~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Kimms, Alf

Working Paper — Digitized Version
Demand shuffle - a novel method for multi-level
proportional lot sizing and scheduling

Manuskripte aus den Instituten fir Betriebswirtschaftslehre der Universitat Kiel, No. 355

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Kimms, Alf (1994) : Demand shuffle - a novel method for multi-level proportional
lot sizing and scheduling, Manuskripte aus den Instituten fiir Betriebswirtschaftslehre der
Universitat Kiel, No. 355, Universitat Kiel, Institut fir Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/155426

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/155426
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

No. 355

Demand Shuffle — A Novel Method
for Multi-Level Proportional
Lot Sizing and Scheduling

A. Kimms

November 1994

Dipl.-Inform. Alf Kimms, Lehrstuhl fiir Produktion und Logistik, Institut fiir Betriebswirtschaftslehre,
Christian-Albrechts-Universitat zu Kiel, OlshausenstraBe 40, 24118 Kiel, Germany

Abstract: This contribution acquaints the reader with a model for multi-level single-machine proportional lot
sizing and scheduling problems (PLSPs) that appear in the scope of short-term production planning. It is one of
the first papers that deals with dynamic capacitated multi-level lot sizing and scheduling which is of great
practical importance. The PLSP model refines well-known mixed-integer programming formulations for
dynamic capacitated lot sizing and scheduling as for instance the DLSP or the CSLP. A special emphasis is
given on a new method called ,demand shuffle” to solve multi-level PLSP instances efficiently but suboptimal.
Although the basic idea is very simple, it becomes clear that in the presence of precedence and capacity
constraints many non-trivial details are to be concerned. Computational studies show that the presented

approach decidedly improves recent results.

Keywords: Production planning, lot sizing, scheduling, multi-level, PLSP, heuristics

1 Introduction

Although being a crucial short-term production planning problem, recent research has almost neglected

the development of models and methods for simultaneous lot sizing and scheduling under general multi-

level precedence constraints. For most authors who consider multi-level lot sizing the scheduling aspect

is apart from their focus [Afentakis et al. 1984, Afentakis and Gavish 1986, Bahl et al. 1987, Helber

1994a and 1994b, Kuik and Salomon 1990, Kuik et al. 1993, Maes et al. 1991, Roil and Kami 1991,

Rosling 1986, Roundy 1993, Salomon 1991, Salomon et al. 1993, Stadtler 1994, Tempelmeier and

Derstroff 1993a and 1993b, Tempelmeier and Helber 1994]. Multi-level lot sizing and scheduling

literature 1s rare [Domschke et al. 1993, Tempelmeier 1992] and restrictive (e.g. [Briiggemann and

Jahnke 1994] consider two levels only and [El-Najdawi 1994, El-Najdawi and Kleindorfer 1993, Iyogun

and Atkins 1993] assume stationary demand). In summary, there seems to be no contribution to

dynamic capacitated multi-level lot sizing and scheduling yet. Hence, we did some research by ourselves

under the following assumptions:

(@) The planning horizon is finite and subdivided into several discrete periods of time.

(b) Extemal demands are deterministically known and time-variant (dynamic).

(c) Shortages are not allowed (neither backorders nor stockouts).

(d) The ,gozinto“-structure that defines the precedence relation among the items is a general multi-
level structure without cycles.

(e) All items are to be produced on one single machine.

(f) The production facility offers a limited capacity per time period.

(g) The production speed is finite, i.e. producing one item needs an item-specific amount of the

available capacity.

(h) More than one changeover must not take place within a period. In other words, no more than two
different items may be manufactured within a period.

Some interesting aspects shall be discussed in a little more detail: While most of the above
assumptions are more or less standard for dynamic capacitated lot sizing (and scheduling) problems, we
like to point out that assumption (h) refines what is known from ,classic formulations, since the
discrete lot sizing and scheduling problem (DLSP) [Fleischmann 1990, Salomon 1991] as well as the
continuous setup lot sizing problem (CSLP) [Karmarkar and Schrage 1985, Salomon 1991} consider
the production of at most one item per period. The single-level pendant of the problem above was first
stated in [Drexl and Haase 1992, Haase 1994] who coined the name proportional lot sizing and
scheduling problem (PLSP). A model with no notion of periods, i.e. a model with a continuous time axis
(similar to the economic lot scheduling problem (ELSP) [Elmaghraby 1978] where stationary demand is
a prerequisite), would be the extreme of dynamic models in terms of time granularity.

First efforts to solve multi-level PLSPs (assumption (d)) are reported in [Kimms 1993a] followed
up by [Kimms 1993b and 1994a]. The relevance of considering multi-level structures in Manufacturing
Resource Planning (MRP 1I) is exhaustively studied in [Drexl et al. 1993]. Multi-machine environments
where the assignment of machines to items is a many-to-one mapping, i.e. in the case that some (if not
all) items share a common machine but there is no freedom on which machine an item is to be
manufactured, can be seen as a relaxation of assumption (e) which justifies the importance of the single-
machine case. The extreme where machines are dedicated to items can be solved optimally with a greedy
algorithm as shown in [Kimms 1994b].

This text is organized as follows: Chapter 2 contains a mixed-integer formulation of the multi-level
PLSP in order to provide a precise definition of the problem under consideration. Next in chapter 3, we
present a new method to tackle this problem in guidance with an example that helps to understand the
details. A computational study in chapter 4 reveals the quality of this method. Concluding remarks then
finish the paper.

2 Multi-Level Single-Machine Proportional Lot Sizing and Scheduling

The problem we are concemned about was originally formulated in [Kimms 1993a] as a mixed-integer
program. For the sake of being self-contained the program should be listed here again, but first we

mtroduce the notation used:

Decision variables:

is the quantity of item j held in inventory at the end of period t;

qy is the quantity of item j to be produced in period t,

Xy is a (binary) variable indicating whether a setup for item j occurs in period t (x; = 1) or not
(x4 =0);

Yz Is a binary variable indicating whether the machine is setup for item j at the end of period t

(¥ = 1) or not (y; = 0).

Instance specific data:
a; Is the ,gozinto“-factor, i.e. the quantity of item j that is needed to produce one item i,

max{Ct}t=1A.T}
min {p, [j=1.7T}"

B 1s a large number greater than

C, is the capacity of the machine i period t;

is the (external) demand for item j in period t;

h. are the (non-negative) costs for holding one item j one period in inventory;
I, is the initial mventory

J 1s the number of items;

p; is the amount of capacity consumed by producing one item j;

s are the (non-negative) setup costs for item j,

S(j) is the set of successors of item j, 1.€. the set of items i where a; > 0;

T is the number of periods;

V; is the (integral) lead time of item j v,z 1);

Yjo 1s the unique initial setup state.

