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Abstract 
 
A growing recent literature relies on a precautionary pricing motive embedded in representative 
agent DSGE models with sticky prices and wages to generate negative output effects of 
uncertainty shocks. We assess whether this theoretical model channel is consistent with the data. 
Building a New Keynesian model, we show that indeed with sufficient nominal rigidities 
markups increase and output falls after uncertainty shocks. The model is also used as a business 
cycle accounting device to construct aggregate markups from the data. Time-series techniques 
are employed to study the conditional comovement between markups and output in the data. 
Consistent with the model’s precautionary wage setting, we find that wage markups increase 
after uncertainty shocks. Price markups in contrast fall. This finding - inconsistent with the 
model - is corroborated by industry-level data. Overall, these results point to a prominent role 
for sticky wages in the transmission of uncertainty shocks. 

JEL-Codes: E320, E010, E240. 

Keywords: uncertainty shocks, price markup, wage markup. 
 
 
 

  
 

Benjamin Born 
University of Bonn 
Bonn / Germany 

born@uni-bonn.de 

Johannes Pfeifer 
University of Mannheim 
Mannheim / Germany 

pfeifer@uni-mannheim.de 
  

 
 
 
January 2017 
We would like to thank Angela Abbate, Klaus Adam, Matthias Hartmann, Keith Kuester, Ariel 
Mecikovsky, Gernot Müller, Morten Ravn, Mirko Wiederholt, and various seminar audiences 
for helpful comments and suggestions. Special thanks go to Randy A. Becker and Wayne Gray 
for important clarifications regarding the NBER-CES Manufacturing Industry Database. 



1 Introduction

Since the seminal paper by Bloom (2009), many studies have focused on the effects

of uncertainty shocks on economic fluctuations (see Bloom 2014, for a survey). While

time-series approaches regularly find negative effects of uncertainty shocks on output

(Bachmann et al. 2013; Baker et al. 2016; Jurado et al. 2015, and numerous others), it has

proven surprisingly difficult to generate negative output effects after uncertainty shocks in

representative agent models as uncertainty shocks are expansionary in the standard RBC

model. As shown by Basu and Bundick (forthcoming), countercyclical markups of the

form present in standard New Keynesian models are key to match the empirical evidence.

Many recent DSGE studies rely on this countercyclical movement of price and/or wage

markups conditional on uncertainty shocks.1 However, direct empirical evidence on the

presence of this transmission channel is limited.2

We therefore assess whether this so-called “markup channel” is consistent with the

data. To this end, we build a New Keynesian DSGE model with time-varying price and

wage markups that serves two purposes. First, the dynamic dimension of the model

is used to generate predictions on the effects of uncertainty shocks on price and wage

markups that can be empirically tested. In the model, an increase in uncertainty leads to

an increase in both price and wage markups and a decline in output, whereas without

nominal rigidities the precautionary labor supply motive dominates and output increases.

Second, the intratemporal first-order conditions can be used as a Chari et al. (2007)-type

business cycle accounting framework to construct aggregate price and wage markups from

the data.

Time-series techniques are then used to identify uncertainty shocks in the data and to

study whether the conditional comovement between markups and output is consistent with

the one implied by the model. Overall, we find that in the data, contrary to the model’s
1E.g. Fernández-Villaverde et al. (2015), Born and Pfeifer (2014), Basu and Bundick (forthcoming),

Başkaya et al. (2013), Mumtaz and Zanetti (2013), Plante and Traum (2012), Cesa-Bianchi and Fernandez-
Corugedo (2014), Johannsen (2014), and Leduc and Liu (2016). The latter two rely on the existence
of the ZLB and a frictional labor market, respectively, to amplify the effects of aggregate uncertainty.
Notable exceptions that do not rely on countercyclical markups are Christiano, Motto, et al. (2014) and
Chugh (2016), who embed uncertainty in a financial accelerator mechanism.

2Fernández-Villaverde et al. (2015) provide some tentative evidence.
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prediction, price markups tend to fall after uncertainty shocks. However, wage markups

increase as the model predicts. These findings are robust to different identification schemes

as well as uncertainty and markup measures.

We then turn to disaggregated industry-level evidence and investigate whether the

model-predicted price markup response may simply be hidden by heterogeneity in price

stickiness at the industry level. Qualitatively, the industry-level results look very similar

to the aggregate evidence. The price markup does not increase significantly and even

drops in the long run. We therefore do not find evidence for the price markup channel in

disaggregated industry-level data either.

Our investigation of the price and wage markups is related to Nekarda and Ramey

(2013) and Karabarbounis (2014), respectively.3 Nekarda and Ramey (2013) argue that

aggregate price markups are pro- to acyclical unconditionally and also regularly do not

show the conditional movement after shocks predicted by standard New Keynesian models.

However, they do not consider uncertainty shocks and only focus on the price markup,

while the main effect might work through wage markups. This is important as e.g.

Karabarbounis (2014) argues that about 90% of the cyclical movement in the labor wedge

derives from movements in the household component of this wedge, i.e. the gap between

the marginal rate of substitution and the real wage.4

To measure aggregate uncertainty, we use a variety of measures and approaches. The

first uncertainty proxy is a model-consistent measure derived from the particle smoother

used to parameterize the model. We also employ the general macroeconomic uncertainty

measure of Jurado et al. (2015) (JLN) and identify exogenous shocks via a recursive

ordering.5 Given that many uncertainty measures are available at monthly frequency

while we only have quarterly markup data, we will employ two different approaches to

deal with this mixed-frequency problem: a two-step frequentist procedure following Kilian
3See also Shimer (2010). Our paper is also related to earlier papers studying the (unconditional)

cyclical movement of (price) markups (e.g. Bils 1987; Rotemberg and Woodford 1991), surveyed in
Rotemberg and Woodford (1999), as well as “business cycle accounting” studies like Chari et al. (2007),
Hall (1997), and Parkin (1988). Galí et al. (2007) is an influential study that decomposes the labor wedge
into a firm and a household component to study the welfare implications.

4See Basu and House (2016) and Bils et al. (2016) for an opposing viewpoint.
5Our results are robust to using different uncertainty proxies such as the Baker et al. (2016)-economic

policy uncertainty proxy or the VIX and different identification schemes.
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(2009) and Born, Breuer, et al. (2014), which relies on local projections (Jordá 2005), and

a Bayesian mixed-frequency VAR following Eraker et al. (2015).

Section 2 provides a detailed exposition on the mechanism embedded in New Keynesian

models that gives rise to contractionary uncertainty effects. Section 3 presents a baseline

New Keynesian DSGE with time-varying wage and price markups and documents the

predicted conditional comovement of output and markups following demand and supply

uncertainty shocks. The intratemporal first-order conditions of the model also provide

an accounting framework, which is used to construct price and wage markups from the

data. Section 4 then identifies uncertainty shocks from the data, studies whether the

conditional comovement between markups and output is consistent with the one implied

by the model, and provides robustness checks. Section 5 investigates the price markup

response at the industry level. Section 6 concludes.

2 Precautionary pricing: a stylized model

As shown by Basu and Bundick (forthcoming), the reason that uncertainty is expansionary

in the standard RBC model is the presence of a “precautionary labor supply” motive.

When faced by higher uncertainty, the household does not only self-insure by consuming

less and investing more, but also by working more. From the neoclassical production

function, where TFP is unaffected by uncertainty and capital is predetermined, follows that

this increase in labor results in an output expansion that fuels higher savings. The solution

to generate contractionary effects of uncertainty is to break this tight link between labor

supply and production. This can be achieved by introducing monopolistic competition in

labor and goods markets, which gives rise to time-varying markups. In the presence of

sticky prices and wages, firms and households in their price- and wage-setting decisions

face a convex marginal revenue product. This gives rise to inverse Oi (1961)-Hartman

(1972)-Abel (1983)-effects and precautionary pricing when faced with uncertainty about

future economic variables. Price-setters face the following choice: If prices are set too low,

more units need to be sold at too low a price, which is bad for the firm. In contrast, if

3
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Figure 1: Stylized pricing example. Notes: period profit (left panel) and expected profit of
the firm (right panel) as a function of the price pi,t−1. The black dashed line indicates the
maximum of the respective function. The red dashed line displays the mean preserving
spread to the optimal price that the firm faces. The green dashed dotted line indicates
the profits when choosing the mean optimal price of 1.

prices are set too high, the higher price compensates for being able to sell fewer units.

Due to this asymmetric, nonlinear effect, price setters prefer to err on the side of too high

prices and increase their markups. If this increase in markups after uncertainty shocks is

strong enough, it dampens demand and decreases output.

To see this more clearly, consider the following stylized partial equilibrium example. A

firm i of a continuum of identical, monopolistically competitive firms chooses its optimal

price pi,t−1 subject to a Dixit-Stiglitz-type demand function yi,t =
(
pi,t−1
pt

)−θp
yt, where yt

is aggregate demand, θp is the demand elasticity, and pt the aggregate price level. For the

mechanism to be as transparent as possible, we assume the firm is subject to a Taylor

(1980)-type pricing friction in that it has to set its price one period in advance.6 Its output

is produced using a constant returns to scale production function that is linear in labor:

yi,t = li,t. The labor market is assumed to be competitive, with the economy-wide wage

being denoted by wt. Real firm profits are then given by

π =
[
pi,t−1

pt
− wt
pt

](
pi,t−1

pt

)−θp
yt . (2.1)

Assuming, without loss of generality, that yt = 1 and wt = (θp − 1)/θp, this simplifies
6This same general mechanism is also present in the Rotemberg price adjustment cost framework used

in the medium-scale New Keynesian model below as well as in Calvo- and Menu Cost-models. In all of
these settings, marginal profits are convex in the price (see, e.g., Balleer et al. 2016; Fernández-Villaverde
et al. 2015).
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to

π =
[
pi,t−1

pt
− θp − 1

θp

1
pt

](
pi,t−1

pt

)−θp
. (2.2)

Expression (2.2) shows that there are two different channels through which prices affect

profits. First, a higher price pi,t−1 has an immediate price impact on the revenue, while

leaving the marginal costs unaffected. But second, there is an additional impact on the

quantity sold. The left panel of Figure 1 shows the profit function for θp = 11. As is

well-known, in the absence of uncertainty the firm will optimally charge a gross markup
θp
θp−1 over marginal costs, resulting in a profit-maximizing price of pi,t−1 = 1.

Assume now that the firm faces uncertainty about the optimal price, because the

aggregate price level is with probability 1/2 either pt = 1/1.05 or pt = 1/0.95, so that

in the absence of pricing frictions, either pi,t = 0.95 or pi,t = 1.05 is optimal. Thus,

compared to the previous situation, the optimal price is subject to a mean-preserving

spread.7 Setting the price at the expected optimal pi,t−1 = 1 is suboptimal, because it

would lead to lower expected profits due to the marginal profit being convex in the price.

Rather, the optimal price in this case is slightly higher at pi,t−1 = 1.02. This can be seen

in the expected profit schedule as a function of pi,t−1 shown in the right panel of Figure 1.

The same mechanism is at work in the household sector where the households have to

maximize utility by setting a nominal wage subject to an equivalent demand function for

their labor services.

3 Model

In this section we construct a prototypical New Keynesian DSGE model that embeds the

previously outlined mechanism on the firm and household side. The model serves two

purposes. First, the dynamic dimension of model can be used to generate predictions on

the effects of uncertainty shocks on price and wage markups. Second, the intratemporal

first-order conditions can be used as a Chari et al. (2007)-type business cycle accounting
7For ease of exposition we consider a mean-preserving spread to the endogenous variable. The same

effect would arise following a mean-preserving spread to aggregate price pt, but in this case an additional
Jensen’s Inequality effect would complicate matters due to the price level entering in the denominator.
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framework to construct aggregate price and wage markups from the data.

The model economy is populated by a continuum of intermediate good firms producing

differentiated intermediate goods using bundled labor services and capital, and a final good

firm bundling intermediate goods to a final good. A continuum of households j ∈ [0, 1]

sells differentiated labor services to a labor bundler. In addition, the model features a

government sector that finances government spending with distortionary taxation and

transfers, and a monetary authority, which sets the nominal interest rate according to an

interest rate rule. The full set of model equations is relegated to Appendix A.1.

3.1 Firms

The final good Yt is assembled from a continuum of differentiated intermediate inputs

Yt(i), i ∈ [0, 1], using the constant returns to scale Dixit-Stiglitz-technology

Yt =
[∫ 1

0
Yt(i)

θp−1
θp di

] θp
θp−1

, (3.1)

where θp > 0 is the elasticity of substitution between intermediate goods. Standard cost

minimization yields the demand for good i:

Yt(i) =
[
Pt(i)
Pt

]−θp
Yt , (3.2)

where Pt is the aggregate price level.

The monopolistically competitive intermediate good firms produce Yt(i) using capital

Kt(i) and a hired composite labor bundle Nt(i) according to a CES production function

Yt(i) = Y norm

α
[
Kt (i)

]ψ−1
ψ

+ (1− α)
[
Zt (Nt (i)−N o)

]ψ−1
ψ


ψ
ψ−1

− Φ .

Here, 0 ≤ α ≤ 1 parameterizes the labor share and Y norm is a normalization factor that

makes output equal to one in steady state.8 ψ is the elasticity of substitution between

capital and labor, with ψ = 1 being the Cobb-Douglas case. The fixed cost of production

Φ reduces economic profits to zero in steady state, thereby ruling out entry or exit (see,
8Note that both parameters are not structural parameters as they depend on the units of measurement

of the input factors. For more details on how to deal with such dimensional constants, see Cantore and
Levine (2012).
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e.g., Christiano, Eichenbaum, et al. 2005). N o = φoN , where N denotes steady-state

labor, is overhead labor used in the production of goods.9 Zt denotes a stationary, labor-

augmenting technology process specified below. Each intermediate good firm owns its

own capital stock, whose law of motion is given by

Kt+1(i) =
1− δ − φK

2

(
It(i)
Kt(i)

− δ
)2
Kt(i) + It(i) , φK ≥ 0 , (3.3)

where δ denotes the quarterly depreciation rate of the capital stock. Equation (3.3)

includes capital adjustment costs at the firm level of the form introduced by Hayashi

(1982).

