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Abstract

One of the major challenges that a remanufacturer faces at strategic planning level
today is to match its supply (returned items) with demand due to the inherited
uncertainties and variations on both sides. Forecasting product returns is one of the
most important tasks of this matching process. Unlike forecasting for traditional
manufacturing systems, both quantity and quality forecasts are critical since return
timing, quantity, and the quality of returned products can all vary dramatically. This
research develops a forecasting method which incorporates knowledge from related
sales, product usage, customer return behavior, and product life expectancy
information to provide a more accurate prediction of product returns. The models
are validated using Monte Carlo simulations. Numerical cases are also presented to
illustrate its usage and some important insights.
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Background
As the global manufacturing environment becomes increasingly competitive, more and

more manufacturers view remanufacturing as an important opportunity for profit gen-

eration. Remanufacturing provides a means for a society to treat product life cycle

from a more holistic perspective, offers an alternative to traditional recycle and reuse,

and increases resources utilization. Remanufacturing is the process that recovers re-

sidual value from used or degraded products by disassembly and recovery at module

level or at component level. This is accomplished by restoring used products to ? like-

new ? condition by replacing broken or degraded components or by reprocessing used

components [1,2]. Focusing on value-added recovery is the main difference between

remanufacturing and other types of end-of-life (EOL) treatments, such as recycling

[3,4]. This is also the reason that remanufacturing systems are viewed and treated

more similar to traditional manufacturing systems than simple recycling.

Remanufacturing is a fast growing industry. In the United States alone, remanufactur-

ing operations (excluding military) has a $53 billion per year market share [5], and it is

growing from between 10% to above 50%, depending on industry and product types [6].

Automotive Parts Remanufacturers Association estimates that the remanufactured units

were roughly 10 million in 1995, 15 million in 2000, 20 million in 2005, and 30 million in

2015 [7]. Remanufacturing businesses are driven by different incentives in different re-

gions, which, in turn, give different management styles and focus on different metrics

and sets of key performance indicators (KPI). Unlike remanufacturers in Europe, who
2014 Liang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
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face more rigorous government regulations, North American counterparts are more profit

driven. Because the targeted remanufacturers of this research are U.S. based, this paper is

more focused on providing economical competitive advantage, such as matching supply

with demand to maximize profit, and less on governmental regulation factors or environ-

mental issues.

The fluctuations of both supply and demand sides are the most critical issues facing

industry today. Many other remanufacturing topics, such as inventory management,

are designed to either isolate or mitigate these fluctuations. In a survey by Hammond

et al. [8], automotive part remanufacturers considered that parts availability was the

number one difficulty for their operation (43% of them), and 41.2% of them used avail-

ability of parts as the main criterion to decide whether or not to remanufacture a given

product. Marx-G?mez et al. [9] and Guide et al. [10] stated that the uncertainty in time

and amount was the single most important factor that influences remanufacturing sys-

tem planning. Guide et al. [3] listed seven major problems that remanufacturing sys-

tems faced today, and three of them were related to this problem. Uncertainty from

supply side (returned products) is the most crucial characteristic of remanufacturing

problems, and it distinguishes remanufacturing from traditional manufacturing systems.

Unlike traditional manufacturers, remanufacturers usually have less or no direct control

of the returned parts. Figure 1 illustrates an example of variations in both supply and

demand sides. From a remanufacturer ? s perspective, supply is the volume of returned

used products, and demand is how many remanufactured products are desired. The

overlapping area denotes remanufacturable quantity when delays in inventory, remanu-

facturing time, and other factors are neglected. As the figure shows, remanufacturing

operations are essentially matching processes which intend to maximize the overlap-

ping region under demand and supply curves, and in order to match, forecasts of both

supply and demand curves are necessary. Moreover, in addition to the variations in

quantity and arrival times, quality variation is equally important since returned prod-

ucts can have a wide range of conditions, but finished products usually need to meet

the same quality specification. This poses a unique problem which traditional manufac-

turing systems do not encounter, so new techniques are needed to predict and actively

change the shape of both supply and demand curves. Some researches take incentives,

such as discount and advertisements, into account to optimize the overall remanufac-

turable volume [11]. Our study is more focused on the prediction of the supply curve

(see Figure 1).

