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Abstract 
 
This paper studies competing mechanisms with limited commitment over infinite horizon. 
Between a mechanism and the agent, there is perfect monitoring, but each mechanism can have 
arbitrary signals about the interaction between other mechanisms and the agent. I show that if 
the agent’s type is common knowledge, any individually rational payoffs can be sustained in a 
perfect Bayesian equilibrium. If the agent’s type is his private information, Pareto frontier of 
mechanisms’ payoffs can be obtained by repeating the static optimal screening every period; in 
particular, price posting with the static optimal price is the optimal mechanism. The complete 
information case is a strong form of folk theorem while the incomplete information case shows 
that folk theorem breaks down with private information even as the discount factor goes to one. 
Results hold with any finite number of mechanisms, any discount factor and any monitoring 
technology including private monitoring. 
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1 Introduction

Consider a firm buying intermediate goods. The interaction between a firm and a

supplier is likely repeated over time, and if there are multiple sellers supplying the

same intermediate good, this maps into competing mechanisms over infinite horizon.

Furthermore, if suppliers cannot commit to prices they will charge in the future, there

is limited commitment. I study competing mechanisms with limited commitment over

infinite horizon in this paper. I characterize the set of equilibrium payoffs with com-

plete information and Pareto frontier for mechanisms with incomplete information.

Existing literature on collusion or price competition typically models the demand

side as non-strategic. Harrington and Skrypacz (2011) model the demand side as a

stochastic demand function, and Athey and Bagwell (2008) also model consumers as

non-strategic. Buyers in a supermarket may be anonymous, but between firms, it is

more reasonable to assume that both the supplier and the buyer are long-run players.

I model the buyer as a strategic long-run player, and it is one of three features that

distinguish my paper from other papers. Once we model the buyer as a strategic long-

run player, this naturally leads to a mechanism-design problem where each seller is a

mechanism designer and the buyer is the agent. Other two features of my model are

that I allow for arbitrary monitoring technology among mechanisms and I also allow

for any direct mechanism. Most existing papers have focused on imperfect public

monitoring, and they have also focused on price competition or auctions; literature

on competing mechanisms hasn’t allowed for general class of mechanisms.

However, I show that for any given Pareto weights, the weighted sum of sellers’

payoffs is maximized by repeating the static optimal screening every period. No mat-

ter what is the monitoring technology among mechanisms, as long as there is perfect

monitoring between each mechanism and the agent, repeating the static optimal pric-

ing every period is the optimal mechanism. In the complete-information benchmark,

any individually rational payoffs can be sustained as a perfect Bayesian equilibrium.

Since results hold for a single mechanism as well, my results provide the bench-

mark, mechanism with limited commitment. My results also hold for any discount

factor, and it has several implications. If sellers know the buyer’s valuation, any

individually rational payoffs can be sustained in an equilibrium, which is stronger

than the folk theorem that holds in the limit. If sellers don’t know the buyer’s val-

uation, sellers can never do better than letting the seller with the highest Pareto
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weight monopolize the market. But that seller also has to charge the static optimal

price every period. Sellers can never benefit from learning the buyer’s valuation over

time. In addition, sellers’ payoffs never converge to the Pareto frontier with complete

information or the set of all individually rational payoffs. Even as the discount factor

converges to 1, the set of equilibrium payoffs with incomplete information is bounded

away from the set of individually rational payoffs, and the folk theorem breaks down

when the buyer has private information. My results also hold for any monitoring

technology among mechanisms, including private monitoring, and they hold for both

sequential equilibrium and belief-free equilibrium as well.

The rest of the paper is organized as follows. Section 2 presents the model, and

results are derived in section 3. Section 4 concludes.

2 Model

There are N < ∞ mechanisms and a single agent. Mechanisms are indexed by

i ∈ I = {1, · · · , N}. All players share the common discount factor δ ∈ [1
2
, 1) over

infinite horizon, t = 1, 2, · · · .1 Mechanisms can supply one unit of homogeneous non-

durable good each period, and the agent has a unit demand each period. Mechanisms

offer direct mechanisms, and the agent can participate in at most one mechanism in

a given period. All mechanisms and the agent can commit only within the period.

