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Abstract: We review the well-known RSM priority rule to solve the resource constrained 
project scheduling problem. A detailed analysis of this rule reveals that it is based on as-
sumptions which do not hold in general and hence might lead to poor solutions. Consequently, 
an improved RSM priority rule is derived. Furthermore, two new priority rules are developed 
which extend the well-known precedence based minimum slack priority rule (MSLK) to a 
precedence and resource based slack priority rule, respectively. An experimental investigation 
on the basis of two instance-sets from the open literature shows that the new rules outperform 
all other priority rules which were proposed so far. 

Keywords: RESOURCE-CONSTRAINED PROJECT SCHEDULING; PARALLEL SCHEDULING 
SCHEME; PRIORITY RULES; SINGLE-PASS HEURISTICS; EXPERIMENTAL EVALUATION. 

1. Introduction 

The classical resource-constrained project scheduling problem (RCPSP) can be stated as 

follows: We consider a single project which consists ofactivities with a non-preempt-

able duration of dj periods, respectively. The activities are interrelated by two kinds of con-

straints: Precedence constraints - as known from traditional CPM-analysis - force an activity 

not to be started before all its predecessors are finished. Additionally, resource constraints arise 

as follows: In order to be processed, activity j requires kjr units of resource type r e R during 

every period of its duration. Since resource r is only available with the constant period 

availability of Kr units for each period, activities might not be scheduled at their earliest 

(precedence feasible) Start time but later. The objective of the RCPSP is to schedule the activi

ties such that precedence and resource constraints are obeyed and the makespan of the project 

is minimised. 

Due to its generality the RCPSP is probably one of the most important scheduling problems. 

Applications of the RCPSP ränge from project scheduling with the special case CPM to 

manufacturing where single machine, multiple machines, flow shop, and job shop problems are 

considered. Furthermore, Leon / Wu (1993) report on applications of the RCPSP to real-time 

scheduling of automated manufacturing systems and Drexl / Kolisch (1994) show how the 

RCPSP is embedded into a Leitstand-system. 

This paper focuses on the use of priority rules in order to solve the RCPSP in a fast and effi-

cient manner. The remainder is organised as follows: Section 2 gives a formal model of the 

RCPSP as well as an overview of the available Solution procedures. Section 3 presents the 

parallel scheduling scheine as a framework for priority rules to solve the RCPSP. Based on a 

Classification scheme, classical priority rules are introduced afterwards. One of these rules, the 

well-known resource scheduling method (RSM) priority rule is analysed in detail. This leads to 

three new rules which are presented formally and by the use of an example. Section 4 is 

devoted to an experimental evaluation on the basis of two instance-sets from the open 

literature. The results show that the new rules outperform the classical priority rules. By 

employing Statistical tests, we verify that the best new rule is significantly better than all other 

classical rules. Finally, Section 5 is concemed with overall conclusions. 
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2. Problem Formulation and Solution Procedures 

In order to model the RCPSP we make use of the following additional notation: Let Pj define 

the set of immediate predecessors of activity j. For ease of notation the activities are topologi-

cally ordered, i.e. each predecessor of activity j has a smaller number than j. Furthermore, ac

tivity 7=1 (j=J) is defined to be the unique dummy source (sink) and T denotes an upper bound 

on the project's makespan. Now, a conceptual model of the RCPSP can be formulated as fol-

lows [cf. Talbot / Patterson (1978)]: 

Min FTj (1) 

subject to 

(2) 

Zkjr<Kr r <=R, t=\,...,T (3) 
jeAt 

FTj> 0 (4) 

The variable FTj denotes the (integer valued) finish times of activity and At, the 

set of activities being in progress in period t, is defined as At := {j \j=\,...,J, FTj-dj+\ < t < 

FTj}. The objective function (1) minimises the completion time of the unique sink and thus the 

makespan of the project. Constraints (2) take into consideration the precedence relations bet-

ween each pair of activities (/', j), where i immediately precedes j. Finally, constraint set (3) 

limits the total resource usage within each period to the available amount. Note that (1) to (4) 

provide no mechanism in order to identify At and hence the problem formulation is not amena-

ble to Solution via integer programming techniques. To overcome this deficiency, the RCPSP 

has to be modelled with 0-1 variables as outlined in Pritsker et al. (1969). 

The RCPSP is a generalisation of the static job shop problem and hence belongs to the class 

of TVP-hard problems [cf. Blazewicz et al. (1983)]. On account of the inherent intractabil-

ity of the RCPSP, a multitude of exact and heuristic approaches were proposed: 

Optimal procedures are dynamic programming [cf. Carruthers / Battersby (1966)], zero-

one programming [cf. Bowman (1959), Pritsker et al. (1969), Patterson / Huber (1974), 

Patterson / Roth (1976)], as well as implicit enumeration with branch and bound [cf. Balas 

(1971), Davis / Heidorn (1971), Hastings (1972), Radermacher (1985/86), Stinson et al. 