There exists a spectrum of remanufacturing scenarios which have very different types

of return characteristics. For example, the return process of leased printer is very
Figure 1 Remanufacturable area under supply and demand.
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predictable since the return date and/or quality are predefined by the leasing contracts.

However, the return characteristics of many fashionable goods and consumer electron-

ics are much more random since the sales of the items, usage pattern, and customer re-

turn behavior are all fairly unpredictable. Because of this variation in predictability,

different forecasting approaches are required for different business settings. This paper

targets the recently developed electrical vehicle (EV) battery return applications. The

urgency and importance of EV battery remanufacturing is because of limited and costly

resources, the modular nature of lithium batteries, and potential resale market. Current

lithium ion (Li-ion) battery-powered vehicles, such as Chevy Volt and Nissan Leaf,

whose batteries are warranted for 8 ? 10 years or 100,000 ? 150,000 miles, are likely to fail

before the expected life of the vehicles. The returned battery may still have significant

residual value. The cost of Li-ion battery is still very high, usually at $1,000 ? $1,200 per

kWh. Therefore, remanufacturing has great potential to dramatically reduce the total

life-cycle costs of Li-ion batteries [12,13]. Industries also propose different types of pur-

chase/warranty schemes in order to allow customers to have operational batteries for

the entire vehicle lifespan. That is, customers are now able to purchase not only a sin-

gle battery pack with the EV but also the warranty of battery use-time, or the combin-

ation of them. In this type of business scenario, broken or degraded batteries can be

returned or traded in to dealers or battery collectors and be replaced with a new battery

before the predefined total use-time expires. The new batteries can then be made with

components from returned batteries. This creates strong incentives for customers to re-

turn and also for manufacturers to remanufacture. Since this business scenario is com-

pletely new, the goal of this research is to develop a long-term forecasting method to

remanufacturers and related suppliers to assist their operational decisions.

The challenges for forecasting of product returns are mainly from two sources: lack

of quality/credible data and unproven assumptions. There is no or very limited histor-

ical data since this type of remanufacturing business scenario is never before seen in

the industry and data collecting is also limited or of low accuracy/credibility in similar

fields. These challenges seriously limit the type of forecasting techniques we can imple-

ment. With these constraints, we propose to build a physical model-based forecasting

method instead of traditional data-driven methods which heavily rely on data quality

and sophisticated statistical models.

The objective of this research is to provide a methodology to forecast both quantity

and quality of returned products, such as EV batteries, based on previous/expert know-

ledge on indirect information rather than direct historical data. The rest of the paper is

organized as follows. Literature review reviews previous literature regarding remanu-

facturing return forecasting. Forecasting of product return quantity presents the me-

thodology and main factors for quantity forecasting of product returns, and Quality

forecasting of returned products is the formulation for quality forecasting and numer-

ical cases. The final section summarizes this research work and points out possible fu-

ture research directions.

Literature review
Although sale forecasting has been studied for many decades, there are few scientific

papers regarding return item forecasting for remanufacturers, and majority of them are

focused on short-term tactical and operation level mainly for inventory management
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and production planning [14]. For some scenarios, simple classical forecasting tech-

niques, such as moving average and exponential smoothing, are sufficient [15]. How-

ever, often, there are more valuable information that people can take advantage of, and

a variety of forecast outputs are required for different situations [16]. Therefore, spe-

cific techniques are developed to tailor to those specific needs. In some cases, period-

ical information, such as monthly volume, is available and the need is to predict in the

future volume [17]. In other cases, historical return dates are available and other char-

acteristics, such as return lead times, are predicted. Kelle and Silver [18] developed four

different forecasting methods for expected value and variance of return lead times of

containers. Goh and Varaprasad [19] used a transfer function model which included

factors, such as previous returns, sales, and time lag, to predict the timing and quantity

of returns of Coca-Cola bottles. Toktay et al. [20] developed a Bayesian estimation-

based distributed lag model which used newly collected data to update estimated pa-

rameters. As listed above, the majority of existing studies use statistics-based method

for prediction with historical data.

