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Abstract: We consider the classical resource-constrained project scheduling groblem 
(RCPSP). The paper gives a detailed algorithmic description and provides theoretical results 
on two widely known problem specific heuristics: The serial and the parallel scheduling 
scheme. An in-depth coraputational study compares both schemes when applied as a 
deterministic single-pass and a probabilistic multi-pass (sampling) method. 

Keywords RESOURCE-CONSTRAINED PROJECT SCHEDULING; SERIAL AND PARALLEL 
SCHEDULING METHOD; SINGLE-PASS AND MULTI-PASS HEURISTICS; S AMPLING; ACTIVE AND 
NON-DELAY SCHEDULES; PRIORITY RULES; EXPERIMENTAL INVESTIGATION. 

1. Introduction 

The classical resource-constrained project scheduling problem (RCPSP) can be stated as 

follows: We consider a single project which consists of activities with a non-

preemptable duration of dj periods, respectively. The activities are interrelated by two kinds of 

constraints: Precedence constraints - as known from traditional CPM-analysis - force an 

activity not to be started before all its predecessors have been finished. Additionally, resource 

constraints arise as follows: In order to be processed, activity j requires kjr units of resource 

r G R during every period of its duration. Since resource r is only available with the constant 

period availability of Kr units for each period, activities might not be scheduled at their earliest 

(precedence feasible) Start time but later. The objective of the RCPSP is to schedule the 

activities such that precedence and resource constraints are obeyed and the makespan of the 

project is minimised. 

Two of the oldest and most known heuristics for the RCPSP are the serial and the parallel 

scheduling scheme, respectively (cf. the literature cited in Section 3). Both can be applied as a 

deterministic single-pass or a probabilistic multi-pass (sampling) method. 

The majority of publications dealing with scheduling schemes for the RCPSP report on the 

Performance of one scheme when applied as a single-pass approach only. Solely Valls et al. 

(1992) provide a direct comparison of the deterministic serial and parallel scheduling scheme. 

Investigations on sampling applications to solve the RCPSP were reported by Levy et al. 

(1962) and Wiest (1967), respectively. Finally, work on the relationship of deterministic single-

pass and probabilistic sampling approaches were undertaken by Alvarez-Valdes / Tamarit 

(1989b) and Cooper (1976). 

The purpose of this paper is to provide an extensive comparison of the parallel and the serial 

scheduling scheme. The remainder is organised as follows: Section 2 gives a formal model of 

the RCPSP as well as an overview of the available Solution procedures. Section 3 presents the 

deterministic algorithm of the serial and the parallel scheduling schemes, respectively, as well 

as their probabilistic extensions. The ability of the scheduling schemes to derive feasible and 

optimal solutions is covered by theoretical results obtained in Section 4. Section 5 is devoted 

to an in-depth computational study based on a set of 360 systematically generated instances. 

Finally, Section 6 comes up with a summary of the derived results. 
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2. Problem Description 

In order to model the RCPSP we make use of the following additional notation: Let Pj define 

the set of immediate predecessors of activity j. For ease of notation the activities are 

topologically ordered, i.e. each predecessor of activity j has a smaller number than j. 

Furthermore, activity j= 1 (j-J) is defined to be the unique dummy source (sink) and T denotes 

an Upper bound on the project's makespan. Now, a conceptual model of the RCPSP can be 

formulated as follows [cf. Talbot / Patterson (1978)]: 

Min FTj (1) 

subject to 

)=2,.../,/e^ (2) 

2 kjr < Kr r e R,t=\,...,T (3) 
jsAt 

F7}>0 M,/ (4) 

The variable FTj denotes the (integer valued) finish times of activity j, and At, the 

set of activities being in progress in period t, is defined as At := {j \ FTj-dj+l <t< 

FTj). The objective fiinction (1) minimises the completion time of the unique sink and thus the 

makespan of the project. Constraints (2) take into consideration the precedence relations 

between each pair of activities (/, j), where i immediately precedes j. Finally, constraint set (3) 

limits the total resource usage within each period to the available amount. Note that (1) to (4) 

provide no mechanism in order to identify At and hence the problem formulation is not 

amenable to Solution via integer programming techniques. To overcome this deficiency, the 

RCPSP has to be modelled with 0-1 variables as outlined in Pritsker et al. (1969). 

The RCPSP is a generalisation of the static Job shop problem and hence belongs to the class 

of TVP-complete problems [cf. Blazewicz et al. (1983)]. By relaxing the resource-constraints 

(4), the RCPSP reduces to the CPM-case [cf. Davis (1966)] which can be solved by forward 

recursion in polynomial time [cf. Elmaghraby (1977), p. 18 ff.]. On account of the inherent 

intractability of the RCPSP, a multitude of exact and heuristic approaches were proposed. 

Optimal procedures are dynamic programming [cf. Carruthers / Battersby (1966)], zero-

one programming [cf. Bowman (1959), Pritsker et al. (1969), Patterson / Huber (1974), 

Patterson / Roth (1976)], as well as implicit enumeration with branch and bound [cf. Balas 

(1971), Davis / Heidorn (1971), Hastings (1972), Radermacher (1985 / 86), Stinson et al. 

