
Kimms, Alf

Working Paper — Digitized Version

Optimal multi-level lot sizing and scheduling with
dedicated machines

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 351

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Kimms, Alf (1994) : Optimal multi-level lot sizing and scheduling with dedicated
machines, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 351,
Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/155423

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/155423
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Nr. 351

Optimal Multi-Level

Lot Sizing and Scheduling

with Dedicated Machines

A. Kimms

August 1994

Dipl.-Inform. Alf Kimms, Lehrstuhl für Produktion und Logistik, Institut für Betriebswirtschaftslehre,

Christian-Albrechts-Uhiversität zu Kiel, Olshausenstraße 40, 24118 Kiel, Germany

Abstract: This contribution deals with dynamic, capacitated, multi-l evel lot sizing and scheduling. The basic

assumption is that for each item there is exactly one machine that this item can be manufactured on but no two

items share a common machine. Finding an optimal Solution with a greedy algorithm turns out to be an easy

task.

Keywords: Production planning, lot sizing, scheduling, multi-level, dedicated machines, optimal greedy

algorithm

1 Introduction

The Integration of lot sizing and sdieduling is approved by several authors [Drexl et al. 1994,

Fleischmann 1990, Tempelmeier 1992] and the necessity of considering multi-level structures in

production planning is commonly accepted [Afentakis and Gavish 1986, Drexl et al. 1993, El-Najdawi

and Kleindorfer 1993, Kuik and Salomen 1990, Kuik et al. 1993, Maes et al. 1991, Stadtler 1994]. In

spite of this, there is no contribution to capacitated, dynamic lot sizing and scheduling with general

multi-level produet structures that is known to us. To overcome this gap some research has recently be

done and brought out several well-performing heuristic approaches for the single-machine case [Kimms

1993a, 1993b and 1994]. Now, a first step towards solving the multi-machine case is done by

investigating the most simple Situation: We assume that each item can be manufactured on exactly one

machine and that no two items share a common machine. That is, that there is no competition for

resources. We like to call such an environment a dedicated machine problem.

The following two chapters contain a precise definition of the problem and introduce a construction

scheme that Ends an optimal Solution with low computational effort. Afterwards, computational studies

show that the presented approach outperforms Standard solvers.

2 Problem Definition

Informally, the problem under consideration can be stated as follows: Several items which are to be

assembled with respect to a general (although acyclic) multi-level strueture are to be produced within a

finite time horizon that is subdivided into discrete periods of time. There is some known extemal

demand for some of these items that may vary over time. To meet the demand for an item all its

predecessing items are to be manufactured in advance where item-speeifie lead times (e.g. for cooling or

transportation) are to be respected. The production of an item requires a certain amount of exactly one

resource (e.g. a certain amount of time on a machine) where the available capacity of each resource is

- 1 -

scarce. The basic assumption here is that no two items require the same resource. Hence, setup costs

and setup times are of no interest in this particular context and problems like Splitting lots disappear. If

items are produced much earlier than they are needed, they have to be stored in inventory which incurs

Holding costs. The objective is to find a cheap production plan that determines lot sizes and sdiedules.

Formally, this problem can be modeled as a linear program (LP):

T J
min Z 2 U (1)

t = 1 j = 1

subject to

h = W) + % - 2 (ajj qit) (j = 1 .. J, t = 1 .. T) (2)
ieS(j)

min{t+Vj,T}
I Z (aji q«) (j = 1 .. J, t = 0.. T-l) (3)

T=t+1 ieS(j)

Pj qjt ~ Cjt (j = l •• J (=M),t=l .. T) (4)

^t>0 (j = 1 .. J, t = 0.. T) (5)

Qjt — 0 (j = 1 . . J, t = 1 .. T) (6)

where

aji is the „gozinto-factor", i.e. the quantity of item j that is needed to produce one item i;

C,^ is the capacity of the machine m in period t (for notational convenience we assume that item j is to

be manufactured on machine j);

dß is the (extemal) demand for item j in period t;

hj are the (non-negative) costs for holding one item j one period in inventory;

Ij,. is the quantity of item j held in inventory at the end of period t (Ij0 is the initial inventory);

J is the number of items;

M is the number of machines (M = J);

Pj is the amount of capacity consumed by producing one item j;

-2-

is the quantity of item j to be produced in period t;

S(j) is the set of successors of item j, i.e. the set of items i where a- > 0;

T is the number of periods;

Vj is the (integral) lead time of item j (v >1);

The objective to find a cheap production plan is written down in (1). (2) are the inventory

balances. To make sure that lead times are respected, conditions (3) must hold. Restrictions (4)

represent the capacity limits. (5) and (6) define decision variables to be non-negative.

