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Abstract 

We consider an extension of the classical resource-constrained project scheduling problem 
(RCPSP), which covers discrete resource-resource and time-resource tradeofFs. As a result a 
project scheduler is permitted to identify several alternatives or modes of accomplishment for 

each activity of t he project. 

The Solution procedure we present is a considerable generalization of the branch-and-bound algo-
rithm proposed by Demeulemeester and Herroelen, which is currently the most powerful method 
for optimally solving the RCPSP. More precisely, we extend their concept of delay a lternatives by 

introducing mode alternatives. The basic enumeration scheme is then enhanced by dominance 
rules which highly increase the Performance of the algorithm. The computational results obtained 
by solving the Standard ProGen instances indicate that the new method outperforms the most 
rapid procedure reported in the literature by a factor of four. Additionally and more important 
than the average reduction of the Solution time is the substantial decrease of th e variance of t he 

Solution times. 

Keywords: Project Management / Scheduling, Discrete Resource-Resource / Time-Resource 
TradeofFs, Delay and Mode Alternatives, Branch-and-Bound, Dominance Rules, Computational 

Results. 

1 Introduction 

The scheduling of projects has its beginnings in the early fifties when the Metra Potential Method (MPM) 
and the Critical Path Method (CPM) were developed. By the use of technological precedence constraints and 
deterministic activity durations both methods mainly determine the minimal project length, time windows, 

i.e. intervals for the latest start and finish times of the activities, and the set of crit ical activities. Resource 

constraints are not taken into account explicitly. 
By the introduction of resources we o btain as a generalization the resource-constrained project scheduling 
problem (RCPSP). The resources involved are available in a discrete and constant amount each period. Each 

activity has a unique prespecified duration and uses a constant amount of the resources involved each period 
it is in progress. Once started the activity may not be interrupted (no preemption allowed). The commonly 
considered objective is the minimization of the makespan. 
Since the problem subsumes the wellknown job-shop and flow-shop problem it is an NP-hard problem as 

well (cf. [9]). Consequently, the RCPSP has caused numerous publications dealing with the developement 
of su boptimal (cf. e.g. [2], [11]) and optimal (cf. [1], [3], [13], [15], [16], [21]) Solution procedures, where 
Demeulemeester and Herroelen's exact Solution procedure (cf. [4], [5]) o utperforms all the other approaches. 
By considering the activity durations as a discrete function of the resources and/or amounts of the resources 

allocated, we obtain a more realistic model. The time-resource and resource-resource tradeoff can be im-
plemented and the multi-mode resource-constrained project scheduling problem (MRCPSP) can be stated: 
Each activity can be performed in one out of a set of p rescribed ways, called modes, having a mode specific 
duration and mode specific resource requirements. 
Three different categories of reso urces are distinguished, that is, renewable, nonrenewable and doubly cons-
trained ones (cf. [17]). Renewable resources are limited on a per-period-basis. Machines and manpower 
are examples of this resource category. For nonrenewable resources, the availability for the entire project is 
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limited. An example of this resource category is money if the budget of the project is limited. Doubly cons-
trained resources are limited both on a per-period-basis and on a total-project-basis. Money is an example 
of t his resource category if not only the budget of the project but also the per-period-cashflow is limited. 
The purp ose of t he paper is to present a new efücient procedure for solving the MRCPSP. It considerably 
extends the currently most powerful exact Solution procedure of Demeulemeester and Herroelen from the 
RCPSP to the MRCPSP. The outline of th e remaining is as follows: S ection 2 provides the precise descrip-
tion and mathematical programming formulation of the problem. Section 3 discusses sets of schedules the 
enumeration can be reduced to without loosing optimality. Section 4 outlines the basic enumeration scheme 
and Section 5 bears bounding rules that increase the Performance of the enumeration procedure. Section 6 

reports our computational experience. Finally, the conclusions are drawn in Section 7. 

2 Problem Description 

The MRCPSP can be stated as follows: We consider a project which c onsists of J activities (jobs). Due 

to technological requirements the activities are partially ordered, that is, there are precedence relations 
between some of the jobs. These precedence relations are imposed by s ets of immediate predecessors Vj, 
1 < j < J, indicating that an activity j ma y not be started before all of its predecessors are completed. With 
analogous Interpretation for each activity j, 1 < j < .J, the set of th e immediate successors Sj is defined. 
The precedence relations can be represented by an acyclic activity-on-node network. Job 1 is the only source 
activity while job J is the unique sink activity of th e network. Furthermore, we a ssume that the activities 

are numerically labeled, that is, a predecessor of job j has a smaller number than j. 
Each activity requires certain amounts of resources to be performed. We distinguish three different categories 
of r esources, that is, r enewable, nonrenewable and doubly constrained ones. The set of renewable resources 
is referred to as R. For each renewable resource r, r £ R, the per-period-availability is constant and given 
by K£. For nonrenewable resources, the availability for the entire project is limited. The set of nonrenewable 
resources is denoted as N. For each nonrenewable resource r, r £ N, the overall availability. for the entire 
project is given by K". Since doubly constrained resources can simply be incorporated by the enlargement 
of th e sets of the renewable and nonrenewable resources, we do not consider them explicitly. 

Each activity can be performed in one of several modes of accomplishment. A mode represents a way 
of combining different resources and/or levels of resource requests. Mj denotes the number of modes of 
activity j, 1 < j < J. The duration of jo b j being performed in mode m, 1 < m < Mj, is given by d]m • 
The modes of each a ctivity are labeled with respect to non-decreasing duration. Once an activity is started 
in one of i ts modes, it is not allowed to be interrupted. Furthermore, job j, 1 < j < J, being performed in 
mode m, 1 < m < Mj, uses kjmr units of r enewable resource r, r £ R, each period it is in process, where 
w. 1. o. g. we assume kjmr < K? for each renewable resource r, r £ R. Note, otherwise activity j co uld not be 
performed in mode m. Moreover, it consumes ku-mr units of nonrenewable resource r, r £ N. W. 1. o. g. we 

assume that the (dummy) source and the (dummy) sink activity have only one mode each with a duration 
of zero periods and no request for any resource. The objective under consideration is the minimization of 
the project's makespan. A summary of th e notation introduced can be found in Table 1. We a ssume the 

Parameters to be n onnegative and integer valued. 

Given the precedence relations and an Upper bound T on the project's makespan, which is e.g. given by 
the sum of the maximal durations of the activities, we use the modes of shortest duration and derive time 
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j = 1 (J) 

(4) 

EM 

%mr 

J 

'jmr 

number of ac tivities 

unique source (sink) activity 
set of immediate predecessors (successors) of a ctivity j 
number of modes of ac tivity j 
(non preemptable) duration of ac tivity j being performed in mode m 
set of renewable (nonrenewable) resources 
per-period usage of renewable resource r required to perform activity j in mode m 
total consumption of nonre newable resource r required to perform activity j in mode m 
per-period availability of renewable resource r 

total availability of nonrenewable resource r 

Table 1: Symbols and Definitions 

windows by traditional forward and back ward recursion as performed in MPM. These time windows are 
represented by intervals [EFj, LFj], where EFj and LFj denote the earliest and the latest finish time of 
activity j, 1 < j < J, respectively. Analogously, time windows [ESj,LSj] can be determined, where ESj 
and LSj denote the earliest and the latest start time of act ivity j, 1 < j < J, respectively. 

