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Äbstract: The well-known Capacitated Lot-Sizing Problem (CLSP) is based on the 

assumption that for each lot in a period setup costs are incurred. The setup costs of a CLSP 

Solution can be reduced by linking the production quantities of an item which is scheduled in 

two adjacent periods. Therefore we propose the CLSP with Hnked lot-sizes of adjacent periods 

(semi-sequencing), denoted by CLSPLA. 

The CLSPLA is formulated as a mixed-integer programming model. For the heuristic 

Solution of the CLSPLA we provide a method which is backward oriented, denoted by 

BACLSPLA. We apply a priority rule which consists of a convex combination of holding and 

setup costs. The convex combination as well as the Solution quality depend on a parameter 

value from [0,1]. We perform a simple parameter value search to obtain a low costs Solution. 

The CLSP may be solved by the famous Dixon-Silver heuristic. A CLSP-schedule (of the 

Dixon-Silver heuristic) can be transformed into a CLSPLA Solution. A computational study 

shows, that BACLSPLA, i.e. the Integration of (semi-) sequencing, is more efficient. 

Keywords: Lot-sizing, semi-sequencing, Dixon-Silver heuristic, backward method 

1. Introduction 

We characterize the deterministic lot-sizing problem which is addressed: A single-stage 

system is considered, where a number of different items j=l,...,J have to be manufactured on 

one machine (corresponding to a Single capacity constraint). The time horizon T is segmented 

into a finite number of time periods t=l,...,T. The machine is available with Ct capacity units in 

period t. Producing one unit of item j absorbs pj capacity units (finite production speed). The 

demand for item j in period t, djt, has to be satisfied without delay (shortages are disallowed). 

To setup the machine for item j causes setup costs sj. Inventory costs per unit hj (holding costs 

coefficient) are incurred for the inventory of item j at the end of a period. The objective is to 

minimize the sum of setup and holding costs. 
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In literature heuristics (cf. [5], [6], [8], [10], [11], [3]) and exact methods (cf. [1], [7]) are 

proposed. The methods are developed for the so-called capacitated lot-sizing problem (CLSP), 

which is based on the assumption 

"Setup costs occur for each lot in a period". 

We define the decision variables 

Ijt = the inventory of item j at the end of period t, 

qJt = the quantity (lot-size) of item j to be produced in period t, and 

xjt = a binary variable indicating whether setup occurs for item j in period t (xjt=l) or not 

(Xjt=0)-

Thus, mathematically the CLSP can be stated as follows: 

0) 
j=l t=l 

subject to 

Ij.t-i+qjt-1* =djt (j=l,...,J;t=l,...,T) (2) 

IP^C, (t=l,...,T) (3) 
j=i 

ctxjt -PjCljt ^0 G=l,...,J;t=l,...,T) (4) 

IJt,qjt>0 (j=l,....,J; t=l,...,T) (5) 

xjte{0,l} (j=l,...,J; t=l,...,T) (6) 

W.l.o.g. it islj0=0 for all j=l,...,J. 

The objective to minimize the total costs is expressed by (1). The inventory at the end of a 

period is obtained by the equations (2). Constraints (3) ensure that the total production in each 

period does not exceed the capacity. Constraints (4) force for each lot (greater than 0) the 

binary setup variable to be one thus increasing the sum of setup costs. The suitable domains of 
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the variables are determined by the restrictions (5) and (6). The non-negativity condition of the 

inventory ensures that a shortage does not occur. 

To motivate a modification of the CLSP we consider Example 1. 

Example 1: Let J=2, T=3, sy=s%=l00, and h j =h2— 1. For each period t the demand djt of the 

item j and the capacity Ct are given in Table 1 (missing entries are zero): 

Table 1 Table 2 

t 1 2 3 t 1 2 3 

dlt 5 6 qn 5u 6 

d2t 3 4 <bt 3w 4 

Ct 10 10 10 

The optimal Solution of the CLSP with objective function value Z^LSp=300 is determined 

by equalizing lot-sizes and demands, i.e. qjt=djt for all j=l,...,J, and t=l,...,T. Let us now 

consider the Solution in Table 2 where 'W denotes the linking of the production quantities of 

adjacent periods, e.g. in the second period we Start with the item j=l. Hence, it is not necessary 

to change the setup State of the machine because it was already prepared for item j=l at the 

end of the period t=l. The total costs are reduced to Si + s% + 6-hj = 2-100+6-1=206. Thus, the 

CLSP Solution quality can be poor in the case where the setup State can be preserved between 

adjacent periods. Furthermore, a Solution approach for lot-sizing and semi-sequencing, i.e. 

determining the last and the first item in a period, may provide a better Solution quality than an 

algorithm for the CLSP. 