Within each period, the payoff of mechanism i from allocation (qi, T i) is V i(qi, T i) =

T i; qi is the probability of allocation, T i ≥ 0 is the transfer from the agent to the

mechanism, and the marginal costs for mechanisms are normalized to 0. The payoff

of the agent when he participates in mechanism i is u(qi, T i|v) = qiv − T i. Any

mechanism that the agent doesn’t participate in a given period gets 0. If the agent

doesn’t participate in any mechanism, his payoff is 0. This normalizes the outside

option for all mechanisms and the agent to 0.

In the complete information case, the agent’s valuation v is common knowledge,

and in the incomplete information case, mechanisms start with a common prior F

over [v, v̄], v ≥ 02. F has positive density everywhere and is atomless.

I will first state the benchmark case then state the general model.

1δ ≥ 1
2 is to rule out the uninteresting case where the agent prefers to have the good this period

and never again over not to have the good this period but to have it every period from the next
period on.

2The upper bound on the support doesn’t matter for results.
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In the benchmark, the agent decides which mechanism to visit, and when he visits

mechanism i, mechanism i offers a menu of contracts. The agent decides whether to

participate. If the agent participates, he chooses an allocation (qit, T
i
t ). All players

receive their payoffs. The agent only sees the menu of contracts offered by the mech-

anism he visits, and mechanism i observes the agent’s participation decision and the

choice of allocation; other mechanisms j 6= i have no signal other than the agent

didn’t visit. It can be interpreted as the buyer not seeing the price until he visits the

seller, and other sellers don’t observe whether the buyer buys this period and from

whom at what price he buys, unless the buyer comes to them.

In the general model, mechanism i sends a message mi
t ∈ Mi

t to the agent in the

beginning of period t, and the agent decides which mechanism to visit. If the agent

visits mechanism i, it offers a menu of contracts, and the agent decides whether to

participate. If the agent participates, he chooses an allocation (qit, T
i
t ). All players

get their payoffs. Mechanism i observes the agent’s participation decision and the

choice of allocation, and mechanisms receive st distributed by St : ΠiMi
t × {{∅} ∪

I}× {{∅} ∪Ω}× {{∅} ∪A} → ∆(ΠiS i) where Ω is the set of direct mechanisms and

A is the agent’s choice of participation and allocation from a direct mechanism. {∅}
correspond to the agent not visiting or not participating in any mechanism in a given

period.

The general model allows mechanisms to post prices. It also allows mechanisms

to post the entire menu of contracts before the agent decides which mechanism to

visit. The benchmark is also an example of private monitoring, and depending on

the signal structure, I can allow imperfect public monitoring, private monitoring and

other variations.

In the beginning of period t, mechanism i’s private history consists of hi,t =

(mi
1, d

i
1, ω

i
1, a

i
1,m

i
2, · · · ,mi

t−1, d
i
t−1, ω

i
t−1, a

i
t−1) ∈ Hi,t where dit = 1 if the agent visits

mechanism i in period t and 0 if he doesn’t. If the agent visits, ωi
t is the direct

mechanism mechanism i offers in period t, and ωi
t = ∅ if the agent doesn’t visit

mechanism i in period t. ait is the allocation the agent chooses in period t, and

if the agent doesn’t visit or participate in mechanism i in period t, ait = ∅. After

the agent decides which mechanism to visit, mechanism i’s private history is hi,t′ =

hi,t t (mi
t, d

i
t) ∈ Hi,t′. The agent’s private history in the beginning of period t after

mechanisms sent messages is hA,t = tNi=1h
i,t t (m1

t , · · · ,mN
t ) ∈ HA,t. After the agent

visits mechanism i, the agent’s private history is hA,t′ = hA,tt(d1t , · · · , dNt , ωi
t) ∈ HA,t′.
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Strategies of mechanisms to send messages are σi,t : Hi,t → ∆(Mi
t) where ∆(X)

is the probability distribution over a set X. The strategy of the agent to visit a

mechanism is σA,t : HA,t → ∆({∅}∪I). The strategy of mechanism i when the agent

visits is σi,t′ : Hi,t′ → ∆(Ω), and the agent’s participation and allocation strategy

is σA,t′ : HA,t′ → ∆({∅} ∪ A). There is a public rancomization device, and the

equilibrium definition is perfect Bayesian equilibrium.

3 Results

When mechanisms know the agent’s valuation, any individually rational payoffs can

be sustained as a perfect Bayesian equilibrium. However, when the agent’s valuation

is his private information, the weighted sum of mechanisms’ payoffs can be obtained

by repeating the static optimal screening every period. In particular, the mechanism

with the highest weight monopolizes the market and the agent only interacts with

that mechanism over infinite horizon.