Using this notation, the multi-level single-machine proportional lot sizing and scheduling problem

can now be described as follows:

mn T % (5% + hlL))

t=1j=1

subject to
G =Tey * - dp - 2 (2350) G=1.1t=1.T))
1e8(j)

min{t=v;. T}

T=t+l ieS§(j)
J
Ty <1 t=1.T7) @)
j=1
B(Y; * Yier)) - G 2 O G=1.Jt=1.T) 5)
Xp - Vit Yien 2 0 G=1.3t=1.T) ©)
J
T (Pg) < € t=1.T) (7
j=
vp € {0,1} G=1.5Lt=1.T) ®)
[, 20,2 0,% >0 G=1.5t=1.T) 9)

The objective is to minimize the sum of setup and holding costs as it is written down in (1). The
mventory balances are formulated in (2) where the inventory at the end of a period contains what was in
inventory the period before plus what is produced in that period minus what is used up to meet external
or internal demand. To meet an intemal demand, an item must be stored in inventory for at least some
item-specific lead time (see (3)). With (4) the setup state of the machine is uniquely defined at the end of
each period, so it is at the beginning of each period. Due to (5) production of an item may only take
place in a certain period if the machine is setup for this item either at the beginning or at the end of a
period or both. Those periods in which a setup occurs are spotted by (6). Note, that due to the minimize

objective in combination with (9) the setup variables X;, are indeed zero-one valued. Since capacity is

-4-

scarce, (7) must hold to guarantee that capacity limits are not exceeded. The setup state variables are
defined as binary variables in (8) while non-negative constraints (9) are sufficient for the remaining
decision variables. Subsequently, we assume the initial inventory to be equal to zero for all items.

[Kimms 1993a] discusses positive mitial stock levels.

3 A Two-Phase Method

Following the lines of this chapter will provide insight into the details of a heuristic for multi-level
single-machine PLSPs. As it will become clear, the basic idea of the heuristic’'s working principle is
very simple, but, the presence of precedence and capacity constraints needs to concern about many non-
trivial details. Thus, an example is used throughout this chapter helping to make things clear. The
details of this example — as far as it is got to be known right now — shall be given first. Then, we

describe the heuristic step by step.

3.1 The Example

Assume a ,,gozinto“-structure consisting of five items where the preferred way to look at this structure
should be as a , gozinto““-tree rather than a graph (see Figure 1). To discriminate between those units of
item 5 that are needed to produce item 2 and those that are used to produce item 3, we write 5° instead
of 5 in the latter case. Here, we have only one end item which is item 1. If we would face a structure
with more than one end item, we would come up with a forest not with a single tree, of course. For our

purposes let all ,gozinto“-factors as well as all lead times be equal to one.

Figure 1: The , gozinto“-structure of the example

o
.
)

O

Furthermore, suppose the external demand be defined by Table 1. Other positive external demands

than those three given in Table 1 shall not exist. For the sake of simplicity, we assume extemnal demand

for the end item only in our example. But in general, extemal demand may occur for any item.

Table 1: The external demand matrix of the example

T-6 T-5 T-4 T-3 T2 T-1 T
i=1 | . 5 15 10
j=2
j=3
j=4
i=5

3.2 Definition of the Data Structure

Besides the heuristic algorithm which is to be specified, there is a certain data structure on which this

algonthm operates on and which is the aspect we begin our explanations with. This data structure we

are talking about somehow looks like a representation of a production plan in that it contains all

external and internal demands. Inttially, it is derived from the information provided by the external

demand matrix and the ,,gozinto“-trees. Roughly speaking, the mitial data structure defines a lot-for-lot

production in the absence of capacity restrictions. Table 2 shows a matrix representation of the initial

data structure derived from the data of our example (upper indices can be ignored — they become

meaningful as we proceed on).

~ Table 2: A matrix representation of the initial data structure for the example

T-6 T-5 T-4 T-3 T-2 T-1 T

=1 | 1:5 00 1:15 00 1:10 00
=2 2:590 2:15 00 2:10 00
=3 3:50/0 3:15 00 3:10 00
j=4 4:5 00 4:15 20 4:10 20
j=5 5:5 000 51520 51020

5.5 00 5715 20 51020

_

Using (j , t) as a short-hand notation for the position ,,row number j, column number t“ in the

matrix representation of the data structure, we will briefly explain what can be seen in Table 2. At

position (1, T) for instance we have a ,,1:10“ that represents the external demand for item 1 in period

-6-

T. The ,,2:10 at position (2, T-1) denotes the internal demand for item 2 in period T-1 that is to be
met if 10 units of item 1 are indeed produced in period T. Analogously, we find two entries at position
(5, T-2). One entry corresponds to an intemal demand for item 5 caused by item 2, the other entry
corresponds to an internal demand for item 5 caused by item 3.

This data structure does of course not define a (feasible) production plan, at least because of two
reasons: Capacity limits are not considered and sequence decisions are not made (there is for example
no sequence defined in which the items 1, 4 and 5 are to be produced in period T-2). Nevertheless, the
mformation contained in this data structure will (as we will see later on) be used to construct a plan.
Until now, let us be satisfied with the following interpretation: A positive entry ,j:n‘ at position (j,t)

says that

there is a demand for n units of item j which must not be met later than period t.

3.3 Outline of the Heuristic

On the basis of this data structure, our heuristic alternatingly repeats two phases in order to find a
»good* production plan. The first phase is a construction scheme which tums the information contained
in the data structure into a feasible production plan - at least it tries to find a feasible plan. The second
phase shuffles the entries in the matrix representation of the data structure by shifting some of the
demands to the left or to the right. This latter mechanism actually coins the name ,,demand shuffle as
we like to call the two-phase procedure as a whole. This scheme is repeated over and over again until a

predefined number of iterations is performed. In summary, the procedure works as follows:

Generate the initial data structure
2. Phase 1: (Try to) construct a feasible production plan
by making use of the information contained in the current data structure
Evaluate the plan and memorize it if it improves the best plan so far found
Phase 2: Shift some demands to modify the current data structure

Go to step 2 until a predefined number of iterations is performed

A I N

Display the best plan

Both phases are to be explained m more detail, especially the motivation for shifting demands
needs to be given. We start with the second phase since this continues our introduction to the data

structure. A detailed discussion of phase number one is delayed until later.

3.4 Phase 2: Shifting Demands

Why makes shuffling demands sense? This certainly is the most crucial question needed to be answered
before we go into all these details that give phase two a well-defined shape. To facilitate lot sizing is the
answer and shall be explained. Consider Table 2 again where you can see that there are some demands
for item 2 for instance which are to be met no later than period T-3 and T-1, respectively. It is likely to
happen now that item 2 is produced in period T-1 and T-3 to keep holding costs for item 2 low, but, as
soon as there are any other items being scheduled in period T-2 (which would save holding costs for
these) setup costs for item 2 are to be charged twice. This features the trade-off between low setup costs
and low holding costs which is the problem lot sizing and scheduling is all about. What are the
alternatives to overcome this problem?

First, one could try to integrate idle periods into a production plan. We don't follow this idea
although it might help in some cases. Sure, from a theoretical point of view idle periods may be
necessary to find an optimal solution. But, one of the most shortcomings of advanced lot sizing and
scheduling algorithms is that they are not commonly accepted by practitioners who do not seldom stay
with traditional approaches like the one of Wagner-Whitin, the EOQ-formula or a lot-for-lot production
[Fleischmann 1988, Zoller and Robrade 1988]. One of the main reasons for this is that some of the
results generated by state-of-the-art procedures are contrary to the practitioner’s idea of ,good*
production plans. Practitioners do not have an objective function in mind that minimizes the sum of
setup and holding costs. They think in other terms, too. One of these is a high capacity utilization.
Keeping a machime idle for some time is not what managers find well to do. So, what else can we do?

