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Abstract

We consider an extension of the classical resource-constrained project scheduling problem
(RCPSP), which covers discrete resource-resource and time-resource tradeoffs. As a result a
project scheduler is permitted to identify several alternatives or modes of accomplishment for

each activity of the project.

The solution procedure we present is a considerable generalization of the branch-and-bound algo-
rithm proposed by Demeulemeester and Herroelen, which is currently the most powerful method
for optimally solving the RCPSP. More precisely, we extend their concept of delay alternatives by
introducing mode alternatives. The basic enumeration scheme is then enhanced by dominance
rules which highly increase the performance of the algorithm. The computational results obtained
by solving the standard ProGen instances indicate that the new method outperforms the most
rapid procedure reported in the literature by a factor of four. Additionally and more important
than the average reduction of the solution time is the substantial decrease of the variance of the

solution times.

Keywords: Project Management / Scheduling, Discrete Resource-Resource / Time-Resource
Tradeoffs, Delay and Mode Alternatives, Branch-and-Bound, Dominance Rules, Computational

Results.

1 Introduction

The scheduling of projects has its beginnings in the early fifties when the Metra Potential Method (MPM)
and the Critical Path Method (CPM) were developed. By the use of technological precedence constraints and
deterministic activity durations both methods mainly determine the minimal project length, time windows,
i.e. intervals for the latest start and finish times of the activities, and the set of critical activities. Resource
constraints are not taken into account explicitly.

By the introduction of resources we obtain as a generalization the resource-constrained project scheduling
problem (RCPSP). The resources involved are available in a discrete and constant amount each period. Each
activity has a unique prespecified duration and uses a constant amount of the resources involved each period
it is in progress. Once started the activity may not be interrupted (no preemption allowed). The commonly
considered objective is the minimization of the makespan.

Since the problem subsumes the wellknown job-shop and flow-shop problem it is an NP-hard problem as
well (cf. [9]). Consequently, the RCPSP has caused numerous publications dealing with the developement
of suboptimal (cf. e.g. [2], [11]) and optimal (cf. {1}, 3], {13], 15], [16], [21]) solution procedures, where
Demeulemeester and Herroelen’s exact solution procedure (cf. [4], [5]) outperforms all the other approaches.
By considering the activity durations as a discrete function of the resources and/or amounts of the resources
allocated, we obtain a more realistic model. The time-resource and resource-resource tradeoff can be im-
plemented and the multi-mode resource-constrained project scheduling problem (MRCPSP) can be stated:
Each activity can be performed in one out of a set of prescribed ways, called modes, having a mode specific
duration and mode specific resource requirements.

Three different categories of resources are distinguished, that is, renewable, nonrenewable and doubly cons-
trained ones (cf. [17]). Renewable resources are limited on a per-period-basis. Machines and manpower

are examples of this resource category. For nonrenewable resources, the availability for the entire project is



limited. An example of this resource category is money if the budget of the project is limited. Doubly cons-
trained resources are limited both on a per-period-basis and on a total-project-basis. Money is an example
of this resource category if not only the budget of the project but also the per-period-cashflow is limited.

The purpose of the paper is to present a new efficient procedure for solving the MRCPSP. It considerably
extends the currently most powerful exact solution procedure of Demeulemeester and Herroelen from the
RCPSP to the MRCPSP. The outline of the remaining is as follows: Section 2 provides the precise descrip-
tion and mathematical programming formulation of the problem. Section 3 discusses sets of schedules the
enumeration can be reduced to without loosing optimality. Section 4 outlines the basic enumeration scheme
and Section 5 bears bounding rules that increase the performance of the enumeration procedure. Section 6

reports our computational experience. Finally, the conclusions are drawn in Section 7.

2 Problem Description

The MRCPSP can be stated as follows: We consider a project which consists of J activities (jobs). Due
to technological requirements the activities are partially ordered, that is, there are precedence relations
between some of the jobs. These precedence relations are imposed by sets of immediate predecessors Pj,
1 < j < J, indicating that an activity j may not be started before all of its predecessors are completed. With
analogous interpretation for each activity 7, 1 < j < J, the set of the immediate successors §; is defined.
The precedence relations can be represented by an acyclic activity-on-node network. Job 1 is the only source
activity while job J is the unique sink activity of the network. Furthermore, we assume that the activities
are numerically labeled, that is, a predecessor of job j has a smaller number than j.

Each activity requires certain amounts of resources to be performed. We distinguish three different categories
of resources, that is, renewable, nonrenewable and doubly constrained ones. The set of renewable resources
is referred to as R. For each renewable resource r, r € R, the per-period-availability is constant and given
by K?. For nonrenewable resources, the availability for the entire project is limited. The set of nonrenewable
resources 1s denoted as N. For each nonrenewable resource r, r € N, the overall availability for the entire
project is given by K. Since doubly constrained resources can simply be incorporated by the enlargement
of the sets of the renewable and nonrenewable resources, we do not consider them explicitly.

Each activity can be performed in one of several modes of accomplishment. A mode represents a way
of combining different resources and/or levels of resource requests. M; denotes the number of modes of
activity j, 1 £ j < J. The duration of job j being performed in mode m, 1 < m < M;, is given by djm.
The modes of each activity are labeled with respect to non-decreasing duration. Once an activity is started
in one of its modes, it is not allowed to be interrupted. Furthermore, job j, 1 < j < J, being performed in
mode m, 1 < m < Mj, uses k%, units of renewable resource r, r € R, each period it is in process, where

jmr
w.l. 0. g. we assume lcfmr < K/ for each renewable resource 7, r € R. Note, otherwise activity j could not be
performed in mode m. Moreover, it consumes k,,, units of nonrenewable resource 7, 7 € N. W. 1. 0. g. we
assume that the (dummy) source and the (dummy) sink activity have only one mode each with a duration
of zero periods and no request for any resource. The objective under consideration is the minimization of
the project’s makespan. A summary of the notation introduced can be found in Table 1. We assume the

parameters to be nonnegative and integer valued.

Given the precedence relations and an upper bound T on the project’s makespan, which is e.g. given by

the sum of the maximal durations of the activities, we use the modes of shortest duration and derive time



J - number of activities

j=1(J) : - unique source (sink) activity
P; (S;) :  set of immediate predecessors (successors) of activity j
M; :  number of modes of activity j
dim :  (non preemptable) duration of activity j being performed in mode m
R (N) :  set of renewable (nonrenewable) resources
k}’mr per-period usage of renewable resource r required to perform activity j in mode m
e :  total consumption of nonrenewable resource r required to perform activity j in mode m
Kr . per-period availability of renewable resource r
K} . total availability of nonrenewable resource r

Table 1: Symbols and Definitions

windows by traditional forward and backward recursion as performed in MPM. These time windows are
represented by intervals [EF;, LF;], where EF; and LF; denote the earliest and the latest finish time of
activity j, 1 € j < J, respectively. Analogously, time windows [ES;, LS;] can be determined, where ES;
and LS; denote the earliest and the latest start time of activity j, 1 < j < J, respectively.