(1978), Talbot / Patterson (1978), Christofides et al. (1987), Bell / Park (1990), Carlier / 

Latapie (1991), Demeulemeester / Herroelen (1992)]. Currently, the branch and bound 

approach of Demeulemeester and Herroelen (1992) seems to be the most powerful optimal 

procedure available. 
Heuristic approaches for the RCPSP basically involve five different Solution methodologies: 

Single- and multi-pass priority rule based scheduling (cf. Section 3), truncated branch and 
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bound procedures [cf. Alvarez-Valdes / Tamarit (1989a)], integer programming based 

heuristics [cf. Oguz / Bala (1994)], disjunctive arc concepts [cf. Shaffer et al. (1965), Alvarez-

Valdes / Tamarit (1989a), Bell / Han (1991)], and local search techniques [cf. Sampson / 

Weiss (1993) and Balakrishnan / Leon (1993)]. 

3. Priority Rule Based Scheduling 

Although belonging to the oldest Solution methodology to solve the RCPSP, priority rule 

based scheduling is still the most important (heuristic) Solution technique. This is due to several 

reasons: (/) The method is intuitive and easy to use which makes it highly suitable to be 

employed within commercial packages, (//) the method is fast in terms of the computational 

effort which recommends it to be integrated within local search approaches from Artificial 

Intelligence [cf. Storer et al. (1992) and Balakrishnan / Leon (1993)]. Finally, (iii) multi-pass 

implementations of the method show the best results obtainable by heuristics today [cf. Kolisch 

(1994)]. 

Generally, a priority rule based scheduling heuristic is made up of two components, a 

schedule generation scheme and a priority rule. Two different schemes can be distinguished. 

The so-called serial and the parallel method. Both generale a feasible schedule by extending 

a partial schedule (i.e. a schedule where only a subset of the activities has been assigned a 

finish time) in a stage-wise fashion. In each stage the generation scheme forms the set of all 

schedulable activities, the so-called decision set. A specific priority rule is then employed in 

order to choose one or more activities from the decision set which then is scheduled. Note that 

- within a single pass- each activity is only scheduled once. Both scheduling schemes are 

presented in detail. For a conceptual comparison with optimal branch and bound based 

procedures compare Kolisch (1994). 

3.1 The Serial Method 

The serial method was proposed by Kelley (1963). It consists of stages, in each of 

which one activity is selected and scheduled. Associated with each stage are two disjoint 

activity-sets: In the complete set C„ are the activities which already were scheduled and thus 

belong to the partial schedule. The decision set D„ contains the unscheduled activities with 

every predecessor being in the complete set. In each stage one activity from the decision set is 

selected with a priority rule (in case of ties the activity with the smallest activity number is 

selected) and scheduled at its earliest precedence and resource feasible Start time. Afterwards, 

the selected activity is removed from the decision set and put into the complete set. This, in 

tum, may place a number of activities into the decision set, since all their predecessors are now 

completed. The algorithm terminales at stage number n=J, when all activities are in the partial 

schedule, i.e. the complete set. 

To give a formal description of the serial scheduling scheme some additional notation has to 

be introduced. Let nKrt, the left over capacity of the renewable resource r in period t, and D„, 

the decision set, be defined as follows: 
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nKrt = Kr- Z kjr 

jeAt 
Ai™ {j \j 0 Cn, Pj C Cn } 

Further, let EFTj denote the earliest precedence feasible finish time of activity j within the 

current partial schedule and let LFTj denote the latest precedence feasible finish time of activity 

j as determined by backward recursion from the Upper bound of the project's makespan T. 
Finally, let v(j) be a priority value of activity j, j e Dn. Now, the serial scheduling scheme 

(SSS) can be formally described as follows: 

SSS 

Initialisation: n:=1, Cn\- 0; 

WEILE \Cn\ <JDO Stage n 

BEGIN 
COMPUTE Dn and 7zKrt, t=\,...,T, r e R; 
j* := min {7 | v(J) = inf { v(z) }}; 

j £ Dn isDrt 
EFTj* \= max { FT, | i e Pj*}+ dj% 
FTj* := min {11 EFTj* < t < LFTj*, kj*r < nKn, x = t-dj* +1 r e R}; 
Cn+1 ~Cn^{j* }; 
n\=rt+1; 

END; 

Stop 

Utilising the serial method in a single-pass environment, results were published by Pascoe 

(1966), Müller-Merbach (1967), Gonguet (1969), Fehler (1969), Cooper (1976 and 1977),1 

Boctor (1990), and Valls et al. (1992). Boctor performed a computational study on the basis of 

36 small instances from the literature. For the two best priority rules employed, he reported an 

average increase of 9.13% above the optimal objective fiinction. 

3.2 The Parallel Method 

Today, two algorithms are associated with the so-called parallel method: The algorithm of 

Kelley (1963) and the one of Brooks [cf. Bedworth / Bailey (1982)] which is also termed 

"Brooks algorithm" (BAG). Like in the majority of publications, the scheduling scheme as 

proposed by Brooks is employed herein and referred to as parallel method. 