Other types of forecasting methods including previous knowledge, simulation, or

known sub-models are often used. Marx-Gomez et al. [9] combined simulation and

fuzzy logic models to forecast the quantities and timing of returns of photocopier.

Simulation was used to obtain sales, failures, usage intensity, return quotas, and other

so-called impact factors. Then, fuzzy controller was used to combine these impact fac-

tors and give one-period prognosis and neuro-fuzzy network was used to provide

multi-period prognosis. Similarly, Hanafi et al. [21] used fuzzy-colored petri nets to

combine different sub-models, such as technology development, consumer demands,

and product reliability to forecast returns at different locations over a specific time

period. For others, non-parametric models are more suitable. For example, Monte

Carlo simulation is employed to estimate CRT television sales. The gap between exist-

ing literature and our current need is that the above methods are used for prognosis

and for relatively short-term prediction but not for lifespan planning of the business or

facility. Furthermore, the existing literature has not addressed much on the quality vari-

ation of returned products which is critical for battery remanufacturing. To fill the gap

in the existing literature, this paper develops a new forecasting tool for end-of-life

product returns in terms of timing, quantity, and quality to support the remanufactur-

ing strategic planning and decision making.

Forecasting of product return quantity
Quantity forecasts provide information of how many product return a remanufacturer ex-

pects to obtain at a future time. However, unlike most forecasts which only deal with one-

time customer decision, such as buying or not buying, returning is determined by a series

of cascaded events, i.e., product purchase decision, product usage, and product return de-

cision. In this section, a new method is presented for predicting product returns in terms

of quantity only. This is critical to determine the availability of remanufacturable prod-

ucts. The key to the new method is to utilize an effective characterization of three main

influence factors? sales, life expectancy, and return behavior? to facilitate an accurate

forecasting of return timing, quantity, and quality. More specifically, the reasons of prod-

uct return considered in this paper are limited to the failure-induced return and end-of-

life return. The product technology upgrading is not considered as a cause of return.
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Sub-models for influence factors

Sales distribution, S(t)

Sales forecasting has been studied for many decades, and each manufacturer or third

party consultant usually has its own forecasting models. Moreover, it is common in in-

dustry practice that non-equation form of modeling is used, and people tend to focus

more on market research perspective of the forecast. Techniques, such as concept test,

focus groups, perceptual mapping, conjoint analysis, and consumer clinics, are more

often seen in order to have a better understanding of the customers ? preference and to

adjust future plans. For example, the information acceleration (IA) methods are used

for GM? s new electric vehicle sales prediction [22]. On the other hand, academic re-

searchers are still interested in more mathematics-orientated approaches because they

can provide a more direct relationship among different influential factors. For this rea-

son, this paper provides both analytical and numerical methods in order to accommo-

date current industry practice.

For analytical-based forecasts, there are generally two categories: aggregated and

disaggregated models. For the aggregated or top-down approaches, only the cumulated

behavior of a group of people is studied. On the other hand, disaggregated or bottom-

up models study individual decision makers that underlie market demand or supply

and integrate them. Although the emphasis in forecasting and econometrics has gener-

ally shifted from aggregated to disaggregated models in the past decades, most forecast-

ing models people use in industry today are still of aggregated form simply due to the

difficulty and expense of collecting data on individual consumers. Out of all aggregated

models, Bass diffusion model is the most often used [23].

Diffusion of products or innovation is the theory that seeks to explain how, why, and

at what rate a new idea spreads through societies. The parameter that characterizes this

process is called the rate of adoption, and it is defined as the relative speed in which

members of a social system adopt an innovation. This rate is usually measured by the

length of time required for a certain percentage of the members to adopt. Customers

can be divided into many categories, such as innovators, early adopters, early majority,

late majority, and laggards. Groups are different in how they perceive different

innovation factors, such as relative advantage, compatibility, and complexity of the

product. Bass diffusion model is chosen because it has all the essentials of diffusion

models yet is the most simplified and intuitive version. In this model, only two cus-

tomer groups, early adopters and followers, are considered. The sales only include the

originally manufactured products and the remanufactured products are only used for

warranty repair but not for original sale.