The benefit of t he time-windows is twofold: First, they can be used in the mathematical programming for-
mulation to reduce the number of variables substantially. Second, they can be utilized in several enumeration 
procedures to speed up the convergence (cf. e.g. [5], [19], and Section 5). 
For the formal description of the MRCPSP we define a binary variable for each combination of an activity j, 
1 < j < J, a mode m, 1 <m<Mj, and a period t, t = 0,.. ,,T (cf. [22]): 

The objective function and the constraints of the model are shown in Table 2. Since activity J is the 
only finish activity, the objective function (1) reflects the project's makespan which has to be minimized. 
Constraints (2) indicate that each activity is assigned exactly one mode and exactly one finish time. (3) 
ensures that no activity is started until all its predecessors are finished. Furthermore, (4) secures that the 
per-period-levels of the renewable resources are met. The consumption of the nonrenewable resources is 

limited to their availabilities by (5). 
By simple adaptations the constraints of the model can be extended to time varying supply and usage of 
the renewable resources (cf. [7]). Moreover, minimal and maximal time-lags can be included (cf. [1]). 

3 Dominating Sets of Schedules 

The Classification of schedules offers a basic framework of the project scheduling theory and the improvement 
of algorithmic tractability. Clearly, the computational Performance of an enumeration procedure can be 
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LFj 
Minimize ^ t • XJ U (1) 

t=EFj 

s. t. 

Mj LFj 
y ] yi xjmt = 1 j = 1, • • • , j (2) 

m=1 t—EFj 

MH LFh Mj LFj 
^ ^ ] t • xkmt ^ ^ ^ — d jm) • Xj mt j = 2,..., J, h G Vj (3) 
m = 1 t=EFh m=1 t=BFj 

J-1 Mj min{t+djm-l,Z.Fj} 
yr y: < K? r ^ R, t=1,... ,T (4) 
j=2m=l g=max{t,£.Fj} 

J-l Mj LFj 
Z Z Z ^ ^ ̂  (5) 
j=2 m—1 t—EFj 

Xjmt € {0,1} j = 1,..., J, m — 1,..., Mj, t = 0,. .., T (6) 

Table 2: The Model of the MRCPSP 

substantially enhanced if the enumeration is reduced from the entire set of schedules S to a proper subset VS 
without loosing optimality, that is, the subset VS dominates S. 
For the MRCPSP a schedule is properly defined when each activity is assigned a mode and a start or finish 
time. More precisely, we define: 

Definition 3.1 Lei Z+ denote the set of the nonnegative integers. 

(a) A schedule is a set of triplets S — {(1, m\, f\),..., (J, mj, fj)}, where each activity j, 1 < j < J, is 
assigned a mode m j, 1 < m,j < Mj, and a finish time fj, fj G Z+. 

(b) A schedule S is called feasible if the precedence constraints are mainta ined and if the resource contraints 
are met. 

(c) A partial schedule PS is a subset of a schedule S . 

Given a schedule S for the MRCPSP, we can prove whether a local or global left-shift (cf. [20]) can be 
performed on S. Consequently, the sets of semi-active and active schedules can be defined for the multi-mode 
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problem. That is, a feasible schedule of the MRCPSP is semi-active (active) if t he schedule is semi-active 
(active) w.r.t. to the (single-mode) RCPSP obtained by fixing the modes to the ones selected in the schedule. 
Analogously to the RCPSP we can capture the following (cf. [8], p. 27): If th ere is an optimal schedule for 
a given instance, then there is an optimal semi-active (active) schedule. 
Note, within a local or global left shift a mode change is not allowed to reduce the finish time of the 
corresponding activity. If we a dditionally permit a mode change we o btain the notion of tight schedules 
introduced by Speranza and Vercellis (cf. [18]): 

Definition 3.2 Lei S = {(j, rrij, fj) | j= 1,..., J} be a feasible schedule. 

(a) A multi-mode left shift of an activity j, 1 < j < J, is an operation on S the result of which is a feasible 
schedule S' with S' = S\{(j, rrij, fj)} U {(j, m'j, fj)} such that 1 < m'j < Mj and fj < fj. 

(b) A schedule S is called tight if no multi-mode left shift of any of the activities can be per formed on S. 

That is, a schedule is tight if there does not exist an activity the finish time of which can be reduced without 
violating the constraints or changing the finish time or mode of any of the remaining activities. The definition 
is i llustrated in the following example. Consider the project instance given i n Table 3. The corresponding 
network is shown in Figure 1. Two solutions for this instance can be found in Figure 2, where j(m) denotes 
that job j is processed in mode m. Note, both schedules are active. Schedule (a) is not tight because a 
multi-mode left-shift can be performed: Activity 3 which is accomplished in mode 1 and finishes at time 4 
could be executed in mode 2 and finished at time 3. The result of t his multi-mode left shift is displayed in 

Figure 2 (b). Note, schedule (b) is tight because no multi-mode left shift can be performed. 

j 4 m djm kjml R 
1 {2,3} 1 0 0 {1} 3 0 
2 {4} 1 2 2 

3 {5} 1 2 2 
2 3 1 

4 {6} 1 1 3 
2 2 1 

5 {6} 1 2 3 

6 0 1 0 0 

Table 3: Project Instance 

Note, whereas for the RCPSP the set of ti ght schedules coincides with the set of active schedules, the set of 
tight schedules of a multi-mode problem is only a subset of the active ones. Nevertheless, since we can obtain 
an optimal tight schedule by iteratively applying multi-mode left shifts to an optimal schedule, optimality 
is not lost if on ly tight schedules are enumerated (cf. [18], P roposition 4.1). 
If instead of the finish time reduction associated with a multi-mode left-shift a mode reduction (without 
changing the finish time) is considered we obtain the set of mode-minimal schedules. More precisely, we 
define: 
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Figure 1: Project Network 

K[ 

3-

2 — 3(1) 2 

3 
3(2) 

5(1) 5(1) 
1- 2(1) 

4(2) 
1- 2(1) 

4(2) 

1 2 3 4 5 6 t 1 2 3 4 5 6 * 

(b) 

Figure 2: Non-Tight and Tight Schedule of t he Project Instance 

Definition 3.3 Lei S = {(;, rrij, fj) \ j = 1,..., J} be a feasible schedule. 

(a) A mode reduction of an activity j, 1 < j < J, is an operation on S the result of which is a feasible 
schedule S' with S' = S\{(j, rrij, fj)} U {(j,m'j,fj)} such that 1 < m'j < mj. 

(b) The schedule S is called mode-minimal if no mode reduction of any activity can be per formed on S . 

Again, we consider the project instance given in Table 3 and the two solutions shown in Figure 2. It can be 
easily verified t hat the schedule illustrated in Figure 2 ( a) is mode-minimal. In contrast, schedule (b) is not 
mode-minimal because a mode reduction can be performed on activity 4 which is accomplished in mode 2 
and ends at time 4: Being executed in mode 1 and started at time 3 instead of 2, job 4 could be finished at 

time 4 a s well. 
This example shows that there are tight schedules which are not mode-minimal and, moreover, there are 
mode-minimal schedules which are not tight. Nevertheless, it can easily be verified that the search space 
can be reduced to the set of mode-minimal schedules without loosing optimality. 

Note, in accordance with the remarks stated above the search space of an enumeration scheme can only be 
restricted to schedules which are either tight or mode-minimal. The following theorem, however, states that 
it is sufficient to examine schedules which are both tight and mode-minimal. 