Intermediate good producers are owned by households and therefore use the households’

stochastic discount factor for discounting. They maximize the present discounted value of

per period profits subject to the law of motion for capital and the demand from the final

good producer:[
Pt(i)
Pt

]1−θp

Yt −
Wt

Pt
Nt(i)− It(i)−

φp
2

(
Pt(i)
Pt−1(i) − Π

)2

Yt , (3.4)

where Nt(i) is hired in a competitive rental market at given wage rate Wt. The last term

denotes price adjustment costs as in Rotemberg (1982), where Π is steady-state inflation.

From the firms’ cost minimization problem follows the first-order condition for labor

inputs as

Ξp,t
Wt

Pt
= MPLt , (3.5)

where Ξp,t is the gross price markup over marginal costs. Due to monopolistic competition,

Ξp,t will generally not be equal to 1 as firms set a markup over marginal costs. Time-

variation in this markup is a central element of shock transmission in the New Keynesian

model.

3.2 Households

Following Erceg et al. (2000), we assume that the economy is populated by a continuum

of monopolistically competitive households, supplying differentiated labor Nt(j) at wage
9See Ratto et al. (2009) for one of the earliest DSGE models with overhead labor.
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Wt(j) to a labor bundler who then supplies the composite labor input to the intermediate

good producers. Formally, the aggregation technology follows a Dixit-Stiglitz form

Nt =
[∫ 1

0
Nt(j)

θw−1
θw dj

] θw
θw−1

, θw > 0 . (3.6)

Expenditure minimization yields the optimal demand for household j’s labor as

Nt(j) =
[
Wt(j)
Wt

]−θw
Nt ∀ j . (3.7)

Household j has preferences

Vt =
∞∑
h=0

βh
[(Ct+h(j))η(1−Nt+h(j))1−η]1−σ

1− σ , (3.8)

where the parameter σ ≥ 0 measures the risk aversion, 0 < β < 1 is the discount rate,

and 0 < η < 1 denotes the share of the consumption good in the consumption-leisure

Cobb-Douglas bundle.

The household faces the budget constraint

(1 + τ ct )Ct(j) + Bt(j)
Pt
≤(1− τnt )Wt(j)

Pt
Nt(j) +Rt−1

Bt−1(j)
Pt

+Dt(j)

− φw
2

(
Π−1 Wt(j)

Wt−1(j) − 1
)2

Yt + Tt ,

(3.9)

where the household earns income from supplying differentiated labor, which is taxed at

rate τnt . In addition, it receives real dividends Dt(j) from owning a share of the firms

in the economy and a real gross return Rt−1(Bt−1(j)/Pt) from investing in a zero net

supply riskless nominal bond. The household spends its income on consumption Ct(j),

taxed at rate τ ct , real savings in the private bond Bt(j)/Pt, and to cover the costs of

adjusting its wage (the second to last term on the right hand side). Finally, Tt denotes

transfers/lump-sum taxes.

The optimization problem of the household involves maximizing (3.8) subject to the

budget constraint (3.9) and the demand for the household’s differentiated labor input

(3.7). The first-order condition for labor supply implies that a gross markup over the

8



after-tax marginal rate of substitution Ξw,t is chosen such that

Wt

Pt
= Ξw,t

1 + τ ct
1− τnt

VN,t
VC,t

,

where VN and VC are the partial derivatives of the utility function with respect to labor

and consumption, respectively.

3.3 Government Sector

The government’s budget constraint is given by

τ ctCt + τnt
Wt

Pt
Nt = Gt + Tt , (3.10)

where Gt is exogenous government consumption and where we have suppressed aggregation

over households j for notational convenience.

The model is closed by assuming that the central bank follows a Taylor rule that reacts

to inflation and output:

Rt

R
=
(
Rt−1

R

)ρR (Πt

Π

)φRπ ( Yt
Y HP
t

)φRy1−ρR

. (3.11)

Here, 0 ≤ ρR ≤ 1 is a smoothing parameter introduced to capture the empirical evidence of

gradual movements in interest rates, Π is the target inflation rate set by the central bank,

and the parameters φRπ and φRy capture the responsiveness of the nominal interest rate

to deviations of inflation from its steady-state value and output from its model-consistent

Hodrick and Prescott (HP) filter trend Y HP
t , respectively (this specification follows Born

and Pfeifer 2014).10

10The HP filtered output gap is embedded into the dynamic rational expectations model following the
approach of Cúrdia et al. (2015)
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3.4 Exogenous shock processes

The two exogenous processes for government spending and TFP follow AR(1)-processes

with stochastic volatility:

Ẑt = ρzẐt−1 + σzt ε
z
t (3.12)

Ĝt = ρgĜt−1 + φgyŶt−1 + σgt ε
g
t (3.13)

σzt = (1− ρσz)σ̄z + ρσzσ
z
t−1 + ησzε

σz

t (3.14)

σgt = (1− ρσg)σ̄g + ρσgσ
g
t−1 + ησgε

σg

t , (3.15)

where the εit, i ∈ {z, g, σz, σg} are standard normally distributed i.i.d. shock processes,

hats denote percentage deviations from trend, and φgy governs the output feedback to

government spending. σzt and σgt are our proxies for supply and demand uncertainty,

respectively, with εσzt and εσzt being the corresponding uncertainty shocks.

3.5 Equilibrium

The use of Rotemberg price and wage adjustment costs implies the existence of a repre-

sentative firm and a representative household. We consider a symmetric equilibrium in

which all intermediate good firms charge the same price and choose the same labor input

and capital stock. Similarly, all households set the same wage, supply the same amount

of labor, and will choose the same consumption and savings.

The resource constraint then implies that output is used for consumption, investment,

government spending, and to pay for price and wage adjustment costs:

Yt = Ct + It +Gt + φw
2

(
Π−1 Wt

Wt−1
− 1

)2

Yt + φp
2

(
Π−1 Pt

Pt−1
− 1

)2

Yt . (3.16)

3.6 Parametrization

Table 1 displays the parametrization of our model. The capital share α is set to one

third and the depreciation rate δ to imply an annual depreciation rate of 10 percent. The

discount factor β = 0.99 implies an annualized interest rate of 4% in steady state. The

capital adjustment cost parameter φk is set to 2.09, the value estimated in Basu and

10



Table 1: Model Parametrization

Parameter Description Value Target
α Capital share 0.078 Capital share of 1/3
β Discount factor 0.99 4% annualized interest rate
δ Depreciation rate 0.025 10% per year
σ Risk aversion 2 standard value
φk Cap. adj. costs 2.09 Basu and Bundick (forthcoming)
φp Price adj. costs 105 Implied average duration of 1 year
φw Wage adj. costs 798 Implied average duration of 1 year
θw Labor subst. ela. 10 11% steady-state markup
θp Goods subst. ela. 10 11% steady-state markup
η Leisure share 0.462 Frisch elasticity of 1
φo Overh. lab. share 0.11 Nekarda and Ramey (2013)
ψ Subst. ela. CES 0.5 Chirinko (2008)
Φ Fixed costs 0.03 0 Steady-state profits
Π Ss gross inflation 1 Zero inflation
ρr Interest smoothing 0.836 Born and Pfeifer (2014)
φRπ Inflation feedback 1.78 Born and Pfeifer (2014)
φRy Output feedback 0.32 Born and Pfeifer (2014)
τ c Cons. tax rate 0.094 Sample mean
τn Labor tax rate 0.220 Sample mean
G/Y G/Y share 0.206 Sample mean
Y norm Output normalization 1.373 Output of 1

Bundick (forthcoming), which implies an elasticity of the investment to capital ratio with

respect to Tobin’s marginal q of 1.9.11

The price adjustment cost parameter φp is chosen to imply the same slope of the linear

New Keynesian Phillips Curve as a Calvo model with an average price duration of 1 year

(see e.g. Keen and Wang 2007). Similarly, the wage adjustment cost parameter is chosen

to imply an average wage contract duration of 1 year (see Born and Pfeifer 2016). The

two substitution elasticity parameters θp and θw are set to 10, which implies a steady-state

markup of 11% and is an intermediate value between the 5 percent markup estimated in

Altig et al. (2011) and the 20 percent found in Justiniano et al. (2013).12

We consider a zero inflation steady state, i.e. Π = 1. The Taylor rule parameters are

taken from Born and Pfeifer (2014). The risk aversion parameter is set to σ = 2. The
11See Appendix A.2.2.
12See Born and Pfeifer (2014) for a discussion of the importance of this parameter for the size of

uncertainty effects.
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leisure share in the Cobb-Douglas utility bundle η is set to imply a Frisch elasticity of 1.13

We set the share of overhead labor to 11%, following the evidence of Levitt et al. (2013)

that adding a second shift in car manufacturing plants increases labor by 80%. Given that

automobile plants run two shifts most of the time, this means overhead labor accounts for

20/180 = 0.11 (see Nekarda and Ramey 2013). The fixed costs Φ are set to imply 0 profits

in steady state, thereby ruling out entry and exit.14 The substitution elasticity between

capital and labor is set to ψ = 0.5, the midpoint of the estimates surveyed in Chirinko

(2008). The fiscal parameters are set to their sample mean over 1964Q1 to 2015Q4. The

tax rates are computed as average effective tax rates following Jones (2002).15

Table 2: Prior and Posterior Distributions of the Shock Processes

Parameter Prior distribution Posterior distribution
Distribution Mean Std. Dev. Mean 5 % 95 %

G process
ρσz Beta* 0.90 0.100 0.513 0.313 0.708
ρz Beta* 0.90 0.100 0.945 0.883 0.999
ησz Gamma 0.50 0.100 0.003 0.002 0.004
σz Uniform 0.05 0.014 0.008 0.007 0.009
φgy Normal 0.00 1.000 0.028 -0.026 0.083

TFP process
ρσg Beta* 0.90 0.100 0.517 0.312 0.722
ρg Beta* 0.90 0.100 0.773 0.692 0.855
ησg Gamma 0.50 0.100 0.002 0.002 0.003
σg Uniform 0.05 0.014 0.007 0.006 0.008

Note: Beta* indicates that the parameter divided by 0.999 follows a beta
distribution.

Finally, the exogenous processes are estimated via Bayesian techniques using sequential

Monte Carlo Methods.16 We employ a Sequential Importance Resampling (SIR) filter

(Gordon et al. 1993) with 20,000 particles to construct the likelihood of the stochastic

volatility processes. Draws from the posterior are generated using the Metropolis-Hastings
13See Appendix A.2.1.
14Note that in contrast to e.g. Smets and Wouters (2007), these fixed costs are non-labor related fixed

costs as the latter are captured in the overhead labor share.
15While we allow tax rates to vary in the empirical analysis, we keep them fixed at their steady-state

value for the model analysis. See Appendix C for details on the construction of tax rates.
16Our approach is described in more detail in Appendix B of Born and Pfeifer (2014).
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algorithm. We generate a Monte Carlo Markov Chain with 205,000 draws of which 5000

are used as a burn-in.17 As the proposal density, we use a multivariate normal distribution

with the identity matrix as the covariance matrix, scaled to achieve an acceptance rate

of about 25 percent. Smoothed objects are constructed using the backward-smoothing

routine of Godsill et al. (2004) with 20,000 particles for the smoother. To construct output,

government spending, and TFP deviations from trend, a one-sided HP-filter (λ = 1600) is

used. For TFP, we cumulate the utilization-adjusted TFP series constructed by Fernald

(2012). Table 2 displays the prior and posterior distributions, while Figure A.1 shows the

smoothed volatilities.

3.7 Model Impulse Responses

As outlined in Section 2, precautionary price and wage setting in response to an increase

in uncertainty lead to an increase in both price and wage markups. Thinking about a

stylized labor market as depicted in the schematic diagram shown in Figure 2, this should

cause both the labor demand and supply curves to shift to the left, resulting in an overall

decrease in hours worked and a reduction in aggregate output Yt.

We can now feed an uncertainty shock into our general-equilibrium model to study

the effects on markups and real activity in a richer model environment. Figure 3 displays

the impulse responses to a four-standard deviation government spending (i.e. demand)

uncertainty shock εσgt (top panel) and to a four-standard deviation technology (i.e. supply)

uncertainty shock εσ
z

t (bottom panel).18 We denote the log wage markup with ξwt ≡

log(Ξw,t) and the log price markup with ξpt ≡ log(Ξp,t). We see that, indeed, an increase in

uncertainty leads to an increase in both price and wage markups and a decline in output.

When the shock dies out, the markups converge back to their pre-shock values as does

output. We do not show here the response of the real wage, which increases. As the labor

market diagram in Figure 2 makes clear, its theoretical response is ambiguous, depending
17The Raftery and Lewis (1992) convergence diagnostics with quantile q = 0.025, precision r = 0.01,

and probability of attaining this precision s = 0.95 suggests that this is sufficient for convergence.
18IRFs are generalized impulse response functions, shown as percentage deviations from the stochastic

steady state, computed using third-order perturbation techniques with the pruning algorithm of Andreasen
et al. (2013). We use four-standard deviation shocks as this is the typical shock size used in the empirical
literature, because it is about the increase in uncertainty proxies during the Great Recession.
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Figure 2: Stylized labor market. Notes: Labor supply is characterized by the condition
that the log marginal rate of substitution (mrs) is equal to the log real wage, while the
labor supply curve is characterized by the log marginal product of labor (mpl) being equal
to the log real wage. The point SSeff denotes the efficient steady state where mrs and
mpl are equal. The presence of a wage and price markup (ξw and ξp) drives a wedge
between the two curves and the real wage.

on whether the wage or price markup response is stronger, increasing for the former and

falling for the latter.

