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Abstract: Lotsizing and scheduling comprises activities which have to be done 

repeatedly within MRP-systems. We consider the proportional (multi-item, capacitated, 

dynamic) lotsizing and scheduling problem which is more general than the discrete 

lotsizing and scheduling problem as well as the continuous setup lotsizing problem. A 

simple stochastic backward algorithm with biased sampling via randomized regrets is 

presented. We partition the parameter Space of the stochastic algorithm and choose 

subspaces via sequential analysis based on hypothesis testing. The new ideas provided in 

this paper, i.e. the randomized-regrets-based backward algorithm as well as the 

controlled search via sequential analysis, have three important properties: They are 

simple, effective, and rather general. Computational results are presented as well. 

Keywords: Lotsizing and scheduling, backward algorithm / local search, biased sampling 

via randomized regrets / Monte Carlo Simulation, hypothesis testing / 

sequential analysis 

1. Introduction 

Lotsizing and scheduling addresses the problem of determining the sequence and size 

of production lots {batches) for one or more items on one or more machines in a Single- or 

multi-stage manufacturing system. The time horizon usually is divided into a finite 

number of time periods with equal length. There are capacity constraints for the 

machines. Demand is assumed to be known per period. The problem is to find a minimal 

cost production schedule, where machine setup and holding costs for inventory are 

considered to be relevant. Note that lotsizing and scheduling relates to short term 

production scheduling. 

Most of the literature is dealing only with lotsizing, i.e. scheduling (sequencing) must 

be addressed separately. Especially the "Capacitated Lot-Sizing Problem" (CLSP) has 

been investigated intensively; see e.g. Campbell, Mabert 1991, Chen, Thizy 1990, Diaby, 

Bahl, Karwan, Zionts 1992, Eppen, Martin 1987, Pochet, Wolsey 1991 as well as Thizy, 

Van Wassenhove 1985. 

The main difference between the Economic Lotsizing and Scheduling Problem 

(ELSP; see e.g. Carreno 1990, Dobson 1987, Elmaghraby 1978) not dealt with here and 

the models considered here is that the ELSP assumes the time-scale to be continuous, the 

demand for items to be constant and the planning horizon to be infinite. 

The paper is organized as follows: In Section 2 we formulate the proportional, 

multi-item, capacitated, dynamic lotsizing and scheduling problem and discuss the 

relations to other lotsizing and scheduling models. Section 3 provides a simple backward 

algorithm using randomized-regret-based biased sampling. In Section 4 we discuss how to 

partition the and search within the parameter space of the method via hypothesis 

testing / sequential analysis. In Section 5 we relate the method presented here to other 

well-known local search methods. Section 6 provides computational results. We finish in 

Section 7 with a summary and an outline of future work. 
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2. Lotsizing and Scheduling Models 

The models to be considered in this section are based on the following general 

assumptions: We consider a single-stage system, where a number of different items 

j = have to be manufactured on one machine (corresponding to a Single capacity 

constraint). The time horizon T is segmented into a finite number of time periods 

t = 1,...,T with equal length. Demand d. for item j in period t is given. The setup costs 

s. for item j incur whenever production of a batch starts. The holding costs h^ per unit of 

item j are identical for all periods. 

The Proportional Lotsizing and Scheduling Problem (PLSP) is based on the 

following specific assumption: 

AI. At most one changeover is aüowed within each period. 

According to assumption AI we have to compute continuous lot sizes over one or 

several, adjacent or non-adjacent periods. The setup State can be preserved over idle 

periods. In addition setup costs are calculated by looking back several periods. 

Mathematically the PLSP can be stated as follows: 

J T 
min S S (s. x + h. I.,) (1) 

j=i t=i J Jt J Jt 

s.t. I.w + qjt -Ijt = d.t (j = l,...,J;t = 1,...,T) (2) 

2 v < 1 (t = 1,...,T) (3) 
j=l Jt 

xjt "vjt + - 0 0 = t = ^-.T) (4) 

B • vjt + B • vjjt_x -qjt >0 (j = 1 J; t = 1,...,T) (5) 

J 
s ;r. q,. < C (t = 1 T) (6) 
j=i J J 

Ijt, qjt, xjt > 0 (j = 1 J; t = 1,...,T) (7) 

vjt € {0,1} (j = 1,...,J; t = 1,...,T) (8) 

where 

B 

c« 

di. 

h. 
J 

s. 
J 

big number 

the capacity (time) of the machine in period t, 

the demand for item j in period t, 

the costs of keeping one unit of item j in inventory for one period 

the setup costs for item j, 



3 

TT. : the time to produce one unit of item j, 

Lt : the inventory of item j at the end of period t, 

Qjj. : the quantity (number of units) of item j to be produced in period t, 

x.t : a variable indicating whether setup for item j takes place in period t (x^ > 0) or 

not (xjt = 0), J 

v : a binary variable indicating the setup State. 

(1) minimizes the sum of setup and hol ding costs. (2) corresponds to ordinary 

inventory balance constraints. (3) secures that the machine is setup for at most one item 

in each period. (4) couples the setup variables x and the setup State variables v.,. Since jt jt 
Sj > 0 we observe that takes only binary values. (5) couples the production decisions 

with the setup State of the machine. (6) secures feasibility with respect to the machine 

capacity. Note that 7r. is set equal to one w.l.o.g., i.e. demand is given in capacity units. 