The main result for the complete-information case is stated in the following the-

orem.

Theorem 1. Suppose the agent’s valuation v is common knowledge. Let W i be the

equilibrium payoff of mechanism i and U is the equilibrium payoff of the agent. Any

point in

{(U,W 1,W 2, · · · ,WN |U,W i ≥ 0, U +
∑
i

W i ≤ v}

can be sustained in a perfect Bayesian equilibrium.

Proof. The proof is by construction. Let ωj ∈ {M1,M2, A,MC,NT, T} be the state

variable for Markov strategies of mechanism j and the agent. The first three are the

indicator function of who deviated the last between mechanism j and the agent. If

the agent deviated the last, ωj = A; if mechanism j sent an off-the-equilibrium path

message, ωj = M1, and if it offered an off-the-equilibrium path contract, ωj = M2.

MC, T, NT indicate whether they are in the marginal-cost pricing regime, the trade

regime or the no-trade regime. Consider the following strategies. While ωj = MC,

1. mechanism j sends no message to the agent,
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2. the agent visits mechanism j,

3. mechanism j offers (qjt , T
j
t ) = (1, 0),

4. the agent participates and takes (qjt , T
j
t ) = (1, 0).

While ωj = NT ,

1. mechanism j sends no message to the agent,

2. the agent doesn’t visit mechanism j.

While ωj = T ,

1. mechanism j sends no message to the agent,

2. the agent visits mechanism j,

3. mechanism j offers (qjt , T
j
t ) = (1, v − U),

4. the agent participates and takes (qjt , T
j
t ) = (1, v − U).

When ωj = M1,

1. the agent doesn’t visit,

2. in the following period, ωj = NT .

When ωj = M2,

1. the agent doesn’t participate this period,

2. in the following period, ωj = MC.

When ωj = A,

1. if the last deviation is that (i) the agent didn’t visit when his strategy was to

visit, (ii) the agent didn’t participate when his strategy was to participate, or

(iii) if the last deviation is that the agent participated when his strategy was

not to participate, ωj = NT in the following period.

2. if the last deviation is that the agent visited when his strategy was not to visit,

(a) mechanism j offers (qjt , T
j
t ) = (0, v),
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(b) the agent doesn’t participate,

(c) ωj = NT in the following period.

Given (U,W 1, · · · ,WN), there exist µ1, · · · , µN ∈ [0, 1] such that W i = µi(v −
U), ∀i and

∑
µi ≤ 1. In the first period, with probability µi, ω

i = T and ωj = NT for

all j 6= i. The rest is to verify that the strategies above define an equilibrium. Since

we have continuity at infinity, it is sufficient to check that no player has incentives to

deviate when there has been a finite number of deviations across all players.

After any history, there is at most one mechanism i where ωi = T or MC. All

other mechanisms have one of ωj = A, M1,M2 or NT . Once ωi leaves T , it never

goes back to T and has to be one of A,M1,M2,MC,NT . In the first period, there

is at most one mechanism with ωi = T , and therefore, there can never be more than

one mechanism with ωi = T . In order to go to ωj = MC, the agent has to visit

mechanism j and the mechanism j has to offer an off-the-equilibrium path contract.

Since the agent can only visit one mechanism in a given period, there can be at most

one mechanism with ωj = MC. The last step is to show that there can’t be two

mechanisms such that ωi = T, ωj = MC, i 6= j. But both T and MC require the

agent to visit their mechanisms, and this can’t happen simultaneously.

From any mechanism’s perspective, when it initiates the deviation and if it’s the

last deviation, ωj becomes M1 then NT or M2 then MC regardless of the current ωj.

It’s deviation payoff is 0, and the mechanisms don’t have incentives to deviate.

We just need to verify the agent’s incentives to deviate. The agent’s deviation

payoff is 0 possibly except when the agent wasn’t supposed to participate but he

participates, and this is the only case we need to verify. If the mechanism offers an

off-the-equilibrium path contract and the agent’s participation is the last deviation,

the agent’s deviation payoff is at most (1 − δ)v. His continuation value from not

participating is δv by the marginal-cost pricing regime, and δ ≥ 1
2

implies that the

agent doesn’t deviate. If mechanisms follow their strategies, there is one more subcase

to check. If the agent’s strategy was to visit mechanism i, his strategy is to participate

in mechanism i for all ωi 6= M2. Therefore, the agent’s strategy must have been not

to visit mechanism i but he visited and he also participated even though his strategy

is not to participate. But if mechanism i didn’t deviate after the agent visited, it

offers (0, v), and by participating, the agent’s deviation payoff is −(1− δ)v. Since by

not participating, the agent can guarantee at least 0, the agent doesn’t participate.
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Therefore, the above strategies form an equilibrium.