The second alternative we have to avoid setups is building lots. Let us back up to the example
above, instead of scheduling item 2 in period T-1 and period T-3 we could schedule a lot built up in
period T-3. This is the basic idea we want to support. And it is done by shifting the demand which is to
be met in period T-1 to the left (see Table 3). Shifting the entry ,,2:10* by two periods to the left means
that we must fulfill a demand for 25 units of item 2 no later than period T-3. The splitting of these 25
units mto two separate data structure entries representing 15 and 10 units, respectively, will be of
relevance for being able to shift the 10 units back to the right by subsequent shift operations as we will

understand quite soon.

Table 3: Facilitating lot building
—————— T-6 T-5 T-4 T-3 T-2 T-1 T

j=2 2:5 2:15/
2:10

Up to now, we only sketched out the very basic idea. Many open questions still remain and got to
be discussed in the subsequent part. The first question we will answer is, what are the bounds that limit
the distance (i.e. number of periods) a data structure entry may be shifted. To understand these limits let
us have a look at the relationship between the external demand matrix and the data structure entries by
studying our running example again. Figure 2 graphically displays what is done to derive the (initial)
data structure from the external demand matrix. According to what was said above, each positive entry
in the external demand matrix (see Table 1) induces a treelike substructure (compare Figure 1) of the

data structure containing the external demand and all the internal demand that occurs.

Figure 2: Deriving the data structure entries from the external demand matrix

items
7' 5 1.5 1‘0 1
Z——>penods k I \
1:5 1:15 1:10
/| /
/o / i
/ !
2:5 35 2:15 3:15 2:10 3:10
/ ! /e i / i ;
| ; : :
S / ‘ T
/ ; | / | i / : |
4:5 535 575 415 5:155:15 4:10 51105710

If we look at data structure entries — ,,1:15 for example — that represent external demand we can
figure out some bounds that are depicted by bold lines in Figure 2. The properties which allow us to
determine these bounds are the following: First, shortages are not allowed and external demands are to
be met promptly. Hence, the entry ,,1:15 must not be shifted to the right beyond period T-2. Second,
we face a multi-level ,gozinto“-structure. Left shifis of ,1:15“ are thus limited by immediate
predecessors in the ,gozinto“-tree, i.e. by the entries ,,2:15“ and ,,3:15“. Remember, that positive lead
times were assumed. Last, if there is some production of an item j in a certain period, say t, to meet
some demand for item j in period ty where t < t, must hold since shortages are not allowed, then there is
no production of item j in a period t” earlier than t which meets a demand later than t,. In other words, a
schedule in which ,,1:15% i1s scheduled earlier than ,,1:5“ or later than ,,1:10* need not to be considered.

Data structure entries which do not directly correspond to an external demand — like ,,2:15 for
instance — do have similar bounds (see Figure 3). First, these entries must respect the , gozinto“-
structure as well. Left shifts are thus limited by entries that represent immediate predecessors in the
,gozinto““~tree (in our case these are ,,4:15“ and ,,5:15°) while right shifts are limited by the entry that
represents the unique successor in the , gozinto“-tree (,,1:15* in the example). Again, one must not

forget the positive lead times. Second, there are bounds defined by entries that correspond to the same

-9-

position in the ,,gozinto*“-tree but which stem from another external demand. So, ,,2:15* need not to be
left shifted beyond ,,2:5“ or right shifted beyond ,,2:10“. It is important to note, that a precedence
relation can only be defined among entries that correspond to same positions (or paths) in the ,,gozinto*-
tree starting from the root that corresponds to the external demand. This is to say, that for instance
,,5:15“ is bounded by ,,5:5* and ,,5:10 but not by ,,5":5%, ,,5:15% or ,,5:10%. For the same reason, an
external demand for item 2 no matter in what period would introduce no other bounds than those
depicted in Figure 3. Since we need to refer to the entries that define these non-,,gozinto“-bounds later
again, let us introduce the terms left wing entry and right wing entry here which denote uniquely defined
entries: In our example, ,1:5¢ is the left wing entry of ,,1:15“, and ,,1:10 is the right wing entry of
,,1:15%. Analogously, ,,2:5“ and ,,5:5* are the left wing entries, ,,2:10“ and ,,5:10“ are the right wing
entries of ,,2:15“ and ,,5:15%, respectively.

Figure 3: Bounds for data structure entries that correspond to internal demand

- / ; 15 10 1
i T
“———>> periods ! | !
1:5 15 1:10
/\ | |
J !
{7 N\ i
2:5 35 2:15 3:15 2:10 3:10
/ ' ! . i
/ ! S
1 ‘ /o i
/ ! I . // '\ :
4:5 55 55 415 515515 410 35:105°:10

Once more, studying our example gives some additional msight. As we know, Table 2 provides the

matrix representation of the initial data structure. This time look at the upper indices attached to each

entry in the matrix. Each entry has the form ,jn lefight where left denotes the maximal distance the
entry can be shifted to the left and right denotes the maximal distance the entry can be shifted to the
right.

Some points of interest are worth to be highlighted. The entry ,,1:15* for instance cannot be shifted
to the right because it is close to its deadline. Neither can this entry be shifted to the left since the entries
that represent the immediate ,gozinto*-predecessors, namely ,2:15 and ,,3:15% reside in column
number T-3 (both item 2 and item 3 have a lead time of one period). Analogously, ,2:15“ and ,,3:15“
cannot be right shifted. For a similar rationale the entry ,4:15“ cannot be moved to the right. But,
,4:15% can be left shifted since it represents a leaf in the ,gozinto"-tree. ,,4:15“ is left-bounded by the
entry ,,4:5° which is two periods away. Why do have the entries ,,4:5%, ,,5:5“ and ,,5":5* upper indices

0/0 instead of T-7/0? These entries stem from a leftmost external demand for item 1, i.e. we assumed no

- 10 -

external demand for item 1 earlier than T-4. Since shifting demands was introduced to support a
building of lots, all the entries that are derived from a leftmost external demand for an item need not be
considered for a left shift. In other words, entries without a left wing entry have initial indices 0/0. It is
remarkable to note, that such entries will never be shifted since right shifts are impossible for being
close to their deadlines.

Assume that we perform a two-period left shift of the entry ,5:15“ Table 4 gives the changes

marked as underscored entries.

Table 4: The data structure for the example after 5":15 has been left shifted

T-6 T-5 T-4 T-3 T-2 T-1 T
=1 | T 1:5 00 1:15 0/0 1:10 %0
=2 2:500 2:15 00 2:10 00
j=3 3:5 000 3:15 %0 3:10 90
j=4 4-5 00 4:15 20 4:10 20
j=5 5.5 000 5:15 20 5:10%0
57:5 00 5:1040

Now, we have the following situation: ,,.5":15° may be shifted back to the right. Alternatively, the
entry ,,3:15% may be shifted to the left. ,,5":10“ which is left-bounded only by ,,5":15* can be moved to
the left by at most four periods now. The rest of the data structure is kept unchanged.

A formal definition of how upper indices are updated needs to be given now in order to avoid

ambiguousness.

