
Hartmann, Sönke; Sprecher, Arno

Working Paper — Digitized Version

A note on "hierarchical models for multi-project planning
and scheduling"

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 338

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Hartmann, Sönke; Sprecher, Arno (1993) : A note on "hierarchical
models for multi-project planning and scheduling", Manuskripte aus den Instituten
für Betriebswirtschaftslehre der Universität Kiel, No. 338, Universität Kiel, Institut für
Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/155414

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/155414
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Nr. 338

A NOTE ON "HIERARCHICAL

MODELS FOR MULTI-PRO JECT

FLANNING AND SCHEDÜLING"

Sönke Hartmann / Arno Sprecher

December 1993

önke Hartmann, Arno Sprecher, Institut für Betriebswirtschaftslehre,

)hristian-Albrechts-Universität zu Kiel, Olshausenstr. 40,24118 Kiel, F. R. G.

Abstract: We consider the multi-mode resource-constrained project scheduling problem. The focus is

on an algorithm which is supposed to find a makespan optimal Solution. This algorithm has been

presented in a recent paper by Speranza and Vercellis. The correctness of the algorithm is examined.

Moreover, two counterexamples in which the algorithm does not lead to an existing optimal Solution are

presented.

Keywords: Project scheduling, resource constraints, multiple modes, tight schedules.

1 Introduction

In a recent paper, Speranza and Vercellis [1] suggest a branch-and-bound algorithm for solving the

multi-mode resource-constrained project scheduling problem with makespan minimization as objective.

Speranza. and Vercellis present a new idea for restricting the search space by defining tight schedules:

According to their proposition, an algorithm that enumerates all tight schedules will find an optimal

Solution. Since non-tight schedules are excluded from the search space, such an algorithm is supposed to

be very efßcient. The authors suggest an algorithm which uses maximal extensions of partial schedules

to produce tight schedules.

Unfortunately, the algorithm does not enumerate all tight schedules. We will show by counterexamples

that the algorithm does not always find an optimal Solution for a given problem. In addition, in some

cases it does not find an existing feasible schedule.

The remainder of the paper is organized as follows: After the description of the model in Section 2, we

present a formally revised formulation of the algorithm in Section 3. Section 4 provides two examples in

which the algorithm does not lead to an optimal Solution. Finally, conclusions are drawn in Section 5.

2 The Model

The multi-mode resource-constrained project scheduling problem (MRCPSP) can be stated as follows:

We consider a Single project which consists of nonpreemptive activities given by the set V. The activities

are partially ordered by precedence relations, where P; is the set of the immediate predecessors of

activity j, j e V. The precedence relations can be represented by an acyclic activity-on-node network.

We distinguishtwo different types of resources: The set of renewable resources is referred to as R while

N denotes the set of nonrenewable resources. For each renewable resource r, r e R, the availability in

1

period t is given by t = where T denotes an upper bound on the projects makespan. For each

nonrenewable resource r, r e N, the Overall capacity for the whole project is given by Qr.

Each activity can be performed in one of several modes of accomplishment, where different modes use

different resources and/or have different durations. Mj denotes the set of modes of activity J. For each

activity-mode combination (J,m),j e V, m e Mp the duration djm is given. Furthermore, wjmrt denotes the

usage of renewable resource r, r e R, in each period t, t = The consumption of a nonrenewable

resource r,reN, is given by qjmr.

Let n := \V\ be the number of activities. Activity 1 e V (n e V) is the unique dummy source (sink).

Both activities are assumed to have only one mode each, that is, Mx - Mn = {1}, in which they have a

duration of zero periods and do not request any resources.

A summary of the symbols of the model can be found in Table 1. We assume the parameters and the

data to be integer valued. The objective is to minimize the projects makespan.

set of activities in the project

set of modes of activity j

set of immediate predecessors of activity j

(non preemptable) duration of activity j performed in mode m

set of renewable (nonrenewable) resources

usage of renewable resource r required to perform activity j in mode m in the f-th period the

activity is in progress

qjmr : total consumption of nonrenewable resource r required to perform activity j in mode m

Wrt availabüity of renewable resource r in period t

Qr total availabüity of nonrenewable resource r

Table 1: Symbols and Definitions

v

Ms

PJ
djm

W,

3 Solution Methodology

In this section we briefly summarize the basic elements used in the algorithm presented in [1].

Definition 1. A schedule is a set

S = { (j, Tj, ntj) | j e V; there exist exactly one T} e N0 and one mj eMj},

where each activity j,j e V, is assigned exactly one triplet (/, Tjt nij) which denotes that activity j is

assigned the start time Tj e N0 and the mode ntj e Mj.

