
Kolisch, Rainer

Working Paper — Digitized Version

Efficient priority rules for the resource-constrained project
scheduling problem

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 350

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Kolisch, Rainer (1994) : Efficient priority rules for the resource-constrained
project scheduling problem, Manuskripte aus den Instituten für Betriebswirtschaftslehre der
Universität Kiel, No. 350, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/155422

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/155422
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

No. 350

Efficient Priority Rules for the Resource-

Constrained Project Scheduling Problem

Rainer Kolisch

August 1994

Rainer Kolisch, Institut für Betriebswirtschaftslehre, Lehrstuhl für Produktion und Logistik,
Christian-Albrechts-Universität zu Kiel, Ohlshausenstr. 40, D-24118 Kiel,

Fax +49-431-880-2072, E-Mail kolisch@bwl.uni-kiel.de

- 1 -

Abstract: We review the well-known RSM priority rule to solve the resource constrained
project scheduling problem. A detailed analysis of this rule reveals that it is based on as-
sumptions which do not hold in general and hence might lead to poor solutions. Consequently,
an improved RSM priority rule is derived. Furthermore, two new priority rules are developed
which extend the well-known precedence based minimum slack priority rule (MSLK) to a
precedence and resource based slack priority rule, respectively. An experimental investigation
on the basis of two instance-sets from the open literature shows that the new rules outperform
all other priority rules which were proposed so far.

Keywords: RESOURCE-CONSTRAINED PROJECT SCHEDULING; PARALLEL SCHEDULING
SCHEME; PRIORITY RULES; SINGLE-PASS HEURISTICS; EXPERIMENTAL EVALUATION.

1. Introduction

The classical resource-constrained project scheduling problem (RCPSP) can be stated as

follows: We consider a single project which consists ofactivities with a non-preempt-

able duration of dj periods, respectively. The activities are interrelated by two kinds of con-

straints: Precedence constraints - as known from traditional CPM-analysis - force an activity

not to be started before all its predecessors are finished. Additionally, resource constraints arise

as follows: In order to be processed, activity j requires kjr units of resource type r e R during

every period of its duration. Since resource r is only available with the constant period

availability of Kr units for each period, activities might not be scheduled at their earliest

(precedence feasible) Start time but later. The objective of the RCPSP is to schedule the activi

ties such that precedence and resource constraints are obeyed and the makespan of the project

is minimised.

Due to its generality the RCPSP is probably one of the most important scheduling problems.

Applications of the RCPSP ränge from project scheduling with the special case CPM to

manufacturing where single machine, multiple machines, flow shop, and job shop problems are

considered. Furthermore, Leon / Wu (1993) report on applications of the RCPSP to real-time

scheduling of automated manufacturing systems and Drexl / Kolisch (1994) show how the

RCPSP is embedded into a Leitstand-system.

This paper focuses on the use of priority rules in order to solve the RCPSP in a fast and effi-

cient manner. The remainder is organised as follows: Section 2 gives a formal model of the

RCPSP as well as an overview of the available Solution procedures. Section 3 presents the

parallel scheduling scheine as a framework for priority rules to solve the RCPSP. Based on a

Classification scheme, classical priority rules are introduced afterwards. One of these rules, the

well-known resource scheduling method (RSM) priority rule is analysed in detail. This leads to

three new rules which are presented formally and by the use of an example. Section 4 is

devoted to an experimental evaluation on the basis of two instance-sets from the open

literature. The results show that the new rules outperform the classical priority rules. By

employing Statistical tests, we verify that the best new rule is significantly better than all other

classical rules. Finally, Section 5 is concemed with overall conclusions.

- 2 -

2. Problem Formulation and Solution Procedures

In order to model the RCPSP we make use of the following additional notation: Let Pj define

the set of immediate predecessors of activity j. For ease of notation the activities are topologi-

cally ordered, i.e. each predecessor of activity j has a smaller number than j. Furthermore, ac

tivity 7=1 (j=J) is defined to be the unique dummy source (sink) and T denotes an upper bound

on the project's makespan. Now, a conceptual model of the RCPSP can be formulated as fol-

lows [cf. Talbot / Patterson (1978)]:

Min FTj (1)

subject to

(2)

Zkjr<Kr r <=R, t=\,...,T (3)
jeAt

FTj> 0 (4)

The variable FTj denotes the (integer valued) finish times of activity and At, the

set of activities being in progress in period t, is defined as At := {j \j=\,...,J, FTj-dj+\ < t <

FTj}. The objective function (1) minimises the completion time of the unique sink and thus the

makespan of the project. Constraints (2) take into consideration the precedence relations bet-

ween each pair of activities (/', j), where i immediately precedes j. Finally, constraint set (3)

limits the total resource usage within each period to the available amount. Note that (1) to (4)

provide no mechanism in order to identify At and hence the problem formulation is not amena-

ble to Solution via integer programming techniques. To overcome this deficiency, the RCPSP

has to be modelled with 0-1 variables as outlined in Pritsker et al. (1969).

The RCPSP is a generalisation of the static job shop problem and hence belongs to the class

of TVP-hard problems [cf. Blazewicz et al. (1983)]. On account of the inherent intractabil-

ity of the RCPSP, a multitude of exact and heuristic approaches were proposed:

Optimal procedures are dynamic programming [cf. Carruthers / Battersby (1966)], zero-

one programming [cf. Bowman (1959), Pritsker et al. (1969), Patterson / Huber (1974),

Patterson / Roth (1976)], as well as implicit enumeration with branch and bound [cf. Balas

(1971), Davis / Heidorn (1971), Hastings (1972), Radermacher (1985/86), Stinson et al.

(1978), Talbot / Patterson (1978), Christofides et al. (1987), Bell / Park (1990), Carlier /

Latapie (1991), Demeulemeester / Herroelen (1992)]. Currently, the branch and bound ap-

proach of Demeulemeester and Herroelen (1992) seems to be the most powerful optimal pro-

cedure available.