Theorem 3.1 
If there is an optimal schedule for a given instance, then there is an optimal schedule which i s both tight and 

mode-minimal. 
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Proof: Consider an optimal tight schedule. This schedule can be transformed into a mode-minimal schedule 
by applying mode reductions. If the resulting schedule is not tight, it can be turned into a tight schedule 
by p erforming multi-mode left shifts. Note, since a mode reduction does not affect the finish times of the 

activities and since a multi-mode left shift can only reduce a finish time, only a finite number of mode 
reductions and multi-mode left shifts can be performed. That is, iteratively applying the substitutions as 
described above results in an optimal schedule which is both tight and mode-minimal. • 

Düring the enumeration process the objective is to exclude dominated schedules from evaluation as early as 
possible. That is, one has to decide whether a partial schedule can be completed to a semi-active, active, 
tight and mode-minimal schedule or not. The decision rules can be used in an enumeration scheine to 
enhance the Performance (cf. Section 5). 
Most of the Solution procedures presented in the literature (cf. e.g. [5], [19], [21]) emp loy bounding rules 
which r educe the search space to the sets of semi-active and active schedules. The notion of t ight schedules 
is only used by S peranza and Vercellis (cf. [18], [10]), th e notion of m ode-minimal schedules is entirely new. 

4 Branching on Mode- and Delay-Alternatives 

In this section we present a branch-and-bound algorithm for solving the MRCPSP to optimality. The 
fundamental approach is a considerable extension of the concept of delay alternatives used by Demeulemeester 
and Herroelen (cf. [4], [5]) as well as Christofides et al. (cf. [3]) for the (single-mode) RCPSP. To describe 
the algorithm accurately we need the following definitions: 

Definition 4.1 Lei tg be a tim e instant. 

(a) An activity j, 1 < j < J, which is scheduled i n mode rrij with finish time fj is in process at time tg, if 
we have fj — djm <tg < fj. The related set is the sei of activities that are in process. It is denoted as 

JlPg. 

(b) A currently unscheduled activity j, 1 < j < J, is called eligible at time tg if all of its predecessors i, 
i G Vj, are scheduled with finish time fi < tg. The related set is the set of eligible a ctivities which is 
denoted as E Jg. 

Recall, in Demeulemeester's and Herroelen's algorithm (cf. [4], [5]), all eligible activities are started at the 
current time instant (decision point) in their only possible mode. If a resource conflict occurs, one has to 

decide which of the activities in process to delay in order to resolve the conflict. In the multi-mode case, the 
eligible activities have to be assigned a mode before they can be put into process. Subsequently, the concept 
of delay alternatives can be used. In order to reflect the fixing of the modes, we int roduce the notion of a 
mode alternative. 

Definition 4.2 
Lei Z+ denote the set of the nonnegative integers. Furthermore, lettg be a tim e instant at some level g ofthe 
branch-and-bound free, and let EJg denote the set ofthe activities that are eligible at time tg. If EJg ^ 0, 
then a mode alternative is a ma pping M.Ag : EJg —• Z + which assigns each eligible activity j, j 6 EJg, a 
mode MAg(j) 6 {1,..., Mj). 
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Definition 4.3 

(a) Let tg be a tim e instant at level g of th e branch-and-bound tree, and let JIPg be the set of activities in 
process at t ime tg. Let mj denote the mode of ac tivity j, j £ JIPg- A delay alternative VAg is a subs et 
of JIPg such that for each resource r , r € R, it is 

£ < *?• 
j£JIPg\VAg 

(b) A delay alternative VAg is called m inimal if no proper subset ofVAg is a delay alternative. 

Using the definitions given above the proceeding at a current time instant (decision point) is as follows: If the 
current eligible set is empty, we proce ed as outlined by Deemulemeester and Herroelen for the single-mode 

case (cf. [4], [5]), tha t is, we test a delay alternative. Otherwise, we select a mode alternative in order to fix 
the modes of the eligible activities. Subsequently, if necessary, we test the delay alternatives. If we return, 
via backtracking, to a level of the branch-and-bound tree at which all delay alternatives have been examined, 
we se lect the next mode alternative; if t here is no more we t rack another stage back. The variables and 

symbols used in the algorithm are summarized in Table 4 while a formal description of the algorithm is 

provided in Table 5. 

fi 
old foic 

/TP, 
FJg 
Tjg 

SJ, 
EJ, 
SOMAg 
MAg 

level of the branch-and-bound tree 

mode of activity j 
finish time of a ctivity j 
stored finish time of activity j before delay at level g 
decision point at level g 
set of ac tivities that are in process a t time tg 

set of ac tivities that finish at time tg 

set of ac tivities that finish at or before t ime tg 

set of ac tivities that are scheduled up to level g 
set of ac tivities that are eligible at time tg 

set of mode alternatives remaining at level g 
selected mode alternative at level g 
set of delay alternatives remaining at level g 
selected delay alternative at level g 

Table 4: Notation used in the Algorithm for the MRCPSP 

In Step I of the algorithm level g = 0 of the branch-and-bound tree is initialized. That is, the dummy source 
activity 1 is started at the time instant at level 0, t0 = 0. Therefore, the set of the activities in process 
at level 0, JIPo, and the set of the scheduled jobs at level 0, SJQ, is initialized with {!}. The set of the 
activities that are fmished at or before time t0, FJ0, is initialized with 0. Moreover, the finish time of the 

8 



Step 1: (Initialisation) 

g := 0; <o := 0; JIPQ := {!}; SJo := {!}; FJ0 := 0; f\ := 0; mi := 1; VAQ := 0; 

Step 2: (Reschedule Delayed Activities and Compute Eligible Activities) 
g := g + 1; t3 := min{/3- | j € JIPg-1}; 
FJg := {j G JI Pg-i | fj = tg}; FJg := FJg-\ U FJ g\ 

fj :=tg +djmj, j € VAg-l\ JIPg '.= (jIPg-l\F Jg)WDAg-l, SJg \= SJg-lUVAg-l] 
EJg := {j G {1, • • •, J}\SJg | Vj C FJg}-, JIPg := JIPg U EJ g\ SJg := U EJ g\ 
if J G EJg then stoie current Solution and go to Step 8; 

Step 3: (Compute Mode Alternatives) 
if EJg = 0 then SöMAg := 0 an d go to Step 6, 
eise SöMAg := SetOfModeAlternatives(EJg); 

Step 4: (Select Mode Alternative) 
if <SöMAg = 0 t hen go to Step 8, 
eise select MAg G SÖMAg; SOMAg := SÖMAg\{MAg}; 
for each j G EJ g update rrij := MAg(j) and fj := tg + djmj; 

Step 5: (Check for Nonrenewable Resource Conflict) 
if any nonrenewable resource produces a resource conflict then goto Step 4; 

Step 6: (Compute Delay Alternatives) 
SÖVAg := SetOfMinimalDelayAlternatives(JIPg)\ 

Step 7: (Select Delay Alternative) 
If SÖVAg = 0 t hen go to Step 4, 
eise select VAg G SÖVAg\ SöVAg := SÖVAg\{VAg}; 
fg'f •= fj, j G JIP? ••= J IPg\VAg; := SJg\VAg\ go to Step 2; 

Step 8: (Backtracking) 
<7 := <7 — 1; if <7 = 0 t hen STOP, 
eise := f°'j, j G JIPg '•= JIPg yjVAg\ SJg := SJg U VAg\ go to Step 7. 