A schedule is called feasible if the precedence and resource constraints are not violated.

2

A partial schedule PS is a subset of a schedule S.

Definition 2. A schedule S = {{], Tj, m}) \ j e V} is called tight if there does not exist an activity j,

a mode m'j e Mj and a Start time T'j e N0, such that

S' - S\{ (/, Tj, ms) } u { (j, T'j, m'f) }

is a feasible schedule with T'j + djm,. <Tj + djmj.

Thus, a schedule S is tight if there does not exist an activity j e V the finish time of which can be

reduced without violating the constraints while the start times and modes of all other activities remain

unchanged.

Proposition 1. (Cf. [1], Proposition 4.1.) If there exists an optimal schedule for a given MRCPSP, then

there exists an optimal tight schedule.

Proof. Let S be an optimal schedule for a specific instance. If S is tight, we are done. Otherwise, there

exists an activity j and a triplet (/', Tj, rrij) e S, for which we can find T'j e N0 and m'j e Mj with

Tj # T'j and/or m} * msuch that T'j + djm,. <Tj + djm. holds and

S' := f \ { (/, 7}, my) } u { (/, m}) }

is a feasible schedule. Since S is optimal, we have j* \V\. Thus, 6" is of the same Iength as S, and S' is

an optimal schedule, too. Iteratively applying this substitution leads to a tight schedule of the same

length as the original schedule S. Therefore, the derived schedule is optimal and tight. •

According to Proposition 1, an algorithm that enumerates all tight schedules of a given instance will find

an optimal Solution. The algorithm suggested in [1] is supposed to enumerate all tight schedules (cf. [1],

Proposition 4.2) and therefore should be more efficient than an algorithm that additionally examines

schedules which are not tight.

The algorithm computes all possibilities to add a maximal set of activities, start times and modes to the

current partial schedule without violating the constraints. We need some more definitions to see how the

partial schedules are extended in the algorithm:

Definition 3. Let PS be a partial schedule, and let -c be a time instant. An unscheduled activity j, j e J,

is called free at time instant T if a ll predecessors of j are scheduled in PS and completed at or before

time t and, moreover, there exists at least one mode rrij e , in which activity j can be started at or

before time T without violating the constraints.

Definition 4. Let PS1 and PS2 be partial schedules. Let A, and A2 denote the sets of those activities that

are scheduled in PSX and PS2, repectively. We define the extension operator for partial schedules (+)

by

PSX + PS2 := PSl \ {(;, Tj, wy) e PSl | j e A1 n A2 } u PS2 .

3

This definition ensures that in an extended partial schedule no activity is assigned two different Start

times or two different mode numbers. Note, in general, we have PS: + PS2 # PS2 + PSj .

Definition 5. Let PS be a partial schedule, let x be a time instant, let A be the set of the activities

scheduled in PS, and let B be the set of those activities which are free at time x. Furthermore, let F

denote the set of those scheduled activities which are finished at time x, that is,

F = {j eJ | there exists (/, TJ} ntj) e PS with 7] + dJm. < x }.

Let P denote the set of those scheduled activities that are in progress at time x, that is,

P = A\ F.

For a given subset IcB<uP of activities and a related assignment

L = {(J, Tj, ntj) | jel, 7} e N0 and m]eM]}

let PS' :=PS + L.

The assignment L is called dominating, if PS' is a feasible partial schedule, and if there does not exist

an activity j,j e I, a mode number m'j e Mj and a Start time T'j e N0, such that

fr := ff \ { 0, 7}, »%)} u {(/, T), m})}

is a feasible partial schedule with T'j + dJmlj <Tf + djmj.

A maximal extension is a dominating assignment for which the addition of any activity j,

j e BKJ P\I, to the new partial schedule PS' would cause a resource conflict.

Remark 1. In [1], it is not explicitly mentioned how to determine the Start times Tj of the activities

jel in the above definition of dominating assignments. Note, if T} is allowed to be greater than the

current time instant x, each activity j e B<uP can be scheduled in the dominating assignment without

causing a resource conflict w. r. t. renewable resources. Therefore, in this case, any maximal extension

will contain the activities of I = BKJ P. We will return to this question in Section 4.

The algorithm described in [1] is a depth first search branch-and-bound algorithm. First, the earliest

Start time estj for each activity j is calculated by traditional forward recursion. The earliest Start time

ejm(Y) for each activity j and each mode m is initialized with estj. At level g = 1 of the branch-and-

bound tree, the dummy source activity is scheduled at time Xj = 0.