(1978), Talbot / Patterson (1978), Christofides et al. (1987), Bell / Park (1990), Carlier / 

Latapie (1991), Demeulemeester / Herroelen (1992)]. Currently, the branch and bound ap-

proach of Demeulemeester and Herroelen (1992) seems to be the most powerful optimal pro-

cedure available. 

With the pioneering works of Kelley (1963) and Brooks [cf. Bedworth / Bailey (1982)] pri-

ority rules marked the beginning of heuristic methods able to solve the RCPSP. In the follow

ing years a multitude of new priority rules were proposed and tested experimentally [cf. Pascoe 
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(1966), Müller-Merbach (1967), Gonguet (1969), Cooper (1976, 1977), Davies (1973), 

Patterson (1973), Davis / Patterson (1975), Thesen (1976), Patterson (1976), Whitehouse / 

Brown (1979), Elsayed (1982), Lawrence (1985), Ulusoy / Özdamar (1989), Alvarez-Tamarit 

(1989a,b), Boctor (1990), and Valls et al. (1992)]. Recently, the research interests shifted to 

more elaborate heuristics like truncated branch and bound [cf. Alvarez-Valdes / Tamarit 

(1989a)], integer programming based heuristics [cf. Oguz / Bala (1994)], disjunctive arc 

concepts [cf. Shaßer et al. (1965), Alvarez-Valdes / Tamarit (1989a), Bell / Han (1991)], and 

local search techniques [cf. Sampson / Weiss (1993) and Balakrishnan / Leon (1993)]. With an 

- in terms of the employed CPU-time - greater effort these heuristics derive superior solutions 

than simple priority rule procedures. 
Nevertheless, for several reasons priority rules are utmost important in order to solve the 

RCPSP: (i) They are the core of new highly efficient local search based heuristics. E.g., based 

on the idea of Storer et al. (1992), Balakrishnan / Leon (1993) devised a local search proce-

dure which repeatedly employs a priority rule in order to obtain solutions with perturbed input 

data. Within sampling heuristics [cf. Levy et al. (1962), Wiest (1967), Cooper (1976), Alvarez-

Tamarit (1989b), and Kolisch (1994a)] the priority values of the schedulable activities are bi-

ased. That way different solutions can be generated and the Solution with the best objective 

function value is selected. It is intuitive and was experimentally backed up by Kolisch (1994b) 

that the Performance of sampling heuristics depends on the goodness of the priority rule em

ployed. (ii) Commercial project management and scheduling Software [e.g., MS-Project, CA-

Superproject, etc.] make use of priority rules in order to rapidly derive feasible schedules in the 

presence of resource constraints. (iii) Finally, priority rules have to be employed when very 

large projects with more than 1000 activities have to be solved in a fast manner [cf. Valls et al. 

(1992)]. Hence, it can be summarised that there is a great need for good priority rules. 

3. Classical and New Priority Rules for the RCPSP 

Generally, a priority rule based scheduling heuristic is made up of two components, a 

schedule generation scheme and a priority rule. Two different schemes can be distinguished: 

The so-called serial and the parallel scheduling scheme (where we use the terms scheme and 

method synonymously). Kolisch (1994b) showed that - when considering a regulär measure of 

Performance - for single pass procedures (as studied in this paper) the parallel method is 

superior to the serial method. Hence, we restrict our focus to the parallel method. 

3.1 The Parallel Scheduling Scheme 

Today, two algorithms are associated with the so-called parallel method: The algorithm of 

Kelley (1963) and the one of Brooks [cf. Bedworth / Bailey (1982)] which is also termed 

"Brooks algorithm" (BAG). Like in the majority of publications, the scheduling scheme as pro-

posed by Brooks is employed herein. 

The parallel scheduling scheme generates a feasible schedule by extending a partial schedule 

(i.e., a schedule where only a subset of the activities has been assigned a finish time) in a stage-
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wise fashion. There are at most J stages in each of which a set of activities (which might be 

empty) is scheduled. Associated with each stage n is a schedule time tn and three disjoint 

activity-sets: Activities which are completed up to the schedule time are in the complete set Cn. 

Activities which are already scheduled, but during the schedule time still active are in the active 

set A„. Finally, activities which are available for scheduling w.r.t. precedence and resource 

constraints but yet unscheduled are in the decision set Dn. The partial schedule of each stage is 

made up by the activities in the complete set and the active set. The schedule time of a stage 

equals the earliest completion time of activities in the active set of the ancestral stage. Each 

stage is made up of two steps: (1) The new schedule time is determined and activities with a 

finish time equal to the (new) schedule time are removed from the active set and put into the 

complete set. This, in tum, may place a number of activities into the decision set. (2) One 

activity from the decision set is selected with a priority rule (in case of ties the activity with the 

smallest label is chosen) and scheduled, respectively started, at the current schedule time. 