Table 5: A Br anch-and-Bound Algorithm for the MRCPSP 
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source activity is defined as fi := 0, and its mode is defined asrai := 1. Finally, since no activity is delayed 

at level 0, the only minimal delay alternative at level 0, T>Ao, is t he empty set. 
In Step 2 we first branch to the next level of th e branch-and-bound tree by incrementing g. Then the next 
time instant tg (decision point) is computed. Since the per-period availability of the renewable resources is 
constant it is defined by the earliest finish time of the activities which a re in process at the previous level. 

We determine FJg, that is, the set of the activities that finish at time tg. The set of the activities that 
finish at or before time tg, FJ g, is computed as the union of FJg~\ and FJg. The jobs that have been 

delayed at the previous level are rescheduled to start at time tg by u pdating their finish times w. r. t. their 
fixed modes. Then we obtain the set of the activities that are in process at level g, JIPg, by eliminating 
the jobs that finish at time tg from JIPg-1 and, moreover, adding the previously delayed activities. The 
set of the scheduled activities at level g, SJg, is computed by adding the previously delayed activities to 

SJg_ i. Then the eligible set EJg is given by the set of those unscheduled jobs the predecessors of which 

are finished at or before time tg. The eligible jobs are put in process, that is, they are added to JIPg and 
SJg. If the dummy sink activity J is eli gible, we have obtained a new complete schedule which is stored, 

and backtracking occurs. Otherwise, Step 3 is p erformed. 
In Step 3, we determine the set of the mode alternatives SÖMAg. If no job is eligible at the current 
level, there are no mode alternatives to be considered. Therefore, the set SÖMAg is empty. Furthermore, 
since there is no activity that has not been (temporarily) scheduled at the previous level, a resource conflict 
concerning a nonrenewable resource cannot occur. Thus, we skip to Step 6 in order to compute the set of 
delay alternatives. Otherwise, if there are eligible activities, we comp ute the set of the mode alternatives 
SöM.Ag and proceed with Step 4. 
In Step 4, a mode alternative M.Ag is selected and removed from SÖMAg. The modes rrij of the eligible 
activities j, j £ EJg, are fixed w. r. t. the selected mode alternative. Moreover, they are started at time tg 

by the definition of t heir finish times fj w. r. t. MAg. If no mode alternative is available, backtracking in 
Step 8 is performed. 
Step 5 controls the consumption of the nonrenewable resources. If the availability of any nonrenewable 
resource is exceeded, the next mode alternative is selected in Step 4. Otherwise, in Step 6, the set of the 
minimal delay alternatives, SÖVAg, is computed. 
In Step 7, a delay alternative VAg is selected and then removed from the set of del ay alternatives SÖVAg. 
Each activity j se lected to be delayed is removed from JIPg and SJg and, moreover, its finish time fj is 
stored in f°lj. The delay alternative has resolved the current resource conflict and Step 2 is performed, that 
is, the delayed activities are rescheduled to start at the next decision point. However, if n o delay alternative 
is available, Step 4 is executed for selecting the next mode alternative. 

In Step 8, backtracking is performed. If, after decrementing g, the level of the branch-and-bound tree is 
zero, the algorithm stops. Otherwise, the activities that have previously been delayed at this level are put 

in process by restoring their finish times. After the adjustment of JIPg and SJg, Step 7 is executed for 
selecting the next delay alternative. 

Using the correctness of the algorithm proposed by De meulemeester we can State the following theorem: 

Theorem 4.1 

The algorithm of Table 5 is correct, that is, it finds an (existing) optimal (i. e. makespan-minimal) Solution 
for a given MRCPSP. 
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Proof: Obviously, the algorithm of Table 5 terminates if t he given problem is feasible w.r.t. the renewable 
resources. Since a feasible schedule is especially feasible w. r. t. the nonrenewable resources and, moreover, 

it is fcjmr > 0, j = 1m = 1,..., Mj, r G N , there is no feasible completion of a partial schedule 
which is infeasible w. r. t. a nonrenewable resource. Therefore, Step 5 does not exclude feasible schedules 
from evaluation, and we can assume w. 1. o. g . \N\ = 0. 

Let {(1, m.x),..., (J, TUJ)}, 1 < rrij < Mj, 1 < j < J, be a set of job/mode combinations from which we can 
obtain an optimal Solution by the use of Demeulemeester's algorithm. Since for each activity j, 1 < j < J, 
the related mode rrij can be selected by a mode alternative when the predecessors of a ctivity j are finished, 
the algorithm reduces to the branching scheme proposed by Demeulemeester. • 

5 Bounding Rules 

This section provides static and dynamic search tree reduction techniques. Whereas the static bounding 
rules can be realized by an adaptation of the input data, the assumptions of the dynamic bounding rules 
have to be checked during the enumeration process. The rules are stated as theorems and, if necessary, 
additionai Information about their algorithmic realization is given. 

The first bounding rule bears both static and dynamic features. The pruning rule and variants of it have 
been successfully employed for solving the RCPSP (cf. e.g. [5], [21]) as well as the MRCPSP (cf. [14], [19]). 
Given an upper bound on the project's makespan, the latest finish times LFj of the activities j, j = 1,..., J, 
as described in Section 2 can be used to reduce the search space. They are updated after Unding an improved 
feasible Solution. 

Theorem 5.1 (Bounding Rule 1) 
Let T denote an upper bound on the project's makespan. If there is an activity j, 1 < j < J, the assigned 
finish time of w hich exceeds the latest finish time LFj, then the current partial schedule cannot be completed 
with a makespan less than or equal to T (— L Fj). 

The enumeration procedure starts with a predefined upper bound and successively adapts it, when the first 
or an improved Solution is found. That is, if T denotes a newly obtained makespan related to a complete 
schedule, then we can recalculate the latest finish times by 

LFj \= LFj — (LFj — T 1), j — 1 

The underlying idea of the first static acceleration scheme is to exclude modes and/or nonrenewable resources 
from the input data. The effect is a reduction of the number of m odes or constraints to be considered. For 
notational convenience, we need the following definitions: 

Definition 5.1 

(a) The minimal request of activity j, 1 < j < /, for nonrenewable resource r , r G N , is given by 

kmirijr min{fcjmr | m = 1,..., Mj}. 

(b) The maximal request of activity j, 1 < j < J, for n onrenewable resource r, r G N , is given by 

kmaXjr := max{Ä:Jmr | m = 1,..., Mj}. 

11 



Definition 5.2 Let j, 1 < j < J, be a n activity, and let m,j, 1 < rrij < Mj, be a mode of activity j. 

(a) Mode rrij is called non-executable w. r. t. a renewable resource r, r £ R, if we have kjmjr > K?• 

(b) Mode rrij is called non-executable w. r. t. a nonrenewable resource r , r £ N, if we have 

J 
Z kminir + kjmjr > K • 
1 = 1 

(c) Mode mj is called inefficient, if there exists another mode m'j, 1 < m'j < Mj, of activity j with 
djmj > djmi. and kjm^T > kp]m,r for each renewable resource r , r £ R, and kjm.r > k^m,r for each 
nonrenewable resource r, r £ N (cf. [12]). 

(d) A nonrenewable resource r, r £ N, is called redundant, if we have 

J 
Z kmax"jT < K-
3 = 1 

Using the previous definitions, we can s tate the following theorem: 

Theorem 5.2 (Bounding Rule 2) 
(a) Within a feasible schedule for a given instance, no activity can be performed in a non -executable mode. 
(b) If there is an optimal schedule for a gi ven instance, then there is an optimal schedule in which no activity 

is accomplished in an inefficient mode. 
(c) Excluding a redundant nonrenewable resource from a project instance does not affect the set of the 

feasible ( optimal) schedules. 

