
Jordan, Carsten; Drexl, Andreas

Working Paper — Digitized Version

Lotsizing and scheduling by batch sequencing

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 343

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Jordan, Carsten; Drexl, Andreas (1994) : Lotsizing and scheduling by batch
sequencing, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No.
343, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/155417

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/155417
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Nr. 343

Lotsizing and Scheduling by

Batch Sequencing

Jordan, C. and A. Drexl

April 1994

Carsten Jordan and Andreas Drexl, Institut für Betriebswirtschaftslehre,

Christian-AIbrechts-Universität zu Kiel, 01shausenstr.40, D - 24118 Kiel, F.R.G.

Abstract: The discrete lotsizing and scheduling problem with setup-times is transformed into a single-machine scheduling

problem, denoted as batch seq uencing problem, whic h integrates sequence-dependent setups as well. The relatio nship

between the lotsizing and the batch sequencing pro blem is an alyzed. The ba tch sequencing prob lem is solve d with an

enumerative algorithm which is accelerated through bounding and dominance rules. Computational results show that this

algorithm solves even the special case of sequence-independent setups more efEciently than a procedure for the d iscrete

lotsizing and scheduling problem which has been recently published.

Keywords: DISCRETE LOTSIZING AN D SCHEDULING, SETUP-TIMES, BATCH SEQUENCING, SEQUENCING

ALGORITHM, BOUNDING/ DOMINANCE RULES.

1. Introduction

In lotsizing and scheduling models the size and sequence of production lots or batches of different items

is determined. In this paper we consider the single-stage single-machine case with setup-times. The

problem can be stated as a discrete lotsizing and scheduling problem (DLSP) with setup-times, denoted

as DLSPST. In the DLSPST demand for each item is dynamic, backlogging is not allowed. Before each

production run a Setup is made. Setup-costs and -times depend either on the future item only (sequence-

independent) or on the sequence of items (sequence-dependent). Production takes place to meet present

or future demand, in the latter case holding costs are incurred. The planning horizon is segmented into a

finite number of (small) periods. In each period at most one item can be produced or a setup is made.

An optimal production schedule for the DLSPST minimizes the sum of setup- and holding costs.

The close relationship of the DLSPST to scheduling models in general has motivated us to State the

DLSPST as a batch sequencing problem, denoted as BSP. Demand for an item is interpreted as a Job

with a deadline and a processing time. Jobs of the same item are grouped into families. All Jobs must be

processed on a Single machine between time zero and their deadline, switching from a Job in one family

to a job in another family incurs (sequence-dependent) setup-costs and -times. Early completion of a job

is penalized via earliness costs which correspond to holding costs. An optimal schedule for the BSP

minimizes the sum of setup- and earliness costs.

The DLSP has first been introduced by Lasdon/Teijung (1971) with an application for production

scheduling in a tire Company. A problem similar to the DLSP is considered by Gascon/Leachman

(1988) and solved via dynamic programming. An approach based on Lagrangean relaxation is proposed

by Fleischmann (1990) for the DLSP without setup-times. Fleischmann (1992) incorporates ideas from

Solution procedures for vehicle routing problems to solve the DLSP with sequence-dependent setup-

costs. The DLSPST is examined by Catrysse et al. (1993). They compute lower and upper bounds with

a dual-ascent and column generation heuristic. Their results will serve as a benchmark for our approach

to solve the batch sequencing problem (BSP). Complexity results for the DLSP and its extensions are

examined in Salomen et al. (1991), where the close relationship of the DLSP to job (class) scheduling

problems is emphasized. A broader view of lotsizing and scheduling problems is given in Potts/Van

Wassenhove (1992).

2

Solution procedures for scheduling problems with batch setup-times are considered in Unal/Kiran

(1992) and Woodruff/Spearman (1992). Unal/Kiran (1992) address the feasibility of the batch

sequencing problem and propose an affective heuristic, WoodrufFSpearman (1992) solve an extension

of the BSP with a tabu search heuristic. Both papers stress the relationship to lot-scheduling problems.

The complexity of scheduling problems with batch setup-times is investigated by Bruno/Downey (1978)

and Monma/Potts (1989).

In Section 2 we State both models and illustrate the transformation with an example. In Section 3 their

relationship is investigated, Section 4 presents a sequencing algorithm to solve the BSP. Computational

results are presented in Section 5, conclusions follow in Section 6.

2. The DLSPST and the BSP

In this section we State the DLSPST as it is presented in Catrysse et al. (1993), but without considering

production costs. We then introduce the BSP The BSP is stated and solved for the case of sequence-

dependent setups, therefore including sequence-independent setups of the DLSPST as a special case. In

Section 3 we show, that for equal holding costs for all items an optimal Solution for the BSP is also

optimal for the corresponding DLSPST. Thus Solution procedures for the BSP and the DLSPST are

compared for instances with sequence-independent setups and equal holding costs. The transformation

of the DLSPST into the BSP is illustrated with an example.

The parameters of the DLSPST are introduced in Table 1.