Afterwards, this activity is removed from the decision set and put into the active set. Step (2) is 

repeated until the decision set is empty, i.e. activities have been scheduled or are not longer 

available for scheduling w.r.t. resource constraints. The parallel method terminales when all 

activities are in the complete or active set. 

In order to provide a formal description of the parallel scheduling scheme we have to 

introduce the following notation for TcKr, the left over period capacity of the renewable 

resource type r at the schedule time tn, and Dn, the decision set: 

nKr:=Kr- £ kjr 

jeAn 

Dn := {j I j £ { C„uA„j, Pj c C„, kjr < nKr Vre R} 

Further, let v(j) be a priority value of activity j,j e Dn. Now, the parallel scheduling scheme 
can be described as follows: 

Initialisation: n:= 1, t„:=0, D„:={ 1}, A„:=Cn = 0, nKr=Kr V r e R, GOTO Step (2); 

WHILE \An w Cn| </DO Stage n 

BEGIN 
(1) tn := min { FTj | j e A„.i }; 

An •= A„.i \ {j | j e A„.i, FTj = t„ }; 
Cn := Cn-1 u {j | j 6 An.i, FTj = t„ }; 
COMPUTE 7iKr V r e R and Dn; 

(2) j* := min {j | v(j) = extremum v(i) }; 
j&Dn isDn 

FTj* := t„ + dj*; 
An ~A„^ {j*}; 
COMPUTE 7&Lr V r s R and Dn\ 
IF D„±0 THEN GOTO Step (2) ELSE n =n+1; 

END; 

Stop 
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3.2 Classical Priority Rules 

The first line of step (2) states that for each activity in the decision set a priority value v(j) is 

computed and the activity with the extremum (i.e. the maximum or minimum) priority value is 

selected. In case of ties, the activity with the smallest activity number is chosen. The number of 

priority rules proposed to calculate v is abundant. For the RCPSP, a review can be found in 

Lawrence (1985) and Alvarez-Valdes / Tamarit (1989a). 

Priority rules can be classified according to different criteria. It has to be hastened to say that 

the classes provided by these criteria are neither exhaustive nor exclusive and are just one way 

of characterising the abundance of rules presented. (i) A straightforward discrimination w.r.t. 

the Information processed, is to classify priority rules into network, time, and resource based 

priority rules [cf. Lawrence (1985) and Alvarez-Valdes / Tamarit (1989a)]. (ii) Another 

distinction is w.r.t. the dynamic nature of rules: Priority rules which return the same priority 

value for a certain activity - regardless of the stage they are performed in - are called statte, 

whereas priority rules which may produce different values are called dynamic. (iii) A fürther 

discrimination of priority rules is due to the amount of Information processed: Rules which 

employ a small amount of input, usually w.r.t. the activity under consideration only, are 

regarded to be local or myopic, while rules which make use of a large amount of Information 

are called global, (iv) Finally, priority rules can be classified into rules where the priority value 

is a lower bound or makes use of a lower bound on the one side and rules where no lower 

bound is part of the priority value on the other side. For Classification purposes we use the 
following notation alßlxls with a={N, T, R}, ß ={S, D), X = {L, G}, and ö ={B, -}. The capital 

letter uniquely identifies the characteristic via the bold letter of the adjective. 

In order to select the best classical priority rules the computational studies of Davis / 

Patterson (1975), Alvarez-Valdes / Tamarit (1989a), Valls et al. (1992), and Boctor (1990) 

have been analysed. Table 1 presents the priority rules which ranked among the three best rules 

in at least one of the studies. The first column contains the name and the abbreviation of the 

rule, the second column its o/y^/cJ-classification, the third column indicates if the activity with 

the maximum or minimum priority value is selected, and the last column gives the formal 

description of the rule. Additional to the notation already introduced, 5j (Sf) denotes the set of 

all (immediate) successors of activity j and LFTj (LSTj) denotes the Jätest ßnish time (tatest 

start time) of activity j as derived by traditional backward recursion [cf. Elmaghraby (1977)]. 

Note that for the parallel scheduling scheme the minimum slack priority rule (MSLK) equals 

the Jätest start time priority rule (LST) which has been proven by Davis / Patterson (1975). 