A necessary ingredient for the negative response of output to an uncertainty shock is

the presence of at least one type of nominal rigidity. Figures A.2 and A.3 in the appendix

show the IRFs with only price and wage rigidity, respectively. In both cases, there is a

drop in output, which is less pronounced than in the baseline case with both types of

stickiness. Finally, A.4 shows the IRFs in the model without nominal rigidities. In this

case the precautionary labor supply motive dominates and output increases.

3.8 Constructing aggregate markups

Our ultimate goal is to compare the theoretical model IRFs with their empirical counter-

parts. To this end, we need to construct aggregate markups from the data.

Using the intratemporal first-order conditions of the model, empirical measures of

both price and wage markups can be constructed in a business cycle accounting-style

exercise. Using the Cobb-Douglas felicity function from Section 3, the wage markup over
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Figure 3: Model IRFs to a four-standard deviation government spending volatility shock
(Panel a) and to a technology volatility shock of the same size (Panel b). Notes: Theoretical
responses measured in percentage deviations from the stochastic steady state.

the marginal rate of substitution satisfies

Ξw,t
1− η
η

Ct
1−Nt

= 1− τnt
1 + τ ct

Wt

Pt
. (3.17)

Expanding this fraction and taking logs, ξwt ≡ log(Ξw,t) can be computed from

ξwt = log
(

1− τnt
1 + τ ct

)
+ log

(
WtNt

PtYt

)
+ log

(
Yt
Ct

)
− log

(
1− η
η

)
+ log

(1−Nt

Nt

)
, (3.18)

where the second term on the right is the labor share.

The firm-side price markup ξpt ≡ log(Ξp,t) can be constructed using the CES-production

function (3.1) as (see Appendix B for details)

ξpt = log
(

(1− α) (Y norm)
ψ−1
ψ

)
+ ψ − 1

ψ
Zt + 1

ψ
log

(
Yt + Φ
Nt −N o

)
− log

(
Wt

Pt

)
. (3.19)

To compute both price and wage markups, all that is needed are aggregate time series

on output, consumption, taxes, labor-augmenting technology, and various labor market

variables like hours worked and wages. On the household side we follow Karabarbounis

(2014) and rely on broad, encompassing measure of hours, employment, and population

that takes the substantial U.S. military employment into account (see Cociuba et al.
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Figure 4: Cyclical component of the price markup ξpt (top panel) and of the wage markup
ξwt (bottom panel) over time. Blue solid lines: respective markup; red dashed line: GDP.
Grey shaded areas denote NBER recessions.

2012) when measuring the marginal rate of substitution. On the firm side, it is crucial to

correctly measure the marginal product of labor. For this purpose, we follow Nekarda

and Ramey (2013) and rely on data from the private business sector, which distinguishes

production from overhead workers. We use Fernald (2012)’s utilization-adjusted TFP

measure to back out labor-augmenting technology.19

Figure 4 shows the HP-filtered (λ = 1600) markups over time. As already documented

in Nekarda and Ramey (2013), the price markup tends to have its trough during or shortly

after recessions, while its peak happens in the middle of expansions. In contrast, the wage

markup tends to peak during recessions. This finding is consistent with evidence presented

by Karabarbounis (2014), Shimer (2010), and Galí et al. (2007). The cyclical behavior of

the markups is confirmed by the cross-correlograms depicted in Figure 5. While the price

markup is acyclical, the correlation becomes negative for leads: a drop in GDP today

signals an increase in the price markup in the future. In contrast, the wage markup shows

a pronounced countercyclicality.
19Appendix C describes the respective data sources used in detail.
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Figure 5: Correlation of the cyclical components of the price markup ξpt+j and the wage
markup ξwt+j with output yt. The price markup is shown for both utilization-adjusted
(blue line) and unadjusted (green line) TFP measures.

4 Aggregate evidence

In this section, we investigate the responses of aggregate price and wage markups to

exogenous uncertainty shocks. We first consider a model-consistent uncertainty measure

in the form of smoothed uncertainty shocks from the particle smoother (see Section 3.6),

before turning to broader measures of aggregate uncertainty.

4.1 Model-consistent uncertainty measures

For our first approach, we use the median quarterly smoothed uncertainty shocks et ∈

{ε̂σgt , ε̂σzt } (where hats denote estimates from the smoother) from the estimated TFP and

government spending processes that drive our DSGE model (see Section 3.4). These

shocks are included in a local projection model (Jordá 2005) of the form

xt+h = αh + βht+ γhet + ηt,h . (4.1)

Here, γh denotes the response of a particular variable xt+h at horizon h to an exogenous

variation in uncertainty at time t, et. In our baseline xt+h stands for either price or wage

markup or GDP. αh and βht are a constant and a linear time trend, respectively. The

error term ηt,h is assumed to have a zero mean and strictly positive variance. We estimate

model (4.1) using OLS where, in order to improve the efficiency of the estimates, we

include the residual of the local projection at t+ h− 1 as an additional regressor in the
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(b) Government spending uncertainty.

Figure 6: Local projection responses to model-consistent uncertainty shocks. Notes:
Shaded areas denote 90% confidence intervals based on Newey-West standard errors.

regression for t+ h (see Jordá 2005).20

Figure 6 presents the results. As expected, an increase in technological uncertainty is

associated with a drop in GDP. However, the conditional markup response in the data

partially differs from the one predicted by the model. On impact, the price markup

falls. In contrast, the DSGE model implies that the price markup quickly peaks and then

declines back to its stochastic steady state as the effect of price stickiness subsides over

time.21 The movement of the wage markup squares better with the model: it increases

after an uncertainty shock and then slowly declines back to steady state.

The evidence after a government spending uncertainty shock is not as conclusive, but

also does not lend strong support to the model mechanism.

4.2 Two-step approach using broad macro uncertainty measure

The first set of impulse responses from the model-consistent uncertainty measures tenta-

tively suggests that the conditional behavior of the price markup is not consistent with the
20As shown in Pagan (1984), the standard error estimate on the residual is consistent.
21This conditional markup response is consistent with the conditional comovement Nekarda and Ramey

(2013) found after other types of shocks, which also contradicted the sticky price model.
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model prediction. However, the bands were relatively wide. This is not entirely surprising

as TFP measures are notoriously noisy and government spending shocks are hard to

identify. Thus, we would like to rely on an uncertainty proxy that is still closely linked to

the model concept of uncertainty, but at the same time has a better signal-to-noise ratio.

A measure satisfying this criterion has recently been proposed by Jurado et al. (2015).

Their measure is closely linked to the concept of forecast error uncertainty employed

in business cycle models, but relies on a broad information set to extract the signal.22

We think that this is currently the broadest and at the same time cleanest uncertainty

measure available.23

We are ultimately interested in the dynamic response of markups to innovations, or

“shocks”, to uncertainty. Given that the JNL uncertainty measure is available at monthly

frequency while we only have quarterly markup data, we will employ a two-step procedure

following Kilian (2009) and Born, Breuer, et al. (2014). In the first step, to identify

structural uncertainty shocks, we follow Bloom (2009) and Jurado et al. (2015) and employ

a Cholesky-ordering within a monthly VAR framework. The structural shocks are then

aggregated to quarterly frequency by averaging the monthly shocks and, in the second

step, fed into a local projection as in (4.1).24 We pursue this approach, because the

monthly time horizon of the VAR makes the recursive timing assumption underlying the

identification scheme more plausible than in a quarterly VAR.

Our sample ranges from 1964M1 to 2015M12. The variable vector Xt in our VAR

contains 1) real industrial production, 2) total non-farm employment, 3) real personal
22Jurado et al. (2015) stress that in order to measure uncertainty, it is important to purge the predictable

component of volatility. They estimate a factor-based forecasting model on 279 monthly economic and
financial time series. Given their estimated factors, they then compute forecast errors for 132 of these
variables and subsequently use the forecast errors to construct an uncertainty time series for each variable
based on the assumption that these follow a stochastic volatility process. Their macroeconomic uncertainty
measure is the common factor of the uncertainty connected to the individual variables. We use their
one-period ahead forecast measure (i.e. h = 1, not to be confused with the forecast horizon in the local
projection).

23Measures like the economic policy uncertainty index by Baker et al. (2016) have a very narrow
focus, while financial market-based measures like the VIX or realized (return) volatility are likely to be
contaminated by changes in risk aversion and financial market conditions (see e.g. Bekaert et al. 2013;
Caldara et al. 2016; Stock and Watson 2012). We will employ these alternative measures in the robustness
section.

24Using the average follows Kilian (2009). Readers worried about time aggregation are referred to the
mixed-frequency VAR below.
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consumption expenditures, 4) the personal consumption expenditure deflator, 5) real new

orders, 6) the manufacturing real wage, 7) hours worked in manufacturing, 8) the Wu and

Xia (2016) shadow federal funds rate,25 9) the S&P 500 Index, 10) M2 money growth,

and 11) the 1-step ahead JLN uncertainty proxy.26 Formally, we estimate the following

VAR using OLS

Xt = µ+ αt+ A(L)Xt−1 + νt , (4.2)

where and µ and αt are a constant and time trend, respectively, A(L) is a lag polynomial

of degree p=6, and νt iid∼ (0,Σ). In terms of identification, we assume a lower-triangular

matrix B, which maps reduced-form innovations νt into structural shocks εt = Bνt.

After averaging the monthly shocks and feeding them into the local projection model,

the resulting IRFs are plotted in Figure 7. They corroborate our previous finding. After an

uncertainty shock, the wage markup increases significantly, consistent with a precautionary

wage setting motive as in the model. The same does not apply to the price markup, which

tends to decline.
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Figure 7: Local projection responses to a JLN-based uncertainty shock in the two-step
model. Notes: Shaded areas denote 90% confidence intervals based on Newey-West
standard errors.

4.3 Mixed-frequency VAR

While the two-step approach does not impose cross-equation restrictions and is therefore

more flexible and robust than a VAR, it comes at the disadvantage of not making full
25We use this measure to alleviate concerns about the effective zero lower bound introducing a

nonlinearity the VAR is not being able to capture. Using the effective federal funds rate instead yields
very similar results.

26See Appendix D.2 for a detailed description of the macro dataset and the transformations used for
the respective variables.
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use of high-frequency information. As mentioned before, the constructed markups are

only available at quarterly frequency. To use all available monthly information on the

other variables, we assume that we cannot observe the monthly realizations of the markup

measure and treat these data as missing values. Following the Bayesian VAR framework

outlined in Eraker et al. (2015), we can then employ a Gibbs sampler to deal with these

missing observations by sampling the missing data from their conditional distribution.

Our sample again ranges from 1964M1 to 2015M12, on which we estimate the 11-

variable VAR in equation (4.2) with p = 6, but where we add our quarterly markup

measures as an additional twelfth variable observed every third month. Consistent with

the model, we order the markups after the respective uncertainty measure so that markups

can react on impact. We use a shrinking prior of the Independent Normal-Wishart

type (Kadiyala and Karlsson 1997), where the mean and precision are derived from a

Minnesota-type prior (Doan et al. 1984; Litterman 1986).27 In the Gibbs sampler, we

use 25,000 draws, of which we discard the first 5,000 draws as a burn-in.28 We use 90%

highest posterior density intervals (HPDIs) based on 1000 random posterior draws after

burn-in.

Figure 8 presents the impulse responses of the wage and price markup following an

economic uncertainty shock.29 As with the model-consistent measure and the two-step

approach, wage markups increase after an uncertainty shock but price markups fall.

Figure 9 displays the total markup or “labor wedge”, i.e. the sum of the price and wage

markup. During the first few months, it is dominated by the price markup response and

slightly falls, before it becomes dominated by the wage markup and increases subsequently.

As the figure shows, after an uncertainty shock the real wage increases while hours worked

fall. This response is perfectly consistent with a situation where the wage markup increases

while the price markup stays flat (see the stylized labor market diagram in Figure 2).30

While the model does not predict the same hump-shaped movement, it predicts the
27See Appendix D.1 for details.
28The Raftery and Lewis (1992) convergence diagnostics suggests that this is sufficient for convergence.
29Figure D.5 presents IRFs of all variables to an uncertainty shock.
30The model with only rigid wages also delivers an increases in the real wage and a drop in hours

worked.
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Figure 8: IRFs to JLN-based uncertainty shock in the mixed-frequency VAR. Notes:
Bands are pointwise 90% HPDIs. The respective markups are rotated into the VAR as
the 12th variable.
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Figure 9: IRFs to JLN-based uncertainty shock in the mixed-frequency VAR including the
total markup. Notes: Bands are pointwise 90% HPDIs. The total markup is computed as
the sum of the price and wage markup.
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same countercyclical movement of the wage markup. At least in that regard, the data is

consistent with the markup channel in New Keynesian models and the role of uncertainty

shocks more generally. Empirically, most of the movement in the labor wedge seems to

come from this margin.31 However, from the vantage point of the basic New Keynesian

model with only sticky prices, the price markup response presents a challenge.

We also compute the posterior unconditional forecast error variance share explained

by the identified uncertainty shock. Uncertainty shocks account for about 13% of output

fluctuations, 15% of the wage markup, but only 8% of the price markup. Taken together,

uncertainty shocks account for 11% of total labor wedge fluctuations (see Table D.3 in

the appendix).

4.4 Robustness

While our results seem to be robust across different time-series approaches, one might

wonder whether they depend on the ordering of variables in the VAR, the chosen uncertainty

proxy, or the assumptions made to construct markups. We will address these concerns in

the following.

Bloom (2009) VAR

Bloom (2009) considers a different, 8-variable VAR where uncertainty is ordered second

and measured by stock market volatility. In a first step, we check whether using the VIX

instead of the JNL measure makes a difference in our VAR 11+1. Figure 10 confirms that

the results are robust to this change.