Table 1. Parameters of the DLSPST

t periods ? = T

i items i =

qj t demand of item i in period t

hj holding costs per unit and period of item i

Sj setup-costs to item i

üj setup-time (in periods) to item i
A set of items with nonzero setup-times = {i | o? > 0, i=l,...,N}

In the DLSPST in each period either one item is produced at füll -(unit) capacity or a setup is made or

the machine is idle (cf. Salomon et al. (1991)). The setup State is not kept during idle time, i.e. if item i

{i eA) is not produced in period t-1 a setup of a7- periods is needed before t to produce item i in period t

(for item i gA we have a setup at the beginning of period t). With the decision variables of Table 2 we

State the DLSPST in the equations (1) to (7).

3

Table 2. Decision variables of the DLSPST

H.t

vi,t

ht

1, if item i is produced in period t; 0, otherwise;

1, if a setup for item i is perfbrmed in period t; 0, otherwise;

inventory of item i at the end of period t

N T

I £
i=l t=l

2DLSPST' min % + htIit

subject to

N

i=l ieA

h,t- l+yi,f%t = h,t

vi, t - Qj + k~ yu t • yt, t-i

t—l,...,T

i=l N; t=I,...,T

igA; t= 1,...,T

i=l N; t=l,...,T

(1)

(2)

(3)

ieA; t=ai+l,...,T; k-0,a^l (4)

(5)

(6)

V {0,1} i=l,...,N; t=l,...,T (7)

The objective function (1) minimizes the sum of setup- and holding costs. In (2) setup or production for

at most one item is allowed. Equations (3) are inventory balance constraints and (4) and (5) together

with (1) appropiately set the variables yjj , Vj t for items with nonzero and zero setup-times,

respectively (cf. Catrysse et al. (1993)). To State the BSP we need the parameters of Table 3.

Table 3. Parameters of the BSP

J

dJ

job j = l J

deadlineofjob j

Pj processing time of job j

II

item i, job j belongs to

earliness weight per unit time of job j

setup-time from item g to item i, g=0,..

= Oj for g*i; = 0, for g=i;

..,N; i—1,. ...N;

setup-cost from item g to item i, g-0,.. .,N; /=/,.. .,N;

B

= Sj maxfl, aj} for gri; = 0, for g=i;

big number

4

In the DLSPST we assume w.l.o.g. binary demand, i.e., te{0,l} (cf. Magnanti/ Vachani (1990)). For

each item i in the BSP we Interpret a sequence of "consecutive ones" in t as one job j. Along this way

we derive the job attributes as follows: The last period of such a sequence is the deadline dp and the

length of the sequence yields the processing time pj. Jobs j of one item i belong to the same

family (=item) Kj (cf. Figure 1). The earliness weight ej of a job j is the processing time pj multiplied

with the holding costs of its item Kj. For the BSP setup-times stg z and -costs sCg, from item g to item i

are given in a matrix, thus in general setups can be sequence-dependent. We obtain the entries of the

matrices from the DLSPST parameters (cf. Tables 3 and 1), where item g=0 denotes the idle machine.

Note that in this special case setups are sequence-independent.

With the decision variables in Table 4 we give the "conceptual" formulation (8) - (11) for the BSP.

Table 4. Decision variables for the BSP

n job sequence

j'k £-th job of the sequence n

Xj completion time of job j

Yfc 1, if a setup (from the idle machine) to the £-th job is performed;

0, otherwise;

J
ZBSp = mm ^ eJk (dJk - Xjk) + sc^• ^ + Yk- SCQ K^ (8)

k=l

subject to

1 m" <\' % - s'\.i \ k~' ^ (9)

\ <10>

XQ = JQ = dg = KQ - YJ = 0; YfcS {0;1}, k = 2 J; (11)

In this formulation the decision variable "job sequence" % is an index, thus the formulation cannot be

used for conventional mixed-integer-programming solvers.

The objective function (8) minimizes weighted earliness and setup-costs. Constraint (9) imposes the

sequence on the machine and enforces the completion time Xj of each job j to be less or equal its

deadline dj. If consecutive jobs j^j and of the same item are not processed immediately after each

other, Yfc is set to one in (10), a new setup (from the idle machine) is performed and taken into account

in the objective (8). Initialization of variables is provided in (11). In the BSP the unit capacity

constraints (2) of the DLSPST transform into the condition, that the single machine can handle only one

job at a time. Recall that the BSP integrates sequence-dependent setups.

5

A DLSPST instance with 7V=3 items and T=18 periods with the parameters qi t, , a i and si is given

in Figure 1. Entries qj f=0 are omitted. Dotted rectangles and circles denote the Jobs (=demands) and

job-numbers of the BSP, respectively.

Figure 1. Interpretation of demands as jobs

qi,t

items

1

2

3

hj a, Si

1 1

f'4";

1 ; 1 1

m

(7 (6) 5

1

i i

periods

1 i i r
12 14

i
16' 1»

For item 1 we have t=l in periods 18, 17 and 5, 4, respectively, and derive the attributes of jobs 1

and 2 (cf. Table 5). The setup-time matrix stgj is obtained directly firom ap the setup-cost matrix

through Sj maxfl, ay}, setups are sequence-independent. We yield 7 jobs labelled consecutively within

each fämily in the order of decreasing deadlines.