After Computing the set ^ of all maximal extensions, one maximal extension H is chosen for

branching to the next level g = 2 of the tree. Then H is removed from the set ^ and then added to the

current partial schedule.

New earliest Start times are computed as follows: If activity j was either free or in progress at the

previous level but not in the current maximal extension (case (a)), ejm{2) is defined as the maximum

between ejm(1) and the earliest time instant at which activity j could Start in mode m. If activity j was

neither scheduled nor free at level g = 1 (case (b)), ejm{2) is determined as the maximum between

ejm(\) and time Xj.

4

Furthermore, a new time instant x2 is determined as the minimum between the earliest finish time of the

activities in progress and the earliest possible start time of any unscheduled activity the predecessors of

which are finished at time rl.

If the dummy sink activity has not been scheduled yet, the next set of maximal extensions of the current

partial schedule is computed, and the algorithm proceeds as previously described.

If the dummy sink activity has been scheduled, the current schedule is saved and backtracking to the

previous level occurs. Now another maximal extension from the corresponding set at that level is

chosen, and the algorithm branches to the next level. However, if the set of maximal extensions is

empty, another backtracking step is made.

If level g = 0 is reached, the algorithm stops.

A summary of the parameters and variables used in the algorithm can be found in Table 2 while Table 3

provides a presentation of the algorithm including minor changes due to typing errors.

j activity number

m mode number

Tj start time of activity j

estj : earliest start time of activity j

g : level of the branch-and-bound tree

ejm(g) : earliest start time of activity j in mode m at level g

xg time instant at level g

PSg : partial schedule at level g

Ag : set of activities scheduled in the partial schedule PSg

Pg : set of activities scheduled in PSg that are still in progress at time xg

Fg : set of activities scheduled in PSg that are finished at time xg

Bg set of those unscheduled activities that can be started in at least one mode at or before time

rg (set of free activities)

H maximal extension of the current partial schedule

H set of the activities contained in the corresponding maximal extension H

set of the maximal extensions at level g

Kg : set of unscheduled activities the predecessors of which are finished at time igA

Best current best makespan

S : current best schedule

Table 2: Parameters and Variables used in the Algorithm

5

Step 1: (Initialisation)
g := 1; PSg := {(1,0,1)}; Ag := {1}; zg:= 0; Fg {1}; Pg := 0; := 9999;

for every j e V compute the earliest Start time estj;

for every j e V and m e M} let eJm{g) := estj.

Step 2: (Maximal extensions)

If Fg = F then go to Step 6, otherwise compute the set of the free activities Bg and the set of

all maximal extensions »5^.

Step 3: (Next maximal extension)

If #g= 0 then go to Step 5,

otherwise select a maximal extension H from ^ and remove it from .

Step 4: (Branching)

g-=g+ l;

A^A^uff;^

PS. :=PS' x + ff;

Pg-P^uH;

for each activity-mode combination (/,m), j e Bg_{ u PgA \ff,me Mj, let (a)

ejm(g) := max { eJm(g-\), min { Tf | PSgA {(j, Tj, m)} is feasible } } ;

for each activity-mode combination (j,m), je V\Ag.l\Bg_1, m eMj, let (b)

ejm(g) := max { eJm(g-l), xgA } ;

compute Kg,

xg := min { min { Tj + djm. | ; e Pg }, min { eJm(g) \ j e Kg, m e Mj} };

go to Step 2.

Step 5: (Backtracking)

g-g-

if g = 0 then STOP, otherwise go to Step 3.

Step 6: (Solution update)

If Tg < Best then Best := xg and S := PSg;

go to Step 5.

Table 3: The Algorithm

6

4 Discussion of the Algorithm

In this section some problems associated with the algorithm are outlined. It will be shown that in some

cases it does not find an optimal Solution. Two instances with constant resource availability and

consumption are presented.

Remark 2. In case of scarce nonrenewable resources, the algorithm might not lead to any existing

feasible Solution.

Instance 1. Consider the instance given in Figure 1 and Table 4. Obviously, in every feasible Solution

activity 2 has to be performed in mode 2, otherwise activity 3 could not be accomplished because of the

total request of four units of the nonrenewable resource.

Figure 1: Network of Instance 1

j m djm Qjml

1 1 0 0

2 1 1 2

2 2 1

3 1 1 2

4 1 0 0

Table 4: Durations, Consumptions and Availability of Instance 1

In the following we will illustrate how the algorithm is dealing with this instance.

