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Abstract

While recurring and regular variations of weather conditions are implic-
itly addressed by standard seasonal adjustment procedures of economic time
series, extraordinary weather outcomes are not. We propose a way of mea-
suring aggregate abnormal weather conditions based on available local mea-
surements and a straightforward regression-based framework to analyze their
impact on German monthly total industrial and construction-sector production
data, and find noticeable effects. In the historical –and seasonally adjusted–
construction sector growth data the extra explanatory power of the weather re-
gressors over a benchmark univariate autoregressive model even exceeds 50%
of the variation. The estimated effects of weather deviations can be subtracted
from the already seasonally adjusted data to obtain (seasonally as well as)
weather adjusted series, which might capture economic developments better.
The estimated adjustments are quantitatively relevant also for aggregate out-
put (GDP).
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JEL codes: E32 (Business fluctuations), E27 (Forecasting production)
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1 Introduction

Whenever new observations of macroeconomic aggregates such as production or

(un-) employment are published by statistical agencies, it is often heard that some

part of the changes in the respective variables is due to some extraordinary weather

effect, such as a mild winter or an unusually snowy spring. However, a precise

magnitude of this effect is typically not provided. Therefore, the aim of this paper

is to fill this gap by analyzing the impact of unusual weather conditions on economic

output measures. In this study we restrict ourselves to the case of Germany, but our

aim is to develop a tractable framework which could be universally applied in the

future in advanced economies, where systematic weather measurement is recorded.

Impacts of weather phenomena on economic variables are usually associated

with seasonal patterns and therefore treated as regular. Statistical agencies address

this pattern by providing seasonally adjusted series. Nevertheless, one might ex-

pect that deviations of weather conditions from their seasonal average may affect

economic activities and partly conceal the underlying structural dynamics. For

example, Bloesch and Gourio (2015, p.2) pointed out that whether the economic

slowdown in the winter 2013/2014 in the U.S. was due to harsher winter weather or

instead due to an underlying economic trend would have had implications for mon-

etary policy. A slowdown of the U.S. economy due to weather effects rather than a

negative economic trend might have implied less of a need for adjusting monetary

policy.

Depending on the primary objective, controlling for abnormal weather effects

and extracting the real economic trend can be accomplished in two different ways:

Wright (2013) suggested to include –and Boldin and Wright (2015) then included–

weather variables in the seasonal adjustment process for U.S. employment and GDP

data, resulting in a weather as well as seasonally adjusted time series. They argue

that abnormal weather effects may influence the seasonal adjustment procedure.
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Ouwehand and van Ruth (2014) provided a quite differentiated analysis for Dutch

GDP data on the national and sectoral level. Estimating an ARIMA model they

concluded that no significant weather effects could be identified for the majority of

the sectors. A similar approach was used by the Bundesbank for German GDP data

(Deutsche Bundesbank, 2014).

In a second type of approach the seasonally adjusted series is taken as given, re-

lying on asymptotic orthogonality between the seasonal component and the unusual

weather effects. Bloesch and Gourio (2015) for example found an overall weak but

significant weather effect on the nonfarm employment growth rate using a fixed-

effects regression model. Our approach follows this two-step approach, because it

allows us much more flexibility in modelling month-specific and nonlinear weather

terms. While we do not doubt the theoretical possibility that omitted weather ef-

fects might bias the first-step seasonal adjustment in finite samples, we believe that

other weather modelling issues are more relevant in practice.

A previous important contribution is Hummel, Vosseler, Weber, and Weigand

(2015) who analyzed the effect of several weather variables like temperature, snow-

fall, or snow height on German national-level employment, based on 310 represen-

tative weather stations. They identified several weather and catch-up effects in the

following months. For instance, a one degree temperature increase in January raises

employment by 14,000 persons on average between 2006 and 2014. Also for Ger-

many Döhrn and an de Meulen (2015) showed that including weather variables in

a business-cycle oriented forecasting procedure improves the model, but not in a

significant way in their setup.

There are also attempts to identify longer-run weather (or climate) effects on

economic outcomes, see Dell, Jones, and Olken (2014), but in this paper we focus

on the shorter-run dynamics of occurrences of abnormal weather. The longer-run

impact of climatic trends on economic activity raises difficult questions about en-
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dogenous adaptation and restructuring of production, as well as the adequacy of na-

tional accounts measurements that (almost) do not take into account environmental

damages.