Table 5. Job attributes and setup-time and -cost matrix

to

/ di PJ 5 ei stZ,i 1 2 3

1 18 2 1 2 0 0 1 2

2 5 2 1 2 1 0 1 2

3 18 1 2 1 from 2 0 0 2

4 6 1 2 1 3 0 1 0

5 18 2 3 2

6 13 1 3 1 0 5 6 6

7 8 1 3 1 1 0 6 6

from 2 5 0 6

3 5 6 0

The DLSPST Solution can be represented with a string of length 18 with entries [-, a, 1, 2, 3] for idle

time, setup-time and production of the different items, respectively, cf. Figure 2. This DLSPST Solution

is the schedule of the job sequence n = (4, 2, 7, 6, 5, 3, 1). Both solutions yield the optimal objective

function value ^OLSPST ~ %BSP = 48.

For higher setup-costs to item 3 we obtain another Solution, cf. Figure 3. Jobs 6 and 5 are now

scheduled contiguously behind job 7 to avoida second setup to item 3.

6

Figure 2. DLSPST and BSP solutions

a 2 1 1 a a 3
Z = 48

a a 3 3 3 a 2 1 1

~KJ~ 12

Figure 3. Solution for higher setup-costs to item 3

2 = 55 4 6 5

2 4 ' 6 ' 8 101 12'

14

14'

16

16

DLSPST Solution

BSP Solution

1»

BSP Solution for sj ~ 5

1»

Note that the problem size NxT (itemsxperiods) of the DLSPST can be quite different from the problem

size J (number of jobs) of the BSP.

3. Relationship between the DLSPST and the BSP

We first give some definitions and then analyze the relationship between the DLSPST and the BSP.

In the DLSPST we define a batch as a noninterrupted sequence of periods where production takes place

for one item. In the BSP jobs of one item which are processed contiguously without idle time between

them form a batch. E.g., in Figure 2 jobs 7 and 6, 5 form two batches, in Figure 3 jobs 7, 6, 5 form one

batch.

We refer to demand Splitting as Splitting one job j in two jobs j' and j" on two different batches, the

corresponding DLSPST schedule is called preemptive (cf. Salomon et al. (1991)). The DLSPST allows

demand Splitting, while the BSP does not, i.e. jobs must not be preempted, only nonpreemptive

schedules are allowed.

In the BSP the earliness weight ej of a job j is proportional to its processing time pj, cf. Table 3. Thus

for hj identical for all items i the weighted processing time pj/ej is identical for all jobs. The following

theorems State that in this case demand Splitting does not need to be considered. Furthermore, we only

need to consider schedules, where jobs within one family (=item) are sequenced in an earliest deadline

order, referred to as EDDWF ordering (earliest deadline within families, cf. Woodruff Spearman

(1992)). EDDWF ordering reduces the size of the enumeration tree, cf. Section 4.

All theorems are easily proven with exchange arguments (cf. e.g. Monma/ Potts (1989)), therefore the

proofs are omitted.

Definition 1. For an EDDWF ordering we denote with j <- i the case where j = i + 1 and Kj = Kj. So

j i denotes that i and j belong to the same item and due to the labelling within an item in order of

decreasing deadlines, i is the job at the "next" deadline, cf. e.g. Figiire 1 the jobs 4 <^3.

A schedule o = (A, i, B, j, C) denotes the completion times of jobs A, i, B, j and C. We refer to A, B, C

as composite jobs, where two or more jobs are aggregated to one composite job. From a schedule o we

7

derive the earliness costs of each job and from the sequence of items we derive the setup-costs, thus

costs of a schedule o can easily be determined (cf. (8)).

Theorem 1. Assume j <— i and a schedule a = (A, i, j, B). Then a schedule a' - (A, j, i, B) can be

constructed with equal costs. As a consequence, jobs j, i in one batch can be scheduled according to

EDDWF.

For] <- i and j, i in different batches interchanging j and / can be seen as a special case of demand

Splitting:

Theorem 2. Assume j i and a schedule o = (A, i, B, j, C). Without changing the completion time of

B we can construct a schedule a' = (A, j, B, i", C) or o" = (A, j', B, j", i, C) with costs equal to

costs of o, so that jobs j, i are split but scheduled in EDDWF order.

To find feasible schedules we do not need to consider demand Splitting or preemptive schedules (cf.

Unal/Kiran (1992), Salomon et al. (1991)):

Theorem 3. Assume a feasible preemptive schedule o for the DLSPST which corresponds to a

schedule with job j split in j' and j" on two batches, o = (A, j", B, j", C) . Then the schedule o' = (A,

B, j, C) is a feasible nonpreemptive schedule for the DLSPST which corresponds to a feasible schedule

for the BSP.

In Theorem 3 we can schedule B earlier without violating feasibility. Theorem 4 states, that it is

sufficient to consider nonpreemptive schedules in the special case of equal holding cost:

Theorem 4. Let all holding costs be equal, i.e. w.l.o.g. h~ 1 for all items i=l N. Assume a feasible

preemptive schedule o for the DLSPST. Then there is a feasible nonpreemptive schedule o' for the

DLSPST which corresponds to a feasible schedule for the BSP with less or equal costs.