Symbols:

E — the entry that has been shifted;

tin — the period the entry ,jin“ is currently (after the shift) positioned in;
tiefiwing — the period the right wing entry of ,jn“ is currently positioned in;
tightwing — the period the right wing entry of ,j:n“ is currently positioned in;

t demand — the period the (internal or external) demand for ,,j:n“ occurs in
pred (jn) — the set of entries that correspond to ,,gozinto*‘-predecessors of , j:n*

(which is an empty set if ,jn® is a leaf of the |, gozinto*tree);

-11-

Case [,jn“ corresponds to an external demand

left .= min {tj:n - egwing 5 min { tin = bem - Vi [kxm € pred (jn) } }
and

I‘ight = min { gemand ~ tj:n > trightwing - tj:n }

are the new upper indices of ,jn*. If there is no right wing entry, the new value of right is more simply

be computed a$ tyepaq - tin Furthermore, some of the indices of entries which define bounds for ,,j:n*

are to be updated as well. These are:

e The index left of , jn‘“’s right wing entry (if such entry exists) according to Case L.

e The index right of the left wing entry of ,jn“ (remember, that a left wing entry must exist,
otherwise ,,j:n“ could not have been shifted) according to Case I.

e The indices right of all entries km € pred (j:n) according to Case II. By definition pred (j:n) only

contains entries which correspond to internal demands.
Case II; ,j:n* corresponds to an internal demand

left == min { t;; - Yepwing > MIN { by - by - Vic | km € pred jn) } }
and

right == min { tdemand ~ tj:n " Vi trigatwing - tjm }

are the new upper indices of ,jn“. Note, that ty. .4 15 the period the unique , gozinto“-successor is

currently positioned in. Again, the new value of right is easier to compute if there is no right wing entry

(it i tyemang - b - Vv; then). Similar to Case I, the indices of entries which define bounds for ,jn® are

also to be updated:

e The index left of ,j:n“s right wing entry (if such entry exists) according to Case II.

e The mdex right of the left wing entry of ,jn“ (remember, that a left wing entry must exist,
otherwise , j:n“ could not have been shifted) according to Case II.

e The indices right of all entries k:m € pred (j:n) according to Case II.

e The index left of the entry which corresponds to the unique ,,gozinto*“-successor according to Case

IL

- 12 -

While we have chosen a two-period left shift of the entry ,,5:15% by arbitration in order to explain
what is to be done to keep the bound indices up to date when shifting an entry, more problem oriented
rules to select and to shift an entry certainly help to improve the quality of the algorithm. In our studies
the selection of an entry is governed by the following regime: Attached to each entry ,j:n“ we maintain a

priority value, e.g.

hj ene(l+ 1:j:n - tleﬁwing)

prlorltyj:n = S,
J

where entries with no left wing entry are assigned to the value zero instead. Then, we randomly select
one entry among all the entries with a uniform distribution. Afterwards, we select another entry in the
same way. In the case that the priority value of the second entry is greater than the priority value of the
first one we proceed to select entries. This is continued step by step until the corresponding priority
values do not increase any further. The entry with the largest priority value (which is the second but last
selected) is the one we like to shift.

At this point of time, some remarks concerning the way to select an entry are to be made. First, the
definition of the priority value is just one example out of a set of several senseful alternatives. In our
studies, the definition given above was among the most successful ones. Note, that, if we use this
definition, when an entry is shifted we only need to update the priority value of the entry itself and of its
left and right wing entries. The values of all the other entries in the data structure are kept unchanged
which certainly is a key prerequisite to fast implementations. Second, other procedures of course may
run instead to find a ,,good” entry to shift. Some ideas are listed here: One could (randomly?) select a
certain prespecified number of entries (maybe all? — but this is very time consuming) and choose the one
with the highest prionty value. The priority values could also be used to define a random distribution for
choosing an entry. It would be then, so to say, more probable — but not sure — to choose an entry with a
high priority value. Again, these ideas were inferior when tested in our study.

Eventually, when an entry ,jn'ef/right* js chosen to be shifted it is still unclear whether to perform a
left shift or a right shift (if both are feasible) and how many periods to shift the entry. For the latter we
advice to perform either a , full-size* left shift or a , full-size” right shift, i.e. to move the entry either left
periods to the left or right periods to the right. Smaller moves tumed out to yield worse results in our
tests. Left now, is a discussion of how to decide if a left shift or a right shift operation shall be executed.
In fact, this is not as clear as it might seem since it may have happened that an entry was chosen with
indices 0/0 — such entries must not immediately be shifted neither to the left nor to the right. Before we

will turn back to this case, let us consider the more simple situation first. Assume, that
left + right >0,

-13-

i.e. the entry may be shifted either to the left or to the right or both. Figure 4 gives a graphical

representation. The entry ,jn!*®right represents an (extemal or intemnal) demand that actually occurs in
period tye,..¢ but which is to be fulfilled no later than period t;,,. Note, that 0 < right <ty.;,..y - t;,, and
0 <left <t;, - 1 holds. If the entry corresponds to an internal demand, the upper bound of the value

right can be lowered t0 tynang -ty - V;.

Figure 4: The situation after an entry , j:n!e®/righ is chosen with left + right >0

— —> period
left A right A

| |
! \

t. t Gemand

A random choice is made to decide for the direction of the shift operation. To do so, we compute

two probabilities prob,q and prob,y, =1 - prob,s. Then, we draw a random number RN with a
uniform distribution from the mterval { 0 ; 1]. If RN < prob,; we perform a , full-size* shift to the

left, otherwise a |, full-size” right shift is initiated. To make sense, the probabilities ought to be chosen
with respect to the following two conditions:

left = 0 = prob, 4 =0
and

right = 0 = proby;,, = 0
In our studies, several rationales lead to the definition of probabilities prob,q and prob ;. Since
storing items in inventory causes holding costs, it should be more probable to perform a right shift than
a left shift if the value of right is at least as high as the value of left, i e.
right > left = prObright > prob,.q
should hold. Moreover, large values of right indicate high holding costs and therefore should lead to a

high probability prob,;,, while on the other hand large values of left express that it is likely to be
necessary to facilitate lot building with the left wing entry and thus should result in a high probability

-14-

prob, ;. Another aspect is, that important differences between a left and a right shift vanish if
tiemand - L 1S 1arge — i such cases it may not matter if we perform a left or a right shift.

On the basis of these considerations, we define the following:

left
1
Mg = E
left tyemand tj:n +At+ 1
M=1
and
right
1
Ty =
right Z tdemand ~ tj:n -At+1
A=1
This renders it possible to define
prob,; = Dok
et Mt Tiight
and
o Tright
PrODrigy Ties + Tright

It is quite easy to verify, that the conditions above are fulfilled.

Let us now back up to the situation that once we have chosen an entry , j:nlefrighte,

left + right = 0

appears to be the case. It is impossible to shift such an entry immediately. But we do not give up soon
and do the following: First, we decide if we like to shift the entry to the left or to the right (how this is
done will be explained in just a moment). Imagine that we decided for a left shift. We then recursively
perform , full-size* left shifts with all the entries which are predecessors in the same ,,gozinto"“-tree (see
Figure 5) starting at the leafs of the tree. Afterwards, the entry has upper indices left’/0 where left” may
be positive now. If this eventually happens to be, we do a ,,full-size* left shift. Suppose, that we decided
for a right shift. This time we recursively perform , full-size* right shifts with all the successive entries
which belong to the same ,,gozinto‘“-tree (see Figure 5 again) beginning at the root of the tree. We then
end up with new upper indices 0/right” where right’ may be positive now. According to what we
intended to do, a ,,full-size right shift is eventually executed. In both cases it may happen, that the

-15 -

upper indices stay 0/0. Then, the entry itself is not shifted at all, though some of the entries in the

corresponding , gozinto“~tree were. However, these entries are not shifted back to their old positions.