Before presenting a lot-sizing and semi-scheduling approach, in the next section we modify 

the CLSP regarding the possibility to link lot-sizes of adjacent periods. Then, for the heuristic 

Solution a simple method which is backward oriented and which relies on a priority rule will be 

introduced in Section 3. In Section 4 a computational study is performed where the heuristic is 

compared for large instances with the Dixon-Silver heuristic. 
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2. The CLSP with Linked Lot-Sizes of Adjacent Periods (CLSPLA) 

In practica! cases where the setup State of a production facility can be preserved from one 

period to the succeeding period the CLSP may be not well-suited due to the basic assumption 

of the CLSP which implies that the setup State at the beginning of a period is ignored. With 

regard to this aspect a modified CLSP with linked lot-sizes of adjacent periods, denoted by 

CLSPLA, can mathematically be stated as follows: 

ZZ[sj(Xj«-Zjt) + hjIj,] (7) 
j=i t=i 

subject to 

+cljt ~Ijt =djt 
0=i, ..,J;t=l,.. •,T) (8) 

ZPjqjt^ct 
j=i 

(t=i,. •,T) (9) 

Ctxjt-Pjqjt >0 (i=i, ,.,J; t=l,.. ,T) (10) 

M 
(t=i,. ,.,T) (11) 

O
 

VI l
 

X 1 N 0=i, ,.,J; t=l,.. ,T) (12) 

O
 

VI X 1 N 0=1, ,.,J; t=l,.. ,T) (13) 

0=1, ,.,J; t=l,.. ,T) (14) 

o
 

AI CT k—< 

0=1,- -,J; t=i,.. -,T) (15) 

Xjt.Zjt e{0,l} 0=1, ..,J;t=lv. ,T) (16) 

where 

xJt = a binary variable indicating whether a quantity is produced for item j in period t (xjt=l) 

or not (xjt=0), 

zjt = a binary variable indicating whether the quantities of item j in period t-1 and period t 

are linked (z^=l) or not (zjt=0), 
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W.l.o.g. it is lj0=0, Xj0=0, Zj0=Zji=0 for all j=l,...,J. 

The objective fünction (7) computes only setup costs for an item j in a period t if no linking 

with (i.e. the production quantity of the preceeding period of the item) is performed. (8) 

corresponds to ordinary inventory balance constraints. (9) secures feasibility with respect to 

the machine capacity. (10) couples the production decisions with the setup State of the 

machine. (11) to (13) secure that only one product can be produced at the end of a period and 

produced fürther (linking) in the following period. (14) avoid that the same quantity will be 

considered as produced at the beginning and at the end of a period t; i.e. the quantity can either 

be linked with a quantity of the preceeding period t-1 or with a quantity of the succeeding 

period t+1. 

Note, the CLSPLA is equivalent to the CLSP if we set Zjt =0 for j=l,...,J, and t=l,...,T. 

As in the CLSP a large time scale is assumed, thus we expect that more than one item will be 

(usually) scheduled in a period, i.e. the required capacity of a lot will be strictly less than the 

available period capacity. Let us consider the (unusual) case where in the period t only the item 

j is scheduled, and the item j is also scheduled in the period t-1, and t+1. Thus, the setup State 

may be preserved for item j from the end of period t-1 up to the beginning of period t+1. To 

preserve the setup State two links are necessary for item j which is not allowed due to (14). 

However, linked production quantities may be produced as one splitted or non-splitted lot. 

If a CLSP is solved, then the provided schedule can be modified by performing the links 

afterwards, which reduces setup costs. Moreover, holding costs are saved, if a quantity of a 

linked lot can be "right-shifted". We consider Example 2. 

Example 2: Let J=4, T=4, Ct=100 for t=l to 4, and the other data as provided in Table 3. 
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Table 3 

t 1 2 3 4 Pj hj sj 

d1t 20 10 30 20 1 1 200 

d2t 30 10 30 30 1 1 150 

d3t. 0 30 10 60 1 1 100 

dzif 20 20 0 10 1 1 150 

We solve this problem as a CLSP instance as well as a CLSPLA to optimality. The CLSP 

Solution can be modified by linking and "right-shifting". In Table 4 the optimal CLSP and 

CLSPLA Solution, and the modified CLSP Solution are entered. For example, a right-shifting 

of "30 units" occurs for q23=60. 