We confirm and follow Hummel, Vosseler, Weber, and Weigand (2015) in their

choice of relevant weather measurements, namely air temperature, snowfall, and

snow height. We focus on economic output instead of labor inputs, however. We

also provide a separate analysis for the construction sector since any weather effects

will be felt there most. A further difference is that we stick to a straightforward

model framework that is linear in the parameters, instead including non-linearities

through polynomial terms and by modelling heterogeneous month-specific effects.

Finally, we discuss the use of the weather observations for forecasting purposes

in a (pseudo) real-time setting, when the current production data as well as their

immediate lags would not have been published yet (often called “nowcasting”).

2 Data and empirical approach

The dependent variables that we analyze are the monthly growth rate of German real

total industrial production (IP) and the production in the construction sector, shown

in figure 1. Later in section 3.2 we analyze the implications of these adjustments in

the industrial sector for aggregate output (GDP). Total industrial output represents

an important cyclical indicator, while production in the construction sector is the

part of economic activity which is most likely to depend on weather conditions.

An overview about the different production indices and their hierarchial structure

is given in Statistisches Bundesamt (2015), data are taken from the Bundesbank

website, and both indices are calendar and seasonally adjusted.

It can be seen that the production growth series with this monthly frequency are

quite noisy, but the great recession at the outbreak of the financial crisis is clearly
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Figure 1: Total industrial (upper panel, gip) and construction sector (lower panel,
gconstr) production growth. Seasonally adjusted at the official source and trans-
formed to month-on-month growth rates (log differences).

visible especially in total production which includes export sectors. In the estimated

equations we remove these effects by a small number of impulse dummies added

to the regressions. The salient feature of the construction sector growth distribution

is its heavy tails, with a considerable number of observations that exceed ±10%

monthly growth, leading to an empirical excess kurtosis of 6.7.

Weather data for Germany have recently begun to be provided on the internet

and are freely available.1 The construction of the weather dataset was initially in-

1Original data series provided by Deutscher Wetterdienst and freely available at http://www.
dwd.de/.
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spired by the approach of Hummel, Vosseler, Weber, and Weigand (2015), that is we

aggregated the weather data of the available 251 weather stations to the state levels

of the sixteen German federal states (including the three city-states Berlin, Ham-

burg, and Bremen), then weighing them by the state-level number of employees to

obtain aggregated data at the national level. See below for further details on the

aggregation method. The locations of the weather stations are displayed in figure

2, and the time series sample used in this paper is January 1991 through Novem-

ber 2015. We consider three measurable weather aspects, namely air temperature,

snow height and snow fall per week in centimeters, all time-averaged from daily

to monthly series. Other weather variables would also be possible in principle; the

Deutsche Bundesbank (2014) for example used the sum of ice-days in a specific

time interval (quarter or month), but that information does not differ much from the

combined content of snow fall and (cumulated) height.

Given that the weather data are published already about a week after the end of

the month – in contrast to the production data that suffer from a publication delay

of at least one month – this allows one to predict or “nowcast” the weather effect

on a real-time basis. A potential disadvantage, however, is that the most recent data

are mostly not yet checked for measurement errors.

What we have in mind as a first approximation is a simple additive framework

that distinguishes between different components that together yield the observed

realization of the economic variable of interest:

yt = struct +weatherdevt + εt , (1)

where yt will be a seasonally adjusted growth rate of the underlying economic vari-

able, and struct is interpreted as a component which is structural in the sense that it

6



Figure 2: Weather measurement stations in Germany (map provided by the German
Weather Agency DWD, www.dwd.de).
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indicates the underlying tendency attributable to purely economic forces and intrin-

sic dynamics. In contrast, weatherdevt is an irregular component which measures

influences that stem from weather realizations beyond the systematic and regular

seasonal cycles. We allow these components to be dynamic, such that they will in-

clude lags as well. Finally, εt is a purely random error component which should be

(close to) white noise. As a consequence, yt − ̂weatherdevt will be a weather (and

seasonally) adjusted series.