With the pioneering works of Kelley (1963) and Brooks [cf. Bedworth / Bailey (1982)] pri-

ority rules marked the beginning of heuristic methods able to solve the RCPSP. In the follow

ing years a multitude of new priority rules were proposed and tested experimentally [cf. Pascoe

-3 -

(1966), Müller-Merbach (1967), Gonguet (1969), Cooper (1976, 1977), Davies (1973),

Patterson (1973), Davis / Patterson (1975), Thesen (1976), Patterson (1976), Whitehouse /

Brown (1979), Elsayed (1982), Lawrence (1985), Ulusoy / Özdamar (1989), Alvarez-Tamarit

(1989a,b), Boctor (1990), and Valls et al. (1992)]. Recently, the research interests shifted to

more elaborate heuristics like truncated branch and bound [cf. Alvarez-Valdes / Tamarit

(1989a)], integer programming based heuristics [cf. Oguz / Bala (1994)], disjunctive arc

concepts [cf. Shaßer et al. (1965), Alvarez-Valdes / Tamarit (1989a), Bell / Han (1991)], and

local search techniques [cf. Sampson / Weiss (1993) and Balakrishnan / Leon (1993)]. With an

- in terms of the employed CPU-time - greater effort these heuristics derive superior solutions

than simple priority rule procedures.
Nevertheless, for several reasons priority rules are utmost important in order to solve the

RCPSP: (i) They are the core of new highly efficient local search based heuristics. E.g., based

on the idea of Storer et al. (1992), Balakrishnan / Leon (1993) devised a local search proce-

dure which repeatedly employs a priority rule in order to obtain solutions with perturbed input

data. Within sampling heuristics [cf. Levy et al. (1962), Wiest (1967), Cooper (1976), Alvarez-

Tamarit (1989b), and Kolisch (1994a)] the priority values of the schedulable activities are bi-

ased. That way different solutions can be generated and the Solution with the best objective

function value is selected. It is intuitive and was experimentally backed up by Kolisch (1994b)

that the Performance of sampling heuristics depends on the goodness of the priority rule em

ployed. (ii) Commercial project management and scheduling Software [e.g., MS-Project, CA-

Superproject, etc.] make use of priority rules in order to rapidly derive feasible schedules in the

presence of resource constraints. (iii) Finally, priority rules have to be employed when very

large projects with more than 1000 activities have to be solved in a fast manner [cf. Valls et al.

(1992)]. Hence, it can be summarised that there is a great need for good priority rules.

3. Classical and New Priority Rules for the RCPSP

Generally, a priority rule based scheduling heuristic is made up of two components, a

schedule generation scheme and a priority rule. Two different schemes can be distinguished:

The so-called serial and the parallel scheduling scheme (where we use the terms scheme and

method synonymously). Kolisch (1994b) showed that - when considering a regulär measure of

Performance - for single pass procedures (as studied in this paper) the parallel method is

superior to the serial method. Hence, we restrict our focus to the parallel method.

3.1 The Parallel Scheduling Scheme

Today, two algorithms are associated with the so-called parallel method: The algorithm of

Kelley (1963) and the one of Brooks [cf. Bedworth / Bailey (1982)] which is also termed

"Brooks algorithm" (BAG). Like in the majority of publications, the scheduling scheme as pro-

posed by Brooks is employed herein.

The parallel scheduling scheme generates a feasible schedule by extending a partial schedule

(i.e., a schedule where only a subset of the activities has been assigned a finish time) in a stage-

- 4 -

wise fashion. There are at most J stages in each of which a set of activities (which might be

empty) is scheduled. Associated with each stage n is a schedule time tn and three disjoint

activity-sets: Activities which are completed up to the schedule time are in the complete set Cn.

Activities which are already scheduled, but during the schedule time still active are in the active

set A„. Finally, activities which are available for scheduling w.r.t. precedence and resource

constraints but yet unscheduled are in the decision set Dn. The partial schedule of each stage is

made up by the activities in the complete set and the active set. The schedule time of a stage

equals the earliest completion time of activities in the active set of the ancestral stage. Each

stage is made up of two steps: (1) The new schedule time is determined and activities with a

finish time equal to the (new) schedule time are removed from the active set and put into the

complete set. This, in tum, may place a number of activities into the decision set. (2) One

activity from the decision set is selected with a priority rule (in case of ties the activity with the

smallest label is chosen) and scheduled, respectively started, at the current schedule time.

Afterwards, this activity is removed from the decision set and put into the active set. Step (2) is

repeated until the decision set is empty, i.e. activities have been scheduled or are not longer

available for scheduling w.r.t. resource constraints. The parallel method terminales when all

activities are in the complete or active set.

In order to provide a formal description of the parallel scheduling scheme we have to

introduce the following notation for TcKr, the left over period capacity of the renewable

resource type r at the schedule time tn, and Dn, the decision set:

nKr:=Kr- £ kjr

jeAn

Dn := {j I j £ { C„uA„j, Pj c C„, kjr < nKr Vre R}

Further, let v(j) be a priority value of activity j,j e Dn. Now, the parallel scheduling scheme
can be described as follows:

Initialisation: n:= 1, t„:=0, D„:={ 1}, A„:=Cn = 0, nKr=Kr V r e R, GOTO Step (2);

WHILE \An w Cn| </DO Stage n

BEGIN
(1) tn := min { FTj | j e A„.i };

An •= A„.i \ {j | j e A„.i, FTj = t„ };
Cn := Cn-1 u {j | j 6 An.i, FTj = t„ };
COMPUTE 7iKr V r e R and Dn;

(2) j* := min {j | v(j) = extremum v(i) };
j&Dn isDn

FTj* := t„ + dj*;
An ~A„^ {j*};
COMPUTE 7&Lr V r s R and Dn\
IF D„±0 THEN GOTO Step (2) ELSE n =n+1;

END;

Stop

- 5 -

3.2 Classical Priority Rules

The first line of step (2) states that for each activity in the decision set a priority value v(j) is

computed and the activity with the extremum (i.e. the maximum or minimum) priority value is

selected. In case of ties, the activity with the smallest activity number is chosen. The number of

priority rules proposed to calculate v is abundant. For the RCPSP, a review can be found in

Lawrence (1985) and Alvarez-Valdes / Tamarit (1989a).