In the PLSP we distinguish between two items to be producible in period t. The first 

item being produced in period t corresponds to the second item being produced in period 

t-1. For the second item the machine is going to be setup in period t after a number of 

time units proportional to the time used for producing the first item. The Splitting of the 

machine capacity for the production of two products within one period proportional to 

the quantities needed motivates the name of the model. Noteworthy to say, that an 

equivalent formulation of the PLSP might use quantities q* (q?) for the first (the 
Jt Jt 

second) item; see Drexl, Haase 1992. 

Note that the v.Q are given data (w.l.o.g. v^ : = 0 V j) and the machine can remain 

in any status at the end of the horizon. In addition we assume that I : = L T+1 : = 0 V j. 

The PLSP has been introduced in Drexl, Haase 1992, where several generalizations 

have been presented as well (the PLSP with setup times, with sequence-dependent setup 

costs, with multiple machines as well as the multi-stage PLSP). 

Now we are going to briefly discuss two closely related lotsizing and scheduling 

modeis. 

The Discrete Lotsizing and Scheduling Problem (DLSP) is based on the following 

specific assumption: 

A2. The production process always runs fall periods without changeover. 

This " all or nothing production" implies that at most one item can be produced per 

period, setup costs have to be paid at the beginning of the periods only and lot sizes are 

multiples of a füll period production. Like the PLSP the DLSP addresses short term 

production scheduling with periods as days or shifts. 

The first mixed binary programming models based on assumption A2 have been 

developed some decades ago, but there was no method for solving medium- to large-size 

instances. Recently, an exact branch-and-bound approach based on Lagrangean 
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relaxation of the capacity constraints has been presented by Fleischmann 1990. The 

resulting subproblems have been solved by dynamic programming. This approach is 

capable of solving problems with (e.g.) J = 12, T = 122 or J = 3, T = 250 to optimality 

on a (slow) personal Computer within a reasonable amount of time. This approach has 

been extended to the DLSP with sequence-dependent setup costs in Fleischmann 1992. 

Column generation based heuristics for the DLSP with setup times are presented in 

Cattrysse, Salomen, Kuik, Van Wassenhove 1990. A six field notation for the short 

Classification of a variety of DLSPs is presented in Salomon 1991 as well as Salomon, 

Kroon, Kuik, Van Wassenhove 1991. Additionally, in both sources the complexity of 

feasibility problems associated with the DLSP are addressed. It is proved that the one 

machine DLSP with nonzero setup times as well as the parallel machine problem with 

zero setup times are NP-complete. 

The Continuous Setup Lotsizing Problem (CSLP) is based on the following specific 

assumption: 

A3. At most one item can be produced per period. 

This implies that either there is one setup at the beginning of a period or no setup 

occurs at all within the period. Moreover, lotsizes are continuous quantities between zero 

and the maximum possible production of item j in period t. Like the PLSP and the 

DLSP, the CSLP relates to short term production scheduling. 

In Karmarkar, Schräge 1985 a branch-and-bound approach based on Lagrangean 

relaxation of the capacity constraints has been presented, along with rather discouraging 

computational experiences even for small-sized problems. MPSARX, a mathematical 

programming system with automatic cut generation capabilities (Pochet, Wolsey 1991) 

allows to solve medium-sized problems to optimality. 

Let us now briefly discuss the relations between the DLSP, the CSLP as well as the 

PLSP. Regarding the "all or nothing production" assumption of the DLSP and the feasi

bility of continuous lot sizes for the CSLP it follows that the set of feasible solutions 

XDLSP of the DLSP is a subset of the set of feasible solutions XcgLp of the CSLP. In 

addition it is easy to verify that the CSLP is a special case of the PLSP. Thus X~OT 0 is a 
OoLr 

subset of the set of feasible solutions XpgLp of the PLSP, which implies XDLSp c XCSLp 

- XpLSp- These facts relating to sets of feasible solutions lead to the inequalities 

Z* >7* > Z* 
DLSP - CSLP ~ PLSP 

related to the optimal objective funetion values Z* of the different models. 

Note that the different assumptions of the three models are not really relevant with 

respect to applications. Thus, despite the effort which has to be spent for the Solution of 

the different models, the PLSP is considered to be superior to the DLSP and the CSLP 

regarding "quality" of solutions. Consequently, solving the PLSP fast (and "bad") may 

be even better than solving the DLSP or the CSLP to optimality. 
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3. Biased Sampling via Randomized Regrets 

In the following we are going to describe a simple biased sampling method which 

essentially relies on randomized regrets. To Start with, we calculate for each item j the 

cumulative demand (necessary capacity) D from period t to the horizon T, which has to jt 
be satisfied in periods t,t-1,..., 1: 

T 
D : = max { 0, E (d. -q. ) } (V j and t) 

Jt r=t JT JT' J J ' 

In order to simplify the presentation we set : = 0 V j. The total demand (required 

capacity) which still has to be satisfied is specified by: 