Table 2 summarises the ranking of the three best priority rules in all four publications, 

respectively, where a> b defines that priority rule a has a better Performance than rule b. 
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Priority Rule Classification extr. v(j) 

Most total successors (MTS) N /S/G/- max ßl 
Greatest rank positional weight (GRPW) N.T/S/G/- max dj+£di 

ieSj 

Latest finish time (LFT) N,T /S / G/B min LFTj 

Minimum slack (MSLK) N,T / D/G/B min LSTj - tn 

Table 1: The Best Classical Priority Rules 

Literature Ranking of Priority Rules 

Davis / Patterson (1975) 

Boctor (1990) 

Alvarez / Tamarit (1989a) 

Valls et al. (1992) 

MSLK x LFT > RSM 

MSLK >- L FT >- R SM 

GRPW >- L FT >- M TS 

MSLK >- G RPW x MTS 

Table 2: Ranking of Priority Rules in the Literature 

3.3 A Detailed Analysis of the RSM Priority Rule 

The only rule listed in Table 2 which is not considered in Table 1 is the so-called RSM 

priority rule. The fundamental idea of this classical priority rule stems from the disjunctive are 

based resource scheduling method (RSM) proposed in Shaffer et al. (1965). The RSM rule 

was considered in studies undertaken by Davis / Patterson (1975), Alvarez-Valdes / Tamarit 

(1989a), Boctor (1990), Valls et al. (1992), and Ulusoy / Özdamar (1989). The idea of the 

RSM rule is as follows: For each pair of activities i and j in the decision set, it is calculated 

how many periods activity / is delayed beyond its (precedence based) latest start time if it is 

scheduled after activity j. The activity j which induces the smallest delay of every other activity 

in the decision set is scheduled. In order to write the RSM rule formally we denote with APn 

the set of all activity pairs in the decision set at stage n, i.e. APn := { (ij) | j e Dn, i & j ). 

Now, the RSM priority value of activity j,j e Dn, is 

v(j) = max {0,tn + dj- LSTj | (ij) e AP„ } (5) 

and the activity with the minimum value is selected. Stated this way, the RSM priority rule 

implicitly makes use of the following assumption: For each pair of activities / and j, one activity 

has always to be delayed until the end of the other activity. Let us look at two examples in 

order to show that this assumption does not hold in general and hence might produce poor 

results: Consider the project displayed in Figure 1 where we have |i?|=l resource type with a 

period availability of K\=4 units and 6 activities. The associated latest start times derived by 

backward recursion from the earliest finish time of activity 6, i.e. LFT& = EFTß = 5, are given 

in Table 3. 



Figure 1: Example Project 

j 1 2 3 4 5 6 

0 3 1 2 0 5 

Table 3: Tatest Start Times for the Example Project 

At stage n=2 the following Situation arises: tn=0, nK\=4, Cn={ 1}, An=0, Dn={2,3,4,5}, and 

APW= {(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)}. The RSM priority value for activity 2 is calculated to 

v(2) = max {0, ti+di-LST^, ti+dj-LST^, ti+dj-LSTs) = max {0, 0+2-1, 0+2-2, 0+2-0} = max 

{0,1,0,2} =2. Presuming that the above stated assumption holds, scheduling activity 2 would 

induce a delay of two periods for the latest start time of activity 5. Obviously, this is not the 

case since each of the activity pairs containing activity 2, i.e. (2,3), (2,4), and (2,5), can be 

started simultaneously at the schedule time. 

Ki 

i 
4 

-> t 

Figure 2: Partial Schedule of the Example Project 

Let us now consider that activity 2 and 3 were scheduled and consequently at stage n= 2 the 
partial schedule is as shown by Figure 2, i.e. t„=0, JtK.\=2, Cn={ 1}, ^„={2,3}, Dn={4,5}, and 

APn={(4,5)}. Actually, at this stage the activity pair (4,5) in the decision set cannot be jointly 

started. The RSM priority values tum out to be v(4)=max {0, t2+d^-LSTs} =max {0,0+3-0} =3 

and v(5)=max {0,ti+ds-LST^} =max{0,0+5-2} =3. A look at Figure 3 reveals that scheduling 

activity 4 indeed forces activity 5 to be delayed until the end of activity 4, i.e. three periods 

beyond its latest start time as indicated by v(4). 
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Kl 

2 3 4 8 

Figure 3: Feasible Solution of the Example Project 

K i f 

2 4 5 7 

Figure 4: Optimal Solution of the Example Project 

But as can be seen in Figure 4, if activity 5 is scheduled, activity 4 is only postponed two 

periods beyond its latest start time. Hence, the assumption implicitly stated by the RSM pri

ority rule is associated with severe drawbacks. Consequently, the priority rule cannot suggest 

properly which activity has to be scheduled first. 