Table 4 CLSP, modified CLSP, and CLSPLA Solution 

t I 2 3 4 z 

qit 40 0 40 0 

CLSP <l2t 40 0 60 0 1320 

q.3t 0 40 0 60 

Q4t 10 30 0 0 

qit 40 0 40 0 

modified CLSP q2t 40 0 30w 30 1130 

q%t 0 30u 10 60 

q4t lOu 30 0 0 

qit 20u 60 0 0 

CLSPLA q2t 30 lOw 60 0 1000 

q.it 0 30 lOu 60 

q4t 50 0 0 0 

The modified CLSP Solution is 11.3% more costly than the CLSPLA Solution. Thus the 

Solution quality can be improved substantially by integrating (semi-) sequencing. 
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Note that the sets of feasible solutions of the models are identical whereas a (modified) 

optimal Solution of the CLSP can be more costly, so the following inequalities can be stated: 

'modified CLSP 

Since the CLSPLA contains more binary variables than the CLSP it may be more difficult to 

determine an optimal Solution in reasonable time. However, in practical applications fast 

heuristics have to be applied. So a CLSPLA approach which computes in a reasonable time a 

Solution may be more attractive than a CLSP based exact or heuristic method. 

Note, recently a similar model with machine State preserving has been presented in [9] which 

is a special case of the multi-machine case with setup times introduced by [4]. 

3. A Backward-Oriented Heuristic for the CLSPLA 

In the following we describe a simple heuristic for the CLSPLA which starts with scheduling 

at the planning horizon and step backwards to the first period. The lot-size decisions are 

performed by a simple priority rule which consists of a convex combination of holding and 

setup costs. 

To define the priority rule we have to introduce some additional notations. 

The cumulative demand of item j from period t to the horizon T which has to be satisfied in 

the periods t,..., 1 is defined by 

The total still required capacity is specified by 
J 

TRC:=£PjD}. 

The available capacity in period t will be computed as follows: 
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ACt=Ct-^=]Pjqjt for t=l,...,T 

The cumulative capacity from period t=l to period x=t is denoted by 

CCt:=XCx for t=l,...,T. 
T=1 

Scheduling will be done backward oriented, i.e. first the lot-sizes are determined in period 

t=T, then in period t=T-l, and so on. The decisions depend on a priority rule. 

To derive a priority value which is based on "savings" we distinguish four cases: 

a) There is unsatisfied demand of item j in period t and the available capacity in period t is 

greater or equal than the capacity which will be required if item j is scheduled in period t, i.e. 

ACt > pjDjt > 0. Thus, to schedule item j in period t and not in period t-1 saves holding costs 

hjDjt and incurres setup costs Sj. 

b) It is ACt < PjDjt> 0. If a setup occurs for item j in period t item j will be scheduled in 

period t and t-1 with linking, i.e. zjt = 1. Thus, setup costs sj are incurred in period t-1 and 

holding costs hjDj j.j (=hjDjt+dj t.1) will be saved because the amounts ACt/pj and Dj -̂AQ/pj 

are not scheduled before t or t-1, respectively. 

c) Item j is already scheduled in period t, there exists a positive demand of item j in period 

t-1, and there is no linking performed for item j in period t+1, i.e. zj t+1 = 0, qjt > 0, and 

dj t-i>0. Thus a link in period t for item j avoids setup costs Sj and holding costs hjdj t_j because 

the amount is not scheduled in period t-2. After linking is performed between period t and 

period t-1 no more changes of the schedule from period t up to period T will be performed. 

Thus if we leave period t and it is ACt >0 we have to perform a feasibility check, that is, the 

total still required capacity must be less or equal the available capacity from period 1 up to 

period t-1, i.e. TRC < CCt_I 

d) Linking does not improve the Solution quality (i.e. Dj t = Djt-i = 0) or linking leads to 

infeasibility. 

Thus, we define the following priority value for item j in period t 

(1~ Y)hjDjt — y • Sj if (ACt < pjDjt > 0) A (xjt = 0) 

(1 - Y )hjDj t_j - y • Sj if (ACt > pjDjt > 0) A (xjt = 0) 
Fjt' i (1 - Y )hjdit_j + Y • Sj if (zit+1 = 0) A (xjt = 1) A (dit_, > 0) A (TRC < CCt_,) 

-oo otherwise 
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where 0<y<l. The laxger the rJt the more preferable it is to schedule the item j in period t. 

Thus the item with the largest priority value will be scheduled (priority rule). 

By the parameter y we will control the expected lot-sizes, e.g. if y=l we expect large lot-

sizes for items with high setup costs. 