Next, we investigate the original Bloom 8-variable VAR with uncertainty, measured by

the VIX, ordered second. We add our markup measure as the ninth variable.32 Results

from the mixed-frequency estimation are shown in Figure 11. They are very similar to

the baseline results, indicating that the ordering of the uncertainty measure is not crucial

for our results.33

31Bils et al. (2016) have recently argued for a more equal split.
32See Appendix D.3 for a detailed variable listing and Figure D.6 for a full set of IRFs.
33Figure D.7 shows that the IRFs when using the Jurado et al. (2015) measure ordered second in the

VAR are similar.

23



VIX

0 10 20 30

months

-10

0

10

20

30

U
n
it
s

Price markup

0 10 20 30

months

-1

-0.5

0

0.5

1

p
e
rc

e
n
t

Real industrial prod.

0 10 20 30

months

-4

-2

0

2

4

p
e
rc

e
n
t

(a) Price Markup

VIX

0 10 20 30

months

-10

0

10

20

30

U
n
it
s

Wage markup

0 10 20 30

months

-2

0

2

4

p
e
rc

e
n
t

Real industrial prod.

0 10 20 30

months

-4

-2

0

2

4

p
e
rc

e
n
t

(b) Wage Markup

Figure 10: IRFs to VIX-based uncertainty shocks in the mixed-frequency 11+1-VAR.
Notes: Bands are pointwise 90% HPDIs.
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Figure 11: IRFs to uncertainty shocks measured via the VIX ordered second in the
mixed-frequency 8+1-VAR. Notes: Included variables as in Bloom (2009) plus markup
measure. Bands are pointwise 90% HPDIs.

Alternative markup measurements

In our baseline price markup measure, we employ the utilization-adjusted TFP measure

of Fernald (2012), which results in an acyclical price markup. As a robustness check,

we also use Fernald’s utilization-unadjusted TFP measure. This results in a strongly
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countercyclical price markup (see the green line in the left panel of Figure 5), which, as

Nekarda and Ramey (2013) note, is very similar to the countercyclical markup measure

constructed in Galí et al. (2007). Estimating our mixed-frequency VAR including this

alternative price markup measure yields the IRFs reported in Panel (a) of Figure 12. The

drop in the price markup is less pronounced than in the baseline, but there is still no

robust evidence for an increase.
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(a) Price markup measured with utilization-unadjusted TFP
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(b) Wage markup measured with separable preferences

Figure 12: IRFs to JLN-based uncertainty shocks in the mixed-frequency 11+1-VAR.
Notes: Bands are pointwise 90% HPDIs.

We also check the robustness of the wage markup response with respect to the

preference specification used. Instead of the Cobb-Douglas type felicity function used in

the baseline, we construct the wage markup using separable isoelastic preferences of the

type log(Ct)− ψN1+1/η
t , where we again set the Frisch elasticity η to one.34 This results

in a wage markup that is more volatile over the business cycle (Karabarbounis 2014). The

results in Panel (b) of Figure 12 show a somewhat stronger increase in the wage markup

with this measure, but are otherwise similar to the baseline.

With respect to the price markup, one might worry that the correction for overhead

labor, fixed costs, and a CES production function might be overdoing things. Figure 13

therefore reports the responses of three “conventional” markup measures based on a setup
34The labor disutility parameter ψ only affects the constant in our markup measure and therefore can

be set to 1 without loss of generality.
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Figure 13: IRFs of Cobb-Douglas production function-based price markups to JNL-based
uncertainty shocks in the mixed-frequency 11+1-VAR. Notes: left panel: based on total
compensation in non-financial business sector; middle panel: based on labor share of
production and supervisory workers in private business sector; right panel: based on labor
share production workers only in private business sector. Bands are pointwise 90% HPDIs.

with no fixed costs and a Cobb-Douglas production function. In this case, the aggregate

price markup corresponds to the inverse labor share. The left panel of Figure 13 displays

the response of the price markup for the labor share based on total compensation in the

non-financial business sector (available from the NIPA tables). The middle panel uses the

labor share of production and supervisory workers in the private business sector, while

the right panel is based on production workers only in the private business sector, i.e.

excludes overhead workers (both available from the BLS). In all three cases, the price

markup significantly drops after an uncertainty shock. The first two measures, which are

based on all workers, tend to recover somewhat more quickly than the third measure,

which excludes overhead labor. But even for the first two measures, we do not find a

significant increase of the price markup within the first three years.

Other uncertainty measures

Recently Caldara et al. (2016) and Ludvigson et al. (2015) have argued that it is important

to distinguish between macroeconomic and financial uncertainty, with the latter driving

the former. Figure D.8 tests this conjecture within the context of our VAR model by

displaying the IRFs in response to the Ludvigson et al. (2015) financial uncertainty

measure. The results are similar to the ones of the macro uncertainty measure.

Baker et al. (2016) have constructed an index of economic policy uncertainty. It is

more narrow than the Jurado et al. (2015) uncertainty measure in that it only captures
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the political dimension of uncertainty, but is at the same time broader in that it not only

captures risk, but also Knightian uncertainty. Despite these differences, the responses

of the respective markups, displayed in Figure D.9, show a familiar pattern: the wage

markup increases while the price markup falls.35

5 Industry-level evidence

In the previous section, we have documented that there is scant empirical evidence for

price markup increases after uncertainty shocks at the aggregate level. In this section

we dig deeper and investigate whether the model-predicted price markup response may

simply be hidden by heterogeneity in price stickiness at the industry level.

5.1 Constructing industry-specific markups

Based on the NBER CES Manufacturing Industry Database (Bartelsman and Gray 1996;

Becker et al. 2016) we construct price markups and output measures at the four digit

SIC-industry level (see Appendix C.5 for details). As we have argued before, a robust

result of representative agent models with convex adjustment costs is that negative output

effects of uncertainty are directly related to nominal stickiness. As a first pass at the data,

we therefore estimate the contemporaneous response of real output for each SIC4 industry

and plot it against average price durations for these industries. To compute this response,

for each industry we regress the log of real output yt on the aggregate uncertainty shock,

a constant, and a linear time trend:

log(yt) = α0 + α1t+ α2ēt + εt . (5.1)

The aggregate uncertainty shock ēt is the annual average of the monthly uncertainty

shocks estimated using the VAR (4.2). Implied average price durations are computed

for SIC4 industries based on the estimated New Keynesian Phillips Curves in Petrella
35In this case, due to non-availability of the EPU measure, the sample only starts in 1985, potentially

explaining the non-significant drop in industrial production.
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and Santoro (2012).36 Figure 14 plots the resulting estimates α̂2 against average price

durations. There does not seem to be a linear relationship between price stickiness and

the output effects of uncertainty shocks. The regression line is flat and the slope coefficient

is insignificant at the 5% level.
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Figure 14: Implied average price duration at the SIC4 industry-level vs. output effects of
aggregate uncertainty shock. Notes: Implied average price durations are based on Petrella
and Santoro (2012); output effect estimates derived from industry-specific local projection
on mean annual JNL shocks from VAR-11.

5.2 Regression evidence

As price stickiness per se does not seem seem to be related to the output effects of

uncertainty, we now investigate the markup channel itself. Specifically, we run a panel

version of the local projection (4.1)

xi,t+h = αi,h + βi,ht+ γhēt + ηi,t+h . (5.2)

Again, γh denotes the response of a particular variable xt+h at horizon h to an exogenous

variation in uncertainty at time t, ēt, where xt+h is either the industry-specific price

markup or industry-specific real output. αi,h and βi,ht are industry-specific constant and
36For that purpose, we translate their estimated slope of the New Keynesian Phillips Curve into a

Calvo price duration parameter, using β = 0.99.
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time trend, respectively. The results of the pooled OLS regression are shown in Figure

15. Shaded areas denote 90% confidence intervals based on Driscoll and Kraay (1998)

standard errors. Qualitatively, the results look very similar to the aggregate evidence.

Industry-level output (left panel) declines after a one-standard deviation uncertainty

shock and recovers after about 3 years followed by an overshoot. The price markup based

on a CES production function and production-worker compensation does not increase

significantly and even drops after 4 years. We therefore also do not find evidence for the

price markup channel in disaggregated industry level data.
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Figure 15: IRFs of industry-level output and price markup to aggregate uncertainty shocks.
Notes: Shaded areas denote 90% confidence intervals based on Driscoll-Kray standard
errors.

This result does not depend on the specific choice of CES production function or

production-worker compensation. Figure 16 presents evidence for price markups con-

structed using all workers (left panel) and a Cobb-Douglas production function (middle

panel), respectively. Markups fall (insignificantly) on impact and only turn positive after

about three years, before falling again.

6 Conclusion

The question of the markup channel as an empirically plausible transmission mechanism

of uncertainty shocks into the macroeconomy is highly relevant for the policy debate given

that the supposedly negative influence of policy uncertainty has become a recurring theme

in the political discourse. With much of the model-based evidence featuring this supposed

transmission mechanism it is of paramount importance to subject it to a rigorous empirical
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Figure 16: IRFs of industry-level price markups to aggregate uncertainty shocks for
alternative markup constructions. Notes: Left panel: markups constructed assuming CES
production function and using the compensation of all workers; right panel: Markups
constructed assuming Cobb-Douglas (CD) production function and using production
worker compensation. Shaded areas denote 90% confidence intervals based on Driscoll-
Kray standard errors.

assessment. We construct a DSGE model to measure markups and generate theoretical

markup responses following uncertainty shocks. We then provide empirical evidence

on the response of markups to uncertainty shocks. Contrary to the model’s prediction,

price markups tend to fall. However, wage markups increase after uncertainty shocks.

Our results suggest that sticky wages play a more important role in the transmission of

aggregate uncertainty shocks to economic variables than sticky prices.37

37See also Barattieri et al. (2014), Daly and Hobijn (2014), and Galí (2011) on the importance of sticky
wages.

30



References

Abel, Andrew B. (1983). “Optimal investment under uncertainty”. American Economic
Review 73 (1), 228–33.

Aguiar, Mark, Erik Hurst, and Loukas Karabarbounis (2013). “Time use during the Great
Recession”. American Economic Review 103 (5).

Altig, David, Lawrence J. Christiano, Martin Eichenbaum, and Jesper Lindé (2011).
“Firm-specific capital, nominal rigidities and the business cycle”. Review of Economic
Dynamics 14 (2), 225–247.

Andreasen, Martin M., Jesús Fernández-Villaverde, and Juan F. Rubio-Ramírez (2013).
“The pruned state-space system for non-linear DSGE models: theory and empirical
applications”. NBER Working Papers 18983.

Bachmann, Rüdiger, Steffen Elstner, and Eric R. Sims (2013). “Uncertainty and eco-
nomic activity: evidence from business survey data”. American Economic Journal:
Macroeconomics 5 (2), 217–249.

Baker, Scott R., Nicholas Bloom, and Steven J. Davis (2016). “Measuring economic policy
uncertainty”. Quarterly Journal of Economics 131 (4), 1593–1636.

Balleer, Almut, Nikolay Hristov, and Dominik Menno (2016). “Financial market imperfec-
tions and the pricing decision of firms: theory and evidence”. Mimeo.

Barattieri, Alessandro, Susanto Basu, and Peter Gottschalk (2014). “Some evidence on
the importance of sticky wages”. American Economic Journal: Macroeconomics 6 (1),
70–101.

Bartelsman, Eric J. and Wayne Gray (1996). “The NBER Manufacturing Productivity
Database”. NBER Technical Working Paper 205.

Başkaya, Yusuf Soner, Timur Hülagü, and Hande Küşük (2013). “Oil price uncertainty in
a small open economy”. IMF Economic Review 61 (1), 168–198.

Basu, Susanto and Brent Bundick (forthcoming). “Uncertainty shocks in a model of
effective demand”. Econometrica.

Basu, Susanto and Christopher L. House (2016). “Allocative and remitted wages: new
facts and challenges for Keynesian models”. NBER Working Paper 22279.

Becker, Randy, Wayne Gray, and Jordan Marvakov (2016). “NBER-CES Manufacturing
Industry Database: technical notes”. Mimeo.

Bekaert, Geert, Marie Hoerova, and Marco Lo Duca (2013). “Risk, uncertainty and
monetary policy”. Journal of Monetary Economics 60 (7), 771–788.

Bils, Mark (1987). “The cyclical behavior of marginal cost and price”. American Economic
Review 77 (5), 838–55.

Bils, Mark, Peter J. Klenow, and Benjamin A. Malin (2016). “Resurrecting the role of the
product market wedge in recessions”. Mimeo.

31



Bloom, Nicholas (2009). “The impact of uncertainty shocks”. Econometrica 77 (3), 623–
685.

(2014). “Fluctuations in Uncertainty”. Journal of Economic Perspectives 28 (2),
153–76.

Born, Benjamin, Sebastian Breuer, and Steffen Elstner (2014). “Uncertainty and the Great
Recession”. German Council of Economic Experts Working Papers 04/2014.

Born, Benjamin and Johannes Pfeifer (2014). “Policy risk and the business cycle”. Journal
of Monetary Economics 68, 68–85.

(2016). “The New Keynesian Wage Phillips Curve: Calvo vs. Rotemberg”. CEPR
Working Paper 11568.

Caldara, Dario, Christina Fuentes-Albero, Simon Gilchrist, and Egon Zakrajšek (2016).
“The macroeconomic impact of financial and uncertainty shocks”. European Economic
Review 88, 185–207.

Cantore, Cristiano and Paul Leslie Levine (2012). “Getting normalization right: dealing
with ‘dimensional constants’ in macroeconomics”. Journal of Economic Dynamics and
Control 36 (12), 1931–1949.