For the sake of simplicity, we will furthermore assume no initial inventory. The Integration of

positive initial stock levels is discussed in [Kimms 1993a],

3 Computing Optimal Solutions

In contrast to the single-machine case [Kimms 1993a], the LP-formulation in chapter 2 contains neither

integer nor binary variables. This is due to the assumption that there is no competition for resources and

thus no setup State is to be considered. Standard solvers could therefore be employed to solve small and

medium sized problems. But Standard codes are inappropriate for large problems owing to large run-

time. These problems for instance occur in fine-grain planning situations where the length of periods is

„small" in relation to the Overall time horizon (hence, the number of periods T is „large").

As we will see, there is an approach which finds an optimal Solution with a run-time complexity

of O (JxT). The clue to such an algorithm is that for minimizing holding costs a lot-for-lot production

is the cheap est way to meet the demands. A proof will follow right after having the greedy algorithm

introduced.

A backward oriented construction scheme fits well to solve multi-level problems [Kimms 1993a]:

We start in period T and move stepwise towards period one. Let t be the period under consideration.

The cumulative demand CD^ for item j that is to be met is defined by

CDjt = djt+ 2 (4? " %)
T=t+1

where q^ is setto zero for all t = 1 .. T and all j = 1 T

Since a lot-for-lot production defines the optimal Solution, for each item j the following is now to

be done: If the capacity of the machine that is dedicated to item j suffices to produce the cumulative

demand, i.e. > pj CD^, assign

Qjt= CDjt.

otherwise, assign

-3 -

q*=pj-

No matter what case was true, update the demand matrix with

^i(t-vj) ~ ^i(t-v;) + aij Qjt

for all those items i where ay > 0 holds. This updating neatly takes the multi-level structure into

account. As long as no initial inventory is considered (as we do here), the instance is infeasible if

t-Vj < 1 for at least one item i.

Period t-1 is considered next and the whole procedure loops until the schedule for period one is

computed. Note, that the cumulative demand CDj^.^ can easily be determined by evaluating the right

hand side of the equation

CDj(t-i)= dj(t-i)+ CDjt" %

A final check for infeasibility can be made by testing whether or not there is any cumulative

demand left which is not met.

An example will help to understand the working principle: Imagine a „gozinto"-structure with 4

items as depicted in Figure 1. Let all aJP Vj and pj be equal to one. Assume a planing horizon of 6

periods of time. Demands and capacity limits per period are defined in Table 1. Table 2 contains the

execution protocol of the greedy algorithm and Figure 2 the corresponding Gantt-chart.

Figure 1: The „gozinto"-structure of the example

Table 1: Extemal demands and capacity limits of the example

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 capacity limit per period

j = 1 5 10 15

j = 2 10 20 15

j = 3 15

j = 4 20

-4-

Table 2: Execution protocol of the greedy algorithm when applied to the example instance

periodt cumulative demand CD^ production quantities q^ update Operations

6 (10;20;0;0) (10; 15;0;0) &25 = <L15+ 10 = 10

d35 = dj5 + 10 = 10

d45 = d45+ 10+ 15 = 25

5 (5;15;10;25) (5;15;10;20) d24 = d24+5=15

d34 = d34+5 = 5

d44 = d44 + 5 + 15 + 10 = 30

4 (0;15;5;35) (0;15;5;20) d43 = d43 + 15 + 5 = 20

3 (0;0;0;35) (0;0;0;20)

2 (0;0;0;15) (0;0;0;15)

1 (0;0;0;0) (0;0;0;0)

Some points of interest shall be discussed in more detail: When the procedure starts in period 6, the

cumulative demands equal the extemal demands in period 6. Due to the capacity restrictions, the

cumulative demand of 20 units cannot be satisfied in that period - only 15 units are scheduled. Because

of the schedule in period 6, internal demands for items 2, 3 and 4 are to be met until period 5 which is

taken into account by updating the demand matrix. In period 5 the cumulative demand for item 2 equals

15: 10 units were written into the demand matrix in the preceding step and 5 units are left over firom the

cumulative demand in period 6. Once again, the demand matrix is to be updated where the demand for

item 2 in period 4 now sums up to 15: 5 units are the internal demand that is to be met for producing

item 1 in period 5 and 10 units are the extemal demand for item 2 in period 4.

Figure 2: Gantt-diart of the Solution

machine / item

-5-

Since greedy algorithms in general do not necessarily result in optimal solutions [Körte et al.

1991, Nemhauser and Wolsey 1988], it shall now be proven that the greedy algorithm constructs

optimal plans.

Theorem 1: Optimality of the greedy algorithm

If the problem instance is feasible then the greedy algorithm constructs an optimal production plan.