Priority rules can be classified according to different criteria. It has to be hastened to say that

the classes provided by these criteria are neither exhaustive nor exclusive and are just one way

of characterising the abundance of rules presented. (i) A straightforward discrimination w.r.t.

the Information processed, is to classify priority rules into network, time, and resource based

priority rules [cf. Lawrence (1985) and Alvarez-Valdes / Tamarit (1989a)]. (ii) Another

distinction is w.r.t. the dynamic nature of rules: Priority rules which return the same priority

value for a certain activity - regardless of the stage they are performed in - are called statte,

whereas priority rules which may produce different values are called dynamic. (iii) A fürther

discrimination of priority rules is due to the amount of Information processed: Rules which

employ a small amount of input, usually w.r.t. the activity under consideration only, are

regarded to be local or myopic, while rules which make use of a large amount of Information

are called global, (iv) Finally, priority rules can be classified into rules where the priority value

is a lower bound or makes use of a lower bound on the one side and rules where no lower

bound is part of the priority value on the other side. For Classification purposes we use the
following notation alßlxls with a={N, T, R}, ß ={S, D), X = {L, G}, and ö ={B, -}. The capital

letter uniquely identifies the characteristic via the bold letter of the adjective.

In order to select the best classical priority rules the computational studies of Davis /

Patterson (1975), Alvarez-Valdes / Tamarit (1989a), Valls et al. (1992), and Boctor (1990)

have been analysed. Table 1 presents the priority rules which ranked among the three best rules

in at least one of the studies. The first column contains the name and the abbreviation of the

rule, the second column its o/y^/cJ-classification, the third column indicates if the activity with

the maximum or minimum priority value is selected, and the last column gives the formal

description of the rule. Additional to the notation already introduced, 5j (Sf) denotes the set of

all (immediate) successors of activity j and LFTj (LSTj) denotes the Jätest ßnish time (tatest

start time) of activity j as derived by traditional backward recursion [cf. Elmaghraby (1977)].

Note that for the parallel scheduling scheme the minimum slack priority rule (MSLK) equals

the Jätest start time priority rule (LST) which has been proven by Davis / Patterson (1975).

Table 2 summarises the ranking of the three best priority rules in all four publications,

respectively, where a> b defines that priority rule a has a better Performance than rule b.

-6-

Priority Rule Classification extr. v(j)

Most total successors (MTS) N /S/G/- max ßl
Greatest rank positional weight (GRPW) N.T/S/G/- max dj+£di

ieSj

Latest finish time (LFT) N,T /S / G/B min LFTj

Minimum slack (MSLK) N,T / D/G/B min LSTj - tn

Table 1: The Best Classical Priority Rules

Literature Ranking of Priority Rules

Davis / Patterson (1975)

Boctor (1990)

Alvarez / Tamarit (1989a)

Valls et al. (1992)

MSLK x LFT > RSM

MSLK >- L FT >- R SM

GRPW >- L FT >- M TS

MSLK >- G RPW x MTS

Table 2: Ranking of Priority Rules in the Literature

3.3 A Detailed Analysis of the RSM Priority Rule

The only rule listed in Table 2 which is not considered in Table 1 is the so-called RSM

priority rule. The fundamental idea of this classical priority rule stems from the disjunctive are

based resource scheduling method (RSM) proposed in Shaffer et al. (1965). The RSM rule

was considered in studies undertaken by Davis / Patterson (1975), Alvarez-Valdes / Tamarit

(1989a), Boctor (1990), Valls et al. (1992), and Ulusoy / Özdamar (1989). The idea of the

RSM rule is as follows: For each pair of activities i and j in the decision set, it is calculated

how many periods activity / is delayed beyond its (precedence based) latest start time if it is

scheduled after activity j. The activity j which induces the smallest delay of every other activity

in the decision set is scheduled. In order to write the RSM rule formally we denote with APn

the set of all activity pairs in the decision set at stage n, i.e. APn := { (ij) | j e Dn, i & j).

Now, the RSM priority value of activity j,j e Dn, is

v(j) = max {0,tn + dj- LSTj | (ij) e AP„ } (5)

and the activity with the minimum value is selected. Stated this way, the RSM priority rule

implicitly makes use of the following assumption: For each pair of activities / and j, one activity

has always to be delayed until the end of the other activity. Let us look at two examples in

order to show that this assumption does not hold in general and hence might produce poor

results: Consider the project displayed in Figure 1 where we have |i?|=l resource type with a

period availability of K\=4 units and 6 activities. The associated latest start times derived by

backward recursion from the earliest finish time of activity 6, i.e. LFT& = EFTß = 5, are given

in Table 3.

Figure 1: Example Project

j 1 2 3 4 5 6

0 3 1 2 0 5

Table 3: Tatest Start Times for the Example Project

At stage n=2 the following Situation arises: tn=0, nK\=4, Cn={ 1}, An=0, Dn={2,3,4,5}, and

APW= {(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)}. The RSM priority value for activity 2 is calculated to

v(2) = max {0, ti+di-LST^, ti+dj-LST^, ti+dj-LSTs) = max {0, 0+2-1, 0+2-2, 0+2-0} = max

{0,1,0,2} =2. Presuming that the above stated assumption holds, scheduling activity 2 would

induce a delay of two periods for the latest start time of activity 5. Obviously, this is not the

case since each of the activity pairs containing activity 2, i.e. (2,3), (2,4), and (2,5), can be

started simultaneously at the schedule time.