Note, if an activity has not a single executable mode then there is no feasible schedule for the given instance. 
Recall, we have a ssumed in Section 2 that no mode is non-executable w. r. t. a renewable resource. This is 
necessary in particular to secure that the enumeration algorithm terminates. However, since the project ge-
nerator ProGen (cf. [12]) which has been used in the computational studies may generate instances including 
modes that are non-executable w. r. t. a renewable resource, they have to be eliminated from the project 
data before the algorithm is applied. Furthermore, according to Theorem 5.2, modes that are inefficient or 
non-executable w. r. t. a nonrenewable resource and, moreover, redundant nonrenewable resources may also 
be deleted. 
In the following example, we d iscuss the process of erasing modes and/or nonrenewable resources in more 
detail. We consider the project instance given in Table 6. Mode 1 of activity 2 is non-executable w. r. t. re­

newable resource 1 and can therefore be deleted from the input data. This induces that mode 1 of activity 4 
becomes non-executable w. r. t. nonrenewable resource 2. Removing this mode from the project data cau-
ses redundancy of n onrenewable resource 2 which, therefore, can be neglected. Now m ode 2 of activity 5 
becomes inefficient. Eliminating this mode turns nonrenewable resource 3 redundant. The reduced project 

instance with adjusted mode numbers is provided in Table 7. 
This example shows that deleting a mode which is non-executable w. r. t. a renewable resource may force a 
mode of another activity to become non-executable w. r. t. a nonrenewable resource. Moreover, removing 
a non-executable mode from the project data may cause redundancy of a nonrenewable resource. Finally, 
erasing a redundant nonrenewable resource may lead to inefficiency of a mo de while eliminating an inefficient 
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j 4 m djm kjml bv 
jm2 b" jm3 R K{ 

1 {2,3} 1 0 0 0 0 {1} 4 {2,3} 13 14 
2 {4} 1 2 5 2 1 

2 4 2 4 1 
3 {5} 1 3 3 3 3 

2 5 1 2 4 
4 {6} 1 2 2 8 3 

2 3 1 2 3 
5 {6} 1 3 2 3 2 

2 4 2 1 7 
6 0 1 0 0 0 0 

Table 6: Project Instance 

j Sj m djm kjml R I<? N 

1 {2,3} 1 0 0 {1} 4 0 
2 {4} 1 4 2 
3 {5} 1 3 3 

2 5 1 
4 {6} 1 3 1 
5 {6} 1 3 2 
6 0 10 0 

Table 7: Reduced Project Instance 

Step 1: Remove all non-executable modes from the project data. 
Step 2: Delete the redundant nonrenewable resources. 
Step 3: Eliminate all inefficient modes. 
Step 4: If any mode has been erased within Step 3, go to Step 2. 

Table 8: Implementation of Theorem 5.2 

mode may cause redundancy of a nonrenewable resource. Therefore, the projects input data should be 

prepared as described in Table 8. 
The next bounding rule to be presented is especially designed for instances with nonrenewable resources, 
that is, |7V| > 0. Its dynamic variant, as given in Theorem 5.3, has been proposed by Drexl (cf. [6]) for a less 
general framework. Sprecher (cf. [19], p. 62) adapted the rule to the MRCPSP and substantially improved 
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the effect by reformulating it as a static rule. 

Theorem 5.3 (Bounding Rule 3) 
Let SJg be the set of the activities that are scheduled up to level g of the branch-and-bound tree, and let 
SJg := {1,..., J) \ SJg denote the set of the currently unscheduled activities. If there is a resource r, 
r £ N, with 

Y. kJm1r+ krnin"r > K. 
ItSJg j&SJg 

then the current partial schedule cannot be completed . 

By the following remark the time consuming calculations during enumeration phase can be reduced to simple 
adaption of the input data (cf. [19], Rem ark 5.7). Note, this adaption should be made after the input data 
has been prepared according to Bounding Rule 2. 

Remark 5.1 
The bounding rule of Theorem 5.3 can be implemented via preprocessing by adjusting the input data as 
follows: 

kjmr '•= kjmr ~ kmin"r, j = 1, . . . , J, 771 = 1, . . . , Mj , r£ N 

and 
J-i 

I<ur := KUT - kmin]r, r £ N. 
j= 2 

The first dynamic bounding rule bases on the fact that, according to Theorem 3.1, optimality is preserved if 
the enumeration is reduced to schedules that are tight and mode-minimal. Therefore, whenever it is certain 
that no tight or mode minimal schedule can be obtained from the current partial schedule backtracking may 
be performed. 

Theorem 5.4 (Bounding Rule 4) 
Lettg be the decision point at the current level of th e branch-and-bound tree, and let FJg denote the set of 
those jobs that finish at time tg. Furthermore, let PSg denote the current partial schedule. If there exists 
an activity j, j £ FJg, such that a m ulti-mode left shifl or a mode reduction of j with resulting mode m'j, 
1 < m'j < can be performed on PSg and, moreover, ifkv-m,T < kjm.r holds for each nonrenewable 
resource r , r £ N, then PSg needs not be compl eted. 

Proof: Let PS' denote the result of t he multi-mode left shift or mode reduction performed on PSg. Let 
PSg be completable w. r. t. the resources. Then PS' is completable, too. Furthermore, if a multi-mode left 
shift or mode reduction of an activity that finishes at time tg can be performed at level g, then the same 
multi-mode left shift or mode reduction can be performed at any later stage g, g > g. That is, scheduling 
or delaying activities at any stage g, g > g, cannot prevent the possibility of performing a multi-mode left 

shift or mode reduction of any activity out of FJg. Consequently, any obtainable schedule cannot be tight 
and mode-minimal. However, in accordance with Theorem 3.1 there is an optimal schedule which is tight 
and mode-minimal. Therefore, optimality is preserved if PSs is not completed. • 
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Obviously, this bounding rule can be applied in two steps of t he algorithm, in Step 2 and Step 7. Whereas 
the Interpretation of the former includes that all the delay alternatives are dominated, the latter one means 
that only the currently selected delay alternative can be excluded from further consideration. Although 
the delay of an activity j, 1 < j < J, that has been started on a lower level, frees resources in periods t, 
t = fj — djmj + 1,... ,tg, the effect of the application in Step 7 is consumed by t he additional effort. 
Moreover, clearly, one can extend the theorem to FJg instead of FJg. This would guarantee that only tight 
and mode-minimal schedules are generated which does not hold if on ly F Jg is considered. But again, the 

additional effect is consumed by the additional effort for checking the assumptions. 
Note, in general Theorem 5.4 cannot be applied to an activity which is not finished at the current decision 

point without losing optimality (cf. [10]). 
Although the infeasibility of a multi-mode left shift, via Bounding Rule 4, includes that a local left shift is 

infeasible too (cf. Section 3), it is u seful to check for the latter one seperately. This is reasoned by the fact 
that a feasible local left shift of an activity considered for starting on the current level g at time instant tg 

cannot be averted by scheduling or delaying activities on levels g,g > g. That is, the exclusion of partial 
schedules due to a feasible local left shift of an activity can be detected on a lower stage than the same 

feasible (mode-preserving) multi-mode left-shift. 
Consequently, the bounding rule presented next is the so-called left shift rule which seeks to exclude partial 
schedules from consideration if i t is certain that no complete semi-active schedule can be obtained. The 
left shift rule has been successfully used in several algorithms for the single-mode case as well as for the 

multi-mode case (cf. e.g. [21], [19], p. 61). We employ a formulation which is s imilar to the one used by 
Demeulemeester for the single-mode case (cf. [4], p . 52). 