Proof: The backward oriented scheme by definition chooses to assign

£ qjt = min{CDit; p_ }

for all j = 1 . . J if t is the current period. Hence, as long as shortages are not allowed, no production

quantities can be shifted to the right. In other words, there is no feasible plan where items are produced

later in time than scheduled by the greedy algorithm. So, if there exists a feasible plan then the algorithm

is in the position to find it. Furthermore, due to the assumption of dedicated machines the plan where no

shifts to the right are possible is a unique one.

What are the alternatives to this plan? Other feasible plans might be found by shifting some of the

production quantities to the left.

In analogue to scheduling theory (for details we refer to [Baker 1974, Sprecher et al. 1993]) the

constructed schedule can be termed an active schedule (although the notion of active schedules is

usually defined on the basis of left shifts which is in contrast to what we do here). A well-known

property of sdiedules with a so-called regulär Performance measure - like our objecöve function - is that

an optimal schedule must be an active schedule of which there is only one in our case. As a

consequence, the Solution found with the greedy algorithm is an optimal Solution. ^

4 Computational Study

Since optimal Solution approaches usually suffer from long run-time we shall be interested in whether or

not our procedura improves the results readied by Standard LP-solvers applied to the „easy" LP-

formulation in chapter 2. The basis of our test-bed form 24 data instances with 5 items and 10 periods

of time (namely, all class (a) problems defined in [Kimms 1993a]). These instances comprise different

demand patterns and product structures which are those parameters that have the most significant

influence on the shape of the simplex-tableau defined by the linear program. The details of these 24

instances are as follows: For each of 4 different product structures (see Figure 3) we defined 3 problems

with externa! demand for end items only and 3 problems with external demand for all items.

-6-

Hie demand patterns were chosen as follows:

(1) Extemal demand in period 10.

(2) Extemal demand in periods 6 and 10.

(3) Extemal demand in periods 6, 8 and 10.

Holding costs for item j are defined as hj = 6-j. Lead times Vj and production coefficients are

equal to one in all cases. The production of one item consumes one capacity unit while the capacity of

each machine is assumed to be constant over time - we refer to Table 3 where capacity limits are given

in dependence of demand patterns and product structures. The extemal demands per period (with

respect to the demand pattern) are assumed to be 20 per item in the case that there is demand for end

items only and 10 per item if there is extemal demand for all items.

Figure 3: Product structures

* V

'3
A

Linear Structure Assembly Structure Divergent Structure General Structure

Table 3: Capacity constraints per period of time

end items all items

(1) (2) (3) 0) (2) (3)

linear 35 35 100 35 35 100

assembly 35 35 100 35 35 100

divergent 35 100 100 35 100 100

general 35 100 200 100 100 200

A total of 6 different problem sizes (J x T) with 24 instances each are tested:

5x10 10x10

5 x 50 as well as 10 x 50

5x100 10x100

The 5 x 10 sized problems are the problems that form the basis of the test-bed where each of

them has a feasible Solution. The other problems were generated from these by performing copy

-7-

Operations of the data which guarantees feasible solutions: E.g., if (11 h depicts the matrix that

defines the „gozinto"-structure with 5 items thm

is the matrix that defines a „gozinto"-structure with 10 items. If (1 1 [) is the matrix of external

demands with 5 items and 10 periods of time then

E E E E E

HEU EH

is the externa! demand matrix for 10 items and 50 periods of time. Analogously, if ([_!!_]) is a vector

of a madiine's capacity limits for 10 periods of time or a vector of holding costs, lead times or similar

for 5 items then () is the corresponding vector for a double number of periods or items,

respectively.

The results in speed are as follows: Running on a 486 PC with 25 MHz, a C-implementation of

our approach solves any instance of any of the above sizes within less than a second. Due to the

construction sdieme, the run-time of our approach increases linearly with the size of the problem. The

Standard LP-solver LINDO [Schräge 1991] needs up to several minutes on the same Computer (see

Figures 4 and 5).

Figure 4: Problem instances with 5 items

problem size

-8-

Figure 5: Problem instances with 10 items

2QQ ru n-time in seconds 199 maximum

150

100

50 minimnm

U "1
10x10 10x50

problem size

10x100

Both figures show for each problem size the shortest and the longest time needed to solve one of

the 24 instances. It is remarkable to note, that a larger problem size does not necessarily mean a longer

run-time. E.g., one of the 5 x 100 sized problem instances was solved in 11 seconds while there exists a

5 x 50 sized problem instance that takes 15 seconds to be solved. Also note, that due to the copying by

which we constructed the „gozinto"-structure of problems with 10 items the Upper bound of the

problems with 10 items tends to be underestimated. A more complex structure with 10 items is expected

to cause longer run-times. Furthermore, the average run-time of the Standard solver increases faster than

linear which is in compliance with general statements [Bradley et al. 1977, Nemhauser and Wolsey

1988]. In summary, it is clear that our optimal approach outperforms Standard solvers by orders of

magnitude.