Ki

i
4

-> t

Figure 2: Partial Schedule of the Example Project

Let us now consider that activity 2 and 3 were scheduled and consequently at stage n= 2 the
partial schedule is as shown by Figure 2, i.e. t„=0, JtK.\=2, Cn={ 1}, ^„={2,3}, Dn={4,5}, and

APn={(4,5)}. Actually, at this stage the activity pair (4,5) in the decision set cannot be jointly

started. The RSM priority values tum out to be v(4)=max {0, t2+d^-LSTs} =max {0,0+3-0} =3

and v(5)=max {0,ti+ds-LST^} =max{0,0+5-2} =3. A look at Figure 3 reveals that scheduling

activity 4 indeed forces activity 5 to be delayed until the end of activity 4, i.e. three periods

beyond its latest start time as indicated by v(4).

- 8 -

Kl

2 3 4 8

Figure 3: Feasible Solution of the Example Project

K i f

2 4 5 7

Figure 4: Optimal Solution of the Example Project

But as can be seen in Figure 4, if activity 5 is scheduled, activity 4 is only postponed two

periods beyond its latest start time. Hence, the assumption implicitly stated by the RSM pri

ority rule is associated with severe drawbacks. Consequently, the priority rule cannot suggest

properly which activity has to be scheduled first.

3.4 Three New Priority Rules for the RCPSP

Let us now refine the RSM priority rule as follows: The set of activity pairs AP„ is divided

into three disjoint subsets: The set of generally forbidden pairs (GFPn) contains activity pairs

which - due to resource constraints - can never be scheduled simultaneously, the set of

temporarily forbidden pairs (TFPn) contains pairs of activities which in general can be

scheduled simultaneously but due to limited left over capacity cannot be scheduled

simultaneously at the schedule time. Finally the set of currently schedulable pairs (CSPn)

contains the activity pairs which can be scheduled simultaneously at the current schedule time.
More formally, we denote:

GFPn := {(ij) | (ij) e APn, 3 r e R : k ir + kjr > Kr } (6)

TFPn := {(j,j) | (ij) 6 APn, (ij) £ GFP„, 3 r e R : kir + kjr > jtK.r } (7)

-9-

CSP„ : = { (/, y) | (/, VrEÄ: ^ ^ } (8)

Since we have three disjoint subsets APn = GFPn w TFPn u CSPn holds. Let us look at our

example: At the beginning of stage n= 2 we have GFPn = TFPn = 0 and CSPn =APn= {(2,3),

(2,4), (2,5), (3,4), (3,5), (4,5)}. After activities 2 and 3 were scheduled we have GFPn = 0,
n?„=,4fa={(4,5)}, and CSf*=0.

Obviously, the earliest time two activities of an activity pair can be started simultaneously is

the schedule time tn if (ij) e CSP„ and oo if (jj) e GFPn. The question is at what period the

two activities of a pair can be scheduled simultaneously if they belong to the set TFPn. Let us

consider the following: At stage n, ITr(ij), the earliest time the temporarily forbidden activity

pair (i,j) can be processed simultaneously w.r.t. resource type r only, is given by

n\ij) := min { r\ £ hr + nKr> kir + kjr, r= } (ij) s TFP„ (9)
h eA„\FTh< t

Then, II(;j), the earliest time to process two activities (z j) of a temporarily forbidden activity

pair simultaneously w.r.t. to all resource types, arises to

%;) := max { U\ij) | reü} (ij) e TFP„ (10)

Now, we can define II (,-y), t he earliest time for any activity pair (ij) to be scheduled simulta

neously, as

n (/,;) -
00, if(y) s Gff
n(ij), if (y) G TFP (ij) e APn (11)
f„, if(y) e C&P

Consequently, for the activity pair (z'j), £(/,/), the earliest time to schedule activity /' if activity j
is started at the schedule time tn, is given by

E(j,i) •= min { t„ + dj, IT(/J) | (ij) e AP„ } (12)

and E(jj), the earliest time to schedule activity j if activity i is started at the schedule time tn, is
given by

E(jj) := min {tn+ du | (ij) e AP„ } (13)

Now, an improved RSM priority rule (IRSM) can be stated as follows: Schedule the activity

j which induces the smallest increase of the precedence based lower bound for the not chosen

activities in the decision set. That is, the IRSM priority value v(j) of activity j, j e Dn, is
calculated as

v(j) = max {0, E(jtl) - LSTj | (ij) e APn } (14)

and the activity with the minimum value is selected. Note that we consider to start activity j, j

e Dn, at the current schedule time and hence calculate EQJ) for all activities i, i e Dn with i*j.

-10-

Observation 1: If at stage n all activity pairs in the decision set are temporarily schedulable

and none of the activities in the decision set has a latest start time which is smaller than the

current schedule time, then the IRSM priority value for each activity is "0" and hence the

activity in the decision set with the minimum label is selected.

Proof: Since all activity pairs in the decision set are temporarily schedulable, on account of

equation (8) we have APn=CSPn. Hence, equation (11) gives

n(,,y) = 4, (U)EAP„ (15)

Since dj > 0 holds for all j, (12) results in

E(f,i)=tn (i,j) G APn (16)

Furthermore, none of the activities in the decision set has a latest start time which is smaller

than the current schedule time, i.e.

IST) > (17)

Substituting (16) into (14) yields

v(/) = max {0, tn - LSTi | (ij) e AP„ } (18)

and on account of (17) we have v(J) = 0 ,j &DnM

Utilising EQJ) and combining it with the notion of slack another new priority rule can be

formulated as follows: Schedule the activity j which - if not chosen - has the worst case slack

(WCS). More formally, the WCS priority value of activity j,j e Dn, is calculated as

v(j) = LSTj - max { EQJ) | (ij) e AP„ } (19)

and the activity with the minimum value is selected.

Observation 2: If at stage n all activity pairs in the decision set are temporarily schedulable,

i.e. resources do not impose constraints, then WCS reduces to MSLK, the best of the classical

priority rules (cf. Table 2).