Cesa-Bianchi, Ambrogio and Emilio Fernandez-Corugedo (2014). “Uncertainty in a model
with credit frictions”. Bank of England Working Paper 496.

Chang, Yongsung and Jay H. Hong (2006). “Do technological improvements in the
manufacturing sector raise or lower employment?” American Economic Review 96 (1),
352–368.

Chari, V. V., Patrick J. Kehoe, and Ellen R. McGrattan (2007). “Business cycle account-
ing”. Econometrica 75 (3), 781–836.

Chirinko, Robert S. (2008). “σ: the long and short of it”. Journal of Macroeconomics 30
(2), 671–686.

Christiano, Lawrence J., Martin Eichenbaum, and Charles L. Evans (2005). “Nominal
rigidities and the dynamic effects of a shock to monetary policy”. Journal of Political
Economy 113 (1), 1–45.

Christiano, Lawrence J., Roberto Motto, and Massimo Rostagno (2014). “Risk shocks”.
American Economic Review 104 (1), 37–65.

Chugh, Sanjay K. (2016). “Firm risk and leverage-based business cycles”. Review of
Economic Dynamics 20, 111–131.

Cociuba, Simona, Edward Prescott, and Alexander Ueberfeldt (2012). “U.S. hours and
productivity behavior using CPS hours worked data:1947III–2011IV”. Mimeo. Arizona
State University.

Cúrdia, Vasco, Andrea Ferrero, Ging Cee Ng, and Andrea Tambalotti (2015). “Has U.S.
monetary policy tracked the efficient interest rate?” Journal of Monetary Economics
70, 72–83.

32



Daly, Mary C. and Bart Hobijn (2014). “Downward nominal wage rigidities bend the
Phillips Curve”. Journal of Money, Credit and Banking 46 (S2), 51–93.

Doan, Thomas, Robert Litterman, and Christopher Sims (1984). “Forecasting and con-
ditional projection using realistic prior distributions”. Econometric Reviews 3 (1),
1–100.

Domeij, David and Martin Floden (2006). “The labor-supply elasticity and borrowing
constraints: why estimates are biased”. Review of Economic Dynamics 9 (2), 242–262.

Driscoll, John C. and Aart C. Kraay (1998). “Consistent Covariance Matrix Estimation
With Spatially Dependent Panel Data”. The Review of Economics and Statistics 80
(4), 549–560.

Edge, Rochelle M., Refet S. Gürkaynak, and Burçin Kisacikoǧlu (2013). “Judging the
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A Theoretical Model

A.1 Model Equations

The model equations after imposing a symmetric equilibrium are given by:

1. Production function:

Yt = Y norm

[
αK

ψ−1
ψ

t + (1− α) (Zt (Nt −N o))
ψ−1
ψ

] ψ
ψ−1

− Φ (A.1)

2. Firm FOC for renting Nt:
Ξp,t

Wt

Pt
= MPLt , (A.2)

3. Definition marginal product of labor

MPLt = Y norm

[
αK

ψ−1
ψ

t + (1− α) (Zt (Nt −N o))
ψ−1
ψ

] ψ
ψ−1−1 (1− α) (Zt (Nt −N o))

ψ−1
ψ

Nt −N o
,

(A.3)
which, in the presence of no overhead labor and fixed costs, simplifies to

MPLt = (1− α) (Zt)
ψ−1
ψ

(
Yt
Nt

) 1
ψ

4. Firm profits:
Dt = Yt −Nt

Wt

Pt
− It −

φP
2
(
Πt − Π̄

)2
Yt (A.4)

5. Firm FOC for renting Kt:
Ξp,tR

K
t = MPKt , (A.5)

6. Definition marginal product of capital

MPKt = Y norm

[
αK

ψ−1
ψ

t + (1− α) (Zt (Nt −N o))
ψ−1
ψ

] ψ
ψ−1−1

αK
ψ−1
ψ

t

Kt

(A.6)

which, in the presence of no fixed costs, simplifies to

MPKt = α
(
Yt
Kt

) 1
ψ

7. Firm FOC for Pt:

φp

[
Π−1 Pt

Pt−1
− 1

]
Π−1 Pt

Pt−1
= (1− θp) + θpΞ−1

p,t

+ φpEt
{
Mt+1

Yt+1

Yt

[
Π−1Pt+1

Pt
− 1

] [
Π−1Pt+1

Pt

]}
,

(A.7)
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where Mt is the stochastic discount factor defined below.

8. Firm FOC for capital:

qt = Et
{
Mt+1

(
RK
t+1 + qt+1

(
1− δ − φK

2

(
It+1

Kt+1
− δ

)2

+ φK

(
It+1

Kt+1
− δ

)
It+1

Kt+1

))} (A.8)

9. Firm FOC for investment:

1
qt

= 1− φK
(
It
Kt

− δ
)

(A.9)

10. Definition value function:

Vt = (Cη
t (1−Nt)1−η)1−σ

1− σ + βEtVt+1 (A.10)

11. Definition marginal utility of wealth:

λt(1 + τ ct ) = VC,t , (A.11)

12. Partial derivative of lifetime utility with respect to consumption:

VC,t = η
1
Ct

(
Cη
t (1−Nt)1−η

)1−σ
(A.12)

13. FOC with respect to W:

0 = VNt + λt

[
(1− θw)(1− τnt )Nt

Wt

Pt
− φw

(
Π−1 Wt

Wt−1
− 1

)
Wt

ΠWt−1
Yt

]

+ βλt+1

[
φw

(
Π−1Wt+1

Wt

− 1
)

Π−1Wt+1

Wt

Yt+1

]
,

(A.13)

14. Partial derivative of lifetime utility with respect to labor:

VN,t = −(1− η) 1
1−Nt

(
Cη
t (1−Nt)1−η

)1−σ
(A.14)

15. Definition stochastic discount factor:

Mt+1 ≡
∂Vt
∂Ct+1
∂V
∂Ct

1 + τ ct
1 + τ ct+1

= β
1 + τ ct

1 + τ ct+1

(
Cη
t+1(1−Nt+1)1−η

Cη
t (1−Nt)1−η

)1−σ (
Ct
Ct+1

)
(A.15)

16. Euler Equation
1 = RtEt

{
Mt+1Π−1

t+1

}
(A.16)
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17. Taylor Rule:
Rt

R
=
(
Rt−1

R

)ρR (Πt

Π

)φRπ ( Yt
Y HP
t

)φRy1−ρR

. (A.17)

18. Law of motion for capital:

Kt+1 =
(

1− δ − φK
2

(
It
Kt

− δ
)2)

Kt + It (A.18)

19. Definition of model-consistent HP-filter output gap:

Y HP
t (1 + 6× 1600) + Y HP

t−1 (−4× 1600) + EtY
HP
t+1 (−4× 1600) + Y HP

t−2 × 1600 + EtY
HP
t+2 1600

= Yt(6× 1600) + Yt−1(−4× 1600) + EtYt+1(−4× 1600) + Yt−11600 + EtYt+11600
(A.19)

20. Budget constraint household after imposing that Bt/Pt = 0 ∀ t:

(1 + τ ct )Ct = (1− τnt )Wt

Pt
Nt + Ct −

φw
2

(
Π−1 Wt

Wt−1
− 1

)2

Yt + Tt +Dt (A.20)

21. Budget constraint government:

τ ctCt + τnt
Wt

Pt
Nt = Gt + Tt (A.21)

These 21 equations define the evolution of the following 21 variables: Ct, It, Kt,Dt, λt,
Mt, MPLt, MPKt, Nt,Πt, qt, Rt, R

K
t , Tt, Vt, VC,t, VN,t,

Wt

Pt
,Ξp,t, Yt, Y

HP
t

Finally, the exogenous processes for Ẑt, σzt , Ĝt, and σgt are given by

Ẑt = ρzẐt−1 + σzt ε
z
t (A.22)

Ĝt = ρgĜt−1 + φgyŶt−1 + σgt ε
g
t (A.23)

σzt = (1− ρσz)σ̄z + ρσzσ
z
t−1 + ησzε

σz

t (A.24)

σgt = (1− ρσg)σ̄g + ρσgσ
g
t−1 + ησgε

σg

t (A.25)

Note that for the purpose of model simulations, we set τ ct = τ c and τnt = τn.

A.2 Additional Derivations for Model Calibration

A.2.1 Frisch Elasticity

This section shows how to compute the Frisch elasticity of labor supply for our model.
The resulting expression will be used in steady-state computations to determine the weight
of leisure in the Cobb-Douglas felicity function, i.e. when determining η. As shown in e.g.
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Domeij and Floden (2006), the Frisch elasticity ηλ can be computed from:

ηλ = UN (C,N)(
UNN (C,N)− U2

CN (C,N)
UCC

(C,N)
) 1
N

(A.26)

For the felicity function

U (C,N) =

(
Cη (1−N)1−η

)1−σ

1− σ = Cη(1−σ) (1−N)(1−η)(1−σ)

1− σ , (A.27)

we get

UN =− (1− η) (Cη)1−σ (1−N)(1−η)(1−σ)−1 = − (1− η) (1− σ) U (C,N)
(1−N) (A.28)

UNN = (1− η) (1− σ) ((1− η) (1− σ)− 1) U (C,N)
(1−N)2 (A.29)

UC =ηCη(1−σ)−1 (1−N)(1−η)(1−σ) = η (1− σ) U (C,N)
C

(A.30)

UCC =η (η (1− σ)− 1) (1− σ) U (C,N)
C2 (A.31)

UCN =− η (1− η) (1− σ)Cη(1−σ)−1 (1−N)(1−η)(1−σ)−1

=− η (1− η) (1− σ) (1− σ) U (C,N)
C (1−N) (A.32)

After a lot of tedious algebra, we get that

ηλ = UN (C,N)(
UNN (C,N)− U2

CN (C,N)
UCC

(C,N)
) 1
N

= 1− η (1− σ)
1− (1− σ)

1−N
N

(A.33)

A.2.2 Investment Adjustment Costs

The FOC for investment implies

1
qt

= 1− φK
(
It
Kt

− δ
)
, (A.34)

which can be written as

log
(
It
Kt

)
= log

(
1
φK
− 1
φK

e− log qt + δ

)
(A.35)

The elasticity of the investment to capital-ratio with respect to Tobin’s q is then given by

∂ log
(
It
Kt

)
∂ log qt

= 1
1
φK
− 1

φK
e− log qt + δ

(
− 1
φK

e− log qt (−1)
)

(A.36)
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In steady state, this evaluates to:

∂ log
(
I
K

)
∂ log q = 1

δ

1
φK

. (A.37)

A.3 Steady State

The stochastic discount factor, equation (A.15), in steady state evaluates to

M = β , (A.38)

while the first-order condition for investment, equation (A.9), gives Tobin’s marginal q as

q = 1 . (A.39)

Plugging this into (A.8) yields
RK = 1

β
− (1− δ) (A.40)

and the pricing FOC (A.7) in steady state implies that

Ξt,p = θp
θp − 1 . (A.41)

The wage setting FOC (A.13) implies

VN = VC
1 + τ c

[
(θw − 1) (1− τnt )W

P
N
]
. (A.42)

Using the definition of marginal utility, (A.12),

VC = η

(
Cη (1−N)1−η

)1−σ

C
(A.43)

and the definition of VN , (A.14),

VN = −(1− η)

(
Cη (1−N)1−η

)1−σ

1−N , (A.44)

equation (A.42) reduces to

1− η
1−N θw = η

1 + τ c
1
C

[
(θw − 1) (1− τn)W

P

]
. (A.45)

With net output normalized to 1 by appropriately setting Y norm, which is determined
later, and the labor and capital share given by ℵ and 1− ℵ, respectively, we have

ℵ =
W
P
N

Y
=

W
P
N

1 ⇒ W/P = ℵ
N

(A.46)
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and similarly
K = 1− ℵ

RK
. (A.47)

Equation (A.47) can be used with (A.40) to directly compute K and via the law of motion
for capital, equation (A.18), also investment

I = δK . (A.48)

Next, substituting for the real wage in (A.45) from (A.46), one obtains

1− η
η

C

1−N = θw − 1
θw

1− τn
1 + τ c

ℵ
N

. (A.49)

Solving this equation for consumption yields

C = θw − 1
θw

1− τn
1 + τ c

ℵ1−N
N

η

1− η . (A.50)

Consolidating the household and government budget constraints, equations (A.20) and
(A.21), and using equation (A.48) and the definition of firm dividends, equation (A.4),
yields:

C + δK = Y = 1 . (A.51)

Plugging in from (A.50) for consumption yields

θw − 1
θw

1− τn
1 + τ c

ℵ1−N
N

1− η
η

+ δK = 1 , (A.52)

where K is already known from (A.47).
The Frisch elasticity ηλ is calibrated to 1. From (A.33) then follows that

η = θ

1− σ

[
1− ηλ

(
1− 1− σ

θ

)
N

1−N

]
(A.53)

Plugging (A.53) into (A.52), one obtains a nonlinear equation for N :

0 = θw − 1
θw

1− τn
1 + τ c

ℵ1−N
N

1− 1
1−σ

(
1− (1− 1− σ) N

1−N

)
1

1−σ

(
1− (1− 1− σ) N

1−N

) + δK − 1 . (A.54)

This equation is solved numerically for hours worked N . Consumption immediately follows
from (A.50), η from (A.53), the real wage from (A.46), and dividends from (A.4).

Up to this point, we have assumed that net output is normalized to 1. We are now in
a position to compute the variables and parameters of the production side of our model,
including the normalizing technology factor Y norm that allowed working with Y = 1.