Thus in the case of equal holding costs an optimal schedule for the BSP is also optimal for the

DLSPST.

4. Solving the BSP by job sequencing

In the following we present an algorithm to solve the BSP to optimality. We derive a schedule from the

job sequence and describe the basic enumeration scheme in Section 4.1. In Sections 4.2 to 4.4 we

provide bounding and dominance rules in order to prune large parts of the search tree.

4.1 Sequencing algorithm

In the following we assume jobs within the families being (re-)labeled according to the EDDWF

ordering as in Figure 1. The sequences permitted by EDDWF preordering can be represented with a

8

precedence graph, cf. Figure 4 for our instance. We schedule a project with a serial structure on a Single

facility. The EDDWF preordering substiantially reduces the number of sequences.

Figure 4. EDDWF precedence network

The sequencing algorithm constructs partial schedules starting at the planfiing horizon (the largest

deadline) with the (fictitious) job j = 0, i.e. the root of the search tree. At any stage a job is eligible, if all

its predecessors (of the precedence graph) are scheduled. Partial schedules are extended by scheduling

an eligible job in each stage of the enumeration tree. This way the last job scheduled defines the

starttime of a (partial) schedule a. Iff a partial schedule o' is bounded or dominated by another partial

schedule a, backtracking occurs. Extending partial schedules we apply a depth-first strategy. A

schedule o comprises a Solution of the BSP when all Jjobs have been scheduled. The algorithm stops

after all sequences have been examined, the best Solution fbund is optimal.

From the job sequence n we derive a semiactive schedule, which is then transformed into the schedule a.

Therefore we can use the terms sequence and schedule interchangeably. Schedule a is the minimal cost

schedule for sequence n, so that only the sequences have to be enumerated.

For a sequence n given, we compute a semiactive schedule starting with X = d7- as follows:

In this semiactive schedule no local right-shift of a Single job is possible. From the semiactive schedule

we derive schedule a solving a subproblem: W.r.t. a semiactive schedule we denote a group of jobs as

all consecutive jobs belonging to the same item. Within the groups we (may) have to decide which jobs

shall be batched, referred to as a single-item subproblem. This subproblem only needs to be solved if

there is idle time behind the first job of a group in the semiactive schedule. Similar to the Wagner-

Whitin algorithm (cf. Wagner/Whitin (1958)) we can solve this Single item subproblem via dynamic

Programming.

Consider Figures 2 and 3 with the job sequence n = (4, 2, 7, 6, 5; 3, 1). The semiactive schedule for n

is shown in Figure 2, another schedule is shown in Figure 3. In both schedules jobs 7, 6, 5 of item 3

form a group. In the semiactive schedule, cf. Figure 2, job 7 is the first job of the group and the machine

is idle behind it. For Sß=3 it is optimal to split the group into two batches, the semiactive schedule is

identical with schedule o. In Figure 3 for s$=5 a second setup to item 3 with costs of aß-Sß =10 is more

Jk >> %,•%'J"-'
k =J,...,2 (9)

9

expensive than leftshifting jobs 5, 6 which causes earliness costs of 9. Therefore jobs 6, 5 are scheduled

contiguously behind job 7 and for higher setup-costs we yield another schedule o fbr n. We refer to

leftshifting jobs to avoid a second setup as pulling back jobs. Note, that in both cases the fürst job of the

group, here job 7, is scheduled at its deadline.

In the sequencing algorithm first all jobs of one group are batched. Then, we only need to solve the

single-item subproblem if the costs incurred due to pulling back the first group of a partial schedule

exceed the setup-costs, e.g. extending the partial sequence (6,5,3,1) to (7,6,5,3,1) for s^=3.

4.2 Bounding rules

In order to present bounding and dominance rules we need attributes of partial schedules, cf. Table 6.

Table 6. Attributes ofpartial schedules 1

UB upper bound (costs of the current best Solution)

a (partial) schedule of the job sequence (j^ j^_j,..., jj)

f(a) item i, the first job (Mast job scheduled) of schedule o belongs to

t(a) starttime of the first job of schedule o

c(a) costs of schedule a without the setup to

J(a) set of currently unscheduled jobs

l(a) set of items, the unscheduled jobs belong to
= {i | i = Ky je J(o)}

The objective function value of the best Solution computed during enumeration is denoted with UB.

Scheduling the job sequence (jh, jh_j, ..., jj) semiactively we denote with t(a) the starttime of the last

scheduled job j^ and with f(o) the item it belongs to. The costs c(o) of a partial schedule a can easily be

updated when a new job is scheduled, in some cases we may have to solve a single-item subproblem, cf.

Section 4.1. For each partial schedule a the sets of unscheduled jobs J(o) and unscheduled items l(o)

are known.

Two bounds are easily derived, a feasibüity bound and a cost bound:

A lower bound for the time T(a) necessary to schedule the jobs je J(o) is the minimal time needed to

perform a setup to each family contained in l(o) and the sum of all processing times of jobs in J(a). By

defining T(a) = ^ st0 j + ^ pj ,we derive the

i e l(o) j e J(o)

Feasibility bound: Fathom a partial schedule a if

T(o) > t(a), because there is no feasible extension of o.