Proof: Since all activity pairs in the decision set are temporarily schedulable, on account of

equation (8) we have APn=CSPn. Hence, equation (11) once more gives

n(lj) = tn (ij) e APn (20)

Since dj> 0 holds for all i, (13) results in

E(U)= tn (/,j) e APn (21)

Substituting (21) into (19) yields

(22)

-11 -

which equals the calculation of the MSLK priority value (cf. Table 1).B

Employing the idea of Fadlalla et al. (1994) for the Single machine problem with average

tardiness Performance measure we can propose the average gase slack priority rule (ACS).

Here, the activity is selected which - if not chosen - has the largest average case slack value.

Precisely, the ACS priority value of activity j,j e Dn, is calculated as

v®=UTrwki (23)
' 1 0J)eAP„

and the activity with the minimum value is scheduled.

Observation 3: If at stage n all activity pairs in the decision set are temporarily schedulable

then ACS reduces to MSLK too.

Proof: Substituting (21) into (23) yields

v(/) = LSTj - tn (24)

which equals the calculation of the MSLK priority value (cf Table 1).B

The three new priority rules are demonstrated by applying them to the example project of this

section. Consider stage «=2 of the partial schedule depicted in Figure 2 with tn-0, TIK\=2,

A„={2,3}, D„={4,5}. The set ofthe temporarily forbidden pairs arises to TFPn =APn={(4,5)},

i.e., activities 4 and 5 cannot be jointly started at the current schedule time tn. Consequently,

the set of general forbidden pairs and the set of currently schedulable pairs are empty, i.e.,

GFPn=CSPn=0. Now, the earliest time to process activities 4 and 5 simultaneously is II45 =

1154=4. Then, the earliest time to start activity 5, if activity 4 is scheduled at tj, is £(4^5)=min

{*2+^4, Il54}=min{0+3,4}=3. Correspondingly, the earliest time to start activity 4 if activity 5

is scheduled at (2 is £(5,4)=min{*2+^5, Il45}=min{0+5,4}=4.

Hence, the values for the IRSM rule arise to v(4)=max {0,£(4,5)-LST5} =max {0,3-0} = 3 and

v(5) = max {0, 4-2} =2, respectively. I.e., scheduling activity 4 (5) increases the precedence

based lower makespan bound by 3 (2) periods. The IRSM rule chooses activity 5 to be started,

which leads to the optimal Solution as depicted in Figure 4.

Applying the WCS priority rule, the following priority values are calculated: v(4)=Z*ST4-max

{£(5^)} =2-4 = -2 and v(5) = 0-3 = -3. That is, if activity 4 (5) is not scheduled at it has a

negative slack of 2 (3) periods. Hence, the WCS priority rule also chooses activity 5 and thus

derives the optimal Solution.

Finally, since we have \Dn\=2 for the above example the ACS priority values are calculated

like the WCS priority values.

Table 4 provides an overview of the classical RSM rule and the three new priority rules pre-

sented in this section.

Priority Rule extr. v(/> Classification

Resource Scheduling Method (RSM) min max {0 ,tn + dj- LSTj | (ij) e AP„ } N,T /D/G/-

Impoved RSM (IRSM) min max {0, EQJ) - LSTt | (ij) e AP„ } N,T,R/D/G/B

Worst Case Slack (WCS) min LSTj - max {E(,j) \ (i,j) <= AP„ } N,T,R/D/G/B

Average Case Slack (ACS) min LSTJ'\D„ |-1
^ ' (>J)eAPn

N,T,R/D/G/B

Table 4: RSM-based Priority Rules

4. Computational Results

In order to evaluate the classical and the new priority rules we employed two instance sets

from the open literature. The first one is the well-known set of Patterson (1984) which was

originally used to compare four exact Solution procedures for the RCPSP. A detailed

description of this instance set can be found in Patterson (1984) and Demeulemeester /

Herroelen (1992). Briefly, there are 110 problems, each with 7 to 50 activities. An activity

requires between one and three resource types. For 103 problems each activity uses all three

resource types. Since the Patterson-instances are widely known and accepted as benchmark

problems they are employed in this study. However, there are two drawbacks associated with

the instance set: Assembled from different sources the problems are not generated by using a

controlled design. Furthermore, recent advances in the development of exact procedures [cf.

Demelemeester / Herroelen (1992)] showed that the instances can be solved in an average

CPU-time ofless than 1 second on a personal Computer.

In order to have an instance set without the outlined deficiencies we also employed the 308

resource-constrained problems of Kolisch et al. (1992). These instances stem from the 480

problems which were originally generated with the parameter driven problem generator

ProGen. Here, we neither considered the 120 resource-unconstrained problems nor the 52

problems for which Kolisch et al. (1992) could not verify the optimal Solution. A detailed

description of the instances can be found in Kolisch et al. (1992). Briefly, each problem

consists of 32 activities and 4 resource types. Each activity requires between 1 and 4 resource

types. Like the Patterson-instances, all 308 ProGen-problems were solved with the exact

procedure of Demeulemeester / Herroelen (1992) to optimality. We implemented their C-code

on a personal Computer with 803 6sx processor, mathematical coprocessor, and 15 MHz

clockpulse. The average Solution time was 952,13 CPU-seconds and the maximum time did

not exceed 3600 CPU-seconds.

The parallel scheduling scheme and the 5 classical as well as 3 new priority rules have been

coded in PASCAL and implemented on an IBM compatible personal Computer with 80386dx

processor and 40 MHz clockpulse at the laboratory of the Christian-Albrechts-Universität zu

Kiel.

- 13 -

4.1 Results for the ProGen-Instcmces

Table 5 shows the mean (MEAN), the Standard deviation (STDDEV), and the maximum (MAX)

percentage deviation from the optimal objective function value for each of the 8 priority rules,

respectively. Furthermore, the number of optimal solutions (#OPT) and the average CPU-time

in seconds (CPU) is denoted. The priority rules are listed w.r.t. to ascending MEAN. It can be

seen that the three new priority rules WCS, ACS, and IRSM show better results than all other

tested rules. Note that the Performance and the ranking of the classical rules obtained by our

study is comparable to the results of other studies [cf. Davis / Patterson (1975) and Alvarez-

Valdes / Tamarit (1989a)].