Fixed costs Φ are set equal to steady-state profits, which are the difference between
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output and factor payments:

Φ = Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1
−KRK −WN . (A.55)

With technology being in steady state, i.e. Z = 1, the firm FOCs, equations (A.2)-(A.6),
imply:

RK = ΞY norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1−1

αK
ψ−1
ψ
−1 (A.56)

W

P
= ΞY norm

(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1−1

(1− α) (N −N o)
ψ−1
ψ
−1 (A.57)

so that (A.55) with N o = φoN becomes

Φ = Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1

− ΞY norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1−1

αK
ψ−1
ψ

− ΞY norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1−1

(1− α) (N −N o)
ψ−1
ψ

N

N −N o

= Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) 1
ψ−1

1− Ξ
αK

ψ−1
ψ

t + (1− α) (N −N o)
ψ−1
ψ 1

(1−φo)

αK
ψ−1
ψ

t + (1− α) (Nt −N o)
ψ−1
ψ


(A.58)

In the absence of overhead labor, this reduces to

Φ = (1− Ξ)Y norm
(
αK

ψ−1
ψ + (1− α)N

ψ−1
ψ

) 1
ψ−1

. (A.59)

Net output Y is given by production minus fixed costs:

Y = Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1
− Φ

(A.58)= Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1

Ξ
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ 1

(1−φo)

αK
ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

,

(A.60)

which in the absence of overhead labor reduces to

Y = Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1

.

Equation (A.60) implies that the normalizing technology factor Y norm is given by
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Y norm =


(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1

Ξ

(
αK

ψ−1
ψ

t + (1− α) (N −N o)
ψ−1
ψ 1

(1−φo)

)
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

)

−1

.

(A.61)
All the previous equations require knowledge of the labor share parameter α, which is

not a true structural parameter in the sense that it depends on the units of the model
variables (see Cantore and Levine 2012, for details). It can be computed from the actual
labor share ℵ using

1− ℵ = KRK

Y
=

KΞY norm

(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1−1

αK
ψ−1
ψ
−1

Y norm

(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1

ΞαK
ψ−1
ψ +(1−α)(N−No)

ψ−1
ψ 1

1−φo

αK
ψ−1
ψ +(1−α)(N−No)

ψ−1
ψ

= αK
ψ−1
ψ

αK
ψ−1
ψ + (1− α)

(
N − N̄ o

)ψ−1
ψ 1

1−φo

. (A.62)

Solving for α yields

α =
ℵ (N −N o)

ψ−1
ψ 1

1−φo

(1− ℵ)K
ψ−1
ψ + ℵ (N −N o)

ψ−1
ψ 1

1−φo

, (A.63)

allowing us to compute the normalizing technology factor Y norm from (A.61) and the
fixed costs Φ from (A.58).

We also need to compute the steady states of our auxiliary variables in the model. In
steady state, the wage markup between marginal rate of substitution is

MRS = 1− η
η

C

1−N , (A.64)

while the real wage is given by
Ξw = θw

θw − 1 . (A.65)
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A.4 Smoothed Volatilities from the Particle Smoother
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Figure A.1: Median smoothed volatilities from the particle smoother, based on 20,000
particles for the forward pass and 20,000 particles for the backward smoothing routine.
Shaded areas denote 90% highest posterior density intervals.
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A.5 Additional Model IRFs
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Figure A.2: Model IRFs with sticky prices and flexible wages. Notes: Theoretical responses
to a four-standard deviation shock measured in percentage deviations from the stochastic
steady state.
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Figure A.3: Model IRFs with sticky wages and flexible prices. Notes: Theoretical responses
to a four-standard deviation shock measured in percentage deviations from the stochastic
steady state.
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Figure A.4: Model IRFs with flexible prices and wages. Notes: Theoretical responses to
a four-standard deviation shock measured in percentage deviations from the stochastic
steady state.
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B Marginal Product of Labor for Markup Computa-
tion

Given our production function, the marginal product of labor is equal to

MPLt = Y norm

[
αK

ψ−1
ψ

t + (1− α) (Zt (Nt −N o))
ψ−1
ψ

] ψ
ψ−1−1 (1− α)

(
eZt (Nt −N o)

)ψ−1
ψ

Nt −N o
.

(B.1)
This is equal to

MPLt =
Y norm

[
αK

ψ−1
ψ

t + (1− α)
(
eZt (Nt −N o)

)ψ−1
ψ

] ψ
ψ−1


1
ψ

× (Y norm)
ψ−1
ψ

(1− α)
(
eZt (Nt −N o)

)ψ−1
ψ

Nt −N o
.

(B.2)

Using (A.1), we have that

Yt + Φ = Y norm

[
αK

ψ−1
ψ

t + (1− α)
(
eZt (Nt −N o)

)ψ−1
ψ

] ψ
ψ−1

(B.3)

so that

MPLt = (1− α) (Y norm)
ψ−1
ψ

(
eZt
)ψ−1

ψ

(
Yt + Φ
Nt −N o

) 1
ψ

. (B.4)

In case of no fixed costs and no overhead labor, this reduces to the familiar

MPLt = (1− α) (Y norm)
ψ−1
ψ

(
eZt
)ψ−1

ψ

(
Yt
Nt

) 1
ψ

. (B.5)

In logs, we have from (B.4)

log (MPLt) = log
(

(1− α) (Y norm)
ψ−1
ψ

)
+ ψ − 1

ψ
log

(
eZt
)

+ 1
ψ

log
(
Yt + Φ
Nt −N o

)
, (B.6)

where the first term is a constant that depends on the units of measurement. For the
second term, we need a measure of labor-augmenting technology Zt. Thus, the price
markup can be computed as

ξpt = log
(

(1− α) (Y norm)
ψ−1
ψ

)
+ ψ − 1

ψ
Zt + 1

ψ
log

(
Yt + Φ
Nt −N o

)
− log

(
Wt

Pt

)
. (3.19)

Technology movements are approximated using the Fernald (2012) utilization-adjusted
TFP measure. This TFP measure, based on growth accounting, originally assumes a unit
elasticity of output with respect to technology, which would correspond to Hicks-neutral
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technology growth. Starting from a general production function

Y = Y (K,L, TFP ) , (B.7)

the contribution of TFP to output growth is effectively computed via the total differential
as the part of output growth not accounted for by utilization adjusted factor growth:

dTFPt
TFPt

= dYt
Yt
− εK,t

dKt

Kt

− εN,t
dNt

Nt

, (B.8)

where ε denotes the respective output elasticities and where by construction εTFP,t = 1.
Thus, we need to transform this TFP measure to correspond to our measure of labor-
augmenting (Kaldor-neutral) technology At = eZt as

dTFPt
TFPt

= εA,t
dAt
At
⇒ logAt = 1

εA,t
log TFPt , (B.9)

where the integration constant has been set to 0. Thus, when knowing the elasticity of
TFP with respect to labor-augmenting technology, εA,t, the Fernald (2012) measure can be
transformed into our required technology measure.38 As εA,t is invariant to multiplicative
transformations of output, we first normalize output by steady state/balanced growth
path output Y to get gross deviations from steady state:39

Ŷ ≡ Yt
Y

=

[
αK

ψ−1
ψ

t + (1− α)
(
AeẐt (Nt −N o)

)ψ−1
ψ

] ψ
ψ−1

− Φ
[
αK

ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ

] ψ
ψ−1
− Φ

, (B.10)

where A is a constant capturing the unknown level of labor-augmenting technology and
all other normalizations, e.g. the one introduced by using an index for output.

Noting that in steady state

Y = 1
(1 + φfix)

[
αK

ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ

] ψ
ψ−1

(B.11)

Φ = φfix
(1 + φfix)

[
αK

ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ

] ψ
ψ−1

(B.12)

equation (B.10) can be rewritten as

Ŷ =
(1 + φfix)

[
αK

ψ−1
ψ

t + (1− α)
(
AeẐt (Nt −N o)

)ψ−1
ψ

] 1
ψ

[
αK

ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ

] ψ
ψ−1

− φfix . (B.13)

38In the Cobb-Douglas case, we have Yt = Kα
t (AtLt)1−α = A1−α

t Kα
t L

1−α
t so that a one percent change

in labor-augmenting technology At moves measured TFP by εA,t = 1− α percent (up to first order).
39We suppress the assumed deterministic loglinear trend in A for notational convenience.
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Using the corresponding firm first-order conditions

Wt

Pt
= Ξ

 (1− α)
(
AeẐt (Nt −N o)

)ψ−1
ψ

αK
ψ−1
ψ

t + (1− α)
(
AeẐt (Nt −N o)

)ψ−1
ψ

 Yt + Φ
Nt −N o

(B.14)

and

RK
t = Ξ

 αK
ψ−1
ψ

t

αK
ψ−1
ψ

t + (1− α)
(
AeẐt (Nt −N o)

)ψ−1
ψ

 Yt + Φ
Kt

, (B.15)

equation (B.13) becomes

Ŷ = (1 + φfix)

 αK
ψ−1
ψ

t

αK
ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ

+
(1− α)

(
AeẐt (Nt −N o)

)ψ−1
ψ

αK
ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ


ψ
ψ−1

− φfix

= (1 + φfix)

 1
Ξ

RKK

(Y + Φ)

(
Kt

K

)ψ−1
ψ

+ 1
Ξ
W

P

(N −N o)
(Y + Φ)

AeẐt (Nt −N o)
A (N −N o)


ψ−1
ψ


ψ
ψ−1

− φfix .

(B.16)

Defining the share of non-overhead labor compensation in output as

ℵo ≡
W
P

(N −N o)
Y

=
W
P
N

Y

N −N o

N
= ℵ (1− φo) (B.17)

and noting that the prefactors in front of capital and labor sum up to 1, equation (B.13)
can be rewritten as

Ŷt = (1 + φfix)
[(

1− ℵo

Ξ (1 + φfix)

)
K̂

ψ−1
ψ

t + ℵo

Ξ (1 + φfix)
(
eẐtN̂t

)ψ−1
ψ

] ψ
ψ−1

− φfix (B.18)

The elasticity of output with respect to technology At can then be computed by differen-
tiating net output deviations from steady state with respect to Ẑt,

εA,t =∂(Ŷt − 1)
∂Ẑt

= (1 + φfix)
[(

1− ℵo

Ξ (1 + φfix)

)
K̂

ψ−1
ψ

t + ℵo

Ξ (1 + φfix)
(
eẐtN̂t

)ψ−1
ψ

] ψ
ψ−1−1

× 1
Ξ (1 + φfix)

ℵo
(
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)ψ−1
ψ
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] 1
ψ 1

Ξℵ
o
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eẐtN̂t

)ψ−1
ψ

(B.19)
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In the Cobb-Douglas case in steady state, this simplifies to the well-known

εA,t = 1
Ξℵ . (B.20)

To operationalize the aforementioned, we first need to detrend output with the rate of
labor-augmenting technology growth.

C Data

C.1 Macro Data

The data for the VARs is taken from FRED-MD (McCracken and Ng 2015), except for i)
our constructed markup measure, ii) the respective uncertainty measure, iii) the shadow
federal funds rate, which is taken from Wu and Xia (2016), and iv) real new orders, which
are taken from Conference Board as the sum of “Orders: consumer goods” (A1M008)
and “Orders: capital goods” (A1M027) and are deflated using the “PCE Implicit Price
Deflator” (PCEPI) from FRED-MD.

For the particle filtering, we use Government Consumption Expenditures and Gross
Investment (FRED: GCE) as our measure of government spending and Real Gross Domestic
Product (FRED: GDPC1) as our output measure. Both are transformed to per capita
values via division by Civilian non-institutional population (FRED: CNP16OV), smoothed
with an HP-filter with λ = 10,000 to solve the best levels problem (Edge et al. 2013). The
resulting per capita series are then logged and detrended using a one-sided HP-filter.

For TFP, we cumulate the utilization adjusted TFP growth rates of Fernald (2012)
(dtfp_util, transformed from annualized to quarterly growth rates), and detrend using a
one-sided HP-filter.

C.2 Uncertainty measures

• The Jurado et al. (2015) macro uncertainty measure and the Ludvigson et al. (2015)
financial uncertainty measure are available at Sidney Ludvigson’s homepage at
https://www.sydneyludvigson.com/data-and-appendixes/. We use the h = 1
measures.

• The Baker et al. (2016) economic policy uncertainty measure is taken from FRED
(USEPUINDXM)

• The VIX index is taken from FRED (VIXCLS) and averaged across months. Before
the VIX becomes available in 1990, we use the realized stock return volatility. For
that purpose, we compute the monthly standard deviation of the daily S&P 500
stock price index returns. The stock price index values are taken from Datastream
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(S&PCOMP(PI)). The resulting index of realized volatilities is normalized to have
the same mean and variance as the VIX index when they overlap from 1990 onwards.
The correlation between the two during that period is 0.8776.

C.3 Wage Markup

For the wage markup, i.e. the wedge between the marginal rate of substitution and the real
wage, we focus on an encompassing measure of hours. Recall the equation for computing
the wage markup

ξwt = log
(

1− τnt
1 + τ ct

)
+ log

(
WtNt

PtYt

)
+ log

(
Yt
Ct

)
− log

(
1− η
η

)
+ log

(1−Nt

Nt

)
. (3.18)

Demeaning yields:

ξwt − ξw =
[
log

(
WtNt

PtYt

)
− log

(
WN

PY

)]
+
[
log

(
Yt
Ct

)
− log

(
Y

C

)]
+
[
log

(1−Nt

Nt

)
− log

(1−N
N

)]
+
[
log

(
1− τnt
1 + τ ct

)
− log

(1− τn
1 + τ c

)]
,

(C.1)

where the first term on the right hand side is the labor share. Expanding the fractions to
get the wedge in terms of the labor share and the consumption to output ratio has the
advantage of avoiding problems with different trends that may be contained in different
data sources.40 In the isoelastic case with felicity function

U(Ct, Nt) = log(Ct)− ψ
N

1+ 1
εl

t

1 + 1
εl

(C.2)

where εl is the Frisch elasticity and ψ the weight of labor in the utility function, we get

ξwt = log
(

1− τnt
1 + τ ct

)
+ log

(
WtNt

PtYt

)
+ log

(
Yt
Ct

)
+ log(ψ) +

(
1 + 1

εl

)
log(Nt) . (C.3)

In order to compute the wage markup, the right-hand-side variables are mapped to
the data in the following way:

• WtNt
PtYt

: to compute the labor share, we take the share of employees’ compensation
Compensation of Employees, Paid (FRED: COE) in net national income (NNI),
where net national income is compute as National Income (FRED: NICUR) minus
net indirect taxes, computed as the difference between taxes on production and

40For example, the trend in NIPA GDP and Average hourly earnings of production and nonsupervisory
workers in the private sector differs, although theory says they should be the same.
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imports (FRED: GDITAXES) and subsidies (FRED: GDISUBS). To this we add part
of the ambiguous proprietor’s income (FRED: PROPINC). The share of proprietor’s
income assigned to labor is computed as the share of unambiguous labor income in
total unambiguous income resulting in

WN

PY
= COE

NNI − PROPINC
.