10

A lower bound for the costs C(o) necessary to schedule the jobs j e J(o) is the sum of costs needed to

perform a setup to each item in l(a).

By defining C(o) = ^ SCQ ?, we derive the

i el(o)

Cost bound: Fathom a partial schedule o if

c(o)+ C(a) > UB, because there is no extension of a with lower Overall costs.

Remark 1. For sequence-dependent setups we consider in each column / tße minimum of stg, and

scg j,g=0,...,N, g*i.

4.3 Dominance rules

We need to define further attributes of partial schedules to describe the dominance rules, cf. Table 7.

Table 7. A ttributes of partial schedules II

set of jobs which form the first group of a (partial) schedule o

= Oh' Jh-1' J'hrkI Kjh_k k =

number of jobs in the first group
sum of earliness weights of Gj(o)

-
j eGtfo)

sum of earliness weights of jobs in J(o)

'
j eJ(o)

pull back Start time of the first job of a schedule o

additional earliness costs for schedule o if Gj(o) is pulled back

= wj(a) max{0, t(o) -pbs(a)}

Two different partial schedules o and o' are compared if they schedule the same set of jobs, i.e. J(o) =

J(o). A schedule o' is dominated if another schedule a is more efficient in terms of time and costs, so

that o starts later (leaves more Space for jobs in J(o) which may be scheduled later) and c(o)<c(o).

Unfortunately, the dominance rules are complicated through the fact that jobs must be scheduled in a

"DLSP" like fashion (no idle time in a batch): Comparing two partial schedules we have to take into

account that the first group Gj(o) of a partial schedule a may be "pulled back" to avoid another setup.

Gj(o)

z(o)

W](a)

W(o)

pbs(o)

pc(a)

11

Thus we need an upper bound on the costs transforming a partial schedule o (where Gj(a) is scheduled

semiactively) into a DLSP schedule, denoted as pulling cost pc(o).

The earhest time a job j can be "pulled back" to is its starttime scheduling it contiguously behind the job

of its item i = Kj with the smallest deadline. In Figure 1 job 6 may Start at time 8 due to a "pull back",

job 5 may be pulled back to 8 + p$ - 9. Along this way a "pull back Start" of each job is derived,

independently of a schedule a. For a given partial schedule a we define pbs(a) as the pull back Start of

the first job j^ of a. Now max{0, t(a) - pbs(a)} is the time intervall Gj(o) may maximally be pulled

back. Weighting this time with wj(cs), we obtain the pulling costs pc(a) of a partial schedule a, the

required upper bound. Costs through pulling back Gj(a) occur if a is extended with a job j, Kj =f(o)

and dj < t(a) (e.g. extending the partial schedule (6, 5, 3, 1) to (7, 6, 5, 3, 1) in Figure 3).

In addition, we need an upper bound on the cost decrease if jobs je J(o) are delayed. Consequently,

W(o) denotes the sum of earliness costs of jobs in J(o). Weighting W(o) with a delay we get the

required upper bound on the costs decrease.

Dominance rules for different first items

In the following we assume that two partial schedules a and o' schedule the same set of jobs, i.e. J(a)

= J(a'), but the items of the first jobs of o and a' are different, i.e. f(a) *f(o). We ask for conditions

to hold so that schedule a dominates schedule a'.

Remark 2. All dominance rules are stated for sequeace-dependent setups. The setup-time and -cost

matrices have to satisfy the triangle inequaüty. We need furthermore the following monotonicity

property between stgand sCg; : If a permutation P' of the set of items (including 0) leads to higher

setup-times than a permutation P, then the setup-costs of P' must exceed setup-costs of P, too (for

sequence-independent setups different permutations P and P' lead to the same setup-costs and -times).

Case I: t(o) + < t(o)

Schedule a' is dominated by schedule a if
c(o) + pc(a) < c(o) - scf(o-)t f(o) .

In Case I schedule a' starts earüer than schedule a. Schedule a' is dominated by o, if maximal

costs of o are lower than actual costs of o' minus setup-costs fromf(a) tof(o).

Proof: Let w be a partial schedule of all jobs jeJ(a) which extends o to a feasible Solution. With the

triangle inequality valid for the setups an extension co of o' cannot schedule jobs later than schedule o.

For an extension ÖJ of o' we can find a better Solution scheduling co befo re a and performing a setup

after co from f(o) to f(a). •

12

Consider Figure 5 as an example for Case I: Schedule a starts at time 7, schedule o at time 4. We have

pc(o) = pc(a') = 0 because t(a') < d^, the pull back Start of job 3, and job 7 cannot be pulled back

because it is the job of item 3 with the smallest deadline. So we fathom schedule o as we have 28 + 0 <

36-6.

Figure 5. Schedule a dominates o' (Case I)

schedule a

- schedule er'

c(a)=36

Case II: t(a') + st^a^^ > t(o)

Let A = t(a) + stßa-j - t(a).