Mathematically, we use the following differential equation to represent the Bass

diffusion

f t? ?
1−F t? ? ? p ? qF t? ? ? 1?

where F(t) is the base function, and f(t) is the rate of change or derivative of F(t). p is

the coefficient of early adopters, advertising effect, or innovators in Bass? s original

model. It describes how quickly early adaptors are willing to purchase or to enter a

new market. q is the coefficient of followers, internal influence, word-of-mouth effect,
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or imitator factors in the original model. Sales volume at time t, S(t), is the rate of

change of installed base f(t) multiplied by the market potential, m, and has the form of

S t? ? ? mf t? ? ? 2?

The solution to Equation 1 is
S t? ? ? mf t? ? ? m
p ? q? ? 2

p
e− p ? q? ? t

1 ? q
p e

− p ? q? ? t
� �2 ; m; p; q > 0 ? 3?

with its maximum occurring at

t� ? lnq−lnp
p ? q

? 4?

In real practice, p and q are set equal since early adopters usually act much quicker
than followers. The choice of p and q depends on many other social factors and indus-

try [24].

Bass diffusion model is a generalized form of other more commonly used ? s-curve ?

functions. When q =0, it reduces to standard exponential distribution with λ = p. When

p = 0, it reduces to logistic distribution. Bass diffusion model is also a special case of

the Gamma/shifted Gompertz distribution.

Product breakdown distribution, B(t)

Besides sale information, another essential influencing factor for battery return fore-

casting is battery life expectancy or the degree of quality degradation during the usage

stage. Currently, battery condition monitoring typically refers to the evaluation of bat-

tery state of charge (SOC), or the state of health (SOH). SOC is defined as the amount

of remaining charge in a battery before a recharge is required, and SOH is the potential

chargeable capacity of a battery compared to the original unused one. For electric ve-

hicle batteries, consumer usually does not return when the battery is completely dead

but rather until certain degradation criteria are reached, such as SOC drops below

75% ~85%. Therefore, the return time prediction is usually to predict the time length

that a battery can last until certain manufacturer predefined threshold is reached.

The conventional approach for life expectancy prediction is to model product condi-

tion or degradation by an appropriately chosen random process, and the occurrence of

failure or reaching of certain threshold is modeled by a Poisson process. Weibull distri-

bution is chosen for this study because its failure rate function is only current state

dependent. The system condition, or degradation state, is modeled by a Brownian mo-

tion with positive drift. Under this assumption, the time to failure corresponds to the

first passage time of the Brownian motion and follows an inverse Gaussian distribution.

Weibull distribution is well studied for reliability engineering, and reference can be

found in many textbooks (i.e., [25]).

Weibull distribution is one of the solutions that assume the degradation process is

deterministic. The probability density function g(t), the hazard function h(t), and cumu-

lative distribution function G(t) of Weibull distribution are:

g tja; b; c? ? ? B t? ? ? c
b

t−a
b

� �c−1
e−

t−a
b? ? c

; t ≥ a; a ∈ℝ; b; c ∈ℝ? ? 5?
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h tja; b; c? ? ? c
b

t−a
b

� �c−1
; t ≥ a; a ∈ℝ; b; c ∈ℝ? ? 6?

G tja; b; c? ? ? 1−e−
t−a
b? ? c

; t ≥ a; a ∈ℝ; b; c ∈ℝ ? ? 7?

Here, the breakdown function B(t) is exactly the probability density function, i.e.,

B(t) = g(t) [24]. Weibull distribution is a very versatile reliability distribution and widely

used in many reliability engineering applications. By changing the shape parameter, the

failure rate h(t) can be changed directly. It can be increasing, constant, or decreasing

over time. Piecewise curve fitting is commonly used to model the classic ? bell curve ? for

failure rate [26,27].

Customer return function, C(t)

Customer return behavior is the third influencing factor that needs to be considered in

the forecasting model. The warning indicator of a battery failure is usually signaled on

the dashboard, very similar to maintenance reminder signals. Also similar to the main-

tenance behavior, people usually do not bring back the vehicle for battery treatments

immediately when they see the warning signal. This is probably due to the fact that the

vehicle is still perfectly drivable and usually no noticeable changes are detected. An-

other reason is that SOC or SOH aspects of the battery usually degrade very gradually

over a period of years without noticeable abrupt changes.