• Pt: Gross Domestic Product: Implicit Price Deflator (FRED: GDPDEF).

• Yt: Gross Domestic Product (FRED: GDP), deflated by the GDP deflator and
divided by population Popt (defined below).

• Ct: real private consumption is computed as the sum of Personal Consumption
Expenditures: Nondurable Goods (FRED: PCND) and Personal Consumption Expen-
ditures: Services (FRED: PCESV), each deflated by the GDP deflator and divided
by population Popt 41

• Nt: We use a quarterly total hours measure following Cociuba et al. (2012), divided
by population Popt. For this purpose, we extend their measure to include more
recent periods.

1. Compute the civilian non-institutional population between 16 and 65 years by
subtracting the (Unadj) Population Level - 65 yrs. & over (BLS: LNU00000097)
from Civilian Noninstitutional Population (BLS: LNU00000000), both averaged
over the respective quarter.

2. To compute the number of military personell, we first download the most recent
vintage from Simona Cociuba’s website at https://sites.google.com/site/
simonacociuba/research and then update Military Personnel- Total World-
wide using data from https://www.dmdc.osd.mil/appj/dwp/dwp_reports.
jsp: Military Personnel -> Active Duty Military Personnel by Service by
Rank/Grade (Updated Monthly); for the current year, we use the monthly
PDFs. There, we use GRAND TOTAL- Total services. Again we average
monthly values to get a quarterly series.

3. Civilian employment and weekly hours worked before 1976, which are based on
Census and BLS data in printed books, are taken from the most recent vintage
from Simona Cociuba’s website.

4. Civilian employment after 1976 is taken from Number Employed, At Work
(BLS: LNU02005053), while their weekly hours worked are from Average Hours,
Total At Work, All Industries (BLS: LNU02005054).

41Due to chain-weighting, this separate deflating is required to preserve additivity.
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The series in 2 to 4 are first averaged over the quarter. When doing so for the civilian
series in 3 and 4, we follow Cociuba et al. (2012) and check for outliers on the low
side, i.e. we check whether dt ≡ mean(mi)/min(mi) < 0.95, where mi denotes the
months belonging to a quarter. If dt < 0.95, we use (3×mean(mi)−min(mi))/2
and mean(mi) otherwise. The civilian quarterly series are then seasonally adjusted
using the X13 routine of Eviews 8. Total quarterly hours are computed as the
sum of civilian and military hours, both computed as the product of employment
times weekly hours worked in the respective category. For military weekly hours, we
assume a workweek of 40 hours. To get from weekly to quarterly hours, we assume
4 quarters with 13 weeks.

• Popt: we use the sum of civilian non-institutional population between 16 and 65
and military personell, based on our update of Cociuba et al. (2012).

• Leisure 1−Nt: Following Karabarbounis (2014), who in turn is motivated by Aguiar
et al. (2013), we normalize the discretionary time endowment available to 92 hours
per week per person and compute leisure as the difference between this endowment
and Nt. Again, the measure is transformed to per capita values by dividing by Popt.

• Labor tax rate τnt : The average labor income tax rate is computed as the sum of
taxes on labor income, τLI , plus the “tax rate” on social insurance contributions,
τSI ,

τn = τLI + τSI .

We closely follow Mendoza et al. (1994), Jones (2002), and Leeper et al. (2010) and
compute the tax rate from the national accounts by dividing the tax revenue by the
respective tax base. For labor income tax rates, we need to compute the portion of
personal income tax revenue that can be assigned to labor income. We first compute
the average personal income tax rate

τ p = IT

W + PRI/2 + CI
,

where IT is personal current tax revenues computed as the sum of Federal government
current tax receipts: Personal current taxes and State and local government current
tax receipts: Personal current taxes (Table 3.1 line 3, FRED: A074RC1Q027SBEA
+ W071RC1Q027SBEA), W is Compensation of Employees: Wages and Salary
Accruals (Table 1.12 line 3, FRED: WASCUR), PRI is Proprietors’ Income with In-
ventory Valuation Adjustment(IVA) and Capital Consumption Adjustment (CCAdj)
(Table 1.12 line 9, FRED: PROPINC), and CI is capital income. It is computed as

CI ≡ PRI/2 +RI + CP +NI ,
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where RI is Rental Income of Persons with Capital Consumption Adjustment
(CCAdj) (Table 1.12 line 12, FRED: RENTIN), CP is Corporate Profits with Inven-
tory Valuation Adjustment (IVA) and Capital Consumption Adjustment (CCAdj)
(Table 1.12 line 13, FRED: CPROFIT), and NI denotes Net interest and miscel-
laneous payments on assets (Table 1.12 line 18, FRED: W255RC1Q027SBEA). In
doing so, the ambiguous proprietor’s income is assigned in equal parts to capital
and labor income. The labor income tax can then be computed as

τLI = τ p(W + PRI/2)
EC + PRI/2 ,

where EC is National Income: Compensation of Employees, Paid (Table 1.12 line 2,
FRED: COE), which, in addition to wages, includes contributions to social insurance
and untaxed benefits. The social insurance “tax rate” is given by

τSI = CSI

EC + PRI/2 ,

where CSI denotes Government current receipts: Contributions for government
social insurance (Table 3.1 line 7, FRED: W782RC1Q027SBEA).

• Consumption tax rate τ ct : The tax revenue from consumption taxes, CT , requires
apportioning the indirect tax revenue to investment and consumption.42 We do this
as:

CT = PC

PC + I
INDT ,

where PC is Personal Consumption Expenditures (FRED: PCE), I is Gross Private
Domestic Investment (FRED: GPDI), and INDT is net indirect taxes, computed as
the difference between Gross Domestic Income: Taxes on Production and Imports
(FRED: GDITAXES) and Gross Domestic Income: Subsidies (FRED: GDISUBS).43

The consumption tax rate is then computed as

τ c = CT

PC − CT
.

C.4 Price Markup

For the price markup, i.e. the wedge between the real wage and the marginal product
of labor, we focus on the private business sector. Recall the equation for computing the

42We opt to not attribute sales tax revenues to government purchases due to the different tax-exemption
status of local, state, and federal purchases in different states. For example, government entities are sales
tax-exempt in New York, but are tax-liable in California.

43The use of net indirect taxes follows Karabarbounis (2014) and differs from e.g. Mendoza et al. (1994)
who use gross indirect taxes.
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price markup:

ξpt = log
(

(1− α) (Y norm)
ψ−1
ψ

)
+ ψ − 1

ψ
Zt + 1

ψ
log

(
Yt + Φ
Nt −N o

)
− log

(
Wt

Pt

)
. (3.19)

Demeaning this expression yields:

ξpt − ξp =ψ − 1
ψ

log
(
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+ 1
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[
log
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− log
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− log

(
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)] (C.4)

where

eZt = 1
εA,t

log TFPt (C.5)

εA,t =
[
Ŷt + φfix
1 + φfix

] 1
ψ 1

Ξℵ
o
(
eẐtN̂t

)ψ−1
ψ (B.19)

We can then compute the price markup by using the following sources:

• Wt: following the approach in Nekarda and Ramey (2013), we use the Average
hourly earnings of production and nonsupervisory workers in the private sector (BLS:
CES0500000008).44

• Pt: Gross Domestic Product: Implicit Price Deflator (FRED: GDPDEF).

• Nt −N o: Average weekly hours of production and nonsupervisory employees, pri-
vate business (BLS: CES0500000006) multiplied by Production and nonsupervi-
sory employees, private business (CES: CES0500000006), divided by Civilian non-
institutional population.

• Yt: Current dollar output, private business (BLS: PRS84006053), deflated using the
GDP deflator and divided by Civilian non-institutional population, detrended by an
exponential trend.

• Φ: Consistent with our model, we assume additional fixed costs of 2.96% of steady-
state output per capita, which we approximate using the average detrended log
output per capita.

• Population: Civilian non-institutional population (FRED: CNP16OV), smoothed
with an HP-filter with λ = 10,000 to solve the best levels problem (Edge et al. 2013).

• TFPt: cumulated sum of the utilization adjusted or non-utilization adjusted TFP
growth rates of Fernald (2012) (dtfp_util or dtfp, starting value initialized to 1,

44This implicitly assumes that all nonproduction and supervisory workers are overhead labor, which
probably is an upper bound (see Ramey 1991).
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transformed from annualized to quarterly growth rates), detrended by an exponential
trend.

• ℵo: The labor share not accounting for overhead labor, ℵ is computed as 1 minus
Capital’s share of income from Fernald (2012),45 which is “[B]ased primarily on
NIPA data for the corporate sector”. To derive the share of non-overhead labor ℵo,
we use equation

ℵo ≡
W
P

(N −N o)
Y

=
W
P
N

Y

N −N o

N
= ℵ (1− φo) (B.17)

with φo = 0.11 as discussed in the calibration section.

In the Cobb-Douglas case, the price markup simplifies to

ξpt = log
(
Yt + Φ
Nt −N o

)
− log

(
Wt

Pt

)
, (C.6)

which, in the absence of fixed costs, reduces to the inverse labor share. In the robustness
checks, we use three different measures:

• The labor share based on total compensation in the nonfinancial business sector is
computed as Net value added of nonfinancial corporate business: Compensation of
employees (FRED: A460RC1Q027SBEA), divided by Gross value added of nonfi-
nancial corporate business (FRED: A455RC1Q027SBEA) minus Net value added
of nonfinancial corporate business: Taxes on production and imports less subsidies
(FRED: W325RC1Q027SBEA).

• The labor share in the private business sector is based on Business Sector: Labor
Share (FRED: PRS84006173).

• The labor share based on total compensation in the private business sector is
computed as the product of Production and Nonsupervisory Employees: Total Private
(FRED: CES0500000006), Average Weekly Hours of Production and Nonsupervisory
Employees: Total private (FRED: AWHNONAG) and Average Hourly Earnings of
Production and Nonsupervisory Employees: Total Private (FRED: AHETPI) divided
by Business Sector: Current Dollar Output (FRED: PRS84006053).

C.5 Industry-level markups

The majority of our data needed to construct industry-level price markups comes from
the NBER-CES manufacturing industry database, which covers the SIC2 industries 20 to
39 at a four-digit granularity for the years 1958–2011.

45This series substitutes for Business Sector: Labor Share (FRED: PRS84006173), which is unfortunately
only available in index form.
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We compute industry-level price markups using equations B.19, C.4, and C.5. As we
have no information on fixed costs, we assume the absence of fixed costs such that

ξpi,t = ψ − 1
ψ

log
(
eZi,t

)
+ 1
ψ

log
(

Yt
Ni,t −N o

i

)
− log

(
Wi,t

Pi,t

)
, (C.4’)

where

eZi,t = 1
εA,i

log TFPi,t . (C.7)

Here, we use the steady-state elasticity εA,i given by

εA,i = 1
Ξi

ℵoi , (B.19’)

where ℵoi is the labor share and Ξ−1
i is the gross markup.

The NBER-CES database only contains information on wages paid. But what matters
for the labor margin is the total compensation of employees. For that reason we follow
the approach of Chang and Hong (2006) and Nekarda and Ramey (2011) and multiply
the wage bill in the CES database by the ratio of the total compensation (NIPA Table 6.2,
Compensation of Employees by Industry) to wages (NIPA Table 6.3 Wages and Salaries by
Industry) at the two-digit industry level. The respective mapping is displayed in Tables C.1
and C.2. When the SIC classifications in the NIPA tables change, we splice the respective
adjustment factor series by giving precedence to the 1987 SIC series (NIPA Table B) when
there is overlap and multiplying the earlier/later series by the ratio of the two series in
the first/last period of overlap to ensure smooth pasting. Similarly, the database only
contains hours of production workers (NBER-CES code: prodh). To compute total hours
(toth), we compute the number of production workers as the difference between total
employment (emp) and production workers (prode). We then assume that non-production
workers are salaried and work 1960 hours per year as in Nekarda and Ramey (2011):

toth = prodh+ (emp− prode)× 1960 . (C.8)

The database contains information about real shipments which is not equal to output
due to inventories. To compute real output accounting for inventories we follow Nekarda
and Ramey (2011). A problem is that only the total value of inventories Inomi,t (invent) is
reported, which also includes inventories of materials that need to be subtracted. The first
step is to compute the change in nominal finished-goods and work-in-process inventories
∆If,nomi,t , which is equal to nominal value added V nom

i,t (vadd) minus the value of shipments
Snomi,t (vship) plus nominal material costs Mnom

i,t (matcost):

∆If,nomi,t = V nom
i,t − Snomi,t +Mnom

i,t . (C.9)
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The change in materials inventories ∆Im,nomi,t can then be computed as the difference
between total inventory changes and changes in nominal finished-goods and work-in-process
inventories:

∆Im,nomi,t = ∆Inomi,t −∆If,nomi,t . (C.10)

Real output Yi,t can then be computed as46

Yi,t ≈
Snomi,t

Pi,t
+
[
Inomi,t

Pi,t
−
Inomi,t−1

Pi,t−1

]
−

∆Im,nomi,t

Pi,t
. (C.11)

To implement the above formulas, we need a sectoral TFP estimate and the elasticity of
labor productivity with respect to labor-augmenting technology εA,i.