The parallel method consists of at most J stages in each of which a set of activities (which 

might be empty) is scheduled. Associated with each stage n is a schedule time tn and three 

disjoint activity-sets: Activities which are completed up to the schedule time are in the 

complete set Cn. Activities which are already scheduled, but during the schedule time still 

1 Misleading, Cooper terms his scheduling scheme to be parallel (serial) when using priority rules in a dy-
namic (static) f ashion. But, as already pointed out by Valls et al. (1992) he clearly employed a serial 
scheduling scheme. 
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active are in the active set A„. Finally, activities which are available for scheduling w.r.t. 

precedence and resource constraints, but yet unscheduled are in the decision set Dn. The 

partial schedule of each stage is made up by the activities in the complete set and the active set. 

The schedule time of a stage equals the earliest completion time of activities in the active set of 

the ancestral stage. Each stage is made up of two steps: (1) The new schedule time is 

determined and activities with a finish time equal to the (new) schedule time are removed from 

the active set and put into the complete set. This, in turn, may place a number of activities into 

the decision set. (2) One activity from the decision set is selected with a priority rule (again, in 

case of ties the activity with the smallest label is chosen) and scheduled, respectively started, at 

the current schedule time. Afterwards, this activity is removed from the decision set and put 

into the active set. Step (2) is repeated until the decision set is empty, i.e. activities were 

scheduled or are not longer available for scheduling w.r.t. resource constraints. The parallel 

method terminales when all activities are in the complete or active set. 

Given A„, the active set, and C«, the complete set, respectively, nKr, the left over period 

capacity of the renewable resource r at the schedule time, and D„, the decision set, are defined 

as follows: 

nKr\— Kr - Zkjr 
jeAn 

Dn '•= {j I j g { Cn U An }, Pj C Cn, kjr < 7tKr V r € Ä} 

Now, a formal description of the parallel scheduling scheme (PSS) arises to: 

PSS 

Initialisation: n:=1, tn:=0, D„:={ 1}, An:=Cn:= 0, nKr~Kr V r e R, GOTO Step (2); 

WHLE \A„ u Cn| < JDO Stage n 

BEGIN 
(1) t„ := min { FTj \j s An.i }; 

An := An. 1 \ {j I j e An.i, FTj = tn }; 
Cn ~ Cn-1 u {j I j 6 An-1, FTj = tn }; 
COMPUTE 7tKr V r 6 R and Dn; 

(2) j* := min {j \ v( j) = inf { v(z)}}; 
jsDn i^Dn 

FTj* := t„ + dj*; 
An :=A„u {j*}; 
COMPUTE nKr V r e R and Dn, 
W Dn * 0 THEN GOTO Step (2) ELSE «:=«+1; 

END; 

Stop 

Computational experiments conducted with the single-pass version of the parallel method are 

more frequent than those with the serial method and are reported by Alvarez-Valdes / Tamarit 

(1989a and 1989b), Boctor (1990), Davis / Patterson (1975), Elsayed (1982), Lawrence 

(1985), Pascoe (1966), Patterson (1973 and 1976), Thesen (1976), Ulusoy / Özdamar (1989), 
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Valls et al. (1992), and Whitehouse / Brown (1979). Additionally, Arora / Sachdeva (1989) 

report about an Implementation of the parallel method on parallel processors. Davis and 

Patterson (1975) document an average increase above the optimum of 5.6% and 6.7%, 

respectively, for the two best priority rules applied to 83 of the instances employed in 

Patterson (1984). On the basis of their 48 test-instances with 27 activities each, Alvarez-

Valdes and Tamarit (1989a) come up with an average increase above the Optimum of 2.89% 

and 3.09% for the two best rules, respectively. 

The only comparison of the serial and the parallel scheduling scheme when applied as 

deterministic single-pass heuristic is reported by Valls et al. (1992). They concluded that none 

of the schemes is dominant which contradicts the assumption made by Alvarez-Valdes / 

Tamarit (1989a). 

3.3 Sampling 

The way the serial and the parallel scheduling method have been described so far is termed as 

single-pass approach, i.e. one Single pass and one priority rule are employed to derive one 

feasible Solution. Contrary, multi-pass procedures perform Z Single passes in order to generale 

a sample of at most Z unique feasible solutions, where the best one is chosen. Basically, two 

different kinds of multi-pass methods can be distinguished: The multi-priority rule approach 

[cf. Lawrence (1985), Boctor (1990), and Li / Willis (1992)] employs one scheduling scheme 

and different priority rules while sampling [cf. Levy et al. (1962), Wiest (1967), Cooper 

(1976), and Alvarez-Valdes / Tamarit (1989b)] makes use of one scheduling scheme and one 

priority rule. Different schedules are obtained by biasing the selection of the priority rule 

through a random device. The use of a random device can be interpreted as a mapping 

y/ J &Dn-+[0,1] (5) 

which at stage n assigns to each activity in the decision set Dn a probability yAj) of being se-

lected (where Xyeo„ yAj) =1 holds). Three different methods can be distinguished: (/) Random 

sampling assigns each activity in the decision set the same probability. (ii) Biased random 

sampling biases the probabilities dependent on the priority values of the activities to favour 

those activities which seem to be a more sensible choice [cf. Baker (1974, p. 72)]. In the 

context of the job shop problem, biased random sampling is usually referred to as probabilistic 

dispatching [cf. Conway et al. (1967, p. 124) and Baker (1974, pp. 202-206)]. (iii) A special 

case of biased random sampling is the utilisation of regret measures for determining the 

selection probabilities. This was introduced by Drexl (1991) and Drexl / Grunewald (1993) and 

is referred to as regret based biased random sampling. Let a priority rule be defined by the 

mapping v : j e Dn —> R> o which assigns to each activity j in the decision set Dn a priority 

value v(J) and an objective O stating whether the activity of the decision set with the minimum 