We proceed by defining the extent of “abnormal weather” as the absolute devi-

ations of the observation X j,t from a month-specific (m = 1...12, corresponding to

January...December) time average for an individual weather station j:

xt, j = X j,t− X̄ j,m(t), (2)

where X ∈ {temperature, snow f all, snowheight}.2 The next step is to aggregate

the time deviations across stations to the corresponding federal state level by a

simple average, xt,s = x̄t, j∈s, followed by a weighted average (by state employment

numbers et,s, with et = ∑
16
s=1 et,s) to the national level:

xt = e−1
t

16

∑
s=1

et,sxt,s, (3)

This construction of aggregate weather time series might be called “deviate-then-

aggregate”. The advantage is that regional station-specific seasonal patterns are

captured.3 Figure 3 shows the resulting time series. The lower panel of that figure

displays the snow-related variables, and while the two series are highly correlated

–for example because in the summers snow is mostly absent and thus the deviation

2We have also experimented with relative deviations (where possible), with inferior results. Tak-
ing into account also a potential time trend in the regular weather series is left for future research.

3In Haustein and Schreiber (2016) the inverse ordering was used, “aggregate-then-deviate”. The
revision was partly inspired by comments from Matthias Hertweck.
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series are both zero– there are some marked differences in the spikes which could

be especially important when considering non-linear effects.

From now on, the deviation of a weather variable and the name of a weather

variable are used synonymously. For example, the deviation of temperature (from

its month-specific average) and temperature are used synonymously, and the abso-

lute level of a weather variable never enters any estimated model.

Our econometric framework is a straightforward dynamic regression. The bench-

mark specification is an AR(6) model of the growth rate of the respective production

index, augmented with two impulse dummies (2008M11, 2009M1) that capture ob-

vious outliers in the great recession episode:

yt = c+
6

∑
i=1

aiyt−i +δ1d2008M11,t +δ2d2009M1,t +ut (4)

In the full specification the following weather terms are included, where Dm
t is

a dummy variable for month m with mean zero (centered):

• Month-specific direct weather regressors:

∑
x∈{temp,s f all,sheight}

12

∑
m=1

(bm
x,1 xt Dm

t ) (5)

• Squared month-specific weather terms, where x2
t sgn(xt) represents a signed

quadratic function which unlike a pure parabola is negative for xt < 0:4

∑
x∈{temp,s f all,sheight}

12

∑
m=1

(bm
x,2 x2

t sgn(xt)Dm
t ) (6)

• Additional auxiliary dummy regressors that merely serve to balance the month-

4We have also experimented with a threshold model as an alternative nonlinear specification, but
with disappointing results.
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Figure 3: Observed weather deviations (aggregates of station-specific deviations).
Upper panel air temperatures in centigrades, lower panel snow fall (times 10) and
snow height in centimeters.
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specific non-zero means of the squared terms:

12

∑
m=1

dm Dm
t (7)

• Lagged weather terms (not month-specific to limit the total number of regres-

sors):

∑
x∈{temp,s f all,sheight}

6

∑
k=1

bx,k xt−k (8)

These details are accurate for the estimation of the historical adjustments; in the

case of forecasting or nowcasting the direct (and month-specific) terms enter as

lags, and the first lag(s) of the output growth are excluded, see below for further

explanations.

The lags of each weather variable were also included to control for possible

catching-up effects in the following months. However, we impose homogeneity

across months for the lagged effects because the number of parameters would oth-

erwise explode relative to the available observations. By catching-up effects we

mean a shift of production in point of time; for example orders and contracts which

could not be carried out in February and March due to a harsh winter might be

completed one or two months later.

A further concern in time series analysis might be the existence of some struc-

tural break. During their analyses, Hummel, Vosseler, Weber, and Weigand (2015)

found some evidence for a structural break in 2006, which prompted them to use

a smooth transition regression model. The advantage of that model is that weather

effects can be flexibly modeled over time. However, the authors assign the struc-

tural break in 2006 mainly to the introduction of seasonal short time work benefits

(Saison-Kurzarbeitergeld), given that they focus on labor market variables. This is

not relevant for our focus on industrial production. Our modelling of month-specific

effects also limits the possibility of splitting the sample, as we effectively require
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up to 12 times more observations. In any case, apart from the mentioned inclusion

of impulse dummies for the great recession there was no indication of structural

changes in our specifications.