3.4 Three New Priority Rules for the RCPSP 

Let us now refine the RSM priority rule as follows: The set of activity pairs AP„ is divided 

into three disjoint subsets: The set of generally forbidden pairs (GFPn) contains activity pairs 

which - due to resource constraints - can never be scheduled simultaneously, the set of 

temporarily forbidden pairs (TFPn) contains pairs of activities which in general can be 

scheduled simultaneously but due to limited left over capacity cannot be scheduled 

simultaneously at the schedule time. Finally the set of currently schedulable pairs (CSPn) 

contains the activity pairs which can be scheduled simultaneously at the current schedule time. 
More formally, we denote: 

GFPn := {(ij) | (ij) e APn, 3 r e R : k ir + kjr > Kr } (6) 

TFPn := {(j,j) | (ij) 6 APn, (ij) £ GFP„, 3 r e R : kir + kjr > jtK.r } (7) 



-9-

CSP„ : = { (/, y) | (/, VrEÄ: ^ ^ } (8) 

Since we have three disjoint subsets APn = GFPn w TFPn u CSPn holds. Let us look at our 

example: At the beginning of stage n= 2 we have GFPn = TFPn = 0 and CSPn =APn= {(2,3), 

(2,4), (2,5), (3,4), (3,5), (4,5)}. After activities 2 and 3 were scheduled we have GFPn = 0, 
n?„=,4fa={(4,5)}, and CSf*=0. 

Obviously, the earliest time two activities of an activity pair can be started simultaneously is 

the schedule time tn if (ij) e CSP„ and oo if ( jj) e GFPn. The question is at what period the 

two activities of a pair can be scheduled simultaneously if they belong to the set TFPn. Let us 

consider the following: At stage n, ITr(ij), the earliest time the temporarily forbidden activity 

pair (i,j) can be processed simultaneously w.r.t. resource type r only, is given by 

n\ij) := min { r\ £ hr + nKr> kir + kjr, r= } (ij) s TFP„ (9) 
h eA„\FTh< t 

Then, II(;j), the earliest time to process two activities (z j) of a temporarily forbidden activity 

pair simultaneously w.r.t. to all resource types, arises to 

%;) := max { U\ij) | reü} (ij) e TFP„ (10) 

Now, we can define II (,-y), t he earliest time for any activity pair (ij) to be scheduled simulta

neously, as 

n (/,;) -
00, if(y) s Gff 
n(ij), if (y) G TFP (ij) e APn (11) 
f„, if(y) e C&P 

Consequently, for the activity pair (z'j), £(/,/), the earliest time to schedule activity /' if activity j 
is started at the schedule time tn, is given by 

E(j,i) •= min { t„ + dj, IT(/J) | (ij) e AP„ } (12) 

and E(jj), the earliest time to schedule activity j if activity i is started at the schedule time tn, is 
given by 

E(jj) := min {tn+ du | (ij) e AP„ } (13) 

Now, an improved RSM priority rule (IRSM) can be stated as follows: Schedule the activity 

j which induces the smallest increase of the precedence based lower bound for the not chosen 

activities in the decision set. That is, the IRSM priority value v(j) of activity j, j e Dn, is 
calculated as 

v(j) = max {0, E(jtl) - LSTj | (ij) e APn } (14) 

and the activity with the minimum value is selected. Note that we consider to start activity j, j 

e Dn, at the current schedule time and hence calculate EQJ) for all activities i, i e Dn with i*j. 
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Observation 1: If at stage n all activity pairs in the decision set are temporarily schedulable 

and none of the activities in the decision set has a latest start time which is smaller than the 

current schedule time, then the IRSM priority value for each activity is "0" and hence the 

activity in the decision set with the minimum label is selected. 

Proof: Since all activity pairs in the decision set are temporarily schedulable, on account of 

equation (8) we have APn=CSPn. Hence, equation (11) gives 

n(,,y) = 4, (U)EAP„ (15) 

Since dj > 0 holds for all j, (12) results in 

E(f,i)=tn (i,j) G APn (16) 

Furthermore, none of the activities in the decision set has a latest start time which is smaller 

than the current schedule time, i.e. 

IST) > (17) 

Substituting (16) into (14) yields 

v(/) = max {0, tn - LSTi | (ij) e AP„ } (18) 

and on account of (17) we have v(J) = 0 ,j &DnM 

Utilising EQJ) and combining it with the notion of slack another new priority rule can be 

formulated as follows: Schedule the activity j which - if not chosen - has the worst case slack 

(WCS). More formally, the WCS priority value of activity j,j e Dn, is calculated as 

v(j) = LSTj - max { EQJ) | (ij) e AP„ } (19) 

and the activity with the minimum value is selected. 

Observation 2: If at stage n all activity pairs in the decision set are temporarily schedulable, 

i.e. resources do not impose constraints, then WCS reduces to MSLK, the best of the classical 

priority rules (cf. Table 2). 