The benefit of the time-windows is twofold: First, they can be used in the mathematical programming for-
mulation to reduce the number of variables substantially. Second, they can be utilized in several enumeration
procedures to speed up the convergence (cf. e.g. [5], [19], and Section 5).

For the formal description of the MRCPSP we define a binary variable for each combination of an activity j,

1<j<J,amodem,1<m< M, and aperiodt,t=0,...,7 (cf. [22]):

{ 1, if job j is performed in mode m and completed in period ¢
Timt —

0, otherwise.

The objective function and the constraints of the model are shown in Table 2. Since activity J is the
only finish activity, the objective function (1) reflects the project’s makespan which has to be minimized.
Constraints (2) indicate that each activity is assigned exactly one mode and exactly one finish time. (3)
ensures that no activity is started until all its predecessors are finished. Furthermore, (4) secures that the
per-period-levels of the renewable resources are met. The consumption of the nonrenewable resources is
limited to their availabilities by (5).

By simple adaptations the constraints of the model can be extended to time varying supply and usage of

the renewable resources (cf. [7]). Moreover, minimal and maximal time-lags can be included (cf. [1]).

3 Dominating Sets of Schedules

The classification of schedules offers a basic framework of the project scheduling theory and the improvement

of algorithmic tractability. Clearly, the computational performance of an enumeration procedure can be
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Table 2: The Model of the MRCPSP

substantially enhanced if the enumeration is reduced from the entire set of schedules S to a proper subset DS
without loosing optimality, that is, the subset DS dominates S.
For the MRCPSP a schedule is properly defined when each activity is assigned a mode and a start or finish

time. More precisely, we define:

Definition 3.1 Let Z; denote the set of the nonnegative integers.

(a) A schedule is a set of triplets S = {(1,m1, f1),...,(J,my, f1)}, where each activity j, 1 < j < J, is
assigned a mode m;, 1 < m; < M;, and a finish time f;, f; € Z4.

(b) A schedule S is called feasible if the precedence constraints are maintained and if the resource contraints
are met.

(c) A partial schedule PS is a subset of a schedule S.

Given a schedule S for the MRCPSP, we can prove whether a local or global left-shift (cf. [20]) can be

performed on S. Consequently, the sets of semi-active and active schedules can be defined for the multi-mode



problem. That is, a feasible schedule of the MRCPSP is semi-active (active) if the schedule is semi-active
(active) w.r.t. to the (single-mode) RCPSP obtained by fixing the modes to the ones selected in the schedule.
Analogously to the RCPSP we can capture the following (cf. [8], p. 27): If there is an optimal schedule for
a given instance, then there is an optimal semi-active (active) schedule.

Note, within a local or global left shift a mode change is not allowed to reduce the finish time of the
corresponding activity. If we additionally permit a mode change we obtain the notion of tight schedules

introduced by Speranza and Vercellis (cf. [18]):

Definition 3.2 Let S={(j,m;,f;) |7 =1,...,J} be a feasible schedule.

(a) A multi-mode left shift of an activity j, 1 < j < J, is an operation on S the result of which is a feasible
schedule ' with S' = S\{(j,m;, f;)} U{(5,m}, f})} such that 1 <m} < M; and fi < f;.
() A schedule S is called tight if no multi-mode left shift of any of the activities can be performed on S.

That is, a schedule is tight if there does not exist an activity the finish time of which can be reduced without
violating the constraints or changing the finish time or mode of any of the remaining activities. The definition
is illustrated in the following example. Consider the project instance given in Table 3. The corresponding
network is shown in Figure 1. Two solutions for this instance can be found in Figure 2, where j{m) denotes
that job j is processed in mode m. Note, both schedules are active. Schedule (a) is not tight because a
multi-mode left-shift can be performed: Activity 3 which is accomplished in mode 1 and finishes at time 4
could be executed in mode 2 and finished at time 3. The result of this multi-mode left shift is displayed in

Figure 2 {b). Note, schedule (b) is tight because no multi-mode left shift can be performed.

i & m dim K| R K N
1 {233 1 0 0 ({1} 3 ¢
2 {4 1 2 2
3 {5y 1 2 2
2 3 1
4 {6} 1 1 3
2 2 1
{6y 1 2 3
6 ® 1 0 0

Table 3: Project Instance

Note, whereas for the RCPSP the set of tight schedules coincides with the set of active schedules, the set of
tight schedules of a multi-mode problem is only a subset of the active ones. Nevertheless, since we can obtain
an optimal tight schedule by iteratively applying multi-mode left shifts to an optimal schedule, optimality
is not lost if only tight schedules are enumerated (cf. [18], Proposition 4.1).

If instead of the finish time reduction associated with a multi-mode left-shift a mode reduction {without
changing the finish time) is considered we obtain the set of mode-minimal schedules. More precisely, we
define:
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Figure 2: Non-Tight and Tight Schedule of the Project Instance

Definition 3.3 Let S = {(j,m;, fi) |7 =1,...,J} be a feasible schedule.
(a) A mode reduction of an activity j, 1 < j < J, is an operation on S the result of which is a feasible
schedule §' with 8" = S\{(j, m;, ;)} U {(4,m], f;)} such that 1 <mi < m;.

(b) The schedule S is called mode-minimal if no mode reduction of any activity can be performed on S.

Again, we consider the project instance given in Table 3 and the two solutions shown in Figure 2. It can be
easily verified that the schedule illustrated in Figure 2 (a) is mode-minimal. In contrast, schedule (b) is not
mode-minimal because a mode reduction can be performed on activity 4 which is accomplished in mode 2
and ends at time 4: Being executed in mode 1 and started at time 3 instead of 2, job 4 could be finished at
time 4 as well.

This example shows that there are tight schedules which are not mode-minimal and, moreover, there are
mode-minimal schedules which are not tight. Nevertheless, it can easily be verified that the search space
can be reduced to the set of mode-minimal schedules without loosing optimality.

Note, in accordance with the remarks stated above the search space of an enumeration scheme can only be
restricted to schedules which are either tight or mode-minimal. The following theorem, however, states that

it is sufficient to examine schedules which are both tight and mode-minimal.

Theorem 3.1
If there is an optimal schedule for a given instance, then there is an optimal schedule which is both tight and

mode-minimal.



Proof: Consider an optimal tight schedule. This schedule can be transformed into a mode-minimal schedule
by applying mode reductions. If the resulting schedule is not tight, it can be turned into a tight schedule
by performing multi-mode left shifts. Note, since a mode reduction does not affect the finish times of the
activities and since a multi-mode left shift can only reduce a finish time, only a finite number of mode
reductions and multi-mode left shifts can be performed. That is, iteratively applying the substitutions as

described above results in an optimal schedule which is both tight and mode-minimal. a

During the enumeration process the objective is to exclude dominated schedules from evaluation as early as
possible. That is, one has to decide whether a partial schedule can be completed to a semi-active, active,
tight and mode-minimal schedule or not. The decision rules can be used in an enumeration scheme to
enhance the performance (cf. Section 5).