To the authors ? knowledge, people do not return immediately, and sometimes the

time delay between product failure and the return action can be as long as half a

year or more. The return function is usually heavily skewed to the left as illustra-

ted in Figure 2. This long-tailed distribution indicates that the majority of people

will return damaged or unwanted product in a short period of time. However, there

are also a considerable amount of people who will return after a relatively long period

of time. This kind of characteristics can be modeled by inverse Gaussian functions

due to its skewness, positive support, and relatively easy expression (see Figure 2).

Choosing inverse Gaussian is also because its flexibility in modeling the following

three characteristics: (1) the majority of people return within certain time period, (2)

only a small portion of them return whenever they found convenient, and (3) the rest

will never return.
Figure 2 Typical customer return behavior distribution.
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Inverse Gaussian functions have the general probability distribution function of

C t? ? ? i
2πt3

� �1=2
e
−i t−j? ? 2

2j2 t ; i; j > 0 ? 8?

where j >0 is the mean and i >0 is the shape parameter. C(t) represents the probability

that the customer returns the battery t time units after its failure.

Although there are many other factors that may influence the quantity and quality of

the returned products such as government regulations, they are either not appropriate

for the EV battery return in North America or not proven to have significant influence

on return quantity or quality. Therefore, the three main factors listed above are the

focus in this study.

Return quantity forecasting in continuous case

As illustrated in Figure 3, the return quantity at any point in time, such as at point R,

is the summation of different sale quantity and product life expectancy combination.

That is, returned product at R may be purchased at time S1 and used for B1 years, or

purchased at time S2 and used for B2 years, and so on.

One way to characterize the relationship of these three influential factors is to use

convolution. Convolution for two continuous functions f(t) and g(t) is defined as

f t? ? � g t? ? ≡
Z ∞

−∞
f τ? ? g t−τ? ? dτ ?

Z ∞

−∞
f t−τ? ? g τ? ? dτ for f ; g : 0;∞? ? ∈ℝ ? 9?

For this problem, the volume of broken products at time t can be represented as the
convolution of the sales volume S(t) and the breakdown probability B(t). Then, the total

volume of product returns at time t; R(t) is the convolution of the consumer return be-

havior C(t); the previous convolution result S(t)*B(t) as follows:

R t? ? ? S t? ? � B t? ? � C t? ? ? 10 ?

where R(t) denotes the return quantity at time t, S(t) is the probability function of sales

quantity, B(t) is the probability function of breakdown time, and C(t) is the probability

function of customer return. Note that B(t) and C(t) may not be normalized to 1. The

integration of B(t) is less than 1 because not all batteries are degraded to certain
Figure 3 Relationship between sales, breakdown, and return.
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threshold during the lifespan of an electric vehicle. The integration of C(t) is less than

1 because not all failed batteries are returned. Some customers may choose not to re-

turn or return to third party collectors.

However, due to the complexity of the functions S(t), B(t), and C(t), there is no

closed-form solution for the convolution. Because only a finite range is needed, these

functions can be approximated over this desired range by some polynomial functions.

The coefficients of the polynomial are chosen such that the weighted error between

the approximation and original function is minimized in a least squares sense. For

example,

S t? ? ? θ0 ? θ1t ? θ2t2 ? θ3t3 ? ?

whereθi ? argmin
Z b

a
R t? ? −~R t; θi? ?� �2

dt
? 11 ?

Return quantity forecasting in discrete form

As mentioned, the majority of forecasting models used in industry are not analytical

based but are most likely produced and derived from different forms of marketing re-

searches. Periodical, such as monthly or yearly, data instead of equation form of S(t), B

(t), and C(t) are provided. The advantage of using a discrete form is that the raw data

form from reliability tests can be used directly without fitting into a model first. Similar

as continuous convolution, a discrete form of convolution can be defined as

f n? � � g n? � ≡ 1
l

X∞

m? −∞
f m? � g n−m? � ? 1

l

X∞

m? −∞
f n−m? � g m? � ? 12 ?

where both f[n] and g[n] have finite positive support, and l is a scale factor which is
related to number of samples for both f[n] and g[n] and is used for normalization. Due

to the simplicity of discrete convolution computation, many continuous functions are

first discretized then are taken convolution in discrete domain. In this way, no symbolic

integral of continuous functions is needed.