Proof: Since all activity pairs in the decision set are temporarily schedulable, on account of 

equation (8) we have APn=CSPn. Hence, equation (11) once more gives 

n(lj) = tn (ij) e APn (20) 

Since dj> 0 holds for all i, (13) results in 

E(U)= tn (/,j) e APn (21) 

Substituting (21) into (19) yields 

(22) 
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which equals the calculation of the MSLK priority value (cf. Table 1).B 

Employing the idea of Fadlalla et al. (1994) for the Single machine problem with average 

tardiness Performance measure we can propose the average gase slack priority rule (ACS). 

Here, the activity is selected which - if not chosen - has the largest average case slack value. 

Precisely, the ACS priority value of activity j,j e Dn, is calculated as 

v®=UTrwki (23) 
' 1 0J)eAP„ 

and the activity with the minimum value is scheduled. 

Observation 3: If at stage n all activity pairs in the decision set are temporarily schedulable 

then ACS reduces to MSLK too. 

Proof: Substituting (21) into (23) yields 

v(/) = LSTj - tn (24) 

which equals the calculation of the MSLK priority value (cf Table 1).B 

The three new priority rules are demonstrated by applying them to the example project of this 

section. Consider stage «=2 of the partial schedule depicted in Figure 2 with tn-0, TIK\=2, 

A„={2,3}, D„={4,5}. The set ofthe temporarily forbidden pairs arises to TFPn =APn={(4,5)}, 

i.e., activities 4 and 5 cannot be jointly started at the current schedule time tn. Consequently, 

the set of general forbidden pairs and the set of currently schedulable pairs are empty, i.e., 

GFPn=CSPn=0. Now, the earliest time to process activities 4 and 5 simultaneously is II45 = 

1154=4. Then, the earliest time to start activity 5, if activity 4 is scheduled at tj, is £(4^5)=min 

{*2+^4, Il54}=min{0+3,4}=3. Correspondingly, the earliest time to start activity 4 if activity 5 

is scheduled at (2 is £(5,4)=min{*2+^5, Il45}=min{0+5,4}=4. 

Hence, the values for the IRSM rule arise to v(4)=max {0,£(4,5)-LST5} =max {0,3-0} = 3 and 

v(5) = max {0, 4-2} =2, respectively. I.e., scheduling activity 4 (5) increases the precedence 

based lower makespan bound by 3 (2) periods. The IRSM rule chooses activity 5 to be started, 

which leads to the optimal Solution as depicted in Figure 4. 

Applying the WCS priority rule, the following priority values are calculated: v(4)=Z*ST4-max 

{£(5^)} =2-4 = -2 and v(5) = 0-3 = -3. That is, if activity 4 (5) is not scheduled at it has a 

negative slack of 2 (3) periods. Hence, the WCS priority rule also chooses activity 5 and thus 

derives the optimal Solution. 

Finally, since we have \Dn\=2 for the above example the ACS priority values are calculated 

like the WCS priority values. 

Table 4 provides an overview of the classical RSM rule and the three new priority rules pre-

sented in this section. 



Priority Rule extr. v(/> Classification 

Resource Scheduling Method (RSM) min max {0 ,tn + dj- LSTj | (ij) e AP„ } N,T /D/G/-

Impoved RSM (IRSM) min max {0, EQJ) - LSTt | (ij) e AP„ } N,T,R/D/G/B 

Worst Case Slack (WCS) min LSTj - max {E(,j) \ (i,j) <= AP„ } N,T,R/D/G/B 

Average Case Slack (ACS) min LSTJ'\D„ |-1 
^ ' (>J)eAPn 

N,T,R/D/G/B 

Table 4: RSM-based Priority Rules 

4. Computational Results 

In order to evaluate the classical and the new priority rules we employed two instance sets 

from the open literature. The first one is the well-known set of Patterson (1984) which was 

originally used to compare four exact Solution procedures for the RCPSP. A detailed 

description of this instance set can be found in Patterson (1984) and Demeulemeester / 

Herroelen (1992). Briefly, there are 110 problems, each with 7 to 50 activities. An activity 

requires between one and three resource types. For 103 problems each activity uses all three 

resource types. Since the Patterson-instances are widely known and accepted as benchmark 

problems they are employed in this study. However, there are two drawbacks associated with 

the instance set: Assembled from different sources the problems are not generated by using a 

controlled design. Furthermore, recent advances in the development of exact procedures [cf. 

Demelemeester / Herroelen (1992)] showed that the instances can be solved in an average 

CPU-time ofless than 1 second on a personal Computer. 