Most of the solution procedures presented in the literature (cf. e.g. [5], {19], [21]) employ bounding rules
which reduce the search space to the sets of semi-active and active schedules. The notion of tight schedules

is only used by Speranza and Vercellis {(cf. [18], [10]), the notion of mode-minimal schedules is entirely new.

4 Branching on Mode- and Delay-Alternatives

In this section we present a branch-and-bound algorithm for solving the MRCPSP to optimality. The
fundamental approach is a considerable extension of the concept of delay alternatives used by Demeulemeester
and Herroelen (cf. [4], [5]) as well as Christofides et al. (cf. [3]) for the (single-mode) RCPSP. To describe

the algorithm accurately we need the following definitions:

Definition 4.1 Let t; be a time instant.

(a) An activity j, 1 < j < J, which is scheduled in mode mj with finish time f; is in process at time t4, if
we have f; — djm <ty < fj. The related set is the set of activities that are in process. It is denoted as
JIP,.

(b) A currently unscheduled activity j, 1 < j < J, is called eligible at time t, if all of its predecessors i,
i € Pj, are scheduled with finish time f; < ty. The related set is the set of eligible activities which 1s
denoted as EJ,.

Recall, in Demeulemeester’s and Herroelen’s algorithm (cf. [4], [5]), all eligible activities are started at the
current time instant (decision point) in their only possible mode. If a resource conflict occurs, one has to
decide which of the activities in process to delay in order to resolve the conflict. In the multi-mode case, the
eligible activities have to be assigned a mode before they can be put into process. Subsequently, the concept
of delay alternatives can be used. In order to reflect the fixing of the modes, we introduce the notion of a

mode alternative.

Definition 4.2
Let Zy denote the set of the nonnegative integers. Furthermore, lett, be a time instant at some level g of the

branch-and-bound tree, and let EJ, denote the set of the activities that are eligible at time ty. If EJ, # 0,
then @ mode alternative is @ mapping MA, : EJ; — Zy which assigns each eligible activity j, j € EJ,, a
mode MA,(j) € {1,..., M;}.



Definition 4.3

(a) Lett, be a time instant at level g of the branch-and-bound tree, and let JIP, be the set of activities in
process at time t,. Let m; denote the mode of activity j, j € JIP,. A delay alternative DA, is a subset
of JIP; such that for each resource r, r € R, it is

p P
S M, <K
JEJIP\DA,

(b) A delay alternative DA, is called minimal if no proper subset of DA, is a delay alternative.

Using the definitions given above the proceeding at a current time instant (decision point) is as follows: If the
current eligible set is empty, we proceed as outlined by Deemulemeester and Herroelen for the single-mode
case (cf. [4], [5]), that is, we test a delay alternative. Otherwise, we select a mode alternative in order to fix
the modes of the eligible activities. Subsequently, if necessary, we test the delay alternatives. If we return,
via backtracking, to a level of the branch-and-bound tree at which all delay alternatives have been examined,
we select the next mode alternative; if there is no more we track another stage back. The variables and
symbols used in the algorithm are summarized in Table 4 while a formal description of the algorithm is
provided in Table 5.

g :  level of the branch-and-bound tree

m; : mode of activity j

fi : finish time of activity j

f;’fjd . stored finish time of activity j before delay at level g
t, . decision point at level g

JIP, . set of activities that are in process at time ,
Fl, . set of activities that finish at time ¢,

FJ, : set of activities that finish at or before time ¢,
S, :  set of activities that are scheduled up to level ¢
EJ, . set of activities that are eligible at time £,
SOMA, : set of mode alternatives remaining at level g
MA, . selected mode alternative at level ¢

SODA, : set of delay alternatives remaining at level ¢
DA, :  selected delay alternative at level g

Table 4: Notation used in the Algorithm for the MRCPSP

In Step 1 of the algorithm level g = 0 of the branch-and-bound tree is initialized. That is, the dummy source
activity 1 is started at the time instant at level 0, to = 0. Therefore, the set of the activities in process
at level 0, JIPy, and the set of the scheduled jobs at level 0, SJo, is initialized with {1}. The set of the

activities that are finished at or before time tq, FJo, is initialized with §. Moreover, the finish time of the



Step 1: (Initialization)
g:=0;t:=0; JIPy :={1}; SJo:={1}; FJo:=0; f1 :=0; my :=1; DAg :=0;
Step 2: (Reschedule Delayed Activities and Compute Eligible Activities)
g:=g¢+1;t, :=min{f; | j€ JIP;_1};
Fl,={jeJIP,_i|fj=t,}; FJ, . =FJ,_1UFJ,;
fi =ty +djm;, §€DAG_1; JIPy = (JIP;_\FJ;)UDA;_1; SJy 1= SJ;1 UDAG_y;
EJg:={j€{l,...,J0\SJ; | P; CFI,}; JIP; := JIP,UEJy; SJ; := SJ; U EJ;
if J € EJ, then store current solution and go to Step 8;
Step 3: (Compute Mode Alternatives)
if EJ, =0 then SOMA, :=0 and go to Step 6,
else SOMA, := SetO fM odeAlternatives(E J,);
Step 4: (Select Mode Alternative)
if SOMA,; = 0 then go to Step 8,
else select MA, € SOMA,; SOMA; := SOMAN{MA};
for each j € EJ, update m; := MAy(5) and f; :=t; + djm;;
Step 5: (Check for Nonrenewable Resource Conflict)
if any nonrenewable resource produces a resource conflict then goto Step 4;
Step 6: (Compute Delay Alternatives)
SODA, := SetOf Minimal DelayAlternatives(J I Py);
Step 7: (Select Delay Alternative)
If SODA, = 0 then go to Step 4,
else select DA, € SODA,; SODA, := SODAN{DA,};
f;’,{]‘-i = fj, j € DAy; JIP, == JIP\DA,; SJ, = SJ,\DAy; go to Step 2;
Step 8: (Backtracking)
g:=g—1;if ¢ =0 then STOP,
else f; := f3'¢, j € DAg; JIPy := JIP,UDAy; SJg = SJ; UDA; go to Step 7.

Table 5: A Branch-and-Bound Algorithm for the MRCPSP



source activity is defined as f; := 0, and its mode is defined as m; := 1. Finally, since no activity is delayed
at level 0, the only minimal delay alternative at level 0, D.4y, is the empty set.