Theorem 5.5 (Bounding Rule 5, Left Shift Rule) 
Let VAg and VAg-\ denote the delay alternatives selected at the current and at the previous level of the 
branch-and-bound tree, respectively. If there exists an activity j, j £ VAg-\\T>Ag, which can be locally left 
shifted without changing its mode, then the current partial schedule needs no t be completed. 

Proof: Since fixing the modes of the scheduled activities reduces the algorithm of Table 5 to Demeulemee­
ster's procedure for the RCPSP (cf. the proof of Theorem 4.1), the proof for the left shift rule given in [4], 
p. 52, holds. O 

Nevertheless, delaying an activity at a stage g higher than the current stage g can make a local left-shift 
feasible which is not feasible at the current stage g. Thus, inspite of the search tree reduction in accordance 
with Bounding Rule 5 one can obtain schedules that are not semi-active. 
The following two bounding rules are generalizations of rules used by Demeulemeester and Herroelen in their 
algorithm for the RCPSP (cf. [5]). Roughly speaking, they reduce the examination of the set of the delay 
alternatives to a single alternative. We adapt these ideas to the multi-mode case. The following definition 
will simplify the formal description of th e bounding rules. 

Definition 5.3 
Two activities i and j, i,j E {1, • • •, J}, i 7^ j, related modes rrii, 1 < m,- < Mi, and rrij, 1 < rrij < Mj, 
are simu ltaneously performable ifthey are independent with respect to the precedence r elations and the sum of 
their resource usages, r + k? , does not exceed the availability Kf of any renewable resource r, r e R. 
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We use a four-dimensional array ir[i, m,-, rrij] to reflect whether job i in mode m, and job j in mode mj 
are simultaneously performable or not. We obtain: 

, I 1, if job i in mode and job j in mode m, are simultaneously performable, 
ir[t.mi.j.m,-] := ^ 

( 0, otherwise. 

Consider the project instance shown in Table 9. The corresponding network is shown in Figure 3. Activity 3 
can only be performed in mode 1. Since activity 3 is not simultaneously performable with the activities 1, 
2, 6 and 8 due to the precedence constraints, we have 7T[3, 1,1,1] = 7r[3,1,2,1] = ir[3,1,6,1] = 7T[3, 1,6,2] = 
x[3,1,8,1] = 0. Moreover, activity 3 in mode 1 cannot be performed at the same time as activities 4 in 
mode 1, 5 in mode 1, 7 in mode 1, and 7 in mode 2 w ithout violating the resource constraints. Therefore, 
it is 7r[3,1,4,1] = 7r[3,1,5,1] = 7r[3,1,7,1] = 7r[3,1,7, 2] = 0. However, performing activity 3 in mode 1 

together with job 5 in mode 2 does not violate the constraints, that is, 7r[3,1,5, 2] = 1. Finally, we have 
7T[3, 1,3,1] = 0 by definition. 

j m djm TT[3, 1 ,j,m] 

1 {2} 1 0 0 {1} 4 0 0 
2 {3,4,5} 1 2 1 0 
3 {6} 1 5 3 0 

4 {6} 1 4 2 0 

5 {7} 1 2 2 0 
2 3 1 1 

6 {8} 1 3 2 0 

2 4 1 0 
7 {8} 1 1 3 0 

2 2 2 0 
8 0 1 0 0 0 

Table 9: Project Instance 
i» 

Figure 3: Network of t he Project Instance 

Now the basic idea of the rule can be described as follows (cf. [5], The orem 1): We as sume that all of the 
activities currently in process have either been previously delayed or have become eligible, that is, they start 
at the current decision point. Moreover, we can find an activity j which is in process and which cannot be 
simultaneously processed with any other activity temporarily started at tg. Furthermore, job j cannot be 
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performed at the same time as any currently unscheduled activity in any mode. Then optimality is preserved 
if we start activity j at the current decision point, delay all the other activities which are currently in process, 
and do not examine any other delay alternative at the current decision point tg. More precisely, we have : 

Theorem 5.6 (Bounding Rule 6 ) 
Let SÖVAg be the newly computed set of m inimal delay alternatives at level g ofthe branch-and-bound tree, 
that is, no delay alternative has been selected or examined yet. Let S Jg denote the set of the jobs scheduled 
up to level g, and let SJg {1,..., J}\SJg be t he set ofthe unscheduled jobs. Furihermore, let JIPg be 
the set of the activities in process at the current decision point tg. If all the activities in process at time tg 

start at time tg and, moreover, there exists an activity h, h E JIPg, such that 

(a) ir[h,mh, j,rrij] = 0 for all activities j, j E JIPg\{h}, 

(b) TTJTI, mk,j, m] =0 for all activities j, j E SJg, and all modes m, 1 < m < Mj, 

then VAg = JIPg\{h} is the only minimal delay alternative that has to be considered when extending the 
current partial schedule. 

Proof: We assume that activity h, h 6 JIPg, scheduled in mode rrih, fulfills the assumptions of Theorem 5.6. 
Let VAg := JIPg\{h}, and let S := {(1, /i, mj),..., (J, fj, mj)} denote a schedule obtained by branching 
from the current node using a minimal delay alternative VAg other than VAg. Note, it is h E VAg and, 
moreover, mj = fhj for each scheduled job j, j E SJg. Especially, we have We show that there 
is a schedule obtainable by branching from the current node using the delay alternative VAg which has a 

makespan less than or equal to the one of S. Using Figure 4 (a ) for Illustration we define: 

Si := {(j, rhj,fj)\j=l,...,J, fj< tg}, 

§2 • — {(j, TMj j fj ) | j = 1 > • • • i I, j ^ h, tg < fj < fh dhfnh}, 

S3 • — {(j, fhj , fj) | j — 1, . . . , J, j ^ h, fj — dj-fhj ^ fh}-

By t he assumptions on %- w e have 

S = Si Ü S 2 Ü {(h, mh,fh)} Ü S3-

Furthermore, we define: 

Si:=Si, S2 :={(j,rhj,fj+dhmh)\(j,fhj,fj) e§2}, S3 •= S3-

and obtain with 

S := Sx 0 {(h,mh,tg + 4mJ} U S 2 Ü S3 

a feasible schedule the makespan of which is equal to the one of S. An Illustration of schedule S is displayed 
in Figure 4 (b). Obviously, if we select delay alternative VAg for branching from the current node, we can 
obtain a schedule with makespan less than or equal to the one of S. • 

The following example illustrates the previously described bounding rule. We consider again the instance 
given in Table 9. Furthermore, we consider the partial schedule shown in Figure 5 (a). Obviously, activity 3 
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Figure 4: Illustration of Bo unding Rule 4 

cannot be scheduled together with any activity in process at time 2. Note, activity 3 could be in process 
at the same time as activity 5 being performed in mode 2. However, activity 5 has already been assigned 
mode 1 which cannot be changed at the current or a higher level. Moreover, job 3 cannot be in process 
together with any of the unscheduled jobs 6, 7, and 8. Consequently, activity 3 can only be in process on its 
own. Thus, according to Bounding Rule 4, the only minimal delay alternative to be examined is {4,5}. 
In contrast, considering the partial schedule displayed in Figure 5 (b), activity 3 can be simultaneously 
processed with activity 5 which is scheduled in mode 2. In fact, none of the activities in process at time 2 
can only be processed on its own. Thus, Bounding Rule 4 cannot be applied to this partial schedule. 