Schedule a' is dominated by schedule a if
c(a) +pc(o) + A-W(a) < c(o') -scf(a')t ß-aj and

schedule o has a feasible extension.

fc)=3

c(o)=28

f(cr)=2

In Case II an extension of a' may schedule all jobs in J(a) A periods later than any extension of

o. In this casea must have a feasible extension to dominate a schedule o' which leaves more

space for jobs in J(a).

Proof: An extension w of a' can have lower earliness costs than extending o with co, but not less than

A W(a) (cf. Figure 8). Due to the monotonicity property between setup-times and -costs we will not

find an extension co of awhich is infeasible for a and has lower setup-costs than the existing feasible

extension of o. •

A geometrical Illustration of Cases I and II is given in Figure 8.

Dominance rules for equal first items

Again we have J(o) = J(a') and also the items of the first jobs of o and a' are equal, i.e.ffo) =f(o).

Furthermore the first job jfr of both partial schedules o and o' is identical as we schedule jobs in

EDDWF order. So also the pull back Start time is equal for both partial schedules, i.e. pbs(a) =

pbs(a'). Clearly, for Gj(o) = Gj(a') and t(o) = t(o), o' is dominated by a if c(o) < c(a). Cf.

Figure 6, where Gj(o) = Gj(a) = {5} and 21 < 23.

If the schedules a and a' differ in their first group, the pulling costs need to be considered: In Figure 7

we have t(o) = 12> t(o) = 10 and c(a) = 12 < c(o') = 17. But if we now extend o = (6, 5, 3) to o =

13

(7, 6, 5, 3) we have c(a) = 24, extending a' ~ (6, 3, 5) to o' =(7, 6, 3, 5) produces c(a) — 19. I n this

example schedule o does not dominate o'due to pc(o) = 12 > pc(o') = 2.

Figure 6. Schedule o dominates a' (Case III)

f(a)=3

c(o)=21

f(a)=3
1 I I I l I l I I] T

2 1 4 1 6 1 8 1 10 12 14 lff

schedule er

schedule er'

18"

c(cr)=23

Figure 7. Schedule a does not dominate a' (Case III)

fo)=3 7 ! 6 ! 5

c(a)=24 c(a)= 12

f(aj=3 7 ! 6
i—I—I—I—i—T

4 1 6 1 8 1 10" 12'
c(a)= 19 c(a)= 17

14 16

schedule er

schedule er

1®

For equal first items we have the following rules:

Case III: t(o') < t(a)

Let A = t(a) - t(a).

Schedule a' is dominated by schedule a if:

c(a) + A-pc(o) < c(a') andc(o) + pc(a) < c(o') + pc(o').

In Case HI schedule a starts later than o

Proof. Again any extension co of a' can be scheduled before o with less or equal cost. Scheduling

Gj(o) or Gj(o) at any time betweenpbs(a) = pbs(a) and t(a), schedule a has lower costs than a. •

Case IV: t(o) > t(a)

Schedule a' is dominated by schedule a if

c(o) + A-W(o) < c(o') , c(o) + pc(a) < c(o') + pc(a') and

schedule o has a feasible extension.

In Case IV an extension co of o' may schedule all jobs in J(o) A periods later and we need the

correction term A-W(o) (cf. Figure 9). Schedule o must have a feasible extension to dominate

schedule a'.

14

Figure 8. Illustration for Cases I and II
cost

Figure 9. Illustration for Cases III and VI
cost

15

Proof. Refer to the proofs for Case II and Case HI.

In Figure 9 a geometrical illustration of Cases III and IV is given. Costs through pulling back increase

linearily betweenpbs(a) =pbs(o) and t(o) or t(a '), and in this Intervall costs of schedule o' are higher

than costs of a.

Item extension dominance rule

A local pruning of the search tree is proposed by Park et al. (1993) conceming the extensions of partial

schedules o: As long as we can extend a schedule a with jobs from itemffo), which are early in the

semiactive schedule, we do not need to consider any other extension of a. All jobs in Gj(o) are early,

they can be considered as one Single job. More formally:

Extend a partial schedule o only with job j (all other extensions are dominated)

for:
j e J(o), Kj=f(o), t(o) < dj

Cf. Figure 2, the partial schedule a = (5, 3, 1) can be extended with the (eligible) jobs 2, 4 and 6 (cf.

Figure 4). Job 6 is early extending schedule o = (5, 3, 1) to o = (6, 5, 3, 1). So we do not need to

examine the extensions of o = (5, 3, 1) with jobs 2 and 4.

The item extension rule is easily proven with an exchange argument. We apply this rule together with a

branching rule where the next job scheduled to extend a belongs to the same item asf(o), so that setups

are avoided.

5. Computational results for the nonpreemptive case

In nonpreemptive schedules jobs in the BSP, which correspond to demands in the DLSPST, must not be

split on two batches. In the DLSPST schedules may be preemptive, which is not allowed for the BSP.

But the BSP includes the case of sequ&ace-dependent setups, while setups in the DLSPST must be

sequence-independent. Figure 10 shows the different types of schedules and setups covered by the

corresponding models. Sequence-independent setups are a special case of sequence-dependent setups, as

well as nonpreemptive schedules form a subset of the preemptive ones.