In Step 2 we first branch to the next level of the branch-and-bound tree by incrementing g. Then the next
time instant t; (decision point) is computed. Since the per-period availability of the renewable resources is
constant it is defined by the earliest finish time of the activities which are in process at the previous level.
We determine FJ,, that is, the set of the activities that finish at time ¢,. The set of the activities that
finish at or before time %4, 7‘7_,,, is computed as the union of 'F_Jg_l and FJ,. The jobs that have been
delayed at the previous level are rescheduled to start at time ¢, by updating their finish times w. 1. t. their
fixed modes. Then we obtain the set of the activities that are in process at level g, JIP;, by eliminating
the jobs that finish at time ¢, from JIPy_, and, moreover, adding the previously delayed activities. The
set of the scheduled activities at level g, SJ,, is computed by adding the previously delayed activities to
SJg-1. Then the eligible set EJ, is given by the set of those unscheduled jobs the predecessors of which
are finished at or before time t,. The eligible jobs are put in process, that is, they are added to JIP, and
SJ,. If the dummy sink activity J is eligible, we have obtained a new complete schedule which is stored,
and backtracking occurs. Otherwise, Step 3 is performed.

In Step 3, we determine the set of the mode alternatives SOMA,;. If no job is eligible at the current
level, there are no mode alternatives to be considered. Therefore, the set SOM.A, is empty. Furthermore,
since there is no activity that has not been (temporarily) scheduled at the previous level, a resource conflict
concerning a nonrenewable resource cannot occur. Thus, we skip to Step 6 in order to compute the set of
delay alternatives. Otherwise, if there are eligible activities, we compute the set of the mode alternatives
SOMA, and proceed with Step 4.

In Step 4, a mode alternative MA, is selected and removed from SOM.A4,. The modes m; of the eligible
activities j, j € EJ,, are fixed w. r. t. the selected mode alternative. Moreover, they are started at time ¢,
by the definition of their finish times f; w. r. t. M.A,. If no mode alternative is available, backtracking in
Step 8 is performed.

Step 5 controls the consumption of the nonrenewable resources. If the availability of any nonrenewable
resource is exceeded, the next mode alternative is selected in Step 4. Otherwise, in Step 6, the set of the
minimal delay alternatives, SODA,, is computed.

In Step 7, a delay alternative DA, is selected and then removed from the set of delay alternatives SODA,.
Each activity j selected to be delayed is removed from JIP,; and SJ, and, moreover, its finish time f; is
stored in fo'4

gl] .
is, the delayed activities are rescheduled to start at the next decision point. However, if no delay alternative

The delay alternative has resolved the current resource conflict and Step 2 is performed, that

is available, Step 4 is executed for selecting the next mode alternative.

In Step 8, backtracking is performed. If, after decrementing g, the level of the branch-and-bound tree is
zero, the algorithm stops. Otherwise, the activities that have previously been delayed at this level are put
in process by restoring their finish times. After the adjustment of JIP; and SJ,, Step 7 is executed for
selecting the next delay alternative.

Using the correctness of the algorithm proposed by Demeulemeester we can state the following theorem:
Theorem 4.1

The algorithm of Table 5 is correct, that is, it finds an (ezisting) optimal (i. e. makespan-minimal) solution
for a given MRCPSP.

10



Proof: Obviously, the algorithm of Table 5 terminates if the given problem is feasible w.r.t. the renewable
resources. Since a feasible schedule is especially feasible w. r. t. the nonrenewable resources and, moreover,

it is k7

jmr
which is infeasible w. r. t. a nonrenewable resource. Therefore, Step 5 does not exclude feasible schedules

>0,j=1,....,J,m=1,...,M;, r € N, there is no feasible completion of a partial schedule

from evaluation, and we can assume w. l. 0. g. |[N| = 0.

Let {(1,m1),...,(J,ms)}, 1 <mj < M;,1<j<J,be aset of job/mode combinations from which we can
obtain an optimal solution by the use of Demeulemeester’s algorithm. Since for each activity 7, 1 < j < J,
the related mode m; can be selected by a mode alternative when the predecessors of activity j are finished,

the algorithm reduces to the branching scheme proposed by Demeulemeester. O

5 DBounding Rules

This section provides static and dynamic search tree reduction techniques. Whereas the static bounding
rules can be realized by an adaptation of the input data, the assumptions of the dynamic bounding rules
have to be checked during the enumeration process. The rules are stated as theorems and, if necessary,
additional information about their algorithmic realization is given.

The first bounding rule bears both static and dynamic features. The pruning rule and variants of it have
been successfully employed for solving the RCPSP (cf. e.g. [5], [21]) as well as the MRCPSP (cf. [14], [19]).
Given an upper bound on the project’s makespan, the latest finish times LF; of the activities j, j = 1,...,J,
as described in Section 2 can be used to reduce the search space. They are updated after finding an improved

feasible solution.

Theorem 5.1 (Bounding Rule 1)
Let T denote an upper bound on the project’s makespan. If there is an activity j, 1 < j < J, the assigned

finish time of which ezceeds the latest finish time LFj, then the current partial schedule cannot be completed

with a makespan less than or equal to T (= LFy).

The enumeration procedure starts with a predefined upper bound and successively adapts it, when the first
or an improved solution is found. That is, if T denotes a newly obtained makespan related to a complete

schedule, then we can recalculate the latest finish times by
LF; :=LF; — (LF; -T+1), j=1,...,J

The underlying idea of the first static acceleration scheme is to exclude modes and/or nonrenewable resources
from the input data. The effect is a reduction of the number of modes or constraints to be considered. For

notational convenience, we need the following definitions:

Definition 5.1
(a) The minimal request of activity j, 1 < j < J, for nonrenewable resource r, r € N, is given by
kmin?, := min{k},, |m=1,..., M;}.

(b) The mazimal request of activity j, 1 < j < J, for nonrencwable resource v, r € N, is given by

kmaz?, = max{k},. [m=1,...,M;}.
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Definition 5.2 Let j, 1 < j < J, be an activity, and let m;, 1 < m; < M;, be a mode of activity j.

(a) Mode m; is called non-ezxecutable w. r. t. a renewable resource r, r € R, if we have k]’?mj, > K?.
(b) Mode m; is called non-ezecutable w. r. t. o nonrenewable resource r, r € N, if we have

J
Y kmin, + kfp . > KY.

P
(c) Mode m; is called inefficient, if there ezists another mode mi, 1 < mi < M;, of activity j with
dim; > djm:, and k5, . > kf

: mjr = m’,
3 Jm; jm;r

nonrencwable resource v, v € N (cf. [12]).

v v
for each renewable resource r, r € R, and lcjmjr > kjm;r for each

(d) A nonrenewable resource r, r € N, is called redundant, if we have
J
Z kmaz;, < K7.
j=1
Using the previous definitions, we can state the following theorem:

Theorem 5.2 (Bounding Rule 2)

(a) Within a feasible schedule for a given instance, no activity can be performed in a non-erecutable mode.

(b) If there is an optimal schedule for a given instance, then there is an optimal schedule in which no activity
is accomplished in an inefficient mode.

(¢) Ezcluding a redundant nonrenewable resource from a project instance does not affect the set of the

feastble (optimal) schedules.

Note, if an activity has not a single executable mode then there is no feasible schedule for the given instance.
Recall, we have assumed in Section 2 that no mode is non-executable w. r. t. a renewable resource. This is
necessary in particular to secure that the enumeration algorithm terminates. However, since the project ge-
nerator ProGen (cf. [12]) which has been used in the computational studies may generate instances including
modes that are non-executable w. r. t. a renewable resource, they have to be eliminated from the project
data before the algorithm is applied. Furthermore, according to Theorem 5.2, modes that are inefficient or
non-executable w. r. t. a nonrenewable resource and, moreover, redundant nonrenewable resources may also
be deleted.