J 
TD := X D., 

j=i Jl 

For each item j the next period with positive demand in or before period t is: 

0 if t = 0 

ndjt if djt > 0 (V j and t) 

nd.t , otherwise j,t-l 

The cumulative capacity from period r = 1 to r = t is denoted by 

C -= 3 C (Vt). 
1 «i T 

Scheduling will be done backward oriented. Moreover, if the machine is setup for 

item i in period t, item i will be scheduled until D. t_r = 0, where r > 0. That means, if 

the item i is scheduled over more than one period, say from period t to period t-r, then 

d_ as well as the demands d., ,...,d. t will be scheduled, too. In such a case nd., , is it i,t-r i,t-T i,t-T-i 
the next period with positive demand for item i and we have to decide whether a 

machine State preserving " jump-back" from period t-r to period nd. t_T_1 (target period) 

should occur in order to save setup costs or not. 

A "jump-back" is not allowed, if it causes infeasibility indicated by TD > C , 

However, if a new item j # i should be scheduled in period t we consider only those items 

with D. > 0. If we would change the setup State in period t to an item j with D = 0, q. 
jt Jt Jt 

would become zero, too. In most cases, this would be a " nonoptimal" decision. 

Scheduling an item j in period t and not in one of the preceeding periods r = t,...,l 

saves at least (h. D ) holding costs for item j. On the other hand, if the machine is not 
J J . 

setup in period t for item j, setup costs of s. are incurred. In such a case, the total 

"savings" are (h. D^ - s^) with respect to item j. 

Thus, based on the setup State i of the machine in period t we define for all items j 

the following" convex" combination r^(i) of the " savings" (0 < 7 < 1 ): 
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rj«W := 

(l-7)h.D.t-rsj if (j t 0 A (D.t > 0) (i) 

«O-OACrosC^} (ü) 

- OD otherwise (iii) 

(i) occurs if the machine is not setup for the considered item and there exists in 

period t a cumulated demand which has to be satisfied in the periods t,t-l,...,l. (ii) 

occurs if the machine is setup for the considered item in period t and a "jump-back" to 

nd., , is feasible. (iii) occurs for the item j in period t if D. =0 and the machine is not j,t-i x r jt 
setup for item j or a "jump-back" leads to infeasibility. 

Finally we derive 

0 if i (i) - -oo j t / 

(r^t(i) - min {r^(i)|k = 1,...,J, r^(i) > - oo } + e)6 otherwise 

as decision criteria (with 6 > 0 , e > 0). p. corresponds to the regret for producing item j 
Jt 

not in period t or period ndj respectively. Only items, which are "feasible" get a 

positive regret and are "compared" with the worst feasible alternative (i.e. the item with 

smallest savings). The larger the regret of item j the more preferable it is to produce item 

j in period t. Note that e > 0 secures to be strictly positive while the exponential 

weight S decreases or increases the differences between the for "small" or "large" S, 

respectively. 

The method for solving the PLSP which we are now going to present, incorporates 

the following three main ideas: 

(a) Lotsizing and scheduling is done backward oriented Starting in period T. 

(b) In each period we add at most two items. 

(c) The regrets p. are used in a randomized way in order to decide which item(s) to 
Jt 

produce in a specific period. 

A formal description of the stochastic backward add-method (BACKADD) may be 

given as follows (with explanations in braces): 

BACKADD 

Initialization: 

v.t := 0; (V j and t = 0,1,...,T) 

qjt: = 0; (V j and t) 

t : = T; {start at the planning horizon} 

i: = 0; {the machine is not setup for any item} 
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while TD > 0 and t > 0 do {start of loop )} 

begin 

determine p. (V j); 

J 
if S p. = 0 then t : = t - 1 {step backward if no scheduling is possible in t} 

j=i J 

eise begin {scheduling} 

choose j* at random proportional to 

i: = j*; {the setup State changes to item j*} 

if y-t = 1 then {check whether jump-back to "target-period" is required} 

begin 

y. tl := ... := y. n(j. ̂  ^+1 := 1; {fix setup State between t and target-period} 

1 := ndi,t-r 
end; 

while D.t > 0 do {start of loop 2} 

begin 

J 
if £ Yjt = 0 then y.t := 1 {determine setup for second item in period t} 

j=l 

eise y. t l : = 1; {determine setup for first item in period t} 

q;t : = min {Ct, D.J; {determine production quantity} 

C : = C - q.t; {update capacity} 

TD : = TD - q.t; {update total demand which has to be satisfied} 

update D.^ (V r = l,...,t); 

if Ct = 0 then t : = t - 1; {step backward if no more capacity is available} 

end; {end of loop 2} 

J 
if S t_1 = 1 then set t : = t - 1 {step backward if two items are scheduled} 

end; {end of loop 1} 

if TD > 0 then Z : = m, eise evaluate feasible Solution. 

***** 

Note that BACKADD determines one Solution (corresponding to an upper bound) of 

the PLSP per execution. #exc (repeated) executions of BACKADD in general yield 

several (< #exc) different solutions. 