Elasticity of labor productivity with respect to labor-augmenting technology

To compute the elasticity, we need to know both the average markup and the labor share.
In the absence of fixed costs, the average markup can be directly computed from the
average profit share, as one minus the profit share is then equal to the inverse steady-state
gross industry markup.

The profit share in industry i, Πps
i,t is computed as

Πps
i,t = (Y nom

i,t −W comp,nom
i,t − (0.05 + δ̄)Ki,tP

inv
i,t −Mnom

i,t )/Y nom
i,t , (C.12)

where Y nom
i,t is nominal output defined as real output Yi,t times the shipment deflator

(’pship’), W comp,nom
i,t it total compensation of employees, Mnom

i,t is nominal materials costs
(matcost), and (0.05 + δ̄)Ki,tP

inv
i,t is the imputed nominal cost of capital, where we assume

an interest rate of 5% per year.
We compute the average depreciation rate from

δi,t = 1− (Ki,t − Ii,t)/Ki,t−1 , (C.13)

where real investment is obtained by dividing nominal investment (’invest’) by the
investment deflator P inv

i,t (’piinv’) andKi,t is the real capital stock (’cap’). When computing
the average depreciation rate δ̄ over the sample, we discard observations that show negative
depreciation rates and depreciation rates larger than 50%.

The elasticity of labor productivity with respect to labor-augmenting technology is then
given by the mean labor share, 1/T ∑T

t=1 W
comp,nom
i,t /Y nom

i,t , times the inverse markup.47

46See the Technical Appendix (A.5) of Nekarda and Ramey (2011) and their discussion of the approxi-
mation error involved.

47The labor share is computed by dividing an appropriate measure of worker compensation by a output
measure. Depending on the concept used, the worker compensation is either the one for production or
production and supervisory workers. As the output measure we use either total value added or total
value added minus material costs. The latter provides a labor share after abstracting from materials.
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Industry-level TFP

To get a measure of productivity, we follow Nekarda and Ramey (2013) and run a Galí
(1999)-type VAR with labor productivity and hours in first differences. We compute labor
productivity by dividing real output Yi,t by either total hours (toth) or hours of production
workers (prodh).

Technology shocks are identified as the only shocks that moves productivity in the long-
run. An estimated TFP series is then computed by cumulating the productivity growth
rates resulting from simulating the long-run VAR with only the identified technology
innovations.48

48Note that this approach assumes the equality between labor productivity movements caused by
technology shocks and TFP.
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Table C.1: Mapping between SIC two digit codes and NIPA Table 6 lines: Total Compensation

SIC code line 60200B Ann Code line 60200C Ann Code line 60200D Ann Code
24 15 Lumber and wood products J4115C0 15 Lumber and wood products B4115C0 15 Wood products N4115C0
25 16 Furniture and fixtures J4116C0 16 Furniture and fixtures B4116C0 24 Furniture and related products N4124C0
32 17 Stone, clay, and glass products J4117C0 17 Stone, clay, and glass products B4117C0 16 Nonmetallic mineral products N4116C0
33 18 Primary metal industries J4118C0 18 Primary metal industries B4118C0 17 Primary metals N4117C0
34 19 Fabricated metal products J4119C0 19 Fabricated metal products B4119C0 18 Fabricated metal products N4118C0
35 20 Machinery, except electrical J4120C0 20 Industrial machinery and equipment B4120C0 19 Machinery N4119C0
36 21 Electric and electronic equipment J4121C0 21 Electronic and other electric equipment B4121C0 21 Electrical equipment, appliances, and components N4121C0
371 22 Motor vehicles and equipment J4122C0 22 Motor vehicles and equipment B4122C0 22 Motor vehicles, bodies and trailers, and parts N4122C0
37 23 Other transportation equipment J4123C0 23 Other transportation equipment B4123C0 23 Other transportation equipment N4123C0
38 24 Instruments and related products J4124C0 24 Instruments and related products B4124C0 19 Machinery N4119C0
39 25 Miscellaneous manufacturing industries J4125C0 25 Miscellaneous manufacturing industries B4125C0 25 Miscellaneous manufacturing N4125C0
20 27 Food and kindred products J4127C0 27 Food and kindred products B4127C0 27 Food and beverage and tobacco products N4127C0
21 28 Tobacco manufactures Q4128BC0 28 Tobacco products Q4128C0 27 Food and beverage and tobacco products N4127C0
22 29 Textile mill products J4129C0 29 Textile mill products B4129C0 28 Textile mills and textile product mills N4129C0
23 30 Apparel and other textile products J4130C0 30 Apparel and other textile products B4130C0 29 Apparel and leather and allied products N4130C0
26 31 Paper and allied products J4131C0 31 Paper and allied products Q4131C0 30 Paper products N4132C0
27 32 Printing and publishing Q4132BC0 32 Printing and publishing Q4132C0 31 Printing and related support activities N4133C0
28 33 Chemicals and allied products J4133C0 33 Chemicals and allied products B4133C0 33 Chemical products N4135C0
29 34 Petroleum and coal products J4134C0 34 Petroleum and coal products B4134C0 32 Petroleum and coal products N4134C0
30 35 Rubber and miscellaneous plastics products J4135C0 35 Rubber and miscellaneous plastics products B4135C0 34 Plastics and rubber products N4136C0
31 36 Leather and leather products J4136C0 36 Leather and leather products B4136C0 29 Apparel and leather and allied products N4130C0

Notes: In Table “60200D Ann.” we do not assign NIPA line 20 “Computer and electronic products” (N4020C0) to any two-digit industry, because in SIC 1987 it
was part “Industrial machinery and equipment” and later became a separate category, introducing a structural break.
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Table C.2: Mapping between SIC two digit codes and NIPA Table 6 lines: Wages

SIC code line 60300B Ann Code line 60300C Ann Code line 60300D Ann Code
24 15 Lumber and wood products J4115C0 15 Lumber and wood products B4115C0 15 Wood products N4115C0
25 16 Furniture and fixtures J4116C0 16 Furniture and fixtures B4116C0 24 Furniture and related products N4124C0
32 17 Stone, clay, and glass products J4117C0 17 Stone, clay, and glass products B4117C0 16 Nonmetallic mineral products N4116C0
33 18 Primary metal industries J4118C0 18 Primary metal industries B4118C0 17 Primary metals N4117C0
34 19 Fabricated metal products J4119C0 19 Fabricated metal products B4119C0 18 Fabricated metal products N4118C0
35 20 Machinery, except electrical J4120C0 20 Industrial machinery and equipment B4120C0 19 Machinery N4119C0
36 21 Electric and electronic equipment J4121C0 21 Electronic and other electric equipment B4121C0 21 Electrical equipment, appliances, and components N4121C0
371 22 Motor vehicles and equipment J4122C0 22 Motor vehicles and equipment B4122C0 22 Motor vehicles, bodies and trailers, and parts N4122C0
37 23 Other transportation equipment J4123C0 23 Other transportation equipment B4123C0 23 Other transportation equipment N4123C0
38 24 Instruments and related products J4124C0 24 Instruments and related products B4124C0 19 Machinery N4119C0
39 25 Miscellaneous manufacturing industries J4125C0 25 Miscellaneous manufacturing industries B4125C0 25 Miscellaneous manufacturing N4125C0
20 27 Food and kindred products J4127C0 27 Food and kindred products B4127C0 27 Food and beverage and tobacco products N4127C0
21 28 Tobacco manufactures Q4128BC0 28 Tobacco products Q4128C0 27 Food and beverage and tobacco products N4127C0
22 29 Textile mill products J4129C0 29 Textile mill products B4129C0 28 Textile mills and textile product mills N4129C0
23 30 Apparel and other textile products J4130C0 30 Apparel and other textile products B4130C0 29 Apparel and leather and allied products N4130C0
26 31 Paper and allied products J4131C0 31 Paper and allied products Q4131C0 30 Paper products N4132C0
27 32 Printing and publishing Q4132BC0 32 Printing and publishing Q4132C0 31 Printing and related support activities N4133C0
28 33 Chemicals and allied products J4133C0 33 Chemicals and allied products B4133C0 33 Chemical products N4135C0
29 34 Petroleum and coal products J4134C0 34 Petroleum and coal products B4134C0 32 Petroleum and coal products N4134C0
30 35 Rubber and miscellaneous plastics products J4135C0 35 Rubber and miscellaneous plastics products B4135C0 34 Plastics and rubber products N4136C0
31 36 Leather and leather products J4136C0 36 Leather and leather products B4136C0 29 Apparel and leather and allied products N4130C0

Notes: In Table “60300D Ann.” we do not assign NIPA line 20 “Computer and electronic products” (N4020C0) to any two-digit industry, because in SIC 1987 it
was part “Industrial machinery and equipment” and later became a separate category, introducing a structural break.
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D Mixed-Frequency VARs

D.1 Priors

We use a shrinking prior of the Independent Normal-Wishart type (Kadiyala and Karlsson
1997), where the mean and precision are derived from from a Minnesota-type prior
(Doan et al. 1984; Litterman 1986). Denote the vector of stacked coefficients with
β = vec([µ α A1, . . . , Ap]′). It is assumed to follow a normal prior

β ∼ N(β, V ) . (D.1)

For the prior mean β, we assume the variables to follow a univariate AR(1)-model with
mean of 0.9 for levels and mean 0 for growth rates, while all other coefficients are 0. The
prior precision V is assumed to be a diagonal matrix with the highest precision for the first
lag and exponential decay for the other lags. The weighting of cross-terms is conducted
according to the relative size of the error terms in the respective equations, while a rather
diffuse prior is used for deterministic terms. The diagonal element corresponding to the
jth variable in equation i, V i,jj is:

V i,jj =



a1
r2 , for coefficients on own lag r ∈ {1, . . . , p} ,
a2s

2
i

r2s2
j
, for coefficients on lag r ∈ {1, . . . , p} of variable j 6= i ,

a3s
2
i , for coefficients on exogenous variables .

(D.2)

where s2
i is the OLS estimate of the error variance of an AR(p) model with constant and

trend estimated for the ith variable (see Litterman 1986).49 We follow Koop and Korobilis
(2010) and set a1 = 0.2, a2 = 0.5 and a3 = 104. The prior error covariance is assumed to
follow

Σ ∼ IW (S, ν) (D.3)

with ν = 60 “pseudo-observations”, corresponding to ≈ 10% of the observations, and S
being the OLS covariance matrix.

As a practical matter, we use z-scored the data (including the trend) to avoid numerical
problems arising from under-/overflow during the posterior computations that involve
sum of squares. We also impose a stability condition on our VAR by drawing from the
conditional distribution for β until all eigenvalues of the companion form matrix are
smaller than 1.

49In case of the quarterly variable, we estimate the AR(p) model on linearly interpolated data.
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D.2 11+1 Variable VAR

The Jurado et al. (2015) 11+1-variable VAR is given by (FRED-MD Acronyms in brackets,
see Appendix C for details on other variables)



log(real IP (INDPRO))
log(employment (PAYEMS))

log(real consumption (DPCERA3M086SBEA))
log(PCE Deflator (PCEPI))

log(real new orders)
log(real wage (CES3000000008))

hours (AWHMAN)
shadow federal funds rate

log(S&P 500 Index (S&P 500))
growth rate of M2 (M2SL)

uncertainty proxy
log(markup)



(D.4)
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Figure D.5: IRFs to JLN-based uncertainty shock in the 11+1 variable mixed-frequency
VAR. Notes: Bands are pointwise 90% HPDIs.65



Table D.3: Unconditional forecast error variance explained by uncertainty shock

Y Emp. C P Orders W/P N R S&P ∆M2 Uncert. Markup
Price Markup VAR

12.45 12.54 11.31 6.70 14.33 7.59 10.76 6.95 9.85 4.92 22.78 7.52
Wage Markup VAR

13.27 12.92 11.87 6.54 14.16 8.65 11.49 6.87 12.19 4.81 23.76 14.96
Total Markup VAR

12.56 11.99 11.37 5.95 13.49 7.84 11.42 6.68 11.26 4.90 23.14 11.10

Notes: Mean posterior forecast error variance share explained by the uncertainty shock in the 11+1
variable mixed-frequency VAR with the Jurado et al. (2015) uncertainty measure ordered second-to-last.
Based on 1000 posterior draws. First row: VAR with price markup measure; Second row: VAR with
wage markup measure.

D.3 8+1 Variable VAR

The Bloom (2009) 8+1 variable VAR is given by


log(S&P 500 Index (S&P 500))
uncertainty proxy

shadow federal funds rate
log(real wage (CES3000000008))

log(CPI (CPIAUCSL))
hours (AWHMAN)

log(manufacturing employment (MANEMP))
log(real manufacturing production (IPMANSICS))

log(markup)



(D.5)
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Figure D.6: IRFs to VIX-based uncertainty shock in the 8+1 variable mixed-frequency
VAR. Notes: Bands are pointwise 90% HPDIs.
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D.4 Additional MF-VAR Figures
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Figure D.7: IRFs to JNL-based uncertainty shock in the 8+1 variable mixed-frequency
VAR. Notes: Bands are pointwise 90% HPDIs.
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Figure D.8: IRFs to financial uncertainty shock in the 11+1 variable mixed-frequency
VAR. Notes: Bands are pointwise 90% HPDIs.
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Figure D.9: IRFs to EPU-based uncertainty shock in the 11+1 variable mixed-frequency
VAR. Notes: Bands are pointwise 90% HPDIs.
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