In the following example, we discuss the process of erasing modes and/or nonrenewable resources in more
detail. We consider the project instance given in Table 6. Mode 1 of activity 2 is non-executable w. r. t. re-
newable resource 1 and can therefore be deleted from the input data. This induces that mode 1 of activity 4
becomes non-executable w. r. t. nonrenewable resource 2. Removing this mode from the project data cau-
ses redundancy of nonrenewable resource 2 which, therefore, can be neglected. Now mode 2 of activity 5
becomes inefficient. Eliminating this mode turns nonrenewable resource 3 redundant. The reduced project
instance with adjusted mode numbers is provided in Table 7.

This example shows that deleting a mode which is non-executable w. r. t. a renewable resource may force a
mode of another activity to become non-executable w. r. t. a nonrenewable resource. Moreover, removing
a non-executable mode from the project data may cause redundancy of a nonrenewable resource. Finally,

erasing a redundant nonrenewable resource may lead to inefficiency of a mode while eliminating an inefficient
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i 8 m dim Koy Ky ko.s| R OK! N K¥ K3
1 {23 1 0 0 0 0 | {1} 4 {23} 13 14
2 {4 1 2 s 2 1
2 4 2 4 1
3 {50 1 3 3 3 3
2 5 1 2 4
4 {6} 1 2 2 8 3
2 3 1 2 3
5 {6} 1 3 2 3 2
2 4 2 1 7
6 0 1 o0 0 0 0

Table 6: Project Instance

i & m dim K| R K N
1 {2,834 1 0 0 |[{1} 4 @
2 {4 1 4 2
3 {5} 1 3 3
2 5 1
4 {6} 1 3 1
5 {6} 1 3 2
6 0 1 0 0

Table 7: Reduced Project Instance

Step 1: Remove all non-executable modes from the project data.
Step 2: Delete the redundant nonrenewable resources.
Step 3: Eliminate all inefficient modes.

Step 4: If any mode has been erased within Step 3, go to Step 2.

Table 8: Implementation of Theorem 5.2

mode may cause redundancy of a nonrenewable resource. Therefore, the projects input data should be

prepared as described in Table 8.

The next bounding rule to be presented is especially designed for instances with nonrenewable resources,
that is, |N| > 0. Its dynamic variant, as given in Theorem 5.3, has been proposed by Drexl (cf. [6]) for a less
general framework. Sprecher (cf. [19], p. 62) adapted the rule to the MRCPSP and substantially improved
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the effect by reformulating it as a static rule.

Theorem 5.3 (Bounding Rule 3)
Let SJ; be the set of the activities that are scheduled up to level g of the branch-and-bound tree, and let
ST, = {1,...,J}\ SJ, denote the set of the currently unscheduled activities. If there is a resource r,
r€ N, with

> K+ > kminY > K?,

7€5J, j€ST,

then the current partial schedule cannot be completed.

By the following remark the time consuming calculations during enumeration phase can be reduced to simple
adaption of the input data (cf. [19], Remark 5.7). Note, this adaption should be made after the input data

has been prepared according to Bounding Rule 2.

Remark 5.1
The bounding rule of Theorem 5.3 can be implemented via preprocessing by adjusting the input data as
follows:
kY my 1= kY — kmin?,, i=l,....,m=1,....M;, reN
and
-1
RY:=K! - kminf,, reN.
ji=2

The first dynamic bounding rule bases on the fact that, according to Theorem 3.1, optimality is preserved if
the enumeration is reduced to schedules that are tight and mode-minimal. Therefore, whenever it is certain
that no tight or mode minimal schedule can be obtained from the current partial schedule backtracking may

be performed.

Theorem 5.4 (Bounding Rule 4)

Let t; be the decision point at the current level of the branch-and-bound tree, and let F.J, denote the set of
those jobs that finish at time t,. Furthermore, let PS, denote the current partial schedule. If there exists
an actwity j, j € F'J,, such that a multi-mode left shift or a mode reduction of j with resulting mode mg-,
1< m;- < M;j, can be performed on PS, and, moreover, if k}’m;r < Ic]‘-'mj, holds for each nonrenewable

resource r, r € N, then PS, needs not be completed.

Proof: Let PS’ denote the result of the multi-mode left shift or mode reduction performed on PS,. Let
PS, be completable w. r. t. the resources. Then PS’ is completable, too. Furthermore, if a multi-mode left
shift or mode reduction of an activity that finishes at time ¢y, can be performed at level g, then the same
multi-mode left shift or mode reduction can be performed at any later stage g, § > ¢. That is, scheduling
or delaying activities at any stage g, § > g, cannot prevent the possibility of performing a multi-mode left
shift or mode reduction of any activity out of F.J,. Consequently, any obtainable schedule cannot be tight
and mode-minimal. However, in accordance with Theorem 3.1 there is an optimal schedule which is tight

and mode-minimal. Therefore, optimality is preserved if P.S; is not completed. =]
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Obviously, this bounding rule can be applied in two steps of the algorithm, in Step 2 and Step 7. Whereas
the interpretation of the former includes that all the delay alternatives are dominated, the latter one means
that only the currently selected delay alternative can be excluded from further consideration. Although
the delay of an activity j, 1 < j < J, that has been started on a lower level, frees resources in periods ¢,
t=f; —djm; +1,...,1, the effect of the application in Step 7 is consumed by the additional effort.
Moreover, clearly, one can extend the theorem to F—Jg instead of F'J,. This would guarantee that only tight
and mode-minimal schedules are generated which does not hold if only FJ, is considered. But again, the
additional effect is consumed by the additional effort for checking the assumptions.

Note, in general Theorem 5.4 cannot be applied to an activity which is not finished at the current decision
point without losing optimality (cf. [10]).

Although the infeasibility of a multi-mode left shift, via Bounding Rule 4, includes that a local left shift is
infeasible too (cf. Section 3), it is useful to check for the latter one seperately. This is reasoned by the fact
that a feasible local left shift of an activity considered for starting on the current level g at time instant ¢,
cannot be averted by scheduling or delaying activities on levels §, g > g. That is, the exclusion of partial
schedules due to a feasible local left shift of an activity can be detected on a lower stage than the same
feasible (mode-preserving) multi-mode left-shift.

Consequently, the bounding rule presented next is the so-called left shift rule which seeks to exclude partial
schedules from consideration if it is certain that no complete semi-active schedule can be obtained. The
left shift rule has been successfully used in several algorithms for the single-mode case as well as for the
multi-mode case (cf. e.g. [21], [19], p. 61). We employ a formulation which is similar to the one used by

Demeulemeester for the single-mode case (cf. [4], p. 52).