In this equilibrium, the strategies of mechanism i and the agent only depend on the

interaction between the two, and there is perfect monitoring between each mechanism

and the agent. Therefore, when the other player is playing a Markov strategy only

conditional on the private history between the two, it is an equilibrium to ignore

any signal about the interaction between other mechanisms and the agent. Also, in

this equilibrium, mechanisms don’t send messages, but the proof can be adapted so

that the mechanisms post the menu of contracts. If a mechanisms posts a menu of

contracts in its message but offers a different menu of contracts when the agent visits,

it triggers ωi to become M2, and the rest of the equilibrium construction works the

same way.

I used the public randomization device so that with probability µi, ω
i = T and

ωj = NT for all j 6= i in the first period, but we can modify the proof so that there

is no public randomization device. This would require the strategies to be defined as

above from the second period onwards, and in the first period the agent randomizes

among all mechanisms. Since all mechanisms follow the same strategy, the agent is

indifferent across all of them and is willing to randomize.

The next theorem characterizes Pareto frontier for mechanisms when the agent’s

valuation is his private information.

Theorem 2. Suppose the agent’s valuation is his private information. Pareto frontier

of mechanisms’ payoffs is given by

{(W 1, · · · ,WN)|W i, µi ≥ 0, ∀i,
∑

µi = 1,
∑

µiW
i = (1− F (v̂))v̂}.

If the solution to

v =
1− F (v)

f(v)

is in the support, v̂ is the solution to the above equation. If not, v̂ = v. The buyer’s

payoff is v − v̂ if v ≥ v̂, 0 otherwise.

Proof. Suppose given Pareto weights (µ1, · · · , µN), λv and Tv are the discounted

weighted sum of the probabilities type v buys from any of the sellers and the dis-
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counted sum of the payments he makes:

λv =
∞∑
t=1

δt−1
N∑
i=1

µiλ
i,t
v ,

Tv =
∞∑
t=1

δt−1
N∑
i=1

µiT
i,t
v ,

where λi,tv is the ex ante probability that type v buys from mechanism i in period t

and T i,t
v is the ex ante payment type v makes to mechanism i in period t.

One of the IC constraints is that type v and v′ don’t mimic each other forever:

λvv − Tv ≥λv′v − Tv′ ,

λv′v
′ − Tv′ ≥λvv′ − Tv.

We can combine the two IC constraints as (λv − λv′)v ≥ Tv − Tv′ ≥ (λv − λv′)v′, and

the local ICs are sufficient:

lim
v′→v

(λv − λv′)v = Tv − Tv′ .

The relaxed problem with IC constraints that type v doesn’t mimic v′ forever is as

follows:

max

∫
TvdF (v)

s.t. λv ∈ [0, 1] ∀v,

IC : lim
v′→v

(λv − λv′)v = Tv − Tv′ ,

IR : λvv − Tv = 0.

From the IC constraint, we get∫
TvdF (v) =

∫
(vλv −

∫ v

v

λzdz)dF (v)

=

∫
(vλv −

1− F (v)

f(v)
λv)dF (v).

Since λv is bounded, we get 0 or 1 as the solution, and from the monotone hazard
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rate condition, there exists v̂ such that λv = 1 if and only if v ≥ v̂. λv = 0 otherwise.

The next step is to show that there exists a perfect Bayesian equilibrium of the

full problem with the same property. Let i be the mechanism with the highest Pareto

weight µi. (if there are multiple mechanisms with the same Pareto weight, pick the

minimum i) Consider the equilibrium from the proof of Theorem 1 where the transfer

v − U for ωj = T is replaced by v̂ and the transfer v for ωj = A is replaced by v̄.