(0=min) or maximum (<9=max) priority value is selected. Then, the regret pj compares the 

priority value of activity j with the worst consequence in the decision set as follows: 
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max v(z) - v(j), if 0=min 

pj:= 1 rfft" v(j) - min v(z), if 0=max 
(6) 

isD„ 

(?) 

i^Dn 

Adding the constant "1" to the regret value pj assures that the selection probability for each 

activity in the decision set is greater zero and thus every schedule of the population may be 

generated. By choice of the parameter a, the amount of bias can be controlled. Associated 

with an arbitrary large a will be no bias and thus deterministic activity selection on the basis of 

the employed priority rule (with random selection as a tie breaker) while an a of 0 will give 

way for random activity selection. 

Sampling applications ofthe serial method are documented by Cooper (1976) while sampling 

efforts on the basis of the parallel method are reported by Wiest (1967) and Alvarez-Valdes / 

Tamarit (1989b). Employing a sample size of 100, Cooper (1976) compared deterministic 

scheduling and biased random sampling with 9 different priority rules on one benchmark-

instance. He concluded that sampling produces results which are (at the 99% level of 

confidence) at least 7% better than the solutions derived by the deterministic approach. 

Alvarez-Valdes / Tamarit (1989b) compared a single-pass and a sampling approach on a set of 

48 instances with 103 activities each. The sampling approach generated for every instance 100 

solutions. For the best (second best) priority rule an average increase above an Upper bound of 

3.23% (3.45%) when used in the single-pass procedure and 2.31% (1.65%) when used in the 

sampling procedure is reported. 

To the best of our knowledge, no comparison of the serial and the parallel scheduling scheme 

when applied as sampling procedures is reported in the literature. 

Three Important questions associated with each heuristic are: (/) Is a feasible Solution always 

granted, (/'/') w ill the heuristic produce optimal solutions for particular instances which are no 

more longer in NP, and (iii) on what kind of Solution space is the heuristic operating, i.e. will 

the heuristic generally be capable to produce optimal solutions. In order to provide deeper in-

sight into the serial and the parallel scheduling scheme these three questions will be answered 

in the sequel. 

Theorem 1: For any (feasible) instance of the RCPSP a feasible schedule is always generated 

by each of the two scheduling schemes, respectively. 

Proof: Whenever an activity is scheduled, both scheduling schemes take into account 

precedence and resource constraints. More precisely: Within the serial scheduling scheme, line 

3 of stage n meets the precedence constraints, while the resource constraints are preserved by 

4. Theoretical Results 
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line 4 of stage n for each activity For the parallel scheduling scheme, both constraints 
are insured by definition of the decision set. • 

Theorem 2 . For any resource-unconstrained instance of the RCPSP both scheduling schemes 

always derive the optimal Solution. 

Proof: For the CPM-case resource constraints are not binding anymore and activities are 

scheduled as early as possible w.r.t. precedence constraints only by each of the scheduling 

methods, respectively. More detailed: The serial scheduling scheme starts the chosen activity 

as early as possible (line 4 of stage n). Within the parallel scheduling scheme an activity, say j, 

will enter the decision set at the schedule time /«=max {FTj | i e Pj}, i.e. as soon as its 

predecessors are finished. On account of abundant resources j is scheduled in step (2) of the 
same stage, i.e. without an increment of the schedule time. • 

Theorem 3: a) A schedule S generated with the serial scheduling scheme and any priority 

rule belongs to the set of active schedules while b) a schedule S generated with the parallel 

scheduling scheme and any priority rule belongs to the set of non-delay schedules.. 

Proof: As a prerequisite to prove Theorem 3, we have to introduce the notion of local and 

global left shifts for active and non-delay schedules (for a general Classification of schedules for 

the RCPSP cf. to Sprecher et al. (1994)): 

Local and global left shifts can be briefly explained as follows: Starting with a feasible schedule 

S=z(FT1,...,FTJ,...JrTj) we ceteris paribus assign activity j the earlier finish time FT"P i.e. we are 

"left shifting" activity j from FTj to FT') with FT') < FTj. We evaluate the resulting schedule 

S"=(FTh...,FT"„...,FTj) and all intermediate schedules S'={FTh...,FT'p...,FTj) with FT" < FT) 

< FTj. If the resulting schedule and all intermediate schedules are feasible we have performed a 

local left shift of activity j, if the resulting schedule is feasible and at least one intermediate 

schedule is infeasible we have performed a global left shift of activity j. Now, an active 

schedule is defined as a feasible schedule where none of the activities can be locally or globally 

left shifted. Contrary, a non-delay schedule is defined as a feasible schedule where none of the 

sub-activities of the corresponding unit-time-duration schedule (a schedule where each activity 

j is split into dj sub-activities with duration one) can be locally or globally left shifted. Note 

that by definition the set of non-delay-schedules is a non-proper subset of the set of active 

schedules. 