Theorem 5.5 (Bounding Rule 5, Left Shift Rule)
Let DA, and DAy_; denote the delay alternatives selected at the current and at the previous level of the

branch-and-bound tree, respectively. If there exists an activity j, j € DA;_1\DA,, which can be locally left

shifted without changing its mode, then the current partial schedule needs not be completed.

Proof: Since fixing the modes of the scheduled activities reduces the algorithm of Table 5 to Demeulemnee-
ster’s procedure for the RCPSP (cf. the proof of Theorem 4.1), the proof for the left shift rule given in [4],
p. 52, holds. a

Nevertheless, delaying an activity at a stage g higher than the current stage g can make a local left-shift
feasible which is not feasible at the current stage g. Thus, inspite of the search tree reduction in accordance
with Bounding Rule 5 one can obtain schedules that are not semi-active.

The following two bounding rules are generalizations of rules used by Demeulemeester and Herroelen in their
algorithm for the RCPSP (cf. [5]). Roughly speaking, they reduce the examination of the set of the delay
alternatives to a single alternative. We adapt these ideas to the multi-mode case. The following definition

will simplify the formal description of the bounding rules.

Definition 5.3
Two activities i and j, 1,j € {1,...,J}, i # j, with related modes m;, 1 < m; < M;, and m;, 1 <m; < M;,
are simultaneously performable if they are independent with respect to the precedence relations and the sum of

their resource usages, ki, + k_fj,mjr7 does not exceed the availability K# of any renewable resource r, r € R.
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We use a four-dimensional array =i, m;, j, m;] to reflect whether job i in mode m; and job j in mode mj

are simultaneously performable or not. We obtain:

. . { 1, if job 7 in mode m; and job j in mode m; are simultaneously performable,
n[i, mi, j,mj] == '
0, otherwise.

Consider the project instance shown in Table 9. The corresponding network is shown in Figure 3. Activity 3
can only be performed in mode 1. Since activity 3 is not simultaneously performable with the activities 1,
2, 6 and 8 due to the precedence constraints, we have 7(3,1,1,1} = x[3,1,2,1] = #[3,1,6,1] = =(3,1,6,2] =
7[3,1,8,1] = 0. Moreover, activity 3 in mode 1 cannot be performed at the same time as activities 4 in
mode 1, 5 in mode 1, 7 in mode 1, and 7 in mode 2 without violating the resource constraints. Therefore,
it is n[3,1,4,1] = x[3,1,5,1] = =[3,1,7,1] = 7[3,1,7,2] = 0. However, performing activity 3 in mode 1
together with job 5 in mode 2 does not violate the constraints, that is, 7[3,1,5,2] = 1. Finally, we have
7[3,1,3,1] = 0 by definition.

J S; m  dim kb, | R K{ N |n31,jm
1 {2y 1 0 0 ({1} 4 0
2 {3,4,5} 1 2 1 0
3 {6} 1 5 3 0
4 {6} 1 4 2 0
5 {7} 1 2 2 0
2 3 1 1
6 {8} 1 3 2 0
2 4 1 0
7 {8} 1 1 3 0
2 2 2 0
8 ] 1 0 0 0
Table 9: Project Instance
3 6
1 2 4 8
5 7

Figure 3: Network of the Project Instance

Now the basic idea of the rule can be described as follows (cf. [5], Theorem 1): We assume that all of the
activities currently in process have either been previously delayed or have become eligible, that is, they start
at the current decision point. Moreover, we can find an activity j which is in process and which cannot be

simultaneously processed with any other activity temporarily started at ¢,. Furthermore, job j cannot be
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performed at the same time as any currently unscheduled activity in any mode. Then optimality is preserved
if we start activity j at the current decision point, delay all the other activities which are currently in process,

and do not examine any other delay alternative at the current decision point t,. More precisely, we have:

Theorem 5.6 (Bounding Rule 6)

Let SOD A, be the newly computed set of minimal delay alternatives at level g of the branch-and-bound tree,
that is, no delay alternative has been selected or ezamined yet. Let SJ, denote the set of the jobs scheduled
up to level g, and let ST¢ := {1,...,J}\SJ, be the set of the unscheduled jobs. Furthermore, let JIP, be
the set of the activities in process at the current decision point t,. If all the activities in process at time t,

start at time t, and, moreover, there ezists an activity h, h € JIP,, such that
(a) wlh,mpn,j, mj] =0 for all activities j, j € JIP,\{h},
(b) wlh,mp,j,m] =0 for all activities j, j € ST, and all modes m, 1 < m < M;,
then DA, = JIP,\{h} is the only minimal delay alternative that has to be considered when extending the

current partial schedule.

Proof: We assume that activity h, h € JIP,, scheduled in mode m, fulfills the assumptions of Theorem 5.6.
Let DA, := JIP,\{h}, and let S := {(1, fi,m1),...,(J, f7,7ms)} denote a schedule obtained by branching
from the current node using a minimal delay alternative ’D_ﬁg other than D.A,. Note, it is h € ﬂy and,
moreover, m; = m; for each scheduled job j, j € SJ;. Especially, we have my = m;. We show that there
is a schedule obtainable by branching from the current node using the delay alternative DA, which has a

makespan less than or equal to the one of S. Using Figure 4 (a) for illustration we define:

Si:={G,m;, fi)li=1,....J, fi <tg},
Se={G,mj, fi)1i=1,...,J, 5%k, ty < f; < frn —drmn},
Ssi={G,m;, f;)1i=1,....,J, i # h, fi —djm; > fa}.

By the assumptions on = we have

S =508 U{(h,mn, )} U s
Furthermore, we define:

S1 =5, Sy == {(j, ™5, fi + dam,) | (4, ™5, f5) € 52}, S3 = S3.
and obtain with

S =S U{(h,mn,t; + drm,)} US2US;

a feasible schedule the makespan of which is equal to the one of 5. An illustration of schedule S is displayed
in Figure 4 (b). Obviously, if we select delay alternative DA, for branching from the current node, we can

obtain a schedule with makespan less than or equal to the one of S. (]

The following example illustrates the previously described bounding rule. We consider again the instance

given in Table 9. Furthermore, we consider the partial schedule shown in Figure 5 (a). Obviously, activity 3
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i h(mg) 1 h(mp) | |
: i : i
B T |
ty  fo—dam, fa t ty  tg+dim, t
(a) (b)

Figure 4: Illustration of Bounding Rule 4

cannot be scheduled together with any activity in process at time 2. Note, activity 3 could be in process
at the same time as activity 5 being performed in mode 2. However, activity 5 has already been assigned
mode 1 which cannot be changed at the current or a higher level. Moreover, job 3 cannot be in process
together with any of the unscheduled jobs 6, 7, and 8. Consequently, activity 3 can only be in process on its
own. Thus, according to Bounding Rule 4, the only minimal delay alternative to be examined is {4,5}.

In contrast, considering the partial schedule displayed in Figure 5 (b), activity 3 can be simultaneously
processed with activity 5 which is scheduled in mode 2. In fact, none of the activities in process at time 2

can only be processed on its own. Thus, Bounding Rule 4 cannot be applied to this partial schedule.