Recently, Monte Carlo type sampling methods for solving 0-1 programming problems 

have attracted increasing attention. In Drexl 1991 an efficient (randomized-regret-based, 

too) Monte Carlo method for solving assignment type project scheduling problems has 

been presented. Bertocchi, Brandolini, Slonniiski, Sobczynska 1992 introduce a two-phase 

Monte Carlo approach (based on non-asymptotic order statistics) for solving general 0-1 
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programming problems. Note that the PLSP, a mixed-integer programming problem, 

seems to be more challenging to sampling methods than pure discrete optimization 

problems due to the existence of continuous as well as integer variables. 

It should be noted here that backward lotsizing and scheduling methods are superior 

to forward-oriented ones (like the famous Dixon, Silver 1981 heuristic as an example) in 

the capacitated case from a conceptual point of view: There is no need for complicated 

and time-consuming look ahead procedures in order to secure resource feasibility. 

As will be seen later on, the Performance of BACKADD depends on the choice of the 

Parameters 7 and 6, i.e. on the weight of the setup / holding costs part as well as on the 

randomization scheme. 

In order to support the choice of the parameters we suppose to partition the 

parameter space as follows: 

Let 7 and 6 be real-valued (> 0) parameters with partition 

[TQ> •••' [T-J •••' C1' 7%) 

l6V S2)> [V ^k+1^' f^K-1' V" 

Then we construct the following cross products (see the instance partitioning 

provided in Figure 1 for I = K = 2): 

^ = [7ß, ?l) " 

*2 = ^0' Tl) " ^1' ^2) 

= t7I-l' 7P X ^K-l' V 

FIGURE 1: 

Partition ofthe parameter space for I = K = 2 

Tl 

^0 ^2 

Thus {8^, ßg} corresponds to a partition of the parameter space 0 such that 

H 
0 : = U 8 and 8. fl 8. = (j) for i # j. Note that spaces of higher dimensions may be 

h=l 1 J 

partitioned in the same way as well. 

'3 

'1 «2 
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In the following we need some additional symbols: x denotes a (feasible) Solution of 

the PLSP, Z(z) the objective function value associated with x. 

The stochastic algorithm BACKADD(0), operating on the füll parameter space 0, 

tailors to BACKADD (ß̂ ) in the case where it only operates on the subspace ß, . In 

addition the application of BACKADD(ß,) reveals Z(z(0h)) to become a random 

variable and Z1(x{0^)), Z2(x(0 )), ... to be a stochastic process. 

Now the fundamental question arises, how (often) to choose , h = 1,...,H. Figure 2 

provides a fictitious example demonstrating potential relationships between the mean 

and the p%-quantile associated with the random variables Z(x( ß,)), h = 1,...,4. It seems 

to be meaningless to take (an estimate of) the mean as the only criterion. Rather, an 

estimate of a combination of the mean and the Standard deviation could be a good 

suggestion for choosing subspaces. Moreover, as Figure 2 indicates, as a Single criterion 

the p%-quantile seems to be a good indicator for choosing subspaces; i.e. in subspaces 0, 

for which the p%-quantile is relatively high, the probability of determining low cost 

objective function values is relatively small. Thus in the following we try to identify 

those subspaces 0^ of 0 which have a small p%-quantile. Therefore we will show how to 

use the theory and techniques of sequential analysis in order to control the choice of the 

subspaces ß, of 0. 

FIGURE 2: 

Objective function values depending on subspaces 0h 

Z 

8j e2 e3 e4 

o obj. funct. value 

— mean 

p%-quantile 

> executions 

4. Controlled Search via Sequential Analysis 

Let Y be a Bernoulli distributed (discrete) random variable, i.e. 

fy(y; p) : = py (i-p)1_y (o < p < 1 ) 
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with p being a probability. In addition let Y2 , YQ represent n identical indepen-

dent Bernoulli distributed random variables. Denoting with y. a realization of Y. , the 

random variable 

1=1 

is binomially distributed, denoted as fc (s ; n, p), with density function: 
on n 

%(?; n, p) 

n 
L ? J 

• pf • (1 - p)n f , for f = 0,1, .,n 

0 , otherwise 

Moreover, let fz(z) denote the density function of a continuous random variable Z, 

L the p%-quantile of fz(z) and z^ zg , ZQ a sample of fz(z). Then the transformation 

y, := for i = 1, 2, n 
0, otherwise 

yields SQ = X y. with density function fg (s^; n, p). 

Suppose that it is desired to test whether is less than or equal a specified value, 

say £. This leads to 

<3%: ^ versus ^ 

where ^ is called the null-hypothesis, being tested, and the alternative hypothesis. 

This test, concerning the quantile fz(z), may be transformed into the following hypothesis 

testing problem 

p > p * versus p < p* , 

concerning the probability f»(y; p) with 0 < p* < 1 . We 

accept , if S^/n is " large" or 

reject , if S^/n is " small" 

where "large" and " small" obviously depend on p*. 

From sequential analysis several tests are known with which hypotheses testing may 

be performed; cf. e.g. Siegmund 1985, Irle 1990. Among them are curtailed tests, 

repeated significance tests as well as sequential probability ratio tests. In Haase 1993 

these tests have been compared via Simulation with respect to their capability of 

approximating the power function (probability of rejecting , expected number of 

repetitions of the test; both as a function of p*). As a result the sequential probability 

ratio test (SPRT) seems to be most suited. 