Figure 5: Entries that are recursively shifted if left + right =0

Ry Entries that are recursively right shifted
f a right shift of j:n shall be performed

Entries that are recursively left shifted
if a left shift of j:n shall be performed

Entries that are not shifted
N no matter what shall be done

Traversing the ,,gozinto*‘-tree in order to perform recursive shift operations needs to be specified in
more detail. As usual in recurrent computing, a stack is temporarily used for implementation with push

and pop as standard operations to add/remove an entry to/from the top of the stack.

Case I: A left shift of , j:n“ shall be performed

1. Pile ,,j:n* and all its predecessing entries up on a stack
(call subroutine pile up for left shift (j:n))
2. Perform ,, full-size left shifts with all entries on the stack

(call subroutine stack_left shift())
where
subroutine pile up_for_left shift (entry)
{ push (entry)

for all k:m € pred (entry)
pile_up for_left_shift (k:m)

-16 -

and

subroutine stack_left_shift ()
{ while ,stack is not empty*“ do
{ entry :=pop ()
if ,,left index of entry is greater zero* then

,perform a , full-size” left shift with entry including index updating*
} o}

Case 1I: A right shift of ,j:n* shall be performed

1. Pile ,j:n" and all its successing entries up on a stack
(call subroutine pile_up for right shift (j:n))

2. Perform , full-size " right shifis with all entries on the stack
(call subroutine stack_right shifi())

where

subroutine pile up for right shift (entry)
{ if ,entry does no correspond to an external demand* then
pile_up for right_shift (,the unique ,,gozinto*“-successor*)

push (entry)

and subroutine stack right shift () almost equals subroutine stack_left_shift (), but, this time we
test if the right index of entry is greater than zero and perform a ,full-size* right shift if it is.

Unclear up to now is, how to decide for a direction of the recursive shift operation. Similar to what

was done if left + right > 0 holds, we suggest a random choice with probabilities prob, 4 and proby;gy;.

But this time, another definition is used:

prOb]eﬂ =

-17-

Here, t,, denotes the period the entry ,j:n“ is mitially positioned in (compare Table 2). The
formulas above are chosen such that if holding costs up to t; , equal setup costs, we face a fifty-fifty

chance for a left or a right shift, respectively. A shift to the right becomes more probable if the distance
to the entry’s initial period of time increases.

The process of shifting demand entries is now totally defined and we may tum to the phase one,
namely the construction of production plans on the basis of the information contained in the current data

structure.
3.5 Phase 1: Construction of a Production Plan

The construction scheme is a backward oriented one since this is appropriate for multi-level ,,gozinto*-
structures [Kimms 1993a]. Best to do is to explain the details by means of studying our example again.
Let us assume, that the data structure looks like Table 5 which, by the way, can be achieved by
performing six left shift operations using the initial data structure (Table 2) as a starting pomt. From
now on, the upper indices left/right are out of interest in all but one cases and are thus left away unless
necessary to ease the representation. On the left hand side, we have the usual matrix representation of
the data structure where a U-symbol above the upper row indicates the focus of attention. On the right
hand side, we find a table that contains two bits of information. In the demand column, the cumulative
demand in periods between the current period of attention and period T that has not been met yet is
found. A ,,10“ in row j = 1 thus indicates, that 10 units of item 1 — the external demand for item 1 in
period T — are to be produced. In the available column, the cumulative number of items which is
allowed to be produced at maximum is contained. This information is derived from the data structure. A
,, 10 In row j = 1 stems from the entry ,,1:10° which tells us, that 10 units of item 1 are to be produced

no later than period T. More formally, if period T is the focus of attention, then the values found in row

J> denoted as demand, and available;, respectively, are defined as

demandj = djT
and

available; := data_structure;;

where data_structure,, stands for the sum of available units in row j and column t of the data structure’s

matrix representation. The other symbols equal those defined in chapter 2.

-18 -

Table S: The data structure on the basis of which a production plan shall be constructed

U

T-6 T-5 T4 T-3 T-2 T-1 T demand | available
=1 1:5 1:15 1:.10 10 10
j=2 2:5 2:15 2:10
1=3 35 3:10

3:15

j=4 4:5 4:10

4:15
j=5 55 510 5:10

55

5:15

5715

In the sequel, we will assume that 18 capacity units are available in each period and that producing
one item — no matter which one — needs exactly one of these units.

Coming back to Table 5, we are about to decide which — if any — items to produce in period T. The
table on the right shows that there is some demand only for item 1. Hence, let us schedule item 1 in
period T. A setup for this item can also be done in period T. Table 6 provides the situation afterwards.
The new focus of attention is period T-1 now. 10 units of item 1 are scheduled in period T which is
indicated by the entry ,,10* at position (1, T). Note, the contents of the table on the right has changed.
The entries in row j = 1 are deleted since the demand for item 1 has been met. But, two new entries
appear In rows j = 2 and j = 3. In the demand column there is a ,,10“ in each of these rows which stand
for the internal demands for item 2 and item 3 that is to be met until period T-1. The entries in the

available column correspond to the entries ,,2:10° and ,,3:10“ in the data structure. Formally, the entries

demand; and available; are computed as follows:
Case I: The current focus of attention is period t = T. (The starting situation - see the definition above.)

Case II: The current focus of attention is period t where T - vj<t< T. (Internal demand cannot exist.)
demand; := demand, - qy4.,, +d;

and

available; == availablej - Qjq+1y + data_structure,

-19-

Case III: The current focus of attention is period t wheret<T - v,

demand, = demand, - gy + dy + Z (a; Qv)
ie 8@
and

available; := available, - q;,.;, + data_structure;

Table 6: The situation after the first backward step

U

T-6 T-5 T-4 T-3 T-2 T-1 T demand | available
j=1 1:5 1:15 10
3j=2 2:5 2:15 2:10 10 10
j=3 35 3:10 10 10

3:15

1=4 4:5 4:10

4:15
j=5 5:5 510 5:10

55

5:15

515

Now, there is a choice. Since we have scarce capacities (18 units), we cannot fulfill both demands
in period T-1. This would need 20 capacity units. Assume that we decide for item 2 first and use the
remaining capacity to schedule item 3, too. How such decisions are made is not important at this point
and will be discussed later. Note, that at most one setup is allowed within each period. Hence, setting
the machine up for item 2 can be done in T-1, but, the setup for item 3 must happen in T-2 (or earlier).
We have to remind this since it will affect our decisions i period T-2. Table 7 shows what has

happened then.

~-20 -

Table 7: The situation after the second backward step

U

T-6 T-5 T-4 T-3 T-2 T-1 T demand | available
j=1 1:5 1:15 10 15 15
j=2 2:5 2:15 10
j=3 35 8 2 2

3:15

j=4 4:5 4:10 10

4:15
j=5 55 5710 212 5:10 18 10

55

5:15

515

Period T-2 is the focus of our attention now. It is very instructive to study the table on the right. An
interesting aspect can be seen in row j = 4. An internal demand for 10 units of item 4 which is caused by
the 10 units of item 2 scheduled in period T-1 is to be met, but, no units of item 4 are available. Here,
the shifting of demands comes in useful for the first time. The data structure entry ,,4:10“ that
corresponds to this intemal demand was left shifted to period T-4. Concluding, only items 1, 3 or 5 may
be scheduled in period T-2. Item 2 may not since there is no demand for it and item 4 may not because
there is demand but no items are available. Remember now, that we scheduled item 3 in period T-1 but
a setup for this item had not been done in T-1. So, in period T-2 item 1 and item 5 may not be scheduled
both, otherwise more than one setup would occur in period T-2 which violates our basic PLSP
assumption. Assume, that we choose to schedule item 3 and then use the remaining capacity to produce
item 5. Keep in mind that the setup for item 5 must occur in period T-3 (or earlier).