K[ K[ 

6 

5 -| 

4-

3-

2-

1-
2(1) 

5(1) 

4(1) 

3(1) 

i r 
2 3 4 5 

(a) 

6-

5-

4-

3-

2-

1 
2(1) 

4(1) 

5(2) 

3(1) 

(b) 

Figure 5: Partial Schedules for the Project Instance 

The following bounding rule (cf. [5], Theorem 2) is closely re lated to the previous one. However, it seeks to 
start two activities at the current decision point which are simultaneously performable. 

Theorem 5.7 (Bounding Rule 7) 
Let SÖVAg be the newly computed set of minimal delay alternatives at lev el g of the branch-and-bound tree, 
that is, no delay a lternative has been selecte d or examined yet. Let SJg denote the set of the jobs scheduled 
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up to level g, and let SJg := {1, ..., J}\SJg be the set of the unscheduled jobs. Furthermore, let JIPg be 
the set of the activities in process at the current decision point tg. If all act ivities in process at time tg start 
at t ime tg and, moreover, there exists an activity h, h £ JIPg, such that 

(a) w[h,mh,i, mt] = 1 for exac tly one activity i, i 6 JIPg\{h}, 

(b) 7r[h, rrih,j, m] = 0 for all activities j, j £ SJg and all modes m, 1 < m < Mj, 

and if we additionally have dimi < dhmh, ihen VAg = JIPg\{h, i} is the only minimal delay alternative that 
has to be considered when extending the current partial schedule, and the next decision point to be considered 
is given by fh-

Proof: We assume that activities h and i, h,i E JIPg, with related modes mj and m,-, respectively, fulfill 
the assumptions of Theorem 5.7. Let VAg := JIPg\{h, i}, and let S := {(1, f\, mi), inj)} denote 
a schedule obtained by branching from the current node using a minimal delay alternative T>Ag other than 
VAg. Note, it is h £ 1>Ag and, moreover, rrij = rhj for each scheduled job j, j £ SJg. Especially, we have 
mft = rhh and m,- = m;. We show that there is a schedule obtainable by branching from the current node 

using the delay alternative VAg which has a makespan less than or equal to the one of S. We define: 

'-= {(j, rhy, fj) | j = 1,..., J, < tg}i 

52 '-= {{j, 77ij , fj) | j — 1,..., J, j ^ h, j / i, tg •< fj ^ fh d}ufik}, 

53 := rhj Jj)\j=l,..., J, j ^h, j± i, fj - djrn, > fh}-

We have 

S = Si Ü S 2 Ü {(h, fh, rhh)} Ü §3 Ü {(z, fi,fhi)}. 

Furthermore, we define: 

Si:=Si, S2 •= {(j,inj, fj + dhmh) \(j,rhj, fj) £ S2}, S3 := S3. 

and we o btain with 

5 •= Si Ü {(h,mh,tg + dhmh)} U {(:, rrii,tg + dimi)} 0 S2 0 S3 

a feasible schedule with a makespan equal to the one of 5. Obviously, if we select d elay alternative T>Ag, we 

can consider fh as the next decision point and obtain a schedule with makespan less than or equal to the 
one of S. O 

To illustrate this bounding rule, we consider again the instance given in Table 9 and the partial schedule 
displayed in Figure 5 (b). Activity 3 in mode 1 may be processed simultaneously with activity 5 in mode 2, but 
not with job 4 in mode 1 (recall, we have 7T[3, 1,5,2] = 1 and 7T[3, 1,4,1] = 0). Note, it is ds 2 = 3 < 5 = dg % . 
Moreover, job 3 cannot be in performed at the same time as any of the unscheduled jobs 6, 7 and 8. Therefore, 
activity 3 can only be processed together with activity 5. Thus, according to Bounding Rule 5, the only 
minimal delay alternative to be examined is {4}. Note, activity 4 can be delayed up to time 7, that is, the 
finish time of a ctivity 3. 
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6 Computational Results 

In this section we present the results of the computational studies concerning the algorithm proposed in the 

previous sections. The experiments have been performed on an IBM-compatible 386-DX personal Computer 
with 40 MHz clockpulse. The algorithm has been coded in Borland C. 
We have made use of a set of test problems constructed by the project generator ProGen (cf. [12]). These 
instances have been generated for the Validation of ProGen and, moreover, used by S precher to evaluate 

his algorithm (cf. [19], p. 91). Each of the project instances consists of 12 activities (including dummy 
source and sink activity). Each of the non-dummy activities may be performed in one out of three modes of 
accomplishment. The duration of a mode varies between 1 and 10 p eriods. We have two renewable and two 
nonrenewable resources. The detailed fixed parameter settings can be found in [12]. 
In order to design the set of instances four parameters, the resource factor and the resource strength of each 
resource category, have been varied. The resource factor RF is a measure of the average portion of resources 
requested per job. The resource strength RS reflects the scarceness of the resources. Table 10 displays the 
variable parameter levels. The resource factors of the renewable and nonrenewable resources are referred 
to as RFR and RFN, respectively. The resource strengths of th e renewable and nonrenewable resources are 
denoted as RSR and RS_\. respectively. For each combination of t he parameters, ten instances have been 
generated. Following [19], we have considered only those 536 of the 640 resulting instances which have a 
feasible Solution. 

Parameter Levels 

RFR 0
 

01
 

ö
 

% 0.2 0.5 0.7 1.0 
RFN 0.5 1.0 
RSN 0.2 0.5 0.7 1.0 

Table 10: Variable Parameter Levels under Füll Factorial Design 

The outline of this section is as follows: In Subsection 6.1, the effect of the bounding rules presented in 
Section 5 is examined. Subsection 6.2 provides a comparison of o ur algorithm with the one proposed by 
Sprecher (cf. [19]), w hich is currently the most powerful exact method available to solve the MRCPSP. 

6.1 Effect of the Bounding Rules 

This section focuses on the computational results concerning the algorithm of Table 5 in accordance with the 
bounding rules presented in Section 5. Recall, Bounding Rule 1 is a precedence based lower bound. Bounding 

Rule 2 provides a reduction of the input data before the algorithm is started. Bounding Rule 3 checks whether 
the current partial schedule is completable w. r. t. the nonrenewable resources or not. Bounding Rule 4 
induces backtracking if it is certain that the current partial schedule cannot lead to a complete schedule 
which is tight and mode-minimal. Bounding Rule 5 excludes some partial schedules from consideration 
which cannot be completed to semi-active schedules. Bounding Rules 6 and 7 reduce the examination of the 
set of delay alternatives to a single alternative. 
We have tested a basic variant of the procedure, that is, the algorithm of Table 5 enhanced by Bounding 
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Rule 1. Moreover, we have separately extended the basic variant by each of t he remaining bounding rules. 
Döing so, we can compare the results with the ones obtained by Sprecher (cf. [19], p. 91). Note, the 
precedence based lower bound (Bounding Rule 1) is already included in the basic version of Sprecher's 

procedure. Finally, we have tested the combined effect of all bounding rules. 

Table 11 displays the average computation times pcpu, the Standard deviations acpu, and the maximum 
computation times maXCPU ob tained by solving the 536 instances with the different variants of the algorithm. 
Furthermore, the comparison factor is given in the last column. It reflects the comparison of the average 
CPU-time of th e basic variant including, Bounding Rule 1, with the average CPU-time of the variant under 
consideration. Bounding Rule 3 is the most powerful one with a comparison factor of a pproximately Ave. 
Bounding Rules 4 and 6 have a comparison factor of approximately two. The left shift rule (Bounding 
Rule 5) with a comparison factor of 1 .3 is less effective than reported by Sprecher for his algorithm. This 
is partly due to the different structures of the enumeration schemes. Furthermore, Sprecher's formulation 
of the left shift rule reduces the search space to semi-active schedules while the one presented here does 
not. The effect of Bounding Rule 7 is almost completely consumed by its additional computational effort 
for checking the assumptions. 