The SPRT, which is based on the likelihood ratio, originally has been designed for 

simple hypotheses only. Thus for our composite hypothesis we have to make the 

following transformations: 
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P > P * => ^0: P = P° 

p < p* => p = p1 with p1 < p* < p ° 

Using the conventional symbols, i.e. a denotes the type I error (significance level) 

and ß the type II error, we get the following stopping and decison rules for the SPRT: 

Stopping rule: Stop at 3 = min { i | fj 0 (A, B)}, where 

Si ri-poi 
.P°. li-p l\ 

Decision rule: Reject , if fjj > B; accept , if f)j < A . 

For the parameters a, ß, p° as well as p1 we set in the following a = 0.05, ß = 0.1, 

p° = 0.2 as well as p1 = 0.05, respectively. 

In the following BACKADD/SEQ denotes the method BACKADD where the choice 

of subspaces ^ is controlled via sequential analysis, i.e. the SPRT. 

5. Relations to Local Search Methods 

Local search provides extremely powerful methods for solving hard (combinatorial) 

optimization problems to suboptimality (for the complexity of local search see Johnson, 

Papadimitriou, Yannakakis 1988 as well as Yannakakis 1990). In the following we will 

relate the presented methods especially to simulated annealing, tabu search as well as to 

genetic algorithms. 

In general, local search procedures consist of an exchange and an accept ance 

component (viz. generation and acceptance of moves). Starting from a current Solution, 

the exchange (or generation) component provides neighbouring solutions. The acceptance 

component decides whether the new solution(s) should be accepted or not. From a 

conceptual point of view an exchange (or interchange) method consists out of a sequence 

of add and/or drop Operations. Omitting one of the two reveals add and drop to be 

special cases of local search. Thus BACKADD essentially is a local search method. 

In Figure 3 we first distinguish local search methods to be either deterministic or 

randomized exchange procedures. Second, both types of exchange methods may be either 

combined with a deterministic or with a probabilistic acceptance method. Exchange 

and/or acceptance probabilities may either be modified or used without modification. 

Randomized exchange and/or acceptance produces a sequence of objective function 

values corresponding to a stochastic process. Note that, despite tabu search, determi

nistic exchange in combination with deterministic acceptance is likely to be trapped in 

local optima. With respect to threshold accepting, in Figure 3 an additional arc between 

" rand. exchange" and " det. acceptance" could be introduced (cf. Dueck, Scheurer 1990). 



12 

Randomized exchange procedures may either be of a simple or guided random type. 

While in the former case each neighbour has the same probability of being generated, in 

the latter neighbours are generated with a probability controlled by some method. Thus 

BACKADD in conjunction with sequential analysis (for Controlling parameter subspaces) 

corresponds to guided random exchange methods. (Up to our knowledge the term 

"guided random search" has been introduced by Hartmann, van Hee 1992 in the context 

of Markov decision process-based search.) 

FIGURE 3: Local Search Methods 

local search 

det. exchange rand. exchange 
/ 

\ guided random 

simple random 

det. acceptance prob, acceptance 

stochastic process 

In simulated annealing (see, e.g. Johnson, Aragon, McGeoch, Schevon 1989, 1991, 

van Laarhoven, Aarts, Lenstra 1992, Martin, Otto, Feiten 1992), the sequence of 

solutions does not converge monotonically towards a local optimum. Solutions randomly 

walk up and down with respect to the objective function value through the search space. 

Starting from a current Solution, first a neighbouring Solution is selected, either 

deterministically or at random. Then, based on the induced change of the objective 

function value, this transition is either accepted or rejected with a probability being 

controlled by some parameters. Clearly, the selection of neighbouring solutions may be 

based on randomized regrets (related to the respective changes of the objective function 

values) by making properly use of the sequential analysis motivated controlled search in 

the parameter space as described above. 

In tabu search (see, e.g. Dammeyer, Voß 1992, Dell'Amico, Trubian 1992, Glover 

1989, 1990, Hertz, de Werra 1990) one of the main ideas is to guide the search process 

deterministically out of local optima. This can be achieved if the best neighbouring 

Solution will be accepted as a desirable move even if it is worsening the current Solution. 

In order to prevent from cycling one of the essential ingredients of tabu search is to 

maintain a tabu list (of forbidden transitions between neighbouring solutions) throughout 

the search. Thus, basically tabu search can be considered as a deterministic exchange as 

well as a deterministic acceptance method. In addition, randomized exchange and/or 
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acceptance may be incorporated into tabu search as well, see e.g. Faigle, Kern 1992 as a 

recent reference to probabilistic tabu search. To be more specific, the selection of 

neighbouring solutions can also be based on randomized regrets - thus keeping track of 

the ideas presented in the paper for tabu search as well. 

Genetic algorithms (see, e.g. Dorndorf, Pesch 1992, Goldberg 1989, Liepins, Hilliard 

1989, Mühlenbein, Gorges-Schleuter, Krämer 1988 as well as Pesch 1993) are motivated 

by the analogy of evolution. They have been designed as general search methods working 

on populations of feasible solutions in order to make use of properties which "good" 

solutions have in common. Genetic algorithms mainly consist of three basic Operators, 

namely reproduction, crossover and mutation employed to construct a new population. 