Now, another aspect which is very important to the quality of our algorithm (as computational tests
have revealed) appears. There is more demand for item 5 (18 units) then there is available (10 units).
But, once that we have chosen to schedule item 5, it would be unwise not to try to fulfill the whole
demand (or at least as much as remaining capacity allows to) because a setup occurs now anyhow and
holding costs could be saved this way. In general, we suggest the following: If an item is scheduled with
less units available — at least one unit must be available — than there is demand for, then look to the left
and shift all those entries back to the right that correspond to the same item number and that have an
upper index right which allows to reach the current period of attention. Stop, if the demand can be
satisfied. If we are in a period in which two items are scheduled, we do the right shift operations after
having scheduled the available amounts of both items and use the remaining capacity to , fill the

schedule up*. If no such capacity remains, the right shifts are not performed. Note, that shifting an entry

221 -

to the right affects the upper indices of other entries. So, more entries may be shifted to the right than it
first looks like. In our example the entry ,,5":10% currently positioned in period T-4 may be and i fact is
right shifted to period T-2. No other entry with item number 5 can be right shifted to T-2 and even if it
could it would not since the demand for 18 units can now be met. So, we are done having 20 units of
item 5 available. Table 8 provides the result. A piece of code refines the explanations. Assume that
period t is the current focus of attention and that q; units of item j are already scheduled in t (a second
item may be scheduled as well). Furthermore, suppose that demand; > available; holds and that some
capacity units are not used up (i.e. q; = available;). Then, execute the piece of program given below.
For the sake of simplicity let us assume that a second item which may be scheduled in t, too, does not
have more demand than available. If this does not hold, the if-clause in the code must test for this

second item as well. In the case that more entries than just one fulfill the if-clause, choose any of them.

t =t1
while ,there is remaining capacity and demandj > availablej holds*“ do
{ if ,there is an entry j:nleftright at position (j, t”) in the data structure with right >t -t then
{ »perform a right shift to period t with that entry including the update of upper indices*
available; = availablej +n
wincrease q; with respect to capacity limits and demand;”

}

else t =t -1

Table 8: The situation after the third backward step

4

T-6 T-5 T-4 T-3 T-2 T-1 T demand | available
;=1 1:5 10 15 15
j=2 2:5 2:15 10 15
j=3 35 2 8

3:15

j=4 4:5 4:10 10

4:15
j=5 5:5 — 16 4 4

55

5:15

515

Now, back to the example, period T-3 is the focus of attention. Row j = 2 is of special interest
because for the first time up to now, there are items available (15 units of item 2 that stem from the
entry ,,2:15) for which no demand has yet occurred. This is the case since the entry ,,2:15% represents
an internal demand, but, as long as we do not schedule an item 1 again (or as long as no extemnal
demand for item 2 occurs), no demand uses these available units up. In summary, items 1 and 5 are the
only ones that may be scheduled in period T-3 since only these two have demand and available units.
Suppose, that item 5 is chosen first and the remaining capacity is used to produce item 1. The setup for
item 1 must occur in period T-4 (or earlier) which has to be kept in mind. Table 9 shows the current

situation.

Table 9: The situation after the fourth backward step

Y

T-6 T-5 T-4 T-3 T-2 T-1 T demand | available
j=1 I:5 14 10 6 6
j=2 2:5 10 14 15
]=3 35 2 8 14

3:15

j=4 4:5 4:10 10 10

4:15
]=5 5:5 4 16

55

5:15

5715

At this point we stop our explanations of the construction scheme since nothing new happens from
now on. A feasible plan is found after the T-th backward step, if the demand and the available column
contain nothing but zeros.

Anything but the way to decide which items to schedule is well-defined up to here. Again, several
variants are possible to choose an item among those with positive demand and positive availability. In
our studies, the following turned out to be best: Let available; denote the entry in the available column
and demand; denote the entry mn the demand column of item j. The worst that could happen to item j is
that the available items are not scheduled, thus causing holding costs. On the basis of this insight, assign

a value priority; to each item defined as follows:

223 .

o 0 , if available; = 0 or demand; = 0
priority; = hj . availablej ,if availablej >0 and demandj >0

Then, make a random choice where the higher the priority value the more probable the
corresponding item is chosen which tends to keep holding costs low. More formally, the probability to

choose item j is

priority,
prob; = —J—-‘—‘J—

> priority;

i=1

Note, that if for all items j priority; = O holds, then there is no need to compute these probabilities
since no item can be scheduled. The formula giving prob; is thus well-defined. In periods in which two

items can be scheduled, we evaluate these probabilities again after the first item is chosen and before the
second is, because it should not happen that the first item is randomly selected again in the second step.
Computing all the probabilities again is necessary for the second choice since the probability for the

first chosen item is set to zero which affects the probabilities for the other items.

4 Computational Study

To test the demand shuffle heuristic we implemented it in C and run it on a 486 PC with 25 MHz. The
test-bed that was used contains 144 problem mstances consisting of 5 items and 10 periods of time.
These instances were first defined m [Kimms 1993a] and serve as a standard test-bed for all of our
studies today. The problem size is small enough to be solved optimally with a standard MIP-solver
within reasonable time. It is large enough to provide non-trivial instances.

We start by giving a specification of the test-bed. Then, we provide the results that were recently
reached by a so-called randomized regret based procedure to have a point of reference other than the
optimal objective function values. Finally, the results of the presented heuristic are revealed.

The basis of our test-bed is formed by four different types of ,,gozinto““-structures (see Figure 6).
In some instances external demand occurs for all end items and no other but those. And, in some

mstances external demand occurs for all items. The external demand matrix is filled according to the

following patterns:

-24 -

M
@
€)

External demand in period 10.
Extemnal demand in periods 6 and 10.
External demand in periods 6, 8 and 10.

In the sequel, a triple of the form o/n/v abbreviates the structure of an instance where

6 € {L, A, D, G} (which denotes a Linear, Assembly, Divergent or General ,gozinto“-structure),

n € {E, A} (which denotes external demand for End items only or extemal demand for All items) and

v € {1, 2, 3} (which stands for one of the demand patterns above). For example, D/A/3 denotes an

mstance with the divergent ,.gozinto“~structure, external demand for all items and extemal demand

pattern number (3).

Figure 6: Product structures in the test-bed

~)

o

3 @ 3
X & X
; 5 ‘
T YN
4> /
® DENRE &
Linear Structure Assembly Structure Divergent Structure General Structure

Each of the instance structures 6/n/v (24 in total) is combined with six different sets of data to

complete the definition of an instance. This leads to the aforementioned 144 instances. The data sets are

given here:

(a)

)
(©)

(d)

Holding and setup costs are defined as in Table 10. Lead times and production coefficients are

equal to one in all cases, i.e. v; = 1 and a; = 1. The production of one item (of any kind)

consumes one capacity unit, i.e. p; = 1 for all items, while the capacity of the machine is assumed
to be constant over time. More precisely, we assume the capacity constraints per time period to
be defined as in Table 11. External demands per period (with respect to the demand pattern v) are
assumed to be 20 per item in the case that 7 = E and 10 per item in the case that 7 = A,

The same data set as (a) except setup costs being multiplied by 20.