Step 1: (Initialisation)
g= 1; = {(1,0,1)}; ^!={1}; ?i=0;Fi = {l}; Pl = 0; Best = 9999;

e21(l) = 0; e22(l) = 0; e3>1(l)=l; e4>1(l) = 2.

Step 2: (Maximal extensions)

Bx - {2}; assignments: {(2,0,1)} and {(2,0,2)}.

{(2,0,1)} dominates {(2,0,2)} because if activity 2 is performed in mode 1, it is finished

earlier than in mode 2. Therefore, {(2,0,1)} is the only dominating assignment. Furthermore, it

is the only maximal extension, i. e. ^ = {{(2,0,1)} }.

7

Step 3: (Next maximal extension)

H = {(2,0,1)}; #={2}; =0.

Step 4: (Branching)

2 = 2; A2= {1,2}; PS2 ={ (1,0,1), (2,0,1)}; ?, = {2};

63,1(2) = 1, 64.1(2) = 2 (case (b));

r2 = 1 (the completion time of activity 2);

F2={1,2}; P2 = 0.

Step 2: (Maximal extensions)

B2 = {3}. We have no maximal extensions at this level, i. e. = 0, because it is impossible

to schedule activity 3 in any mode and any start time with the partial schedule PS2 due to the

total resource request of 4 units.

Since there are no maximal extensions at this level, a complete schedule cannot be found in this part of

the tree, and backtracking to level 1 occurs. As we have no more maximal extensions left at level 1,

another backtracking step to level 0 is made, and the algorithm stops.

Since Step 6 has not been reached, the algorithm does not find a complete schedule. That is, the

algorithm terminales without determining the existing feasible (and optimal) Solution. •

Remark 3. In case of at least two renewable resources, the algorithm might not find an existing optimal

Solution.

Instance 2. Consider the instance given in Figure 2 and Table 5. If activity 2 is scheduled in mode 1, it

cannot be in progress at the same time as activity 4. If activity 2 is accomplished in mode 2, it cannot be

in progress at the same time as activity 3 if the latter is scheduled in mode 1. In both cases, the project

takes at least five periods. However, we obtain a project duration of four periods by scheduling activity

2 in mode 2 and activity 3 in mode 2. This unique optimal Solution is shown in Figure 3, where]{m)

stands for activity j being performed in mode m.

Figure 2: Network of Instance 2

8

j m 4»

1 1 0 0 0

2 1 3 2 2

2 4 1 3

3 1 1 2 2

2 2 2 1

4 1 2 3 1

5 1 0 0 0

Table 5: Durations, Requests and Availabilities oflnstance 2

Wj

4-

3-

A

4(1) 3(2) 4(1)

2(2)

12 3 4

Figure 3: Resource Usages of the Unique Optimal Solution

Step 1: (Initialisation)

g = 1; PSl = {(1,0,1)}; Al = {1}; xx =0; Fx = {1}; Px = 0; Best = 9999;

e21(l) = 0; e2>2(l) = 0; e,,(1) = 0; e32(l) = 0; e41(l)=l; e5jl(l) = 3.

Step 2: (Maximal extensions)

B\ - {2, 3}.

First, we do not make any assumption on T} for each activity jel in the definition of

dominance. In this case, we have to consider the following five assignments:

a = {(2,0,1), (3,0,1)}, ß = {(2,0,1), (3,0,2)}, y = {(2,0,2), (3,4,1)},

5 ={(2,1,2), (3,0,1)}, s ={(2,0,2), (3,0,2)}.

Note, we do not have to consider assignments which contain only one element because they

cannot be maximal (cf. Remark 1). Now we deduce that a dominates ß, ß dominates e, s

dominates y and a dominates 5. Therefore, a is the only dominating assignment, and the set of

maximal extensions is given by

= {<%} = { {(2,0,1), (3,0,1)}}-

9

Second, we regard the case in which Tj = x for each activity je/ is assumed in the

definition of dominating assignments. We have four assignments all of which contain one

activity:

a' = {(2,0,1)}, ß' = {(2,0,2)}, y'= {(3,0,1)}, 5'= {(3,0,2)},

and we have three assignments which contain two activities each:

s* = {(2,0,1), (3,0,1)}, cp' = {(2,0,1), (3,0,2)}, K' = {(2,0,2), (3,0,2)}.