For reproduction an individual (coded as a string) is copied with probability proportional 

to its fitness value. Then crossover is applied to randomly partitioned pairs of the new 

population while (in a simple case) both st rings are randomly cut at a certain position 

and tails are exchanged. Random changes to Single elements of an individual, i.e. 

mutation, are of minor importance within genetic algorithms. Thus genetic algorithms 

may be seen to be randomized exchange methods, where the exchange process is guided 

via fitness values, in combination with deterministic or probabilistic acceptance. Clearly, 

fitness based reproduction of individuals may be replaced by taking randomized fitness 

regrets, which is closely related to scaling and windowing. In addition, the selection of 

pairs of the new population once more may be based on randomized fitness regrets. Last 

but not least, the choice of the position of the string may be based on randomized 

regrets. Thus genetic algorithms bear a wide ränge of potential applications of the ideas 

presented in this paper. 

Note that our concept of guided random exchange is closely related to the 

" modification of generation probabilities" (Faigle, Kern 1992) as follows: Let us assume 

that the parameter space 0 defines in advance the whole set of probabilities for 

ex changing neighbouring solutions. Then, ceteris paribus, w.r.t. the subspace exchange 

takes place with some given generation probabilities (defined by A ) . Changing from 

subspace 8^ to subspace 8^ conceptually is a method of "modification of generation 

probabilities". Thus the controlled search within the parameter space via sequential 

analysis as described in section 4 essentially is a general method of modifying exchange 

(or generation) probabilities. 

6. Computational Results 

First we are going to present an instance generator for the PLSP. A parametric 

characterization of the instances investigated below may be given as follows (for more 

details see Haase 1993): 

J the number of items. 

Tm the number of macro-periods. 

Ts the number of sub-periods of each macro-period. 
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hc maximal holding costs coefficient, i.e. h. is an integer drawn at random out of 

{1, 2, ..., hc}. 

TBO time between order (positive integer). 

ATBO a positive integer for the determination of the setup costs. 

dp a symbol denoting the demand pattern, with dp = (rjKv2) being a tuple. 

One demand (positive integer) can occur for each item within each macro-

period. If rj1 equals 

ud a demand will be generated at random with uniform distribution. 

pt the pattern of the randomly generated demand has a positive trend. 

ds a demand will be generated at random with uniform distribution whereby the 

expected values of the demand of the items are of different seize. 

The second symbol denotes, in which sub-periods the demand occurs. If TJ2 equals 

e the demand occurs at the end (i.e. last sub-period) of the macro-periods only. 

i the demand occurs at the end of a macro-period or Ts-1 sub-periods later 

only (at random with equal probability); in the last macro-period the 

demand always occurs in the last sub-period. 

cp an integer for the capacity pattern. If cp equals 

co we have a constant pattern over all periods. 

ic the capacity is increasing. 

U capacity utilization factor (0 < U < 1 ). 

Finally n denotes the number of instances generated at random for a specific 

parametric characterization {J, Tm, Ts, U, hm, TBO, dev, td, vd, tC}, hence INST(J,Tm, 

Ts,hc,TBO,ATBO,dp,cp,U;n) specifies a sample of instances under consideration. 

Note that the distinction between macro-periods and sub-periods is necessary in 

order to ensure feasibility. If e.g. the number of sub-periods is less than the number of 

items with positive demand in the first macro-period, no Solution exists because the 

number of different items producible is less than the number of items which must be 

produced in the first macro-period. In total the number of periods under consideration T 

equals Tm-Ts. 

Let d. = 1/T ST , d. , i.e. the average demand of item j. TBO and ATBO define a 
J T—l JT 

set A := {TBO-ATBO, ..., TBO+ATBO }. TBO. is the approximate time between 

Orders, drawn at random from A with uniform distribution. Thus the holding costs of a 

lot size with a length of TBO. periods can be approximated by [d. h. (r-1)]. Now, 
J J J ' — 1 

let us assume that the TBO^ is as large that the approximate holding costs are equal to 

the setup costs. Thus the setup costs of item j are defined as follows: 

Sj := [~d. h . TBOj (TBO. -1) / 2] (j = 1,...,J) with [a] being the greatest integer 

smaller than a. 
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In the following we investigate the Performance of BACKADD by a computational 

study. BACKADD has been implemented in Turbo Pascal 5.0 on a PS/2 Model 70 486. 

Since no tailor-made optimal Solution approach for the PLSP exists we compute optimal 

benchmark solutions with the Standard mixed-integer programming (MIP) solver 

LINDO. Only small instances of the PLSP with up to 50 binary variables are solvable in 

reasonable time with LINDO (< two hours on a PS/2 Model 70 486). 

Another inquiry is on the effect of the Integration of the sequential test based 

parameter .control. In BACKADD/SEQ we use the following partitioning: 7Q = 0, 71 = 

.33, 72 = .66, 73 = 1 and ^ = 0, ^ = 3, S2 = 6, 8^ = 9; i.e. 0 is partitioned into 9 

subspaces 6^ ..., 0g . 