16

Figure 10. Types of schedules and setups for the different models

In Catrysse et al. (1993) computational results for the DLSPST are reported only for equal holding

costs for all items. In Section 3 we stated that in this case a nonpreemptive schedule is optimal for the

DLSPST. Thus the algorithms to solve the BSP and the DLSPST are directly comparable. Catrysse et

al. (1993) refer to their procedure as the dual ascent column generation procedura, denoted as DACGP.

They calculate a lower bound and an upper bound by means of column generation. The gap AZ provides

the difference between upper and lower bound, which is the maximal deviation of DACGP from the

optimal objective function value. We refer to our sequencing algorithm to solve the BSP as SABSP.

SABSP stops after the enumeration is finished, the best Solution found is optimal.

To compare DACGP and SABSP we solve the DLSPST instances with nonzero setup-times provided

by Catrysse et al. (1993). The DLSPST instances are transformed into BSP instances and solved with

SABSP, cf the framework provided in Figure 11. All instances have holding costs hj = 1 for all items i

so that Theorem 4 of Section 3 holds. Thus the BSP Solution is optimal for the DLSPST.

Figure 11. Transforming and solving DLSPST instances

DLSPST instances

I

Transformation / BSP instances

DACGP SABSP

Solution

The DACGP is coded in FORTRAN, the SABSP in C. Both algorithms are implemented on an IBM-

PS2 Model 80 with mathematical coprocessor 80387.

Catrysse et al. (1993) generated problems for item-period combinations {(N,T)} = {(2,20), (2,40),

(4,40), (2,60), (4,60), (6,60)}. In the following we refer only to problems with T=60, because smaller

problems are solved much fester by SABSP than by DACGP. The DLSPST instances have setup-times

ÖJ of e ither 0, 1 or 2 periods, the average setup-time per item is (approximately) 0.5, so that items often

have zero setup-time. For each item-period combination there are instances with different (approximate)

capacity utilization p: low (L) capacitated (p<D.55), medium (M) (0.55<p<0.75) and high (H)

capacitated problems (p > 0.75). There are 30 instances for each (N,p) combination, so that in total we

17

yield 3x3x30 = 270 instances. In Table 8 we denote with #J the average number of jobs in the

transformed BSP instances. For the DACGP we denote with AZ the maximal gap (in percent) between

upper and lower bound, with #1 the number of problems found infeasible and with R the average time

(in seconds) needed for the 30 instances. The SABSP is exact, we denote with R' the average time (in

seconds) needed for solving the instances to optimality and #1' denotes the number of problems found

infeasible by SABSP.

Table 8. Results within each problem class (30 instances)

DACGP SABSP

P AZ #1 R - R #r

19 L 0.17 2 25.8 0.1 2

25 M 0.20 7 76.3 0.2 7

29 H 1.22 10 274.9 0.1 9

21 L 0.15 3 38.9 5.5 3

31 M 0.47 6 120.8 18.1 5

35 H 1.43 dll 268.7 11.4 10

ß, 60) 22 L 0.13 1 56.2 48.4 1

33 M 0.70 P10 264.9 401.8 7

35 H 0.99 10 274.1 195.4 10
: Feasible integer Solution found by simplex based procedura for one problem instance (cf. Catrysse et al. (1993))
LP-relaxation is feasible but no integer Solution found for one problem instance (cf. Catrysse et al. (1993))

Problems with N = 2 and 4 are solved much fester by SABSP than by DACGP, the number of

sequences to examine is relatively small. For N = 6 computation times of SABSP are comparable to

DACGP. In the problem class (N,T,p) = (6,60,M) average time of SABSP is larger than the one of

DACGP, but at least two existing solutions are not found by DACGP. Furthermore, the average time in

this class would be 133.6 sec without considering one instance, which takes 8181 sec with SABSP.

Note, that there are other problem classes (N,T,p) = (2,60,H), (4,60,M) where DACGP does not find

existing feasible solutions.

Solution times difFer considerably for SABSP. Table 9 gives the frequency distribution of Solution times

and shows that in every problem class the majority of instances is solved in less than R, the average

time for DACGP. The bounding and dominance rules stated in Section 4 are applied at each node of the

search tree. Dominance rules for equal items are more often succesfully applied than those for different

first items, and Case I and III more often than Case II and IV. But none of the rules could be omitted

without worsening the results.