Numerical examples

This section uses a numerical example to demonstrate the modeling procedure. The

sales volume of battery packs are the same as the sales volume of the electric vehicles.

A typical EV model usually has a life of 3 ~ 4 years. Hence, it is reasonable to assume

95% of the Bass diffusion function to be in the range of [0, 4]. Substituting p =0.08,

q =2, and m =1 into Equation 3, we obtain S(t) and its polynomial approximation
~S t? ? as follows:

S t? ? ? 54:08
e−2:08t

1 ? 25e−2:08t? ? 2

~S t? ? ? 0:011t5 ? −0:101t4 ? 0:511t3−1:373t2 ? 1:631t−0:3952
? 13 ?

Note that all the approximations in this section are over interval [0, 10] or 10 years.

For breakdown function B(t), it is assumed that batteries are in the ?wear-out zone ? in

around 3 ? 4 years. Failures most likely occur around the sixth years of its usage. There-

fore, we have the following B(t) in the form of Weibull distribution:
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B t? ? ? 2
t−3:5
2

� 	3

e− t=2? ? 4

~B t? ? ? 0:005t6−0:046t5 ? 0:249t4−0:713t3 ? 1:007t2−0:588t ? 0:089

? 14 ?

For return behavior, assuming μ =0.5 and λ =0.2, we have the following return
function

C t? ? ? 0:2
2πt3

� 	1=2

e

−0:2 t−0:5? ? 2

2 � 0:52t
~C t? ? ? −0:0170t6 ? 0:1515t5−0:7493t4 ? 1:9745t3−2:2338t2 ? 0:1179t ? 1:409

? 15 ?

From Equation 17, the resulting polynomial approximation of the return function R
(t) is obtained:

~R t? ? ? 0:0006t5−0:0074t4 ? 0:0445t3−0:1108t2 ? 0:0867t−0:0084 ? 16 ?

The result is shown in Figure 4.
Monte Carlo simulation verification

Another way to predict the quantity of returned product is using Monte Carlo simu-

lation. Monte Carlo simulation is a family of computational algorithms that rely on

repeated random sampling in order to obtain the final results. Assume there total cus-

tomer to be 100,000, so 100,000 samples will be used. For each sample, its sale date, ex-

pected product life, and customer returns are generated according to the functions S(t),

B(t), and C(t), respectively. For sales date, it follows Bass diffusion model as in previous

sections. Technically speaking, it is not strictly a probability distribution since the inte-

gration of the function may not add up to 1. Therefore, normalization is needed before

sampling. For each sample, the deterministic calculation is then calculated:
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Figure 4 Return quantity forecasts.



Liang et al. Journal of Remanufacturing 2014, 4:8 Page 11 of 18
http://www.journalofremanufacturing.com/4/1/8
Returndate ? saledate ? product life ? returndelay

For aggregation, histogram is used to obtain the distribution of sale date, product life,
return delay, and return date, as illustrated in Figure 5.

To compare the results from Monte Carlo simulation with analytical results, the

difference between two curves is measured by f-divergence method. One of the f-

divergence methods, KL-divergence value, is 0.028, and Hellinger distance is 0.035

which are all much less than 1. This indicates the results obtained by both methods

are very close to each other.

Properties of predicted return function

Because of convolution and the general shapes of S(t), B(t), and C(t), the convolution

operation acts like a weighted moving average. This moving average can also be viewed

as a ? low-pass? finite impulse response filter. This means that only ? low frequency ? infor-

mation will be preserved, and ? high frequency ? information will be eliminated by convo-

lution. Here, ? frequency ? of a function roughly means how many times a function varies

in a given time interval. By taking Laplace transform in the continuous case or Z-

transform in the discrete case, it can be shown that distributions used by S(t), B(t), and

C(t) are essentially low-pass filters [28]. As a result, R(t) is smoothed by each distribu-

tion, and any small ? noises ? of S(t), B(t), or C(t) will be reduced. Figure 6 demonstrates

a case where ? seasonality noise ? (a sine function), or ? high frequency ? function, is added

to the sales function, S(t). Sine function is chosen because it contains only a single

frequency.