The overall sample size in this monthly data is T ≈ 290, and we employ a simple

general-to-specific search to obtain a sparse model. More than 80% of the roughly

hundred regressors are typically removed as insignificant by the procedure.5

3 Estimating weather influences

3.1 Monthly industrial production

We can now report the estimated ̂weatherdevt component by adding together all

terms from the estimated regressions containing a weather-related variable, using

the estimated parameters in place of the unknown truth. The result is shown in fig-

ure 4. It is clear that the observed output growth can most clearly be associated with

weather developments in the case of the construction sector (lower panel), where

many of the extraordinarily large realizations are explained quite well; the resulting

R̄2 of that regression is 72%, compared to a mere 15% in the benchmark specifica-

tion (4). As expected, for total industrial production (upper panel) the explanatory

power of abnormal weather is more modest with an R̄2 of 36%, rising from 19%

in the benchmark AR. Most movements in total production are not attributable to

weather but to other types of shocks.

Notice that some nonlinearity indeed remains in the sparse model, for example

in the case of the total IP equation we retain the sign-squared temperature deviations

in May, yielding a composite abnormal temperature impact of

[
0.020 tempt−0.013 temp2

t sgn(tempt)
]
×DMay

t ,

5We have also cross-checked some results with a more sophisticated best-subset method, but
without any noticeable changes.
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or the sign-squared snow height in January:

[
−0.0087sheightt +0.0018sheight2

t sgn(sheightt)
]
×DJan

t .

Furthermore, the weather coefficients are estimated with a certain amount of

sampling uncertainty, and in Figure 5 we take the associated standard error of̂weatherdevt into account, using the estimated covariance matrix of the weather-

related coefficients.6 This yields interval estimates of the weather (as well as sea-

sonally) adjusted series at a nominal 95% level of confidence. The intervals in that

figure are depicted as shaded grey areas, while for easier visibility we display the

un-adjusted original observations as red circles instead of lines.

One way to read this figure is that whenever the red circle is not touched by the

grey area the weather adjusted datapoint is significantly different from the original

observation. This is quite often the case, of course especially for the construction

sector (lower panel). If it happens with larger observations (in absolute value), the

weather adjustment is “inwards”, closer to zero structural growth, which we observe

in 87 of the roughly 290 observations. But notice that also a significant “outward”

adjustment is quite frequent, where the confidence interval of the weather adjusted

value is farther away from zero than the original observation. In the construction

sector this happens for 93 observations. Furthermore in about 10% of all cases the

weather adjustment in the construction sector flips the sign of the observation sig-

nificantly. (These cases may be overlapping with the significant inward or outward

adjustments.)

All in all, it appears that the impact of abnormal weather conditions affects the

majority of observations in the construction sector in a statistically significant way.

6Let ξt be the consolidated vector of all weather regressors in the full regression described in (5)
through (8), and β the corresponding stacked coefficient vector. Then we have ̂weatherdevt = β̂ ′ξt ,
and its variance is given as ξ ′t Ĉov(β̂ )ξt .
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Table 1: Dynamic correlations: unadjusted and weather-adjusted industrial produc-
tion versus growth of new orders received

Lag (+) / Lead
(-) of growth
of new orders

-3 -2 -1 0 +1 +2 +3 +4 +5 +6

Unadjusted IP
growth

.09 .11* .01 .47*** .08 .20*** .26*** .04 .02 .16***

Weather-
adjusted IP

growth

.07 .07 .00 .43*** .07 .19*** .31*** .02 .09 .16***

Notes: Monthly data 1991-2016. Total industrial production index growth (sea-
sonally and calendar adjusted as before). Significance indicated by * (10%),
** (5%), *** (1%).

Even though the situation is less extreme for total industrial output, in order to

assess the economic situation it seems that weather adjustments should play a more

prominent role than is currently the practice among macroeconomists.

As the total IP growth measure is often used as a business cycle indicator, we

also investigated whether the weather adjustment changes the dynamic properties

of the variable. The most natural way in our view is to analyze the link with or-

ders received, which we do in Table 1 in the form of dynamic cross correlations for

various lags or leads. At lag 3 (three-month forward-looking orders) the weather

adjustment raises the correlation a little from 0.26 to 0.31, while the contempora-

neous correlation decreases somewhat from 0.47 to 0.43, thereby strengthening the

role of new orders as a leading indicator. But overall these changes are certainly

minor.