18

Table 9. Frequency distribution of Solution times

Number of instances solved in less than .. [sec]

p <0.1 < 1 < 10 <30 < 100 <300 < 1000 <10000 < R

L 10 20 30

M 4 26 30

H 13 17 30

L 3 23 4 30

M 12 13 5 30

H 3 4 9 12 2 30

L 2 11 8 4 3 2- 25

M 1 1 1 5 13 4 4 1 23

H 1 2 6 9 4 7 1 21

Computational results for sequence-dependent setups

For sequence-dependent setups only a small sample of instances with 6 items (manually generated) is

examined: integer processing and setup-times are out of the Intervall [1..10], setup-costs are an integer

multiple of setup-times. Deadlines for the 6-item problems are uniformely distributed over the planning

horizon. We examine different kinds of setup structures: With 3G (2G) we denote setups where the 6

items are grouped into 3 (2) families with large intra- and small interfamily setups, SQ denotes that

setups from item i to item j > i are small and large for j < i (e.g. from a light to a dark colour). With

RD matrices with random entries (satisfying the triangle inequality) are denoted. Lower (L) and medium

(M) capacitated problems are generated multiplying all deadlines of the high (H) capacitated instances

with 1.3 and 1.6, respectively. In Table 10 #J denotes the number of jobs of the BSP and (N,T) the size

of the corresponding DLSPST. Furthermore the Solution times in seconds on the IBM-PS2 Model 80

for the different setup structures are given.

Table 10. CPU times for sequence-dependent setups

#J (N,T) P

SABSP

#J (N,T) P 3G 2G SQ RD

30 (6,300) L 1248 1480 607 1503

30 M 929 1280 557 1080

30 H 221 242 161 187

The results show that computation times decrease with a smaller Solution space, i.e. a higher capacity

utilization, especially from medium (M) to high (H) utilization.

19

6. Summary and conclusions

In this paper we consider the discrete lotsizing and scheduling problem with setup-times, denoted as

DLSPST and the batch sequencing problem, denoted as BSP. Interpreting demands in the DLSPST as

jobs we transform the DLSPST into a BSP. The dual ascent and column generation procedure

(DACGP) to solve the DLSPST introduced in Catrysse et al. (1993) is compared with a sequencing

algorithm (SABSP) to solve the BSP. DACGP solves the DLSPST heuristically and provides an upper

and lower bound, SABSP solves the BSP to optimality. In the DLSPST setups must be sequence-

independent, but demands can be split on two batches (preemptive schedules). The BSP integrates

sequence-dependent setups but jobs must not be preempted, we only consider nonpreemptive schedules.

Catrysse et al. (1993) report computational experience with DACGP for a set of instances with equal

holding costs for all items. In this case the sequencing algorithm for the BSP (SABSP) solves also the

corresponding DLSPST exactly. Our results show, that SABSP is more efficient than DACGP, exact

solutions are found in a shorter time than heuristic solutions.

SABSP is conjectured to be advantageous for instances with few items and a small Solution space (i.e.

long setup-times, high capacity utilization) whereas DACGP is supposed to be better suited for lower

capacitated instances with many items and smaller setup-times.

In the future we will extend the BSP to multilevel structures and multiple machines.

Acknowledgement: The authors are indepted to Dirk Catrysse, Kathoüeke Universiteit Leuven, for

providing the test instances.

References

Bruno, J. and P. Downey, 1978. Complexity of task sequencing with deadlines, setup-times and

changeover costs, SIAM Journal on Computing, Vol. 7, pp. 393-404.

Catrysse, D., M. Salomon, R. Kuik and L. van Wassenhove, 1993. A dual ascent and column

generation heuristic for the discrete lotsizing and scheduling problem with setup-times,

Management Science, Vol. 39, pp. 477 - 486.

Fleischmann, B, 1990. The discrete lot-sizing and scheduling problem, European Journal of

Operational Research, Vol. 44, pp. 337 - 348.

Fleischmann, B., 1992. The discrete lot-sizing and scheduling problem with sequence-dependent setup-

costs, Working paper, University of Augsburg, to appear in European Journal of Operational

Research.

20

Gascon, A. and R.C. Leachman, 1988. A dynamic programming Solution to the dynamic, multi-item,

single-machine scheduling problem, Operations Research, Vol. 36, pp. 50-56.

Lasdon L S. and R.C. Teijung, 1971. An efficient algorithm for multi-item scheduling, Operations

Research, Vol. 19, pp. 946-969.

Magnanti, T L. and R. Vacchani, 1990. A strong cutting plane algorithm for production scheduling with

changeover costs. Operations Research, Vol. 38, pp. 456-473.

Monma, C.L. and C.N. Potts, 1989. On the complexity of scheduling -with batch setup-times,

Operations Research, Vol. 37, pp. 798-804.

Park, M , R Dattero and J.J.Kanet, 1993. Single machine batch scheduling with setup-times, Working

paper, Florida Atlantic University, USA.

Potts, C.N. and L.N. van Wassenhove, 1992. Integrating scheduling with batching and lot-sizing: a

review of algorithms and complexity, Journal of the Operational Research Society, Vol. 43,

pp. 395-406.

Salomen, M., L.G. Kroon, R. Kuik and L.N. van Wassenhove, 1991. Some extensions of the discrete

lotsizing and scheduling problem, Management Science, Vol. 37, pp. 801-812.

Unal, A. and A.S. Kiran, 1992. Batch sequencing, UE Transactions, Vol. 24, pp. 73-83.

Wagner, H.M. and T M. Whitin, 1958. Dynamic version of the economic lot size model, Management

Science, Vol. 5, pp. 89 - 96.

Woodruff, D L and M L. Spearman, 1992. Sequencing and batching for two classes of jobs with

deadlines and setup-times, Production and Operations Management, Vol l, pp. 87-102.