Snoise t? ? ? 1 ? 0:3sin 8t? ?? ? S t? ? ? 17 ?

where t is in radian. Please note that the sine function has much higher frequency than

the original function. Also note that after the sine function is added the mean, variance

and the area under the curve of S(t) is preserved. The resulting function R(t) is exactly

the same before and after adding this ? seasonality noise ? component (see Figure 6). Due
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Figure 5 Analytical results (smooth curves) vs. Monte Carlo Simulation results (step curves).
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to this smoothing effect, R(t) is not sensitive to ? high-frequency ? changes in S(t), B(t), or

C(t).

Quality forecasting of returned products
Besides the quantity of the returned products, quality of them is another critical infor-

mation that production planners would like to know beforehand for remanufacturing

planning. In this study, the return product quality is defined as the remaining useful life

(RUL) of the unbroken parts of a returned product. A typical EV battery pack usually

consists of hundreds of battery cells. When the performance measurement of a battery

pack, such as SOC or capacity, drops below certain threshold, only one or a few cells

fails or degrades to unacceptable condition while the majority of the cells are still in

good or reasonable quality. Because not all the cells degrade at the same rate, it is crit-

ical to estimate the RUL of good cells, so the remaining value can be assessed. RUL is

essentially a conditional probability distribution which determines how long it takes to

reach certain threshold given that the battery cells have already survived certain among

of time (the time for the battery pack reaching the threshold). In order to express the

quality information along with the quantity information, three-dimensional plots are

used. The x-axis represents the battery return date, the y-axis is the expected quality

indicated by remaining life, and z-axis is the quantity distribution.

Quality distribution, Q(t, x)

Remaining useful life (RUL) is defined as a conditional random variable Xt = T − t when

T > t, where t is the time where a part has survived so far and T is the time to failure.

The conditional reliability function Rt(t) contains all the information required for RUL.

The reliability function is defined as

Rt x? ? ? P T−t > x T > t ? ; t; x;T∈ℝ?j? ? 18 ?
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Rt x? ? ? P T−t > x? ? ∩P T > t? ?
P T > t? ? ? 1−F T ? τ? ?

1−F T? ? ? 19 ?

From Equation 19, the failure rate of RUL Q(t, x) is then
f t x? ? ? −
∂
∂x

Rt x? ? ? f T? ?
1−F t? ? ? h t ? x? ? Rt x? ? ? 20 ?

Q t; x? ? ? f t t; x? ? ? f t x t ? f t? ? ? h t ? x? ? Rt x? ? f t? ?j? ? 21 ?

where x = T − t, and f(t), F(t), and h(t) are time to failure probability density function

(pdf), cumulative distribution function (cdf), and hazard rate functions defined in

Equations 9 ? 11. The conditional distribution becomes.

Rt x? ? ? e−
t ? x−a

b? ? c

e−
t−a
b? ? c ? e−

t ? x−a
b? ? c

− t−a
b? ? c? � ? 22 ?

The joint probability becomes

Q t; x? ? ? c
b

t ? x−a
b

� �c−1
e
−

t ? x−a
b

� �c

−
t−a
b

� �c
� �

c
b

t−a
b

� �c−1
e
−

t−a
b

� �c
� �

? c2

b2
t−a
b

� �c−1 t ? x−a
b

� �c−1
e
−

t ? x−a
b

� �c
� � ? 23 ?

For each breakdown time, t, there is a RUL distribution associated with it which gives
the third dimension to the final plot.

Convolution

It is assumed that the quality is uniform when the product is out of the factory

or at the time of purchase, so the third dimension of S(t) is invariant. So we have

S(t, x) = S(t). Similarly, because consumer ? s behavior will not be affected by the

RUL of returned battery, their return behavior would not be affected by return time

either, i.e., C(t, x) = C(t). Because of this invariance in both S(t, x) and C(t, x), the con-

volution is only performed in one dimension, and it is independent of the ? quality ? di-

mension. That means

f t; τ? ? � g t; τ? ? ?
Z ∞

−∞
f x; τ? ? g t−x; τ? ? dx ?