K? K?f
6 - 5(1) 6
5 5 4(1)
R S S - R S —
4(1) 5(2)
31 3
2 9
3(1) 3(1)
1 1
2(1) 2(1)
T T T T [ 1 T T T T
1 2 3 4 5 6 7 ¢t 1 2 3 4 5 ¢ 7 ¢t
(a) (b)

Figure 5: Partial Schedules for the Project Instance

The following bounding rule (cf. [5], Theorem 2) is closely related to the previous one. However, it seeks to

start two activities at the current decision point which are simultaneously performable.

Theorem 5.7 (Bounding Rule 7)
Let SODA, be the newly computed set of minimal delay alternatives at level g of the branch-and-bound tree,

that is, no delay alternative has been selected or ezamined yet. Let SJ, denote the set of the jobs scheduled
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up to level g, and let ST, := {1,...,J}\SJ, be the set of the unscheduled jobs. Furthermore, let JIP, be
the set of the activities in process at the current decision point t,. If all activities in process at time t, start
at time t, and, moreover, there exists an activity h, h € JIP;, such that

(a) w[h,mp,i,m;] =1 for ezactly one activity i, ¢ € JIP,\{h},

(b) wlh,mu,j,m] =0 for all activities j, j € Wg and all modes m, 1 < m < M;,
and if we additionally have dim, < dim,, then DA, = JIP,\{h, 1} is the only minimal delay alternative that
has to be considered when extending the current partial schedule, and the next decision point to be considered

s given by fr.

Proof: We assume that activities & and 2, h,¢ € JIP,, with related modes m; and m;, respectively, fulfill
the assumptions of Theorem 5.7. Let DA, := JIP,\{h, i}, and let 5 := {(1, f1, 1), ..., (, fr,ms)} denote
a schedule obtained by branching from the current node using a minimal delay alternative DA, other than
DA,. Note, itis h € ﬂg and, moreover, m; = ; for each scheduled job j, j € SJ,;. Especially, we have
mp = my and m; = m;. We show that there is a schedule obtainable by branching from the current node

using the delay alternative D.4, which has a makespan less than or equal to the one of 5. We define:
Si={(,m;, f)1i=1,....J, fi <tg},
Syi={(,m;, f) =1, §# h, j#14, tg < f; < fa—dami },
Ss={Gm fi)li=1... ], j#h i#6 fi —dim; 2 fu}-
We have
S =810 S8 U{(h, fa,mn)} U Ss U{(, fi, mi)}.
Furthermore, we define:
S1:= 51, Sy = {(j, 5, fi + dwma) | G, 74, f;) € S2}, S3 := Ss.
and we obtain with
S = 81 U {(h,mn,tg + dhm, )} U {(Z, mi, ty + dim, )} U S2 U S3

a feasible schedule with a makespan equal to the one of S. Obviously, if we select delay alternative DA, we

can consider f; as the next decision point and obtain a schedule with makespan less than or equal to the

one of S. 0

To illustrate this bounding rule, we consider again the instance given in Table 9 and the partial schedule
displayed in Figure 5 (b). Activity 3 in mode 1 may be processed simultaneously with activity 5 in mode 2, but
not with job 4 in mode 1 (recall, we have 7[3,1,5,2]) = 1 and (3, 1,4,1] = 0). Note, itisds 2 =3 <5 =d3;.
Moreover, job 3 cannot be in performed at the same time as any of the unscheduled jobs 6, 7 and 8. Therefore,
activity 3 can only be processed together with activity 5. Thus, according to Bounding Rule 5, the only
minimal delay alternative to be examined is {4}. Note, activity 4 can be delayed up to time 7, that is, the

finish time of activity 3.
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6 Computational Results

In this section we present the results of the computational studies concerning the algorithm proposed in the
previous sections. The experiments have been performed on an IBM-compatible 386-DX personal computer
with 40 MHz clockpulse. The algorithm has been coded in Borland C.

We have made use of a set of test problems constructed by the project generator ProGen (cf. [12]). These
instances have been generated for the validation of ProGen and, moreover, used by Sprecher to evaluate
his algorithm (cf. [19], p. 91). Each of the project instances consists of 12 activities (including dummy
source and sink activity). Each of the non-dummy activities may be performed in one out of three modes of
accomplishment. The duration of a mode varies between 1 and 10 periods. We have two renewable and two
nonrenewable resources. The detailed fixed parameter settings can be found in [12].

In order to design the set of instances four parameters, the resource factor and the resource strength of each
resource category, have been varied. The resource factor RF is a measure of the average portion of resources
requested per job. The resource strength RS reflects the scarceness of the resources. Table 10 displays the
variable parameter levels. The resource factors of the renewable and nonrenewable resources are referred
to as RFp and RFn, respectively. The resource strengths of the renewable and nonrenewable resources are
denoted as RSgr and RSy, respectively. For each combination of the parameters, ten instances have been
generated. Following [19], we have considered only those 536 of the 640 resulting instances which have a

feasible solution.

Parameter Levels
RFg 05 1.0

RSg 02 05 07 1.0
RFn 05 1.0

RSy 02 05 07 10

Table 10: Variable Parameter Levels under Full Factorial Design

The outline of this section is as follows: In Subsection 6.1, the effect of the bounding rules presented in
Section 5 is examined. Subsection 6.2 provides a comparison of our algorithm with the one proposed by

Sprecher (cf. [19]), which is currently the most powerful exact method available to solve the MRCPSP.

6.1 Effect of the Bounding Rules

This section focuses on the computational results concerning the algorithm of Table 5 in accordance with the
bounding rules presented in Section 5. Recall, Bounding Rule 1 is a precedence based lower bound. Bounding
Rule 2 provides a reduction of the input data before the algorithm is started. Bounding Rule 3 checks whether
the current partial schedule is completable w. r. t. the nonrenewable resources or not. Bounding Rule 4
induces backtracking if it is certain that the current partial schedule cannot lead to a complete schedule
which is tight and mode-minimal. Bounding Rule 5 excludes some partial schedules from consideration
which cannot be completed to semi-active schedules. Bounding Rules 6 and 7 reduce the examination of the
set of delay alternatives to a single alternative.

We have tested a basic variant of the procedure, that is, the algorithm of Table 5 enhanced by Bounding
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Rule 1. Moreover, we have separately extended the basic variant by each of the remaining bounding rules.
Doing so, we can compare the results with the ones obtained by Sprecher (cf. [19], p. 91). Note, the
precedence based lower bound (Bounding Rule 1) is already included in the basic version of Sprecher’s
procedure. Finally, we have tested the combined effect of all bounding rules.