The same data set as (a) except external demand sizes being half of what is defined in (a), i.e. 10
items if t = E and 5 items if 7 = A.

The same data set as (b) except external demand sizes being chosen as in (c).

-25.

(¢) The same data set as (c) except p; = 0.5 for all items and all production coefficients are doubled,
i.e. a; =2 for all items j and i with respect to the product structures defined above.

(f) The same data set as (d) except p; and a; being chosen alike (e).

Table 10: Setup and holding costs

item setup costs holding costs
1 30 5
2 20 4
3 20 3
4 10 2
5 10 1

Table 11: Capacity constraints per period of time

n=E n=A
v=1 v=2 v=3 v=1 =2 v=3
o=L 35 35 100 35 35 100
c=A 35 35 100 35 35 100
c=D 35 100 160 35 100 100
c=G 35 100 200 100 100 200

In [Kimms 1994a] we presented a so-called randomized regret based heuristic (as well as a tabu
search heunstic) and applied it to the same test instances. Roughly speaking, this heuristic can be seen
as a very special case of the demand shuffle heuristic in that it does not perform any shifting operations.
In other words, leave the phase 2 of the presented method out and you are close to what was done. An
important difference lies in the way an item is chosen to be scheduled. Though a random choice is
performed, too, the priornty rule on the basis of which a decision is made is much more complex and
thus more time-consuming to be computed. Besides holding costs the priority rule is defined by setup
costs, the ,,depth® of an item in the multi-level ,,gozinto“-structure and the capacity needs to produce an
item and all its predecessors. A formal definition is out of the scope of this paper ~ we refer to [Kimms
1994a]. Nevertheless, we present the average computational results again since they belong to the best
ones so far known and are the ones we have to compete with. The results are based on 1000 repetitions,
i.e. 1000 production plans were (tried to be) constructed from which the best one is chosen. The
randomized regret based heuristic took between 4 to 9 seconds per instance.

The demand shuffle heuristic as it was presented above took 3 to 9 seconds per instance to

perform 1000 iterations (that is 1000 repetitions of phase 1 and 2) each. In this study 10 data structure

26 -

entries were randomly selected to be shifted during phase 2. Shifting less than 10 entries turned out to
be worse, while shifting more than 10 entries did not improve the results. We suggest to determine the

number of entries shifted during phase 2 in dependence from the problemssizeJ * T, e.g.

l L I
l 5 I
shift operations.

Tables 12 to 14 provide the results achieved by the demand shuffle heuristic. The deviation of the

heuristic results from the optimal results measured as

F..-F*
deviation := 100 « —%*——QE
opt

where F’yy is the objective function value computed with the heuristic and F* ., is the optimal
objective function value, is given in detail for each of the 144 instances. Comparing the average results
with those that correspond to the randomized regret based procedure ([RR] row / [RR] column) shows
the superiority of the demand shuffle method. In the case v = 1 both heuristics are competitive. But, for
v = 2 where external demands for items occur with a large number of ,no-demand* periods in-between,
the demand shuffle heuristic drastically pays off (a 9.17% average gap to the optimal solution instead of
a 22.05% gap). The demand shuffle heuristic outperforms the randomized-regret based procedure
especially in those cases in which setup costs are large in comparison with holding costs, i.e. in problem
classes (b), (d) and (f). Here, the results are much more convincing (the gaps are 7.05% instead of
27.24%, 3.15% nstead of 37.07% and 2.60% instead of 32.65%). If v = 3 which is the case in which
the extemal demand matrix is ,full of entries”, the demand shuffle method again gives drastic
improvements (the average gap to the optimal solution is 10.46% instead of 18.76%). Once more, the
most amazing results are achieved when problems with large setup costs and low holding costs are

solved.

-27 -

Table 12: Deviation of the demand shuffle heuristic, v = 1

(@) ®) © GV © (H average [RR]
L/E/1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
L/A/1 17.24 2.50 13.16 1.32 5.88 0.76 6.81 4.53
A/E/N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A/A/1 8.57 1.46 6.82 0.00 448 0.73 3.68 5.12
D/E/1 9.09 1.86 833 1.03 5.13 0.92 4.39 4.54
D/A/1 19.05 293 14.63 157 10.91 0.99 835 8.26
G/E/1 1.41 227 0.00 0.00 2.19 2.43 1.38 3.64
G/A/1 13.33 278 11.11 1.52 12.79 2.80 7.39 6.91
average 8.59 1.73 6.76 0.68 517 1.08 4.00
[RR] 8.64 4.90 5.64 0.61 4.01 0.96 413
Table 13: Deviation of the demand shuffle heuristic, v =2

@ () © @ @© (® average (RR]
L/E/2 28.21 0.00 0.00 0.00 5.00 0.00 553 24.82
L/A2 19.05 12.23 19.23 6.70 14.56 3.33 12.52 20.70
A/E2 2.10 9.17 0.00 1.13 .43 0.00 347 26.69
A/A/2 31.25 14.92 2234 4.67 19.15 2.90 15.87 22.07
D/E/2 14.61 3.82 7.55 2.44 8.54 1.37 6.39 20.89
D/A/2 3134 6.83 23.81 4.15 16.67 2.17 14.16 2412
G/E/2 0.00 0.00 0.00 0.00 458 3.57 1.36 14.53
G/A2 18.75 943 18.92 6.10 2353 7.47 14.03 22.57
average 18.16 7.05 1148 3.15 12.56 2.60 9.17
[RR] 10.74 27.24 10.88 37.07 13.72 32.65 22.05

78 -

Table 14: Deviation of the demand shuffle heuristic, v = 3

@ ®) (© @ © () average [RR]
L/E/3 6.19 0.00 7.14 0.00 5.62 0.36 3.22 20.99
L/A/3 28.89 12.82 20.95 8.13 13.48 6.49 15.13 15.79
A/E/3 1.83 331 1.59 0.83 0.78 0.00 1.39 2955
A/A/3 31.36 8.38 21.48 12.17 18.93 7.20 16.59 14.54
D/E/3 15.89 7.18 15.48 323 1520 2.82 9.97 17.99
D/A/3 22.33 15.06 15.00 14.20 2530 .08 16.66 17.92
G/E/3 3.17 0.00 0.00 0.00 3.43 446 1.84 15.76
G/A/3 20.41 14.40 19.63 17.38 26.48 14.83 18.86 17.55
average 16.26 7.64 12.66 6.99 13.65 553 10.46
[RR] 15.55 20.13 13.81 24 85 15.76 22.46 18.76

5 Conclusion

This paper dealt with dynamic capacitated multi-level lot sizing and scheduling in a single-machine
environment. It introduced the multi-level single-machine PLSP mixed-integer model. A novel method
called demand shuffle was presented. This method successfully combines fast random sampling with
problem specific data structure manipulations. In a computational study, it amazed with competitive
execution time and very good improvements of former results. A new benchmark for future work has

been set.