For 16 parameterizations of INST(J,Tm,Ts,hc,TBO,ATBO,dp,cp,U;5) we generale 

n=5 instances each (cf. Table 1). We Start with the basic parameterization 

INST(3,5,3,l,8,0,(ud,e),co,.8;5) (cf. S001 to S005 in Table 1). Then we consider a larger 

and a smaller capacity utilization, i.e. U=.95 and U=.65 whereby the other parameters 

are kept as in the basic parameterization (cf. S011 to SO 15 and S021 to S025 in Table 1). 

The instances S031 to S105 also differ in only one parameter position from the basic 

parameterization. In Slll to S115 the number of sub-periods per macro-period is 

increased from 3 to 4 and the number of macro-periods is decreased from 5 to 4. Thus the 

problems contain less than 50 binary variables (=J-T) which is necessary to determine 

an optimal PLSP Solution within reasonable time. In S121 to S125 the number of items is 

decreased from 3 to 2 and the number of macro-periods is increased from 5 to 12. In S131 

to S155 more than one parameters of the basic parameterization are changed. Such 

problems are supposed to be more complex than the preceding ones. 

Each (small) problem (cf. Table 1) has been solved by BACKADD and 

BACKADD/SEQ using #exc = 1000 executions each. Table 2 provides the average devia-

tion between the optimal objective function value and the objective function value of the 

best Solution of BACKADD and BACKADD/SEQ, denoted as Z and Z/SEQ, respective

ly (average of 5 instances per entry). Furthermore the average fraction of infeasible 

solutions, denoted as INF and INF/SEQ, is given in Table 2, respectively. 

In all 16 parameterizations with 5 instances the average deviation from optimum is 

less than one percent for BACKADD/SEQ. The objective function value of the Solution 

determined with BACKADD (BACKADD/SEQ) for the problem S105 deviates from the 

optimal objective functions value by 11.9 (3.6) percent. Such a poor result occurred only 

once in our test. Thus the Solution quality for small instances is very high. In the total 

average (all 16-5 instances) Z is .12% larger than Z/SEQ, i.e. the Integration of 

parameter control has improved (slightly) the Solution quality. Moreover, the fraction of 

infeasible solutions is substantially decreased due to the Integration of parameter control 

(cf. Table 2). 
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TABLE 1: Small instances 

J Tm Ts hc TBO ATBO dp cp u n 

S001 . S005 3 5 3 1 8 0 (ud,e) CO .8 5 

soll . . S015 3 5 3 1 8 0 (ud,e) CO .95 5 

S021 . . S025 3 5 3 1 8 0 (ud,e) CO .65 5 

S031 . . S03S 3 5 3 1 8 0 (ud,e) pt .8 5 

S041 . . S045 3 5 3 1 8 0 (ud,i) CO .8 5 

S051 . . S055 3 5 3 1 8 0 (pt.e) CO .8 5 

S061 . . S065 3 5 3 1 8 0 (ds,e) CO .8 5 

S071 . . S07S 3 5 3 1 8 5 (ud,e) CO .8 5 

S081 . . S085 3 5 3 1 12 0 (ud,e) CO .8 5 

S091 . . S095 3 5 3 1 4 0 (ud,e) CO .8 5 

S101 . . S105 3 5 3 8 0 (ud,e) CO .8 5 

Slll . . S115 3 4 4 1 8 0 (ud,e) CO .8 5 

S121 . . S125 2 12 2 1 12 0 (ud,e) CO .8 5 

S131 . S135 4 3 4 1 8 0 (ud,e) CO .8 5 

S141 . S145 3 5 3 2 8 4 (ds,i) pt .8 5 

S151 . S155 3 4 4 3 8 4 (PU) CO .8 5 

TABLE 2: Results for small instances 

Z Z/SEQ INF INF/SEQ 

S001 . . S005 0 0 18 14 

S011 . . SOI5 .76 .76 50 41 

S021 . . S025 0 0 12 10 

S031 . . S035 .25 .25 29 22 

S041 . . S045 0 .06 8 1 

S051 . . S055 .73 .05 19 9 

S061 . . S065 0 0 13 9 

S071 . . S075 0 0 10 8 

S081 . . S08S 0 0 46 34 

S091 . . S095 .22 .98 12 8 

S101 . . S105 2.4 .75 28 23 
Slll . . S115 0 0 9 5 

S121 . . S125 .08 .08 0 0 

S131 . . S135 0 .03 24 21 
S141 . . S145 1.06 0.06 1 2 

S151 . . S155 .01 .01 1 1 
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TABLE 3: Large instances 

J Tm Ts hc TBO ATBO dp cp u n 

L000 . .. L009 6 10 8 1 30 0 (ud,e) CO .8 10 
L010 . . L019 6 10 8 1 30 0 (ud,e) CO .95 10 
L020 . . L029 6 10 8 1 30 0 (ud,e) CO .65 10 
L030 . . L039 6 10 8 1 30 0 (ud,e) ic .8 10 
L040 . . L049 6 10 8 1 30 0 (ud,i) CO .8 10 
L050 . . L059 6 10 8 1 30 0 (pt,e) CO .8 10 
L060 . . L069 6 10 8 1 30 0 (ds,e) CO .8 10 
L070 . . L079 6 10 8 1 30 15 (ud,e) CO .8 10 
L080 . . L089 6 10 8 1 60 0 (ud,e) CO .8 10 
L090 . . L099 6 10 8 1 15 0 (ud,e) CO .8 10 