a) To prove that any schedule generated by the serial scheduling scheme belongs to the set of 

active schedules we proceed as follows: First we show that the schedule is (at least) active and 

then we proof that it is not a non-delay schedule: Consider activity j has been selected at stage 

n. Then, its time window of precedence feasible finish times is restricted from the earliest finish 

time, i.e. the maximum finish time of its immediate predecessors plus its duration, to its latest 

finish time. Activity j is now scheduled at the earliest contiguous resource feasible interval of dj 

units length within its precedence feasible time window. Therefore, a left shift of any activity is 

not possible and the schedule has to be at least active. Furthermore, it has to be proven that the 

schedule is not a non-delay schedule. This can be achieved by showing that in the 
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corresponding unit-time-duration schedule at least one of the sub-activities can be locally or 

globally left shifted. Again, consider that activity j with a duration of dj > 1 has been selected at 

stage n and, additionally, that there are two contiguous resource feasible intervals in the 

precedence feasible time window of activity j\ The "earlier" one with less than dj and the 

"latter" one with dj units in length. Then, activity j will be scheduled at the earliest contiguous 

resource feasible interval of dj units length in its precedence feasible time window. Hence, 

within the corresponding unit-time-duration schedule at least the first sub-activity emanating 

from activity j can be globally left shifted. Therefore the schedule is not a non-delay schedule 

and hence has to be an active schedule. • 

b) To prove that any schedule generated by the parallel scheduling scheme belongs to the set 

of non-delay schedules, it must be shown that in the corresponding unit-time-duration schedule 

none of the sub-activities can be locally or globally left shifted: Assume that in the unit-time-

duration schedule the first sub-activity emanating from activity j can be globally or locally left 

shifted to period tn. Hence, at stage n of the parallel method, activity j has been in the decision 

set because as a prerequisite to left shift the first sub-activity of j all predecessors of j had to be 

finished and each resource had to provide enough left over capacity to process activity j. In 

addition, stage n has been finished without scheduling activity j, leaving enough left over 

capacity in period tn to accommodate the first sub-activity of j. Therefore, activity j still has 

been in the decision set when stage n had been finished. But this is not possible because the 

algorithm terminates a stage only when the decision set is empty. This assures that the first 

sub-activity of j cannot be left shifted at all which limits the resulting schedule to be a non-

delay schedule. • 

At this juncture, it has to be recalled that the set of non-delay schedules might not contain a 

schedule which optimises a regulär measure of Performance [cf. Sprecher et al. (1994)]. In 

other words: The parallel scheduling scheme searches in a smaller Solution space than the serial 

scheduling scheme, but with the severe drawback that - when considering a regulär Perfor­

mance measure - the Solution space might not contain the optimal Solution. 

5. Experimental Investigation 

5.1 Statistical Model 

In order to study the Performance of the scheduling schemes, the following Statistical model 

(with five factors) was employed [cf. Kurtulus / Davis (1982) and Kurtulus / Narula (1985)]: 

DEVabcmno ~ S(PRa, SSb, Zc, NCm, RFn, RSo) + Sabcmno (8) 

CPUabcmno = @(PRa, SSb, Zc, NCm, RFn, RSo) + Gabcmno (9) 

where DEVabcmno (CPUabcmno) denotes the average deviation from the Optimum Solution (the 

average running time in CPU-seconds) when the instances with the m-th, %-th, and o-th level of 
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the problem parameters NC, RF, and RS are solved with the a-th, b-th, and c-th level of the 

procedure parameters PR, SS, and Z, respectively. For the errors s it is assumed that they are 

mutually independent and that each s is drawn from the same continuous population. 

The procedure parameters are characterised as follows: PR denotes the priority rule, SS 

stands for the scheduling scheme while Z denotes the sample size. Priority rules were chosen 

according to the studies of Davis / Patterson (1975), Alvarez-Valdes / Tamarit (1989a), Valls 

et al. (1992), Uluzoy / Özdamar (1989), and Boctor (1990). Table 1 provides an overview of 

the six priority rules which rank among the top three rules in at least one of these studies. Note 

that only the studies by Boctor (1990) and Valls et al. (1992) employed the (parallel and the) 

serial scheduling scheme and that none of the three best rules were applied within the serial 

scheduling scheme. Additional to the notation already introduced, Sj (Sj) denotes the set of all 

(immediate) successors of activity j and EFT'j denotes the earliest precedence and resource 

feasible finish time of activity j. Note that in the parallel scheduling scheme EFTequals t„ + dj 

for each activity in the decision set. Since within step (2) of the parallel scheduling scheme tn is 

constant for all j e D„, v is equal for MSLK and LST which was proven by Davis / Patterson 

(1975). Further note that LST and MSLK are listed separately because the priority rules are 

employed in both schemes. 