Table 11 displays the average computation times pcpy, the standard deviations o py, and the maximum
computation times maxc py obtained by solving the 536 instances with the different variants of the algorithm.
Furthermore, the comparison factor is given in the last column. It reflects the comparison of the average
CPU-time of the basic variant including, Bounding Rule 1, with the average CPU-time of the variant under
consideration. Bounding Rule 3 is the most powerful one with a comparison factor of approximately five.
Bounding Rules 4 and 6 have a comparison factor of approximately two. The left shift rule (Bounding
Rule 5) with a comparison factor of 1.3 is less effective than reported by Sprecher for his algorithm. This
is partly due to the different structures of the enumeration schemes. Furthermore, Sprecher’s formulation
of the left shift rule reduces the search space to semi-active schedules while the one presented here does
not. The effect of Bounding Rule 7 is almost completely consumed by its additional computational effort
for checking the assumptions.

Table 12 displays the average computation times for the different levels of RFr, RSr, RFy, and RSn.
The last row contains the comparison factors of the basic variant with the variant using all bounding rules.
Sprecher reported a lack of bounding rules for instances with a high resource factor RFg and a low resource
strength RSg. It seems that this gap has been closed by employing Bounding Rule 6 which cannot be
used in Sprecher’s algorithm. The new Bounding Rule 2 is most effective when the resource strength of the
nonrenewable resources RSy is either very high or very low. If it is very high, the nonrenewable resources
are likely to be redundant. Recall, this may force modes to become inefficient. In contrast, if it is very
low, some modes may be non-executable w. r. t. a nonrenewable resource. Furthermore, for some parameter
levels, the algorithm is slowed down by the Bounding Rules 5 and 7. Finally, the frequency distributions of

the computation times are shown in Table 13.

6.2 Comparison with Sprecher’s Algorithm

In this section, we compare our algorithm with the one suggested by Sprecher (cf. [19]). Note, our proce-
dure has been designed for the MRCPSP while Sprecher’s approach additionally covers resource availability
varying with time. For the computational studies reported in this section we used the accelerated versions
of both algorithms. That is, the seven bounding rules described in Section 5 have been employed to speed
up the algorithm of Table 5. Sprecher’s procedure includes the four bounding rules designed for instances
with nonrenewable resources (cf. [19], p. 53). We used the original implementation provided by Sprecher.
In order to obtain comparable results, we have recompiled Sprecher’s source code with the same compiler
(Borland C) that has been used for our algorithm.

Table 14 shows the average computation times pcpy, the standard deviations o¢cpy, and the maximum
computation times maxcpy of both algorithms. Moreover, the comparison factor which is given in the last
column shows that our algorithm is approximately four times faster than Sprecher’s.

Table 15 displays the average computation times and the comparison factors for the different levels of RFpg,
RSgr, RFy,and RSy. It can be observed that our algorithm is faster for all parameter levels; the comparison
factors range between 2.06 and 22.88.

Finally, the frequency distributions of the computation times, given in Table 16, show the superiority of our

algorithm. While our procedure has solved 87% of the problems within one second, Sprecher’s approach has
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Bounding Rule(s) | ucpv ocpy maxcpy | Factor
1 12.84 7217 1439.34 1.00

1,2 8.04 3242 485.55 1.60

1,3 248 13.92 290.33 5.17

14 6.09 24.02 339.45 2.11

1,5 9.89 52.03 982.58 1.30

1,6 596 21.67 300.17 2.15

1,7 11.71 54.76 964.07 1.10

1-7 0.53 1.33 13.68 | 24.08

Table 11: Effect of the Bounding Rules — All Instances

Bounding RFR RSg RFEN RSN
Rule(s) 0.5 1.0 0.2 0.5 0.7 1.0] 05 1.0 02 05 07 1.0
1 2.62 2239 |43.02 804 369 095328 2013 | 6462 6.30 3.14 3.41
1,2 1.94 13.75] 259 555 255 0.70 | 1.99 12.66 35.74 6.22 3.13 1.01
1,3 033 449 965 083 036 011321 1.93 145 261 1.97 340
14 1.34 1053|2028 367 176 0.69 264 872 2392 442 245 2.56
1,5 1.80 1746 | 35.18 4.60 252 0.92 331 1491 | 4529 553 3.07 3.83
1,6 228 93911216 794 368 095(0.75 993} 31.67 349 1.09 0.54
1,7 249 2033 |38.02 798 368 095|359 1790 56.04 6.15 3.19 3.82
1-7 0.20 084 ] 137 054 024 009,038 065 0.52 092 0.59 0.08
Factor 13.10 26.65 | 31.40 1489 15.38 10.56 | 8.63 30.97 | 124.27 6.85 5.32 39.25
Table 12: Effect of the Bounding Rules — Full Factorial Design

Bounding Rule(s) | [0,0.1] (0.1,1] (1,5] (5,10] (10,25] (25,50] (50,100] (100,250] > 250
1 198 124 87 40 39 19 16 8 5

1,2 205 128 93 43 31 16 12 6 2

1,3 224 188 71 22 24 4 2 - 1

14 193 149 94 40 33 15 8 2 2

1,5 200 135 80 45 37 18 12 5 4

1,6 198 142 96 39 33 13 9 5 1

1,7 198 125 86 41 38 19 16 9 4

1-7 240 227 58 8 3 - - - -

Table 13: Effect of the Bounding Rules — Frequency Distribution
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only been capable to solve 69% within the same time.

Algorithm | ucpy ocpy maxcpy | Factor
Sprecher 2.18 6.96 112.03 1.00
MRCPSP 0.53 1.33 13.68 4.11

Table 14: Comparison with Sprecher’s Algorithm — All Instances

RFg RSRr RFN RSN

Algorithm | 05 10 02 05 07 10| 05 10; 02 05 07 1.0
Sprecher 0.84 343 )7.24 111 062 047|197 233|221 294 1.75 183
MRCPSP | 0.20 0.84 | 1.37 0.54 024 0.09 {038 065052 092 0.59 0.08
Factor 420 4.08|5.28 206 258 522518 358|425 320 297 2288

Table 15: Comparison with Sprecher’s Algorithm — Full Factorial Design

Algorithm | [0,0.1] (0.1,1] (1,5 (5,10] (10,25] (25,50] (50,100] (100,250] > 250
Sprecher 114 255 117 28 16 4 1 1 -
MRCPSP 240 227 58 8 3 - - - -

Table 16: Comparison with Sprecher’s Algorithm — Frequency Distribution

7 Conclusions

In this paper we have presented a new branch-and-bound algorithm for minimizing the project’s makespan of
a multi-mode resource-constrained project scheduling problem. By the use of mode alternatives the algorithm
considerably extends the concept of delay alternatives which is used in the currently most powerful solution
procedure for single-mode resource-constrained project scheduling.

The basic enumeration scheme has been enhanced by static and dynamic search tree reduction techniques.
The static rules can be used by any algorithm for solving a multi-mode resource-constrained project schedu-
ling problem. The dynamic rules substantially extend the dominance concepts from the single-mode to the
multi-mode case.

Computational experience gained with the algorithm applied to the standard sample of project instances
generated by ProGen indicates a substantial reduction of the solution times obtainable with the currently

most powerful procedure published in the literature. Beside the mean CPU time the variance is substantially

decreased.
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