In order to have an instance set without the outlined deficiencies we also employed the 308 

resource-constrained problems of Kolisch et al. (1992). These instances stem from the 480 

problems which were originally generated with the parameter driven problem generator 

ProGen. Here, we neither considered the 120 resource-unconstrained problems nor the 52 

problems for which Kolisch et al. (1992) could not verify the optimal Solution. A detailed 

description of the instances can be found in Kolisch et al. (1992). Briefly, each problem 

consists of 32 activities and 4 resource types. Each activity requires between 1 and 4 resource 

types. Like the Patterson-instances, all 308 ProGen-problems were solved with the exact 

procedure of Demeulemeester / Herroelen (1992) to optimality. We implemented their C-code 

on a personal Computer with 803 6sx processor, mathematical coprocessor, and 15 MHz 

clockpulse. The average Solution time was 952,13 CPU-seconds and the maximum time did 

not exceed 3600 CPU-seconds. 

The parallel scheduling scheme and the 5 classical as well as 3 new priority rules have been 

coded in PASCAL and implemented on an IBM compatible personal Computer with 80386dx 

processor and 40 MHz clockpulse at the laboratory of the Christian-Albrechts-Universität zu 

Kiel. 
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4.1 Results for the ProGen-Instcmces 

Table 5 shows the mean (MEAN), the Standard deviation (STDDEV), and the maximum (MAX) 

percentage deviation from the optimal objective function value for each of the 8 priority rules, 

respectively. Furthermore, the number of optimal solutions (#OPT) and the average CPU-time 

in seconds (CPU) is denoted. The priority rules are listed w.r.t. to ascending MEAN. It can be 

seen that the three new priority rules WCS, ACS, and IRSM show better results than all other 

tested rules. Note that the Performance and the ranking of the classical rules obtained by our 

study is comparable to the results of other studies [cf. Davis / Patterson (1975) and Alvarez-

Valdes / Tamarit (1989a)]. 

MEAN STDDEV MAX #OPT CPU 

WCS 4,27 4,60 26,39 96 ,02 

ACS 4,57 4,94 32,81 94 ,02 

IRSM 4,66 4,83 27,03 95 ,02 

LFT 4,83 4,77 22,37 85 ,01 

MSLK 4,92 5,25 32,91 92 ,01 

RSM 5,67 5,05 22,22 72 ,02 

MTS 5,92 5,25 32,81 69 ,02 

GRPW 9,22 8,17 41,86 58 ,01 

Table 5 : Performance of Priority Rules for the ProGen-Instances 

ACS IRSM LFT 
S = B 

MSLK RSM MTS 
5= -

GRPW 

WCS ,179 ,0409 ,0006 ,0001 ,0000 ,0000 ,0000 

ACS ,5069 ,0935 ,0046 ,0000 .0000 ,0000 

IRSM ,3513 ,2790 ,0000 ,0000 ,0000 

LFT ,9020 .0000 ,0000 ,0000 

MSLK .0005 ,0000 ,0000 

RSM ,5451 ,0000 

MTS ,0000 

Table 6: 2-tailed Wilcoxon Matched-Pairs Signed-Ranks Test for the ProGen-Instances 

In order to test the significance of the results, we performed the 2-tailed Wilcoxon matched-

pairs signed-ranks test for each pair of priority rules (we did not apply the t-test since for none 

of the priority rules the percentage deviation from the optimal Solution was normally 

distributed). Table 6 shows the confidence levels for each pair of priority rules. Hatched Gelds 

signal that there is a significant difference between two rules at the 1%-level of confidence, i.e. 

p < 0.01. It can be stated that the WCS-rule significantly outperforms all classical priority 



- 14 -

rules. Also, all new RSM-based mies are significantly better than the original RSM priority 

rule. Another interesting finding is that there are two disjoint classes: Lower bound based 

rules, i.e. WCS, ACS, IRSM, LFT, and MSLK, and priority rules which do not make use of a 

lower bound. Each rule of the first class significantly outperforms every rule in the other class. 

4.2 Results for the Patterson-instances 

Table 7 and 8 present the results for the Patterson-instances. With one exception (LFT and 

MSLK) the ranking of the priority rules is identical to the one derived for the ProGen-

instances. Applying the Wilcoxon test to the Patterson-instances the discrimination between 

lower bound based rules and other rules was not as distinctive as for the ProGen-instances. All 

other results were comparable to the ones already obtained with the ProGen-set. 

ME AN STDDEV MAX #OPT CPU 

WCS 3,71 4,13 16,67 42 ,02 

ACS 4,12 4,44 22,22 37 ,02 

IRSM 4,53 4,76 19,51 33 ,01 

MSLK 5,0 5,68 23,68 34 ,01 

LFT 5,68 5,25 21,95 30 ,01 

RSM 6,24 5,3 21,05 22 ,01 

MTS 6,65 4,8 21,05 20 ,02 

GRPW 9,47 7,96 42,11 22 ,01 

Table 7: Performance of Priority Rules for the Patterson-instances 

ACS IRSM MSLK LFT RSM MTS GRPW 

WCS ,0575 ,0714 .0012 ,0000 .0000 .0000 ,0000 

ACS ,3156 ,0280 ,0010 ,0000 ,0000 ,0000 

IRSM ,5789 ,0096 .0000 ,0000 .0000 

MSLK ,1543 ,0090 ,0036 ,0000 

LFT ,2514 ,0278 ,0000 

RSM ,4255 ,0000 

MTS ,0002 

Table 8: 2-tailed Wilcoxon Matched-Pairs Signed-Ranks Test for the Patterson-instances 

Table 9 gives a direct comparison of the ME AN for the two instance-sets. For each priority 

rule the hatched field indicates the instance set on which a better Performance was obtained. 