3.2 Implied adjustment of quarterly GDP

Our estimates are based on industrial production data. First the IP series is avail-

able at a higher (monthly) frequency, secondly it is well known that its short-run

volatility is considerably higher than that of GDP, and finally a higher dependency

14
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Figure 4: Observed German industrial production (same as in figure 1) and esti-
mated historical weather components. Upper panel total production growth (gIP),
lower panel construction sector growth (gconstr).
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Figure 5: Estimation uncertainty of weather-adjusted industrial production (point-
wise 95% confidence intervals for the adjusted series yt − ̂weatherdevt ; ©: non-
adjusted observations, i.e. the same series as in figure 1). Upper panel total produc-
tion growth (gIP), lower panel construction sector growth (gconstr).
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on weather conditions is expected at least for some industrial sectors. However,

we are usually interested in aggregate output, and therefore we have also applied

the estimated weather adjustments to the GDP series. The monthly IP growth rates

are cumulated to the quarterly frequency, then the growth differential between un-

adjusted and adjusted IP growth is re-scaled with the (annually varying) share of

industry output in aggregate output. This procedure implicitly assumes that any

abnormal weather effects in the non-industrial service and public sectors are neg-

ligible, yielding the results in Figure 6.7 We find that even though the share of

industry in aggregate output is much less than 50% and declining in Germany, the

fluctuations are important enough to matter at the economy-wide level at least in

some periods. The largest implied adjustment occurs in 2010Q2 with a whopping

figure of less than -5% (at annualized rate, percentage points). However, we should

bear in mind that the average effect over the four quarters of 2010 is much smaller,

and that reported growth in 2010 was extraordinarily high in Germany, catching up

from the huge dip in the Great Recession. Thus the implied negative adjustment for

2010 would still leave German GDP growth at a clearly positive rate.

4 Real-time assessment of output developments, now-

casting

In the previous section we performed historical adjustments of German production

time series by estimating the dynamic influences of irregular or abnormal weather

conditions. In this section we want to exploit the fact that observations of the

weather measures are available much more quickly than the first publications of

production values by statistical agencies – in Germany the publication delay for the

7The agricultural sector is obviously expected to also be affected by the weather, but its share in
aggregate output is very small for Germany. For other economies it might be necessary to take that
effect into account as well.
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Figure 6: GDP quarterly growth adjustment for abnormal weather (at annualized
rate differential in %), based on estimated weather deviation effects in total indus-
trial production. Calculated as ̂gGDPt − gGDPt , i.e. positive numbers mean that
weather-adjusted growth would have been higher than reported growth.

first and tentative official figures on industrial production is around 38 days, more

than one month. Given that we found some significant contemporaneous impact of

the weather (deviations), it is natural to take these effects into account when the aim

is to produce a short-term forecast of economic activity.

However, even the weather data are not available contemporaneously in real

time, but take about a week after the end of the month to appear on the agency

website. Therefore we distinguish between the following two scenarios.

First we work with the information set of the middle of any given month, where

the aim is to produce a forecast for the current month. This timing could be called

“nowcast”, because the current month is affected, or it could also be called “semi-

forecast”, because the second half of the current month still lies in the future. In

the middle of the current month t we have available the weather data describing

the previous month t − 1 (and earlier), and the industrial production data relating

to t− 2 (and earlier). This means that the weather data in this scenario may only

18



enter with a lag, and the first lagged endogenous term must be removed from the

regressors in order to replicate the real-time information set.

Secondly we also consider a scenario of the beginning of the next month t +1,

meaning that the weather data for period t are already available, but the output data

for t − 1 have not yet been released, because that typically takes until the middle

of the month. The target quantity is still output in period t, so this is called an

(early) “backcast”. Again no first lagged endogenous term must be included in the

equation, but now the period-t weather terms are allowed as regressors again.

However, our present aim is merely to check whether this is a promising route

for future research, and hence we employ some shortcuts. First we do not work

with a full real-time dataset but instead continue to use our dataset on industrial

and construction-sector production which effectively contains only a single vintage

(from the end of the sample). We therefore do not take into account the data revi-

sions occurring after the respective first publications. Secondly, in order to gauge

the value added of the weather effects for forecasting, in principle one would have

to use a full-fledged forecasting model as the starting point. Instead we will here

restrict the non-weather predictive variables to be the lagged endogenous variables

available on a pseudo real-time basis. Both the real-time aspect and the use of other

predictive variables can be found in Proaño and Theobald (2014) or in Schreiber

and Soldatenkova (2016), but only for total industrial production.