Priority Rule Source 0 v(/) 

Most total successors (MTS) 

Latest start time (LST) 

Greatest rank positional weight (GRPW) 

Weighted resource utilisation ratio and 
precedence (WRUP) 

Latest finish time (LFT) 

Minimum slack (MSLK) 

Alvarez-Valdes / Tamarit 

Alvarez-Valdes / Tamarit 

Alvarez-Valdes / Tamarit 

Ulusoy / Özdamar 

Davis / Patterson 

Davis / Patterson 

max 

min 

max 

max 

min 

min 

l^yl 

LFTj- dj 

dj+ X d j 
ieSj 

0.7 |Ä| + 0.3ll 
reR r 

LFTj 

LFTj - EFTj 

Table 1: Good Priority Rules presented in the Literature 

Two levels of the scheduling schemes, i.e. the parallel scheduling scheme (PSS) and the serial 

scheduling scheme (SSS), were considered. The levels of the sample size are provided in the 

subsequent sections. 

The problem parameters are characterised as follows [for details cf. Kolisch et al. (1992)]: 

The network complexity NC is the ratio of non-redundant precedence relations to the number 

of activities. The resource factor RF reflects the density of the two dimensional array kjr, 
j=2,...,J-\ and r=l,...,|^|. Finally, the resource strength RS measures the degree of resource-

constrainedness in the interval [0,1]. The resource strength is computed as follows: RS=(Kr 

Krmirt)/(Krmax-Krmm), where Krmin is the minimal availability of resource type r in order to 

assure feasibility of the RCPSP, i.e. Krmin = max {kjr[j=l,...,J}, and Krmax is the peak demand 

of resource type r in a CPM-schedule. 
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All other problem parameters were adjusted as follows (where intervals consist of uniformly 

distributed integers): The number of non-dummy activities was set to 30, i.e. J= 32, the number 

of resource types was set to 4, i.e. |/?|=4, the activity duration was drawn out of the interval 

[1,10]. In case of a positive resource demand, i.e. kjr > 0, the latter was drawn out of the 

interval [1,10]. The number of different resource types requested by one activity was -

depending on the resource factor RF - in the ränge [1,4]. Finally, the precedence network was 

generated with the following constraints: The number of immediate successors (predecessors) 

of the dummy-source (dummy-sink) was set to 3, respectively, and the number of successors 

(predecessors) of each non-dummy activity was drawn out of the interval [1,3]. 

NCm RFn 

{1.5, 1.8,2.1} {0.25, 0.5,0.75, 1} {0.2, 0.5, 0.7} 

Table 2: Levels of Variable Problem Parameters 

In order to generale instances with these problems parameters, ProGen - an instance 

generator for a broad class of precedence and resource-constrained (project) scheduling 

problems [cf. Kolisch et al. (1992)] - was employed as follows: As shown in Table 2, 10 

instances for each combination of NC, RF, and RS were generated which equalled a total of 

3 4 3-10=360 problems. Imposing a time limit of 3600 CPU-seconds, for 308 of these instances 

the optimal Solution was arrived with the exact procedure of Demeulemeester / Herroelen 

(1992) on a personal Computer with 80386sx processor, mathematical coprocessor and 15 

MHz clockpule. Hence, each of these 308 problems was treated by every level combination of 

the procedure parameters, scheduling scheme, priority rule, and sample size. 

Since it is not confirmed that DEV is normally distributed, only nonparametric tests, namely 

the Wilcoxon signed rank test and the Friedman test, were employed on an one-way layout 

without replications [cf. Alvarez-Valdes / Tamarit (1989a) and Golden / Steward (1985)]. 

Confidence levels are denoted with 5. We will speak of a significant differences for a 

confidence level of less equal 1%, i.e. s < 0.01. The one-way layout was derived by simply 

averaging over all factors except the one under consideration [cf. Kurtulus / Davis (1982)]. 

All algorithms were coded in PASCAL and implemented on an IBM compatible personal 

Computer with 80386dx processor and 40 MHz clockpulse at the laboratory of the Christian-

Albrechts-Universität zu Kiel. Random numbers were drawn with the generator proposed by 

Schräge (1979). 

5.2 Single-Pass Analysis 

For the single-pass analysis the sample size Zc was set to " 1" and the selection of activities 

was performed deterministically. Table 3 gives a comparison of the priority rules. The 

Friedman test reveals a significant different Performance w.r.t. the average deviation from the 

optimal Solution (5=0.0000). By pairwise application of the Wilcoxon test the following 

ranking is observed (where 'V denotes better and denotes significant better): 
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LST>-LFT>->-MTS>-MSLK>-^GRPW>->-WRUP. Thus, four groups can be distinguished 

significantly (s<0.0051): The (lower bound based) rules LST and LFT which perform quite 

good, MTS and MSLK ranging in the middle, as well as GRPW and finally WRUP, the two 

latter revealing a poor Performance, respectively. The computational effort for all rules is very 

modest. Within both scheduling schemes, the rules MTS and WRUP require slightly more 

CPU-time, whereas the MSLK rule demands only within the serial scheduling scheme more 

CPU-time. This is because the earliest precedence and resource feasible finish time has to be 

determined for every activity in the decision set. 