From the results of optimal procedures [cf. Demeulemeester / Herroelen (1992)] it is expected 

that the Performance is better for the Patterson-instances. But this holds only for the new 
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priority rules while the classical priority rules perform better on the ProGen-instances. Hence, 

the new priority rules are even more superior when considering the Patterson-instances. 

WCS ACS IRSM LFT MSLK RSM MTS GRPW MEAN 

ProGen 4,27 

Patterson 3,71 

4,57 

4.12 

4,66 

4,53 

4,83 

5,68 

4,92 

50 

5,6? 

6,24 

5,92 

6,65 

9,22 

9,47 

5,50 

5,67 

Table 9: Comparison of the Results for the ProGen- and the Patterson-instances 

4.3 Effect of Problem Parameters on the Performance of Priority Rules 

In the last two subsections it has been shown that the new priority rules outperform the 

classical priority rules. An interesting question is if this holds for all types of instances or only 

for a certain class of problems. For classical rules Kolisch (1994a,b) found out that the ranking 

of priority rules is not significantly altered by different problem classes. In order to obtain 

insight for the new priority rules we have once more employed the ProGen-instances. As 

oulined in the beginning of Section 4, the problems were generated by a controlled design of 

specified problem parameters. Three problem parameters were employed [for details cf. 

Kolisch et al. (1992)]: (i) The network complexity (NC) is the ratio of non-redundant 

precedence relations to the number of activities. (ii) The resource factor (RF) reflects the 

density ofthe two dimensional array kjr,j=2,...,J-\ and r=l,...,\R\. That is, for RF=l each non-

dummy activity requests the füll complement of the [i?| resource types while for RF= 0 none of 

the activities requests any of the resource types. (iii) Finally, the resource strength (RS) 

measures the degree of resource-constrainedness in the interval [0,1]. For each resource type r, 
r e R, the resource strength is computed as follows: RS=(Kr-Krmin)l(Krmax-Krmin), where 

Krmm is the minimal availability of resource type r in order to assure feasibility of the RCPSP, 

i.e. Krmin = max {kjr\j=\,...,J}, and Krmax is the peak demand of resource type r in a CPM-

schedule. That is, for RS=l we have the resource-unconstrained CPM-case, while for RS=0 we 

have a highly resource constrained problem. The following levels of the problem parameters 

were chosen: NC= {1,5; 1,8; 2,1 },RF= {0,25; 0,5; 0,75; 1}, and RS = {0,2; 0,5; 0,7}. 

Figures 5 to 7 show the single-factor efFects of the problem parameters on MEAN. It can be 

seen that there are no major alternations within the ranking of the priority rules. Furthermore, 

the new priority rules show for all problem parameter settings the best results. Especially WCS 

does always perform best regardless of the adjustment of the problem parameters. Hence, we 

can conclude that the new priority rules and especially WCS are highly suitable to solve all 

types of RCPSP instances. 
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MEAN 

10 

9 
GRPW 

> MTS 

*RSM 
——0 MSLK 

IRSM, ACS, LFT 

NC 1.5 1.8 2.1 

Figure 5: Effect of the Network Complexity (NC) on the Performance of Priority Rules 

MEAN 

--GRPW 

MTS 
«RSM 

LFT 
ci IRSM, MSLK 

ACS 
WCS 

RF 0.25 0.5 0.75 1 

Figure 6: Effect of the Resource Factor (RF) on the Performance of Priority Rules 

MEAN 

Figure 7: Effect of the Resource Strength (RS) on the Performance of Priority Rules 
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5. Conclusions 

In this paper we have reviewed the best classical priority rules available in the open literature 

for scheduling a project to minimise its total duration subject to technological precedence 

constraints and resource constraints. A detailed analysis of the well-known RSM priority rule 

was the stepping stone for the development of three new priority rules. By a thorough 

computational study with two instance-sets from the literature it has been shown that the new 

rules outperform all other rules proposed so far. Even more, the best one of the new rules, the 

so-called WCS priority rule, is on both instance-sets significantly superior to all other priority 

rules. Hence, this priority rule should serve as the backbone for sophisticated local search 

heuristics in order to solve the resource constrained project scheduling problem of all problem 

sizes close to optimality. 
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