A formal description of the backward oriented method, denoted by B ACLSPLA, is given in 

the following: 

BACLSPLA 

INITIALIZA TION: 
T 

for j=l,...,J, t=l,...,T do begin xjt:=0; qJt:=0 ; Djt := Zdjx i zjt:=0 end 

x=t 

for j=l,...,J do Zj X+1:=0; 

TRC := Zpj^ji' 
j=i 

t 
fort=l,...,T do CCt := ^Cr; 

r=l 

SCHEDULING: 
t:=T; 

ACt := Ct 

while t > 2 do 

begin 

for j=l,...,J do compute ijt; 

i = item with maximal priority value; 

if Xjt=l then begin zit=l; t:=t-l end 

eise 

begin if pjDit > ACt then 

begin qit:=ACt/pi; TRC:=TRC - piqit; xit:=l; Zjt:=l; t:=t-l; ACt:= Ct; 

for x=l,...,t do DiT:=Dix - qit 

end; 

end; 

qit:= min{Ct/pi,Dit}; ACt:= ACt - piqit; TRC:=TRC - Pi%; xit:=l; 
for T=l,...,t do DiT:=DiT - qit; 

end; 

for j=l,...,J do if Dji> 0 then begin x^—l; qji^Dj! end; 

IfZLiPj<iji>c«thenZ:=co 

eise evaluate Solution. 
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Note, if for an instance a feasible Solution exists, i.e. Pj^j% - CCt for t=l,...,T, 

BACLSPLA, computes a feasible Solution due to the feasibility check. 

To see how BACLSPLA works we start to solve the instancein Example 2 with y = 0.5. 

Before starting the scheduling phase it is TRC = 330, t= 4 and Djt as given in Table 5. 

Table 5 

t 1 2 3 4 

Dlt 80 60 50 20 

D2t 100 70 60 30 

D3t 100 100 70 60 

D4t 50 30 10 10 

The following priority values for the items j=l,...,4 will be computed in the first iteration of 

the while-loop: 
r14 =(1-0.5)-1-20-0.5-200= —90 

r24 = (l-0.5)-l-30-0.5-150 = -60 

r^ =(1-0.5)-1-60-0.5-100 = -20 

= (l-0.5)-l-10-0.5-150 =-70 

Due to the priority rule item j=3 will be scheduled in period t=4, i.e. x34=l, and q34=60. In 

the beginning of the second iteration of the while-loop it is TRC= 330-60=270 which is less 

than CC3 =300 (feasibility check), thus the new priority value of item j=3 in period 4 is 

r^ = 0.5-100+(1-0.5)-10 = 55. Thus, item j=3 will be selected a second time, i.e. t=3, z33=l, 

x33=l, q33=10, and so on. 

If we proceed further a non-optimal schedule which is 1150 costly will be computed. Trying 

to get a better Solution, we have also used y=0, y=25,..., and y=l. The corresponding objective 

fiinction values are reported in Table 6. 
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Table 6 

Y 0.0 0.25 0.50 0.75 1.0 

Z 1250 1000 1150 1150 1150 

For our instance, the optimal Solution will be computed if we take y=0.25. However, the 

Solution quality depends heavily on the choice of the parameter value. Therefore, we apply a 

search procedure for the parameter value ye[y, y ]c [0,1]. We Start with y=y. Then y will be 

increased about A:=(y -y )/b, where bis an integer greater than 2, as long as an improvement 

of the objective function value will be computed by BACLSPLA or y=y. If an improvement 

has been achieved a more detailed search will be started with A:=A/b, y :=max{A,5-A(b-l)}, 

and y = min{ 1-A,5+A(b-1)}; otherwise the search procedure stops. 

Now, let b=4, y=0, y=l, thus A:=(y-y)/4=0.25. Furthermore, let 8 be the parameter value 

where BACLSPLA has been computed the best Solution. For our instance, y will be increased 

up to 0.5, and 5 will be 0.25. Then a new (and last) search will be started with A:= 0.05125, 

y =0.05125, and y =0.44875. 

A formal description of the search method is given in the following: 

Let y:=0, y :=1, S:=-l; A:=0.25, b:=4, Z :=oo, and improvement=false; 

while y < y do 

begin 

if y^6 then Z:= objective function value of BACLSPLA Solution 

ifZ<Z then 

begin Z :=Z; improvement:=true; 5:=y end 

eise if improvement then 

begin A:=A/b; y :=max{A,5-A(b-l)}; y :=min{l-A,ö+A(b-l)}; y:=y improvement:=false 

end; 

y:=y+A 

end; 

Note, the parameter values y = A • b,y = -A • b, and y = 5 are used once, only 
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It should be noted here that backward lot-sizing and scheduling methods in the capacitated 

case are from a conceptual point of view superior to forward-oriented ones like e.g. the Dixon, 

Silver heuristic: There is no need for complicated and time-consuming look ahead procedures 

in order to secure resource feasibility. 