Table 12 displays the average computation times for the different levels of RFR, RSR, RFN, and RSN. 
The last row contains the comparison factors of the basic variant with the variant using all bounding rules. 
Sprecher reported a lack of bounding rules for instances with a high resource factor RFR and a low resource 
strength RSR. It seems that this gap has been closed by employing Bounding Rule 6 which cannot be 
used in Sprecher's algorithm. The new Bounding Rule 2 is most effective when the resource strength of th e 
nonrenewable resources RSN is either very high or very low. If it is very high, the nonrenewable resources 
are likely to be redundant. Recall, this may force modes to become inefücient. In contrast, if i t is very 
low, some modes may be non-executable w. r. t. a nonrenewable resource. Furthermore, for some parameter 

levels, the algorithm is slowed down by the Bounding Rules 5 and 7. Finally, the frequency distributions of 
the computation times are shown in Table 13. 

6.2 Comparison with Sprecher's Algorithm 

In this section, we co mpare our algorithm with the one suggested by Sprecher (cf. [19]). Note, our proce­
dure has been designed for the MRCPSP while Sprecher's approach additionally Covers resource availability 
varying with time. For the computational studies reported in this section we used the accelerated versions 
of b oth algorithms. That is, the seven bounding rules described in Section 5 have been employed to speed 
up the algorithm of Table 5. Sprecher's procedure includes the four bounding rules designed for instances 
with nonrenewable resources (cf. [19], p . 53). We used the original Implementation provided by Sprecher. 
In order to obtain comparable results, we have recompiled Sprecher's source code with the same Compiler 
(Borland C) that has been used for our algorithm. 
Table 14 shows the average computation times ßcPU, the Standard deviations <rcpu> an d the maximum 
computation times maXCPU of both algorithms. Moreover, the comparison factor which is given in the last 
column shows that our algorithm is approximately four times faster than Sprecher's. 
Table 15 displays the average computation times and the comparison factors for the different levels of RFR, 
RSR, RFN, and RSN• It can be observed that our algorithm is faster for all parameter levels; the comparison 
factors ränge between 2.06 and 22.88. 
Finally, the frequency distributions of the computation times, given in Table 16, show the superiority of our 
algorithm. While our procedure has solved 87% of the problems within one second, Sprecher's approach has 
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Bounding Rule(s) HCPU &CPU maxci>{7 Factor 

1 12.84 72.17 1439.34 1.00 

1,2 8.04 32.42 485.55 1.60 

1,3 2.48 13.92 290.33 5.17 

1,4 6.09 24.02 339.45 2.11 

1,5 9.89 52.03 982.58 1.30 

1,6 5.96 21.67 300.17 2.15 

1,7 11.71 54.76 964.07 1.10 
1-7 0.53 1.33 13.68 24.08 

Table 11: Effect of the Bounding Rules — All Instances 

Bounding RFR RFN RSN 
Rule(s) 0.5 1.0 0.2 0.5 0.7 1.0 0.5 1.0 0.2 0.5 0.7 1.0 

1 2.62 22.39 43.02 8.04 3.69 0.95 3.28 20.13 64.62 6.30 3.14 3.41 

1,2 1.94 13.75 25.96 5.55 2.55 0.70 1.99 12.66 35.74 6.22 3.13 1.01 

1,3 0.33 4.49 9.65 0.83 0.36 0.11 3.21 1.93 1.45 2.61 1.97 3.40 

1,4 1.34 10.53 20.28 3.67 1.76 0.69 2.64 8.72 23.92 4.42 2.45 2.56 

1,5 1.80 17.46 35.18 4.60 2.52 0.92 3.31 14.91 45.29 5.53 3.07 3.53 

1,6 2.28 9.39 12.16 7.94 3.68 0.95 0.75 9.93 31.67 3.49 1.09 0.54 

1,7 2.49 20.33 38.02 7.98 3.68 0.95 3.59 17.90 56.04 6.15 3.19 3.82 

1-7 0.20 0.84 1.37 0.54 0.24 0.09 0.38 0.65 0.52 0.92 0.59 0.08 

Factor 13.10 26.65 31.40 14.89 15.38 10.56 8.63 30.97 124.27 6.85 5.32 39.25 

Table 12: Effect of the Bounding Rules — Füll Factorial Design 

Bounding Rule(s) [0,0.1] (0.1,1] (1,5] (5,10] (10,25] (25,50] (50,100] (100,250] > 250 

1 198 124 87 40 39 19 16 8 5 
1,2 205 128 93 43 31 16 12 6 2 

1,3 224 188 71 22 24 4 2 - 1 

1,4 193 149 94 40 33 15 8 2 2 

1,5 200 135 80 45 37 18 12 5 4 

1,6 198 142 96 39 33 13 9 5 1 

1,7 198 125 86 41 38 19 16 9 4 

1-7 240 227 58 8 3 - - - -

Table 13: Effect of the Bounding Rules — F requency Distribution 
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only been capable to solve 69% within the same time. 

Algorithm HCPU & CPU maxcpu Factor 

Sprecher 2.18 6.96 112.03 1.00 
MRCPSP 0.53 1.33 13.68 4.11 

Table 14: Comparison with Sprecher's Algorithm — All Instances 

Algorithm 
RFR 

0.5 1.0 
% 

0.2 0.5 0.7 1.0 O
 

&
 

^
 
£
 

ö
 

o
 

bo
 

o
 

o
 

Sprecher 

MRCPSP 

0.84 3.43 
0.20 0.84 

7.24 1.11 0.62 0.47 
1.37 0.54 0.24 0.09 

1.97 2.33 
0.38 0.65 

2.21 2.94 1.75 1.83 

0.52 0.92 0.59 0.08 

Factor 4.20 4.08 5.28 2.06 2.58 5.22 5.18 3.58 4.25 3.20 2.97 22.88 

Table 15: Comparison with Sprecher's Algorithm — Füll Factorial Design 

Algorithm [0,0.1] (0.1,1] (1.5] (5,10] (10,25] (25,50] (50,100] (100,250] > 250 

Sprecher 114 255 117 28 16 4 1 1 -

MRCPSP 240 227 58 8 3 - -

Table 16: Comparison with Sprecher's Algorithm — Frequency Distribution 

7 Conclusions 

In this paper we have presented anew branch-and-bound algorithm for minimizing the project's makespan of 
a multi-mode resource-constrained project scheduling problem. By the use ofmode alternatives the algorithm 
considerably extends the concept of delay alternatives which is used in the currently most powerful Solution 
procedure for single-mode resource-constrained project scheduling. 
The basic enumeration scheme has been enhanced by static and dynamic search tree reduction techniques. 
The static rules can be used by any algorithm for solving a multi-mode resource-constrained project schedu­

ling problem. The dynamic rules substantially extend the dominance concepts from the single-mode to the 
multi-mode case. 
Computational experience gained with the algorithm applied to the Standard sample of project instances 
generated by ProGen indicates a substantial reduction of the Solution times obtainable with the currently 
most powerful procedure published in the literature. Beside the mean CPU time the variance is substantially 
decreased. 
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