Acknowledgement

Andreas Drexl is an outstanding advisor and an excellent proofreader.

-29 -

References

Afentakis, P., Gavish, B., (1986), Optimal Lot-Sizing Algorithms for Complex Product Structures,
Operations Research, Vol. 34, pp. 237-249

Afentakis, P., Gavish, B., Karmarkar, U., (1984), Computationally Efficient Optimal Solutions to the
Lot-Sizing Problem in Multistage Assembly Systems, Management Science, Vol. 30, pp. 222-
239

Bahl, H. C., Ritzman, L. P., Gupta, J. N. D., (1987), Determining Lot Sizes and Resource
Requirements: A Review, Operations Research, Vol. 35, pp. 329-345

Briiggemann, W., Jahnke, H., (1994), DLSP for 2-Stage Multi-Item Batch Production, Intemational
Joumal of Production Research, Vol. 32, pp. 755-768

Domschke, W., Scholl, A., VoB3, S., (1993), Produktionsplanung — Ablauforganisatorische Aspekte,
Heidelberg, Springer

Drexl, A., Haase, K., (1992), A New Type of Model for Multi-Item Capacitated Dynamic Lotsizing
and Scheduling, Manuskripte aus den Instituten fiir Betriebswirtschaftslehre der Universitit Kiel,
No. 286

Drexl, A., Haase, K., Kimms, A., (1993), LosgroBen- und Ablaufplanung in PPS-Systemen auf der
Basis randomisierter Opportunititskosten, Manuskripte aus den Instituten fur Betriebs-
wirtschaftslehre der Universitat Kiel, No. 333, Zeitschrift fir Betriebswirtschaft, to appear

Elmaghraby, S. E., (1978), The Economic Lot Scheduling Problem (ELSP): Review and Extensions,
Management Science, Vol. 24, pp. 587-598

El-Najdawi, M. K., (1994), A Job-Splitting Heuristic for Lot-Size Scheduling in Mutlti-Stage, Multi-
Product Production Processes, European Journal of Operational Research, Vol. 75, pp. 365-377

El-Najdawi, M. K., Kleindorfer, P. R., (1993), Common Cycle Lot-Size Scheduling for Multi-
Product, Multi-Stage Production, Management Science, Vol. 39, pp. 872-885

Fleischmann, B., (1988), Operations-Research-Modelle und -Verfahren in der Produktionsplanung,
Zeitschnft fiir Betriebswirtschaft, Vol. 58, pp. 347-372

Fleischmann, B., (1990), The Discrete Lot Sizing and Scheduling Problem, European Joumal of
Operational Research, Vol. 44, pp. 337-348

Haase, K., (1994), Lotsizing and Scheduling for Production Planning, Lecture Notes in Economics and
Mathematical Systems, Vol. 408, Berlin, Springer

Helber, S., (1994a), Kapazititsonentierte LosgréBenplanung in PPS-Systemen, Stuttgart, M&P

Helber, S., (1994b), Lot Sizing in Capacitated Production Planning and Control Systems, Working
Paper, University of Munich, OR Spektrum, to appear

Iyogun, P., Atkins, D., (1993), A Lower Bound and an Efficient Heuristic for Multistage Multiproduct
Distribution Systems, Management Science, Vol. 39, pp. 204-217

-30 -

Karmarkar, U. S., Schrage, L., (1985), The Deterministic Dynamic Product Cycling Problem,
Operations Research, Vol. 33, pp. 326-345

Kimms, A., (1993a), Multi-Level, Single-Machine Lot Sizing and Scheduling (with Initial Inventory),
Manuskripte aus den Instituten fir Betriebswirtschafislehre der Universitit Kiel, No. 329,
European Journal of Operational Research, to appear

Kimms, A., (1993b), A Cellular Automaton Based Heuristic for Multi-Level Lot Sizing and
Scheduling, Manuskripte aus den Instituten fiir Betriebswirtschaftslehre der Universitit Kiel, No.
331

Kimms, A., (1994a), Complementary, Competitive Methods for Multi-Level Lot Sizing and
Scheduling: Tabu Search and Randomized Regrets, Manuskripte aus den Instituten fiir
Betriebswirtschaftslehre der Universitat Kiel, No. 348

Kimms, A., (1994b), Optimal Multi-Level Lot Sizing and Scheduling with Dedicated Machines,
Manuskripte aus den Instituten fiir Betriebswirtschaftslehre der Universitit Kiel, No. 351

Kuik, R., Salomon, M., (1990), Multi-Level Lot-Sizing Problem: Evaluation of a Simulated-Annealing
Heunistic, European Journal of Operational Research, Vol. 45, pp. 25-37

Kuik, R., Salomon, M., van Wassenhove, L. N., Maes, J., (1993), Linear Programming, Simulated
Annealing and Tabu Search Heuristics for Lotsizing in Bottieneck Assembly Systems, IIE
Transactions, Vol. 25, No. 1, pp. 62-72

Maes, J., McClain, J. O., van Wassenhove, L. N., (1991), Multilevel Capacitated Lotsizing
Complexity and LP-Based Heuristics, European Joumal of Operational Research, Vol. 53, pp.
131-148

Roll, Y., Karni, R., (1991), Multi-Item, Multi-Level Lot Sizing with an Aggregate Capacity
Constraint, European Journal of Operational Research, Vol. 51, pp. 73-87

Rosling, K., (1986), Optimal Lot-Sizing for Dynamic Assembly Systems, in: Axséter, S., SchneeweiB,
C., Silver, E. A, (eds.), Multi-Stage Production Planning and Inventory Control, Berlin,
Springer, pp. 119-131

Roundy, R. 0., (1993), Efficient, Effective Lot Sizing for Multistage Production Systems, Operations
Research, Vol. 41, pp. 371-385

Salomon, M., (1991), Deterministic Lot Sizing Models for Production Planning, Lecture Notes in
Economics and Mathematical Systems, Vol. 355, Berlin, Springer

Salomon, M., Kuik, R., van Wassenhove, L.N., (1993), Statistical Search Methods for Lotsizing
Problems, Annals of Operations Research, Vol. 41, pp. 453-468

Stadtler, H., (1994), Mixed Integer Programming Model Formulations for Dynamic Multi-Item Multi-
Level Capacitated Lotsizing, Working Paper, Technical University of Darmstadt

Tempelmeier, H., (1992), Material-Logistik — Grundlagen der Bedarfs- und Losgréfenplanung in PPS-
Systemen, Berlin, Springer, 2nd edition

-31 -

Tempelmeier, H., Derstroff, M., (1993a), Mehrstufige Mehrprodukt-LosgréBenplanung bei
beschrankten Ressourcen und genereller Erzeugnisstruktur, OR Spektrum, Vol. 15, pp. 63-73

Tempelmeier, H., Derstroff, M., (1993b), A Lagrangean-Based Heuristic for Dynamic Multi-Level
Multi-Item Constrained Lot Sizing, Working Paper, University of Cologne

Tempelmeier, H., Helber, S., (1994), A Heuristic for Dynamic Multi-Item Multi-Level Capacitated
Lotsizing for General Product Structures, European Joumal of Operational Research, Vol. 75,
pp. 296-311

Zoller, K., Robrade, A., (1988), Efficient Heuristics for Dynamic Lot Sizing, International Journal of
Production Research, Vol. 26, pp. 249-265

-32 -