4. Computational Study 

The computational Performance of BACLSPLA is compared with the Dixon-Silver heuristic. 

In [2] 120 instances are reported. There are three sets of instances which differ in the number 

of items and periods, (J,T), as (50,8), (20,20), and (8,50), respectively. 

The instances of a set differ regarding three factors, i.e. capacity utilization (U), capacity 

requirements (production speeds) (C), and demand (supply) Variation (S). 

For each factor there are two levels. These levels are low (L) and high (H) for 

• capacity utilization (LU, HU) and 

• demand Variation (LS,HS); 

constant (C) and varying (V) for 

• capacity requirements (CC, VC). 

The instances are solved with the Dixon-Silver heuristic, denoted with DS, and with 

BACLSPLA. For a given DS Solution setups are reduced a posteriori, by combining two lots 

of adjacent periods (for the item with the highest setup costs, if there is a choice). The 

corresponding objective function value is denoted by ZDS. The average deviation (of 5 

instances per entry) between the reduced costs of DS and the costs of BACLSPLA (i.e. 

100 • (ZDS — ZBACLSPLA) / ZBACLSPLA) are reported in Table 7. 
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Table 7 Comparison of the Solution quality of PS and BACLSPLA 

(J,T) (50,8) (20,20) (8,50) 

LU-CC-LS 3.29 6.13 9.07 

LU-CC-HS 1.30 1.69 4.40 

LU-VC-LS 4.55 6.07 10.87 

LU-VC-HS 1.69 -0.48 6.05 

HU-CC-LS 0.08 15.65 12.52 

HU-CC-HS -0.89 5.33 10.92 

HU-VC-LS -2.14 14.90 19.62 

HU-VC-HS -2.66 2.49 8.89 

HU average -1.40 9.59 12.99 

LU average 2.71 3.35 7.60 

LS average 1.45 8.11 13.02 

HS average -0.14 2.26 7.56 

CC average 0.95 7.20 9.23 

VC average 0.36 5.74 11.36 

Total average 0.65 6.47 10.29 

The Solution quality of DS and BACLSPLA is for a large number of items very nearly the 

same. This may be reasoned because for a large number of items it is "easy" to determine 

afterwards a "good" linking between production quantities of adjacent periods. Thus the 

Solution quality is not inferior if a CLSP-solution is performed in a first step and then in a 

second a step sequencing is done. For a medium (-20) and a small number (~8) of items the 

Solution quality of BACLSPLA is substantial better than the Solution quality of DS, i.e. the 

integrated sequencing is very important regarding the Solution quality. For example, for the 

instances with high capacity utilization, varying capacity requirements, and low demand 

Variation, denoted with HU-VC-LS, the DS solutions are very poor, i.e. on the average they 

are 19.62 % more costly than the corresponding CLSPLA solutions. 
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BACLSPLA has been coded in Turbo Pascal 6.0 from Borland. Table 8 gives the average 

computation times (of 40 instances per entry) on a 486 machine with 50Mhz. 

Table 8 Computation times of BACLSPLA in seconds 

(J,T) (50,8) (20,20) (8,50) 

average 4.5 1.2 0.73 

Note that the number of items has a significant efFect on the computation time. Nevertheless, 

the method is very fast. 

For BACLSPLA the average of the total number of execution as well as the average number 

of executions until the best Solution has been computed are entered in Table 9. 

Table 9 Average number of BACLSPLA executions 

(J,T) (50,8) (20,20) (8,50) 

total 14.48 13.85 14.9 

best Solution 7.48 6.93 7.90 

Thus, on the average the first (best) Solution is computed by BACLSPLA for the instances 

with 50 items and 8 periods in 4.5/14.48=0.31 (0.31-7.48=2.32) seconds. 

5. Summary 

To integrate sequencing in lot-sizing can be very attractive. A mixed-integer formulation is 

presented where lot-sizes of adjacent periods can be linked (semi-scheduling), denoted by 

CLSPLA. The CLSPLA can be solved efficiently by a backward oriented approach where lot-

sizing and linking depends on a priority rule. Especially for instances with a small to medium 
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size number of items the method solves the CLSPLA more efficient than the Dixon-Silver 

heuristic. 
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