MEAN STDDEV MAX #OPT CPU

WCS 4,27 4,60 26,39 96 ,02

ACS 4,57 4,94 32,81 94 ,02

IRSM 4,66 4,83 27,03 95 ,02

LFT 4,83 4,77 22,37 85 ,01

MSLK 4,92 5,25 32,91 92 ,01

RSM 5,67 5,05 22,22 72 ,02

MTS 5,92 5,25 32,81 69 ,02

GRPW 9,22 8,17 41,86 58 ,01

Table 5 : Performance of Priority Rules for the ProGen-Instances

ACS IRSM LFT
S = B

MSLK RSM MTS
5= -

GRPW

WCS ,179 ,0409 ,0006 ,0001 ,0000 ,0000 ,0000

ACS ,5069 ,0935 ,0046 ,0000 .0000 ,0000

IRSM ,3513 ,2790 ,0000 ,0000 ,0000

LFT ,9020 .0000 ,0000 ,0000

MSLK .0005 ,0000 ,0000

RSM ,5451 ,0000

MTS ,0000

Table 6: 2-tailed Wilcoxon Matched-Pairs Signed-Ranks Test for the ProGen-Instances

In order to test the significance of the results, we performed the 2-tailed Wilcoxon matched-

pairs signed-ranks test for each pair of priority rules (we did not apply the t-test since for none

of the priority rules the percentage deviation from the optimal Solution was normally

distributed). Table 6 shows the confidence levels for each pair of priority rules. Hatched Gelds

signal that there is a significant difference between two rules at the 1%-level of confidence, i.e.

p < 0.01. It can be stated that the WCS-rule significantly outperforms all classical priority

- 14 -

rules. Also, all new RSM-based mies are significantly better than the original RSM priority

rule. Another interesting finding is that there are two disjoint classes: Lower bound based

rules, i.e. WCS, ACS, IRSM, LFT, and MSLK, and priority rules which do not make use of a

lower bound. Each rule of the first class significantly outperforms every rule in the other class.

4.2 Results for the Patterson-instances

Table 7 and 8 present the results for the Patterson-instances. With one exception (LFT and

MSLK) the ranking of the priority rules is identical to the one derived for the ProGen-

instances. Applying the Wilcoxon test to the Patterson-instances the discrimination between

lower bound based rules and other rules was not as distinctive as for the ProGen-instances. All

other results were comparable to the ones already obtained with the ProGen-set.

ME AN STDDEV MAX #OPT CPU

WCS 3,71 4,13 16,67 42 ,02

ACS 4,12 4,44 22,22 37 ,02

IRSM 4,53 4,76 19,51 33 ,01

MSLK 5,0 5,68 23,68 34 ,01

LFT 5,68 5,25 21,95 30 ,01

RSM 6,24 5,3 21,05 22 ,01

MTS 6,65 4,8 21,05 20 ,02

GRPW 9,47 7,96 42,11 22 ,01

Table 7: Performance of Priority Rules for the Patterson-instances

ACS IRSM MSLK LFT RSM MTS GRPW

WCS ,0575 ,0714 .0012 ,0000 .0000 .0000 ,0000

ACS ,3156 ,0280 ,0010 ,0000 ,0000 ,0000

IRSM ,5789 ,0096 .0000 ,0000 .0000

MSLK ,1543 ,0090 ,0036 ,0000

LFT ,2514 ,0278 ,0000

RSM ,4255 ,0000

MTS ,0002

Table 8: 2-tailed Wilcoxon Matched-Pairs Signed-Ranks Test for the Patterson-instances

Table 9 gives a direct comparison of the ME AN for the two instance-sets. For each priority

rule the hatched field indicates the instance set on which a better Performance was obtained.

From the results of optimal procedures [cf. Demeulemeester / Herroelen (1992)] it is expected

that the Performance is better for the Patterson-instances. But this holds only for the new

- 15 -

priority rules while the classical priority rules perform better on the ProGen-instances. Hence,

the new priority rules are even more superior when considering the Patterson-instances.

WCS ACS IRSM LFT MSLK RSM MTS GRPW MEAN

ProGen 4,27

Patterson 3,71

4,57

4.12

4,66

4,53

4,83

5,68

4,92

50

5,6?

6,24

5,92

6,65

9,22

9,47

5,50

5,67

Table 9: Comparison of the Results for the ProGen- and the Patterson-instances

4.3 Effect of Problem Parameters on the Performance of Priority Rules

In the last two subsections it has been shown that the new priority rules outperform the

classical priority rules. An interesting question is if this holds for all types of instances or only

for a certain class of problems. For classical rules Kolisch (1994a,b) found out that the ranking

of priority rules is not significantly altered by different problem classes. In order to obtain

insight for the new priority rules we have once more employed the ProGen-instances. As

oulined in the beginning of Section 4, the problems were generated by a controlled design of

specified problem parameters. Three problem parameters were employed [for details cf.

Kolisch et al. (1992)]: (i) The network complexity (NC) is the ratio of non-redundant

precedence relations to the number of activities. (ii) The resource factor (RF) reflects the

density ofthe two dimensional array kjr,j=2,...,J-\ and r=l,...,\R\. That is, for RF=l each non-

dummy activity requests the füll complement of the [i?| resource types while for RF= 0 none of

the activities requests any of the resource types. (iii) Finally, the resource strength (RS)

measures the degree of resource-constrainedness in the interval [0,1]. For each resource type r,
r e R, the resource strength is computed as follows: RS=(Kr-Krmin)l(Krmax-Krmin), where

Krmm is the minimal availability of resource type r in order to assure feasibility of the RCPSP,

i.e. Krmin = max {kjr\j=\,...,J}, and Krmax is the peak demand of resource type r in a CPM-

schedule. That is, for RS=l we have the resource-unconstrained CPM-case, while for RS=0 we

have a highly resource constrained problem. The following levels of the problem parameters

were chosen: NC= {1,5; 1,8; 2,1 },RF= {0,25; 0,5; 0,75; 1}, and RS = {0,2; 0,5; 0,7}.