In the first period, mechanisms don’t send messages, and the agent visits mech-

anism i if v ≥ v̂ and doesn’t visit any mechanism if v < v̂. All mechanisms j 6= i

has ωj = NT , and mechanism i has ωi = T if the agent visits and ωi = NT if the

agent doesn’t visit. The rest is to verify that these strategies form an equilibrium,

but since the strategies are determined by the interaction between each mechanism

and the agent, we just need to verify that the agent has the right incentives in the

first period. If the agent visits mechanism i, ωi becomes T , and the agent gets v − v̂
over infinite horizon. If the agent doesn’t visit mechanism i, ωi becomes NT ; if the

agent visits some other mechanism j, ωj = A, and otherwise all mechanisms have

ωk = NT . Once ωk’s are determined in the first period, it is an equilibrium to follow

the strategies. If the only deviation is whether the agent visits any mechanism and

which mechanism he visits, the agent compares v− v̂ and 0, and it is the best response

of the agent to visit mechanism i in the first period if and only if v ≥ v̂.

When the agent’s valuation is his private information, Pareto frontier for mecha-

nisms is obtained by repeating the static optimal screening every period. The mech-

anism with the highest Pareto weight monopolizes the market, and the agent visits

this mechanism every period if his valuation is above the cutoff. The agent never

visits any mechanism if his valuation is below the cutoff.

The proof consists of two steps. I first put an upper bound on any weighted

sum of mechanisms’ payoffs then show that the upper bound can be attained as an

equilibrium. The second step of constructing the equilibrium follows the proof of

Theorem 1 closely. In the first step, I derive the upper bound by consider a relaxed

problem. In principle, when we allow arbitrary signals about interaction between

other mechanisms and the agent and when we also allow any mechanism, the set of

IC constraints is very big. When I consider the relaxed problem, I ignore mechanisms’

incentives altogether, and also for the agent, I only consider the deviation strategy

of mimicking another type forever. When we only consider the IC constraint of the

agent mimicking another type forever, maximizing the weighted sum of mechanisms’
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payoffs maps into a static mechanism design problem, and the optimal mechanism is

to sell with probability 1 if the virtual surplus is positive and never sell if the virtual

surplus is 0. Since adding additional constraints only weakly lower the weighted

sum of mechanisms’ payoffs, constructing an equilibrium with the maximum payoff

from the relaxed problem shows that this is the tight upper bound. I also allow for

any Pareto weights, and the equilibrium construction traces all of Pareto frontier for

mechanisms.

Theorems 1 and 2 have several implications which are discussed in the next section.

4 Conclusion

I studied competing mechanisms with limited commitment over infinite horizon in

this paper. I characterized the set of equilibrium payoffs when the agent’s valuation

is common knowledge among mechanisms and Pareto frontier for mechanisms when

the agent’s valuation is his private information.

First of all, Theorem 1 shows that if the agent’s valuation is common knowledge

among mechanisms, any individually rational payoffs can be sustained as an equilib-

rium with competing mechanisms and limited commitment. Theorem 1 holds with

any discount factor bounded away from one, and it is stronger than folk theorem that

holds in the limit.

Second, Theorem 2 shows that folk theorem result with complete information

completely breaks down when the agent has private information about his valuation.

Mechanisms can never do better than repeating the static optimal screening every

period, and in particular, even as the discount factor converges to one, the set of

equilibrium payoffs never converge to the set of individually rational payoffs which is

the same as the set of equilibrium payoffs with complete information.

Third, both theorems essentially work with sequential equilibrium or belief-free

equilibrium as well. Since the state variables for Markov strategies only depend

on the private history between each mechanism and the agent and there is perfect

monitoring between each pair, folk theorem with complete information and anti-folk

theorem with incomplete information work with those equilibrium definitions as well.

Fourth, Theorem 2 also shows that learning over time doesn’t help mechanisms.

Mechanism i, for example, learns whether the agent’s valuation is above or below v̂

in the first period, but it can’t leverage that information. Literature on ratchet effect
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suggests that mechanisms might learn over time and exploit the agent, but there

is discontinuity between finite-horizon models and infinite-horizon models, and with

infinite horizon, there is always a continuation game, and one can always construct a

no-trade equilibrium or marginal-cost pricing equilibrium as continuation strategies.

Fifth, Theorems 1 and 2 show that modelling the buyer (the agent) as a strategic

long-run player has a significant impact on the equilibrium payoffs of the sellers

(mechanisms).

Sixth, the combination of perfect monitoring between each mechanism and the

agent and Markov strategies only using the private history between each pair shows

that once it is an equilibrium to follow the Markov strategies between the pair, there

is really nothing other mechanisms can do to deter the pair or to attract the agent

to come visit them instead. This is why any signal structure about the interaction

between other mechanisms and the agent can be allowed for yet it makes no difference

to the set of equilibrium payoffs.
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