5 Conclusion

The focus of our attention was the dynamic, capacitated, multi-level lot sizing and scheduling problem.

The basic assuxnption was that machines are dedicated to the items, i.e. no two items are produced on

the same machine. On the one hand, an „easy-to-solve" LP-formulation was given. On the other hand a

construction sdieme was presented which computes optimal solutions by making use of problem

insights. A computational study showed that the construction scheme works much faster than a Standard

solver which is applied to the linear program.

This contribution is a very first Step towards multi-level lot sizing and sdieduling with multiple

machines. Future work must take situations into account where items share a common machine.

-9-

Acknowledgement

We are indebted to Andreas Drexl who always has one more good idea than we have.

References

Afentakis, P., Gavish, B., (1986), Optimal Lot-Sizing Algorithms for Complex Product Structures,

Operations Research, Vol. 34, pp. 237-249

Baker, K. IL, (1974), Introduction to sequencing and scheduling, New York, Wiley

Bradley, S. P., Hax, A. C., Magnanti, T. L., (1977), Applied Mathematical Programming, Reading,

Addison-Wesley

Drexl, A., Haase, K., Kimms, A., (1993), Losgrößen- und Ablaufplanung in PPS-Systemen auf der

Basis randomisierter Opportunitätskosten, Manuskripte aus den Instituten für Betriebs­

wirtschaftslehre der Universität Kiel, No. 333, Zeitschrift für Betriebswirtschaft, to appear

Drexl, A., Fleischmann, B., Günther, H.-0., Stadtler, H., Tempelmeier, H., (1994), Konzeptionelle

Grundlagen kapazitätsorientierter PPS-Systeme, Zeitschrift für betriebswirtschaftliche

Forschung, to appear

El-Najdawi, M. K., Kleindorfer, P. R., (1993), Common Cycle Lot-Size Scheduling for Multi-

Product, Multi-Stage Production, Management Science, Vol. 39, pp. 872-885

Fleischmann, B., (1990), The Discrete Lot Sizing and Scheduling Problem, European Journal of

Operational Research, Vol. 44, pp. 337-348

Kimms, A., (1993a), Multi-Level, Single-Machine Lot Sizing and Scheduling (with Initial Inventory),

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 329,

European Journal of Operational Research, to appear

Kimms, A., (1993b), A Cellular Automaton Based Heuristic for Multi-Level Lot Sizing and

Scheduling, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No.

331

Kimms, A., (1994), Complemerrtary, Compeütive Heuristic Approaches for Multi-Level Lot Sizing and

Scheduling: Tabu Search and Randomized Regrets, Manuskripte aus den Instituten für

Betriebswirtschaftslehre der Universität Kiel, No. 348

Körte, B., Lovasz, L., Schräder, R, (1991), Greedoids, Algorithms and Combinatorics, Vol. 4,

Berlin, Springer

Kuik, R., Salomen, M., (1990), Multi-Level Lot-Sizing Problem: Evaluation of a Simulated-Annealing

Heuristic, European Journal of Operational Researdi, Vol. 45, pp. 25-37

- 10-

Kuik, R., Salomen, M., van Wassenhove, L. N., Maes, J., (1993), Linear Programming, Simulated

Annealing and Tabu Search Heuristics for Lotsizing in Bottleneck Assembly Systems, DE

Transactions, Vol. 25, No. 1, pp. 62-72

Maes, J., McClain, J. O., van Wassenhove, L. N., (1991), Multilevel Capacitated Lotsizing

Complexity and LP-Based Heuristics, European Journal of Operational Research, Vol. 53, pp.

131-148

Nemhauser, G. L., Wolsey, L. A., (1988), Integer and Combinatorial Optimization, New York, Wiley

Schräge, L., (1991), LINDO User's Manual for Linear, Integer and Quadratic Programming Release

5.0, Scientific Press

Sprecher, A., Kolisch, R., Drexl, A., (1993), Semi-Active, Active and Non-Delay Schedules for the

Resource-Constrained Project Scheduling Problem, Manuskripte aus den Instituten für

Betriebswirtschaftslehre der Universität Kiel, No. 307, European Journal of Operational

Research, to appear

Stadtler, EL, (1994), Mixed Integer Programming Model Formulations for Dynamic Multi-Item Multi­

Level Capacitated Lotsizing, Working Paper, Technical University of Darmstadt

Tempelmeier, H., (1992), Material-Logistik - Grundlagen der Bedarfs- und Losgrößenplanung in PPS-

Systemen, Berlin, Springer, 2. Auflage

- 11 -