Figures 5 to 7 show the single-factor efFects of the problem parameters on MEAN. It can be

seen that there are no major alternations within the ranking of the priority rules. Furthermore,

the new priority rules show for all problem parameter settings the best results. Especially WCS

does always perform best regardless of the adjustment of the problem parameters. Hence, we

can conclude that the new priority rules and especially WCS are highly suitable to solve all

types of RCPSP instances.

- 16 -

MEAN

10

9
GRPW

> MTS

*RSM
——0 MSLK

IRSM, ACS, LFT

NC 1.5 1.8 2.1

Figure 5: Effect of the Network Complexity (NC) on the Performance of Priority Rules

MEAN

--GRPW

MTS
«RSM

LFT
ci IRSM, MSLK

ACS
WCS

RF 0.25 0.5 0.75 1

Figure 6: Effect of the Resource Factor (RF) on the Performance of Priority Rules

MEAN

Figure 7: Effect of the Resource Strength (RS) on the Performance of Priority Rules

- 17-

5. Conclusions

In this paper we have reviewed the best classical priority rules available in the open literature

for scheduling a project to minimise its total duration subject to technological precedence

constraints and resource constraints. A detailed analysis of the well-known RSM priority rule

was the stepping stone for the development of three new priority rules. By a thorough

computational study with two instance-sets from the literature it has been shown that the new

rules outperform all other rules proposed so far. Even more, the best one of the new rules, the

so-called WCS priority rule, is on both instance-sets significantly superior to all other priority

rules. Hence, this priority rule should serve as the backbone for sophisticated local search

heuristics in order to solve the resource constrained project scheduling problem of all problem

sizes close to optimality.

Acknowledgement: The author is gratefully indebted to Andreas Drexl, Universität Kiel,

James H. Patterson, Indiana University, and to Erik Demeulemeester, Katholieke Universiteit

Leuven, respectively, for their help in this research.

References

Alvarez-Valdes, R. and J.M. Tamarit (1989a): Heuristic algorithms for resource-constrained project schedul
ing: A review and an empirical analysis, in: Slowinski, R. and J. Weglarz (Eds.): Advances in project
scheduling, Elsevier, Amsterdam, pp. 113-134.

Alvarez-Valdes, R. and J.M. Tamarit (1989b): Algoritmos heuristicos deterxninistas y aleatorios en secuencia-
cion deproyectos con recursos limitados, Qüestiio, Vol. 13, pp. 173-191.

Balakrishnan, R. a nd V. J. Leon (1993): Quality and adaptability of problem-space based neighborhoods for
resource constrained scheduling, Working Paper, Department of Industrial Engineering, Texas A&M
University, USA.

Balas, E. (1971): Project scheduling with resource constraints, in: Beale, E.M.L. (Ed.): Applications of mathe-
matical programming techniques, English University Press, London, pp. 187-200.

Bedworth, D.D. and J E. Bailey (1982): Integrated production control systems - Management, analysis, design,
Wiley, New York.

Bell, C.E. a nd J. Han (1991): A new heuristic Solution method i n resource-constrained project scheduling, Na-
val Research Logistics, Vol. 38, pp. 315-331.

Bell, C.E. and K. Park (1990): Solving resource-constrained project scheduling problems by A* search, Naval
Research Logistics, Vol. 37, pp. 61-84.

Blazewicz, J., J.K. Lenstra, and A.H.G. Rinnooy Kan (1983): Scheduling subject to resource constraints:
Classification and complexity, Discrete Applied Mathematics, Vol. 5, pp. 11-24.

Boctor, F.F. (1990): Some efficient multi-heuristic procedures for resource-constrained project scheduling,
European Journal of Operational Research, Vol. 49, pp. 3-13.

Bowman, E.H. (1959): The schedule-sequencing problem, Operations Research, Vol. 7, pp. 621-624.
Carlier, J. and B. Latapie (1991): Une methode arborescente pour resoudre les problemes cumulatifs, Recherche

operationnelle, Vol. 25, pp. 311-340.
Carruthers, J.A. and A. Battersby (1966): Advances in critical path methods, Operational Research Quarterly,

Vol. 17, pp. 359-380.
Christofides, N., R Alvarez-Valdes, and J.M. Tamarit (1987): Project scheduling with resource constraints: A

branch and bound approach, European Journal of Operational Research, Vol. 29, pp. 262-273.

- 18-

Cooper, D.F. (1976): Heuristics for scheduling resource-constrained projects: An experimental investigation,
Management Science, Vol. 22, pp. 1186-1194.

Cooper, D.F. (1977): A note on serial and parallel heuristics for resource-constrained project scheduling, Foun-
dations of Control Engineering, Vol. 2, pp. 131-134.

Davies, E.M. (1973): An experimental investigation of resource allocation in multiactivity projects, Operational
Research Quarterly, Vol. 24, pp. 587-591.

Davis, E.W. (1966): Resource allocation in project network models - A survey, The Journal of Industrial Engi
neering, Vol. 17, pp. 177-188.

Davis, E.W. and G.E. Heidorn (1971): An algorithm for optimal project scheduling under multiple resource
constraints, Management Science, Vol. 17, pp. 803-816.

Davis, E.W. and J.H. Patterson (1975): A comparison of heuristic an d optimum solutions in resource-con
strained project scheduling, Management Science, Vol. 21, pp. 944-955.

Demeulemeester, E . and W S. Herroelen (1992): A branch-and-bound procedure for the multiple resource-
constrained project scheduling problem, Management Science, Vol. 38, pp. 1803-1818.

Drexl, A. and R. Kolisch (1994): Model-based assembly management in machine tool manufacturing, Research
Report No. 346, Institut für Betriebswirtschaftslehre, Christian-Albrechts-Universität zu Kiel.

Elmaghraby, S.E. (1977): Activity networks: Project planning and control by network models, Wiley, New
York.

