/12 0.961/12 0.961/12 0.961/12

µ (percent) 0.10 0.10 0.10 0.10 0.10 0.10 0.10
ση (percent) 0.20 0.20 0.20 0.20 0.20 0.20 0.20
C 1 1 1 1 1 1 1
k 1 1 1 1 1 1 1

∆pgrid (percent) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
∆zgrid (percent) 0.09 0.07 0.05 0.13 0.07 0.08 0.09

Calibrated
f (percent of wages) 1.02 1.12 0.99 1.25 0.88 1.04 0.98
σε (percent) 4.34 3.52 4.26 7.07 3.61 4.02 4.50
ρz 0.41 0.41 0.40 0.11 0.43 0.41 0.39
ξ 0.35 0.40 0.35 0.64 0.45 0.34 0.37

B. Moments
Used in calibrationb
1. P (∆p) 0.22 0.20 0.21 0.20 0.21 0.21 0.20 0.21
2. P (∆p > 0) 0.12 0.15 0.14 0.15 0.14 0.13 0.15 0.15
3. P (FC) 0.32 0.32 0.32 0.33 0.32 0.07c 0.32 0.32
4. Median price change 0.02 0.02 0.03 0.02 0.03 0.04 0.02 0.02
Distance 0.03 0.03 0.04 0.02 0.02 0.04 0.03

Regression coefficients
5. β̂consFC -0.04 -0.11 -0.07 -0.14 0.04 -0.09 -0.19 -0.00
6. β̂upFC 0.01 0.01 -0.05 0.07 -0.11 -0.11 0.12 -0.09
7. β̂downFC 0.03 0.09 0.13 0.07 0.07 0.20 0.07 0.09

Additional Moments
8. Median price incr. 0.02 0.01 0.02 0.01 0.02 0.03 0.01 0.01
9. Median price decr. 0.02 0.03 0.04 0.03 0.07 0.04 0.03 0.03

10. P (∆p = 0|FC) 0.75 0.72 0.73 0.70 0.81 0.70 0.67 0.78
11. P (∆p = 0|UC) 0.80 0.84 0.82 0.85 0.78 0.80 0.86 0.80
12. Sales(FC)/Sales(UC) 0.95 1.00 1.07 0.99 1.00 1.08 0.99 1.01

Values refer to monthly frequency unless indicated otherwise.
aData on median price changes of German manufacturing producer prices are from Vermeulen et al. (2012). The remaining
data moments come from the Ifo panel data, for details see the empirical section.
b All model versions recalibrated to match data targets in rows 1 – 4.
c The empirical target moment for this model version is P (FC) = 0.06.
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Table A-17: Model robustness, persistence of productivity shock

(1) (2) (3) (4)
Data Benchm ρz = 0 ρz = 0.75 ρz = 0.9

A. Parameter values
Assigned
α 1.00 1.00 1.00 1.00

θ 7.25 7.25 7.25 7.25
β (annualized) 0.96 0.96 0.96 0.96
µ (percent) 0.10 0.10 0.10 0.10
ση (percent) 0.20 0.20 0.20 0.20
C 1 1 1 1
k 1 1 1 1

∆pgrid (percent) 0.01 0.01 0.01 0.01
∆zgrid (percent) 0.09 0.08 0.12 0.10

Calibrated
f (percent of wages) 1.02 1.02 1.02 1.02
σε (percent) 4.34 4.34 4.34 4.34
ρz 0.41 0.00 0.75 0.90
ξ 0.35 0.35 0.35 0.35

B. Moments
Used in calibration
1. P (∆p) 0.22 0.20 0.15 0.28 0.30
2. P (∆p > 0) 0.12 0.15 0.11 0.19 0.19
3. P (FC) 0.32 0.32 0.31 0.31 0.32
4. Median price change 0.02 0.02 0.02 0.02 0.02
Distance 0.03 0.07 0.09 0.11

Regression coefficients
5. β̂consFC -0.04 -0.11 -0.13 -0.05 -0.18
6. β̂upFC 0.01 0.01 0.06 -0.06 0.04
7. β̂downFC 0.03 0.09 0.07 0.12 0.14

Additional Moments
8. Median price incr. 0.02 0.01 0.02 0.02 0.02
9. Median price decr. 0.02 0.03 0.03 0.03 0.03

10. P (∆p = 0|FC) 0.75 0.72 0.76 0.68 0.57
11. P (∆p = 0|UC) 0.80 0.84 0.90 0.74 0.76
12. Sales(FC)/Sales(UC) 0.95 1.00 0.99 1.09 1.18

Notes: This table shows robustness with respect to productivity shocks. Keeping all other parameters the same as in the
benchmark calibration the table shows simulated moments for different values of the persistence of the productivity shock.
Values refer to monthly frequency unless indicated otherwise. Data on median price changes of German manufacturing
producer prices are from Vermeulen et al. (2012). The remaining data moments come from the Ifo panel data, for details
see the empirical section.
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Table A-18: Model robustness, model with idisyncratic productivity and financial shocks

(1) (2)
Data Benchm Prod. short

A. Parameter values
Assigned
θ 7.25 7.25
β (annualized) 0.96 0.96
µ (percent) 0.10 0.10
ση (percent) 0.20 0.20
C 1 1
k 1 1

∆pgrid (percent) 0.01 0.01
∆zgrid (percent) 0.10 0.09

Calibrated
f (percent of wages) 1.05 0.88
σε (percent) 3.67 3.10
ρz = ρξ 0.44 0.42
E(ξ) 0.36 0.44
σξ(percent) 4.00 4.32

B. Moments
Used in calibration
1. P (∆p) 0.22 0.21 0.17
2. P (∆p > 0) 0.12 0.15 0.12
3. P (FC) 0.32 0.32 0.09
4. Median price change 0.02 0.02 0.03
5. Sales(FC)/Sales(UC) 1 0.99 1.03
Distance 0.033 0.068

Regression coefficients
6. β̂consFC -0.04 -0.24 -0.22
7. β̂upFC 0.01 0.14 0.06
8. β̂downFC 0.03 0.10 0.16

Additional Moments
9. Median price incr. 0.02 0.02 0.03
10. Median price decr. 0.02 0.03 0.05

11. P (∆p = 0|FC) 0.75 0.63 0.62
12. P (∆p = 0|UC) 0.80 0.87 0.85

Notes: This table shows robustness with respect to a model version where both idiosyncratic productivity and financial
shocks are present. Financial shocks are modeled as shocks to ξ, i.e. the collateralizable fraction of capital and sales. In
particular log(ξ) follows an AR(1) process with standard deviation σξ and persistence ρξ. In the calibration shown here
we assume that financial and productivity shocks have the same persistence ρz = ρξ.
Values refer to monthly frequency unless indicated otherwise. Data on median price changes of German manufacturing
producer prices are from Vermeulen et al. (2012). The remaining data moments come from the Ifo panel data, for details
see the empirical section.
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