% LST LFT MTS MSLK GRPW WRUP 

5.06 5.32 6.65 7.53 10.78 11.66 

.02 .02 .03 .03 .02 .03 

Table 3: Performance of Priority Rules 

Table 4 demonstrates the Performance of the scheduling schemes. The ranking reveals to be 

PSSxxSSS and hence confirms the conjecture that the parallel scheduling scheme is signifi­

cantly (5=0.0000) superior to the serial one when used as single-pass heuristic [cf. 

Alvarez-Valdes / Tamarit (1989a)]. Each priority rule performs better w.r.t. the quality of so-

lutions when applied in the parallel scheme. Even more, every priority rule with the exception 

of the lower bound based rules LST and LFT is significantly better within the parallel schedul­

ing scheme (s<0.0013). Nevertheless, since LST and LFT belong to the best rules in both 

schemes, the serial scheduling scheme cannot be excluded a priori. This conclusion was already 

drawn in the study by Valls et al. (1992). 

The running time of the parallel scheduling scheme is slightly less than the one of the serial 

scheme. Whereas the parallel scheme uses most of the time to update the decision set, the se­

rial scheme requires the majority of the CPU-time for setting up and managing the array 1tKrt, r 

e R, 1=1,...,T, which is (especially in the case of a poor upper bound for the makespan 7) very 
time consuming. 

% PSS SSS 

6.46 9.21 

.02 .03 

Table 4: Performance of Scheduling Schemes 

The efFect of the problem parameters on the overall Performance is as follows (cf. Figure 1 

with monotonically increasing parameter levels on the x-axis): The network complexity NC 

does not reveal a significant influence (5=0.2929), whereas the efFect of the resource factor RF 

and resource strength RS, respectively, is highly significant (5=0.0000). It thus can be 

concluded that for single-pass scheduling schemes the influence of the problem parameters on 

the Performance is w.r.t. the tendency similar as for optimal procedures [cf. Kolisch et al. 
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(1992)]: Generally, a high resource factor and a low resource strength will induce a poor 

Performance. Precisely, for an ascending resource factor, the Performance of optimal 

procedures is monotonically decreasing, whereas the single-pass priority rule based heuristics 

reveal the lowest Performance for RF2 = 0.5. 

Neither the ranking of priority rules nor scheduling schemes is significantly influenced by the 

problem parameters. Regarding priority rules, this outcome confirms the conclusion made in 

the studies by Cooper (1976) and Alvarez-Valdes / Tamarit (1989a). Furthermore, the 

computational effort is not influenced by any of the problem parameters. 

DEV 

n " 
11 
10 
9 
8 
7 
6 
5 

1 2 3 4 

Figure 1: Effect of the Problem Parameters on the Overall Performance 

5.3 Sampling Analysis 

In the following it is investigated if the conclusions which were drawn for the single-pass 

case are still valid in the case of sampling. CPU-times are not provided any more because - as 

was shown in the last section - they are not influenced by any of the parameters. According to 

preliminary computational results [cf. Kolisch (1994)], the levels of the sample size Zc were 

chosen to be {10, 40, 70, 100} and the bias parameter a was exclusively set to " 1 

Table 5 reveals the Performance of the priority rules. As for the single-pass case, a significant 

difference between rules can be detected (5=0.0024). The (lower bound based) rules LST and 

LFT perform best, MTS and MSLK ränge in the middle while WRUP and GRPW have the 

worst Performance. The results of MSLK have to be interpreted with care because - like for 

the single-pass approach - it shows a quite different Performance within each of the two 

scheduling schemes, respectively: For the parallel scheme it performs like the "good" LST rule, 

within the serial scheme MSLK gives rather poor results. 

% LFT LST MTS MSLK WRUP GRPW 

2.08 2.11 2.48 2.56 3.36 3.79 

Table 5: Performance of Traditional Priority Rules for Sampling 

By comparing the ranking (LFT>-LST>->-MTS>-MSLK>->-WRUP>->-GRPW) with the one of 

the single-pass approach the following can be stated: (/') With two exceptions (LST and LFT as 
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well as WRUP and GRPW) the ranking obtained is the same as for the single-pass case. (/'/) 

While the difference between groups (i.e. LFT, LST vs. MTS, MSLK vs. WRUP vs. GRPW) 

has about the same level of significance (s<0.0036), the difference between rules is slightly less 

significant. Thus, it can be stated that, in general, priority rules which are good for single-pass 

approaches are good for biased random sampling approaches and vice versa. Although not 

explicitly pointed out, Alvarez-Valdes / Tamarit (1989b) attained similar results in their study. 

Their rankings obtained when utilising 6 priority rules within the deterministic- and the 

sampling-based parallel scheduling scheme differed only w.r.t. one rule. The contrary 

Observation of Cooper (1976) is a consequence of his (not regret based) probability mapping 

which in conjunction with the LFT priority rule tends to perform (pure) random sampling. Of 

course, the interrelation between single-pass and sampling heuristics depends on the amount of 

bias. Whereas with 0% bias the significance equals the one of the (deterministic) single-pass 

case, a bias of 100% (i.e. random sampling) results in no (significant) difference between the 

priority rules. 