Elsayed, E.A. (1982): Algorithms for project scheduling with resource co nstraints, International Journal of
Production Research, Vol. 20, pp. 95-103.

Fadlalla, A., J.R. Evans, and M S. Levy (1994): A greedy heuristic for the mean tardiness sequencing problem,
Computers & Operations Research, Vol. 21, pp. 329-336.

Gonguet, L. (1969): Comparison of three heuristic procedures for allocating resources and producing schedules,
in: Lombaers, H.J.M. (Ed.): Project planning by network analysis, North-Holland, Amsterdam, pp. 249-255.

Hastings, N.A.J. (1972): On resource allocation in project networks, Operational Research Quarterly, Vol. 23,
pp. 217-221.

Kelley, J E., Jr. (1963): The critical-path method: Resources planning and scheduling, in: Muth, J.F. and G L.
Thompson (Eds.): Industrial scheduling, Prentice-Hall, New Jersey, pp. 347-365.

Kolisch, R. (1994a): Project scheduling under resource constraints - Efficient heuristics for several problem
classes, PhD Dissertation, Kiel.

Kolisch, R. (1994b): Ser ial and parallel resource-constrained project scheduling methods revisited: Theo ry and
computation, Research Report No. 344, Institut für Betriebswirtschaftslehre, Christian-Albrechts-
Universität zu Kiel.

Kolisch, R., A. Sprecher, and A. Drexl (1992): Characterization and generation of a general c lass of resource-
constrained project scheduling problems: Easy and hard instances, Research Report No. 301, Institut für Be
triebswirtschaftslehre, Christian-Albrechts-Universität zu Kiel (under review for Management Science).

Lawrence, S R. (1985): Resource-constrained project scheduling - A computational comparison of heuristic
scheduling techniques, Working P aper, Graduate School of Industrial Administration, Carnegie-Mellon
University, Pittsburgh, USA.

Leon, V.J. and S.D. Wu (1993): Characterisitcs of computerized scheduling and control of manufacturing
systems, in Joshi, S.B. and J.S. Smith (Eds.): Computer control of manufacturing systems, Chapman &
Hall, London.

Levy, F.K., G L. Thompson, and J.D. Wiest (1962): Multiship, multishop, workload-smoothing program, Naval
Research Logistics Quarterly, Vol. 9, pp. 37-44.

Müller-Merbach, H. (1967): Ein Verfahren zur Planung des optimalen Betriebsmitteleinsatzes bei der Ter
minierung von Großprojekten, Zeitschrift für wirtschaftliche Fertigung, Vol. 62, pp. 83-88, 135-140.

Oguz, O. and H. B ala (1994): A comparative study of computational procedures for the resource constrained
project scheduling problem, European Journal of Operational Research, Vol. 72, pp. 406-416.

Pascoe, T.L. (1966): Allocation of resources C.P.M., Revue Francaise Recherche Operationelle, No. 38,
pp. 31-38.

- 19 -

Patterson, J.H. (1973): Altemate methods of project scheduling with limited resources, Naval R esearch Logis
tics Quarterly, Vol. 20, pp. 767-784.

Patterson, J.H. (1976): Project scheduling: The effects of p roblem structure on heuristic Performance, Naval
Research Logistics Quarterly, Vol. 23, pp. 95-123.

Patterson, J.H. (1984): A comparison of exact approaches for solving the multiple constrained resource, project
scheduling problem, Management Science, Vol. 30, pp. 854-867.

Patterson, J.H. and W.D. Huber (1974): A horizon-varying, zero-one approach to project scheduling, Manage
ment Science, Vol. 20, pp. 990-998.

Patterson, J.H. and G.W. Roth (1976): Scheduling a project u nder multiple resource constraints: A zero-one
programming approach, AIIE Transactions, Vol. 8, pp. 449-455.

Pritsker, A.A.B., L.J. Watters, and P.M. Wolfe (1969): Multiproject scheduling with limited resources: A zero-
one programming approach, Management Science, Vol. 16, pp. 93-107.

Radermacher, F.J. (1985/86): Scheduling of project networks, Ann ais of Operations Research, Vol. 4, pp. 227-
252.

Sampson, S.E. and E N. Weiss (1993): Local search techniques for the generalized resource constrained project
scheduling problem, Naval Research Logistics, Vol. 40, pp. 365-375.

Shaffer, L R, J.B. Ritter, and W.L. Meyer (1965): The critical-path method, McGraw-Hill, New York.
Stinson, J.P., E.W. Davis, and B.M. Khumawala (1978): Multiple resource-constrained scheduling using

branch and bound, AIIE Transactions, Vol. 1 0, pp. 252-259.
Storer, RH., S.D. Wu, and R. Vaccari (1992): New search spaces for sequencing problems with application to

job shop scheduling, Management Science, Vol. 38, pp. 1495-1509.
Talbot, B. and J.H. Patterson (1978): An efficient integer programming algorithm with network cuts for solving

resource-constrained scheduling problems, Management Science, Vol. 24, pp. 1163-1174.
Thesen, A. (1976): Heuristic scheduling of act ivites under resource and precedence restrictions, Management

Science, Vol. 23, pp. 412-422.
Ulusoy, G. and L. Özdamar (1989): Heuristic Performance and network / resource characteristics in resource-

constrained project scheduling, Journal of the Operational Research Society, Vol. 40, pp. 1145-1152.
Valls, V., M.A. Perez, and M.S. Quintanilla (1992): Heuristic Performance in large resource-constrained pro-

jects, Working Paper, Departament D'Estadistica I Investigacio Operativa, Universität De Valencia, Spain.
Whitehouse, G.E. and J.R. Brown (1979): Genres: An extension of Brooks algorithm for project scheduling

with resource constraints, Computers & Industrial Engineering, Vol. 3, pp. 261-268.
Wiest, J.D. (1967): A heuristic model for scheduling large projects with limited resources, Management Sci

ence, Vol. 13, pp. B359-B377.