As indicated above, the present pseudo real-time exercise for nowcasting and

backcasting thus effectively boils down to removing from the predictive regressions

a lag of the dependent variable, and for the nowcasting exercise also a lag of the

weather terms. The empirical strategy is unchanged otherwise with respect to the

historical analysis in section 3.

In Table 2 we report the simple R̄2 values (fit adjusted for number of retained

regressors) that are attained in the various scenarios, each compared with the re-

19



spective AR benchmark. (The numbers in the historical adjustment columns were

already mentioned in the text above and are repeated for convenience and com-

parison.) Moving from the historical full-information scenario to the backcasting

case without the first endogenous lag, the extra predictive power of the abnormal

weather terms –measured as the simple difference between the R̄2 values– cannot

decrease by definition of the regressor set alterations. However, even removing the

contemporaneous weather terms in the nowcasting scenario reduces the extra pre-

dictive power by less than one third in the total industrial production equation (of

the percentage point difference: 36−19 = 17 vs. 27−15 = 12), and less than one

sixth for the construction sector (72−15 = 57 vs. 49−0 = 49).

For the construction sector it seems very unlikely that enlarging the information

set with economic indicators like new orders received or financial variables would

change that picture dramatically. On the other hand, for total industrial production

we mainly expect some (perhaps modest) gains in the backcasting case when the

contemporaneous weather information can be used. For the nowcasting scenario

instead without that additional contemporaneous information, we can briefly report

the results from a turning-point real-time assessment in a dynamic probit framework

based on the methodology in Proaño and Theobald (2014) and then further refined:8

In the pseudo out-of-sample period 2007 through 2015 the forecast weather com-

ponent helps to improve the (boom or recession regime) forecast only in early 2008

at the outbreak of the Great Recession in Germany.

5 Conclusions

We conclude that abnormal weather conditions in Germany affect the construction

sector and aggregate production. Generally and not surprisingly, the impact as well

8I am indebted to Thomas Theobald and Felix Beywl for running this check for me.
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Table 2: Explanatory and nowcasting/backcasting power
(R̄2 in %) nowcasting /

middle-of-month
info set

backcasting /
early-next-
month info

set

historical
adjustment

total industry output growth
benchmark AR 15 15 19

with (abnormal) weather 27 32 36

construction sector output growth
benchmark AR 0 0 15

with (abnormal) weather 49 67 72

Notes: The historical adjustment column corresponds to results in section 3. The
benchmark equations are univariate AR(6) models; the first lag of output
growth is removed in the nowcasting and backcasting cases for the bench-
mark as well as the full model. Furthermore the contemporaneous weather
terms are removed in the nowcasting case.

as the estimation precision are larger for the construction sector than for total indus-

trial production. Controlling for measurable weather effects using freely available

datasets thus helps to determine the underlying economic dynamics and should lead

to a more accurate assessment of the business cycle, ultimately also implying more

appropriate stabilization policy advice.

By relying on the (approximate) orthogonality between regular seasonal effects

and irregular random weather outcomes we were able to keep the econometric

methods simple, using straightforward regression models that are linear in param-

eters while being non-linear in some of the variables. Within this framework we

found it important to allow the effects of the weather variables such as air temper-

ature or snow height (in deviations from seasonal averages) to be month-specific.

The specification also had to account for serially correlated production and dynamic

reactions to past weather incidents.

Weather effects could also be used to improve the “backcasting” of monthly

output growth realizations that are still unknown because of the publication delay
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of such macroeconomic data. It was also shown that the estimated weather ad-

justments do not always cancel within a quarter and often are large enough to be

noticeable even when compared to economy-wide GDP measures.

Finally, we expect that such effects of abnormal weather apply to most other

economies as well, not only to Germany, and our framework is intended to be easily

adaptable given that it only requires three widely available weather measurements.

In the currently standard approach of conducting structural macroeconomic analysis

seasonally adjusted data is used, which means that weather variations are implicitly

seen as an uninteresting nuisance for economic trends. If taken seriously, this posi-

tion would imply that structural macroeconomic analysis needs series that are also

adjusted for other, non-seasonal and exogenous, weather variations as presented in

this paper.
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