Z ∞

−∞
f t−x; τ? ? g t; τ? ? dx ? 24 ?

The final result of R(t, x) is the one-dimensional convolution of S(t, x), Q(t, x),
and C(t, x)

R t; x? ? ? S t; x? ? � Q t; x? ? � C t; x? ? ? 25 ?

Numerical examples

Sales distribution, S(t, x)

Continuing the numerical example from numerical examples and the sales function are

essentially the same as Equation 17. The 3D shape of the function is shown in Figure 7.



Figure 7 Sales distribution, S(t, x).
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S t; x? ? ? 54:08
e−2:08t

1 ? 25e−2:08t? ? 2 ? 26 ?

Quality distribution, Q(t, x)

This distribution is determined by two factors, the product breakdown time t and RUL

x. The relationship is given by Q(t, x) in Equation 23 for this example. It can be seen

that when the shorter the product usage time t is, the longer the expected RUL x is, as

in Figure 8. Because the mode of breakdown function Q(t, x) along the t direction is

around 7, the quality of returned product decreases dramatically towards 0.
Figure 8 Quality distribution, Q(t, x).
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Q t; x? ? ? 4
t ? x−3:5

2

� 	3 τ−3:5
2

� 	3

e−
t ? τ−3:5

2? ? 4
� �

? 27 ?

Customer return distribution, C(t, x)

Similar with the sales function, the customer return behavior function is also constant

along the quality axis since return behavior would not alter the quality of the product

itself. That is, C(t, x) =C(t), which is shown in Figure 9.

Return distribution, R(t, x)

The final returned product quantity and quality plot is shown in Figure 10. The cross

section of the plot along the time direction at x = 0 is the same as the R(t) from

Numerical examples.

From this plot, it can be shown that after return date (t) passes a certain time

(9 years), or the sum of peak sales date (around 2 years) plus peak breakdown

time (around 7 years), the returned products are largely in very low quality (x <1

year). This gives a rough time frame when a returned product is economical to be

remanufactured. Some other end-of-life treatment, such as recycling or proper dis-

posal, may be employed after certain time.
Verification with Monte Carlo simulation

For this illustrative example, one million samples are used for each of the random

input generation. Generation of the sale dates, expected product life, and customer

return behavior is the same as in Monte Carlo simulation verification. The RUL of

returned products is generated by randomly drawing samples from Q(t, x) where

t of each sample is determined by the expected product life samples. Therefore,

whenever a sample is generated, the Q(t, x) distribution needs to be recalculated.

As before, Q(t, x) is not normalized, so it needs firstly be discretized then normal-

ized for each sample.
Figure 9 Customer return distribution, C(t, x).



Figure 10 Return quantity and quality distribution, side view and top view.
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Each sample has two components, the return date and return quality. Return date is

calculated in the exact same way as in Monte Carlo simulation verification. The return

quality is sampled directly from Q(t, x) as shown in previous subsection. The distribu-

tion is obtained by using two-dimensional histogram or other scientific volume imaging

techniques. The simulation results shown in Figure 11 agree well with R(t, x) obtained

using analytical convolution-based approach.

Conclusions and future work
This research provides a methodology to forecast long-term trend of both quantity and

quality of product returns, or the supply of a remanufacturing system, by modeling

three major influential factors (i.e., sales, life expectancy, and customer return behavior)



Figure 11 Monte Carlo for returned product quantity and quality.
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and their combinatory formulation in a forecasting method. To meet the emerging

needs of decision support in the remanufacturing industry, reliable forecasting of sup-

ply can help determine a reasonable estimate of used products attainable under a given

set of conditions and further assist decision makings in remanufacturing operations.

The effectiveness and accuracy of the forecasting model developed in this paper is veri-

fied and validated with simulations.

Generally, the typical goals of strategic forecasting are threefold: (1) estimate oppor-

tunity and outcome for future business actives, (2) find what influence and how to in-

fluence outcome, and (3) judge the potential risks associated with such business

actives. The first two are covered by this research. The model developed in this paper

only provides the most likely outcome based on a single set of assumptions, so poten-

tial risks are more difficult to discovery. Future works may include sensitivity analysis,

scenario analysis, and different assumption management techniques.
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