Note, {(2,0,2), (3,0,1)} is an infeasible assignment because in the first period, 5 units of

resource 2 would be requested. We deduce that a' dominates ß', y' dominates 8', s' dominates

cp' and cp' dominates K', so a', y" and s1 are the only dominating assignments. But since activity

3 (in mode 1) could be added to a' at time 0 and activity 2 (in mode I) could be added to y' at

time 0, s' is the only maximal extension in this case, i. e. = { {(2,0,1), (3,0,1)} }.

Thus, it makes no difference for this example whether Tj = T is assumed or not. In both

cases, wehave ^ = { {(2,0,1), (3,0,1)} }.

Step 3: (Next maximal extension)

H = {(2,0,1), (3,0,1)}; H= {2, 3}; ^ = 0.

Step 4: (Branching)

g = 2; ^={1,2,3}; {(1,0,1), (2,0,1), (3,0,1)}; ^={2,3};

e41(2) = 1, es l(2) = 3 (case (b));

x2 = 1 (because activity 3 ends attime 1); F2 = {1, 3}; P2 = {2} .

Now Step 2 is performed. We obtain B2 = {4}. Since the maximal extensions that are computed at this

level consist of the activities P2<J B2 = {2, 4}, the mode number of activity 3 remains unchanged in

this part of the tree. Therefore, activity 3 will be performed in mode 1, and no maximal extension

obtainable from the set of activities {2,4} will lead to an optimal Solution (in which activity 3 must be

performed in mode 2). This is why we may skip this part of the branch-and-bound tree. Since there are

no more maximal extensions left at this level, backtracking to level 1 occurs. As we have no more

maximal extensions left at level 1, another backtracking step to level 0 is made, and the algorithm stops.

The algorithm does not find the optimal Solution. Since activity 2 is scheduled in mode 1, only a

suboptimal Solution for this problem can be found by the algorithm. •

In both counterexamples the algorithm could not find an optimal schedule. Now we will study the

causes of the problem.

As already mentioned in Proposition 4.2 in [1], the algorithm is supposed to enumerate all tight

schedules. Then, according to Proposition 1, an optimal schedule will be achieved. This aim should be

reached by scheduling the dummy source activity and adding maximal extensions to the current partial

schedule.

The definition of dominance which is included in the definition of maximal extensions strongly

resembles the definition of tight schedules. It seems that tight schedules should be obtained by

10

considering 'tight' maximal extensions and therefore "tight' partial schedules. Since 'tight' has not been

defined for partial schedules, we could extend the definition of tight to partial schedules as follows:

Definition 6. A partial schedule PS = {(j, T}, rrij) \ j e I c J } is called tight if there does not exist

an activity j, a mode number m'j e Mj and a Start time T'j e N0, such that

ff := { (/, 7}, ^)} w {, T}, «,})}

is a feasible partial schedule and T'j + djmy <Tj + djm..

Now, let PS be a partial schedule, and let H be a maximal extension of PS. Then we can deduce from

the definition of maximal extensions that PS + H is tight if PS is tight. Thus it seems that tight

schedules shall be produced by considering only tight partial schedules according to the definition

above. Therefore, the algorithm produces only tight schedules. However, the counterexamples show that

the algorithm does not enumerate all tight schedules and therefore fails to find an optimal Solution in

some cases. Furthermore, the examples show that partial schedules which are not tight have to be

accepted in order to obtain all the complete tight schedules.

Consider Instance 1. Obviously, { (1,0,1), (2,0,2), (3,2,1), (4,3,1) } is the unique optimal schedule.

Furthermore, it is tight. The partial schedule PS= { (1,0,1), (2,0,2) } is not tight, and it is not accepted

by the algorithm. However, PS is a partial schedule of the only complete tight schedule. This example

shows that a partial schedule which is not tight can be extended to a tight complete schedule. In this

case there does not exist any tight partial schedule containing the activities 1 and 2 which can be

extended to a complete schedule.

5 Conclusions

We analyzed an algorithm which is supposed to find an optimal Solution for the multi-mode resource-

constrained scheduling problem with makespan minimization as objective. The basic framework of the

algorithm, the notion of tight schedules and maximal extensions have been thoroughly studied. Thereby,

it has been pointed out that (optimal) tight schedules are excluded from consideration if the evaluation

of partial schedules is reduced to maximal extensions producing a partial schedule.

Reference

[1] Speranza, M. G. and C. Vercellis (1993): "Hierarchical Models for Multi-Project Flanning and

Scheduling". European Journal of Operational Research, Vol. 64, pp. 312-325.

11