Figure 2 gives insight into the Performance w.r.t. the sample size. As expected, it is 

demonstrated that increasing the sample size continuously produces better solutions. Depend-

ing on the sample size, the average Performance of the single-pass approach is thus improved 

between 50% (Zc=10) and 73% (Zc=100). This is up to ten times more than observed by 

Cooper (1976). Hence, it can be stated that sampling significantly outperforms the single-pass 

approach (5=0.0000). This contradicts the conclusions drawn by Conway et al. (1967, p. 128) 

for the job shop problem, stating that sampling reveals only modest improvement over single-

pass procedures. But it has to be noted that the marginal improvement diminishes. This implies 

a growing computational effort in order to produce better solutions. 

Finally, Figure 3 demonstrates the efifect of the scheduling schemes w.r.t. the sample size Zc. 

The overall Performance of both schemes is with 2.75% for the parallel and 2.71% for the 

serial scheduling scheme almost identical. But a second glance reveals a (not significant 

(S>0.1994)) different Performance w.r.t. the sample size. While the parallel scheme is clearly 

superior for small sample sizes (i.e. less than 40 generated schedules), the serial scheme shows 

better results for large samples. Consequently, for sampling procedures solving the RCPSP the 

general superiority of non-delay schedules - as announced in Conway et al. (1967, pp. 121-

7 

6 

5 

4 

3 
2 L , , i —* „ 7 

1 10 40 70 100 c 

Figure 2: Performance as a Function of the Sample Size 
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124) for the job shop problem when minimising the average flow time - does not hold true. 

The rationale of the Observation is as follows: For small sample sizes the superiority of the 

parallel scheme w.r.t. the single-pass approach is dominant. With increasing sample size, this 

effect diminishes and at the same time the parallel scheme suffers from the fact that the sample 

space is the set of non-delay schedules which not necessarily contains the optimal Solution. We 

conjecture that this "critical sample size", i.e. 40 for the instances tested, increases when the 

problem size - expressed in the number of activities - is enlarged. 

Figure 3: Impact of the Sample Size on the Performance of the Scheduling Schemes 

The efFect of the three problem parameters network complexity, resource factor, and re­

source strength on the average Performance tumed out to be as for the single-pass case. That 

is, no significant influence can be observed for the network complexity (5=0.6485) while 

resource strength and resource factor, in the order mentioned, tumed out to be highly 

significant (5=0.0000). The ranking of the priority rules is not significantly efFected by the 

problem parameters but - deviating from the single-pass case - resource factor and resource 

strength influence the ranking of scheduling schemes significantly. 

RS]=0.2 RS2=0.5 RS3= 0-7 

RF\=0.25 SS SS* UM## 
RF2=0.5 PS SS* 
RF3=0.75 PS W PS PS* 
RF$=\ PS* PS* PS 

PS SS* 

Table 6: EfFect of RF and the RS on the Ranking of Scheduling Schemes 

Table 6 shows the ranking of the scheduling schemes w.r.t. to both resource parameters as 

well as their combination (where * denotes a 1-tailed significance at the 1% level of confidence 

and the hatched areas signal superiority of the serial method). Roughly, it can be stated that the 

parallel scheduling scheme performs better for "hard" problems (with a high resource factor 

and / or a low resource strength) while the serial scheduling scheme is better for "easy" 

problems (with a low resource factor and / or a high resource strength). 
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6. Summary 

On account of a detailed description of the serial and the parallel scheduling scheme the 

following was proven: 

(/) Both scheduling schemes generale feasible schedules which are optimal in the absence of 

resource restrictions. 

(«) The serial scheduling scheme generates active schedules while the parallel scheduling 

scheme creates non-delay schedules. Hence, the parallel scheduling scheme searches in a 

smaller Solution space than the serial scheduling scheme but with the drawback that - when 

considering a regulär Performance measure - the Solution space might not contain an optimal 

schedule. 

Additionally, an in-depth computational study brought forth the following results w.r.t. (/) 

the comparison of single-pass scheduling and biased random sampling, the Performance of (//') 

priority rules, (/'«) the Performance of scheduling schemes, and finally (iv) the impact of 

problem parameters: 

Ad (/'): Sampling significantly outperforms the single-pass approach. 

Ad (zz): Four groups of priority rules are distinguished significantly, i.e. {LST, LFT}, {MTS, 

MSLK}, {GRPW}, and {WRUP}. The ranking of priority rules is not significantly influenced 

by any of the problem parameters. Furthermore, priority rules which are good for single-pass 

approaches are also good for biased random sampling approaches. This relationship diminishes 

with increasing bias. 

Ad (///): The parallel scheduling scheme turns out to be better for the deterministic single-pass 

case and sampling up to a sample size of 40. It is conjectured that this "critical sample size", 

i.e. 40 for the instances tested, increases when the problem size - expressed in the number of 

activities - is enlarged. The resource based parameters resource factor and resource strength 

significantly effect the ranking of the scheduling schemes when employed within a sampling 

approach. More precisely, the parallel scheduling scheme performs better for "hard" problems 

(with a high resource factor and / or a low resource strength) while the serial scheduling 

scheme is better for "easy" problems (with a low resource factor and / or a high resource 

strength). 

Ad (zv): The resource based problem parameters resource factor and resource strength do have 

a significant influence on the solution-quality of single-pass and sampling heuristics: Generally, 

a high resource factor and a low resource strength will induce a poor Performance. 
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