L100 . . L109 6 10 8 4 30 0 (ud,e) CO .8 10 

L110 . . L119 6 10 12 1 30 0 (ud,e) CO .8 10 

L120 . . L129 6 10 6 1 30 0 (ud,e) CO .8 10 

L130 . . L139 6 5 8 1 30 0 (ud,e) CO .8 10 

L140 . . L149 6 15 8 1 30 0 (ud,e) CO .8 10 

L150 . L159 3 10 8 2 30 0 (ud,e) CO .8 10 

L160 . L169 10 10 12 1 30 0 (ud,e) CO .8 10 

L170 .. , L179 4 25 5 3 50 20 (pU) CO .9 10 

LI80 .. L189 9 10 11 6 50 20 (ds,i) pt .75 10 

L190 .. L199 6 10 8 1 30 0 (ds,i) CO .8 10 

In order to analyze the effect of the sequential test we have generated 20-10 large 

lotsizing and scheduling problems with specific criteria as provided in Table 3. Again we 

start with a basic parameterization, i.e. INST(6,10,8,l,30,0,(ud,e),co,.8;10). Then we 

change successively the capacity utilization, the capacity pattern, and so on. For the 

problems L170 to L199 more than one parameter differs from the basic parameterization. 

Each instance of Table 3 has been solved with BACKADD and BACKADD/SEQ. 

The average percentage deviations (10 instances per entry), denoted as AZ, of the best 

objective function values computed by BACKADD and BACKADD/SEQ are provided 

in Table 4. In addition, Table 4 contains the average number of infeasible solutions of 

BACKADD and BACKADD/SEQ, respectively. 

Independently of the chosen parameterization the Integration of parameter control 

has increased the Solution quality (on the average). The improvement is not large. This 

may be reasoned by the efficiency of BACKADD: The results for the small instances (cf. 

Table 2) indicate that the best objective function value of BACKADD is near the 

optimal Solution. It is thus difficult to determine a less costly Solution. Whereas a 

heuristic which generates a Solution with an objective function value which is much 
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larger than the optimal objective function value may easily be improved. Thus 

BACKADD seems to be efficient for large problems as well. 

TABLE 4: Results for large instances 

AZ INF INF/SEQ 

LOOO . . L009 1.16 24.6 16.3 

L010 . . L019 .67 33.2 26 

L020 . . L029 .94 44.3 14.6 

L030 . . L039 1.81 31.7 14.7 

L040 . . L049 .34 10.3 5.7 

L050 . . L059 1.61 46.1 31.3 

L060 . . L069 .86 15.4 13.5 

L070 . . L079 .51 18.8 13.7 

L080 . . L089 1.07 17.9 16.8 

L090 . . L099 1.14 12.4 4.8 

L100 . . L109 1.04 21.4 17 

L110 . . LI 19 1.27 13.1 7.1 

L120 . . L129 .88 21.4 16.7 

L130 . . L139 .98 3.9 3.9 

L140 . . L149 .78 16.6 10 

L150 . . L159 .72 0 0 

L160 . . L169 .55 44.1 26 

L170 . . L179 .12 41 39.8 

L180 . . L189 .76 1 .9 

L190 . . L199 1.02 10.6 9.3 

Let us consider the problem LOOO i n more detail. In Figure 3 the sorted objective 

function values Z of 1000 executions of BACKADD and BACKADD/SEQ are plotted. 

Figure 3 indicates that the number of infeasible solutions computed by BACKADD 

as well as by BACKADD/SEQ is about 100. BACKADD/SEQ has found some solutions 

the objective function values of which are substantially larger (smaller) than the largest 

(smallest) objective function value computed by BACKADD. In most cases, the 

objective function values determined by BACKADD/SEQ are smaller than the objective 

values of BACKADD. Thus the quality of solutions is increased due to the Integration of 

the sequential test. Such a result was observable in most of the analyzed instances. 

In Figure 4 the smallest objective function values Z(#exc) of the best solutions 

computed until to the #exc-th execution (#exc=l,...,1000) of BACKADD and 

BACKADD/SEQ are depicted. 
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FIGURE 3: 

Sorted objective function values Z computed by BACKADD and BACKADD/SEQ 
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FIGURE 4: 

Objective function values Z(#exc) of BACKADD and BACKADD/SEQ 
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Recall that we have considered a partition of the parameter Space into 9 subspaces. 

The expected sample size to reject or accept the null-hypothesis is around 30. So after 

9-30 = 270 executions parameter Space reduction may take place. Thus the improvement 

of the minimum around the 400-th execution of BACKADD/SEQ may be caused by 

reducing the parameter Space, because the probability to find a better Solution has 

increased. Such a result was observable in most of the instances which we have analyzed. 
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We consider the instances provided in Table 5 to analyze the influence on 

computation time of BACKADD and BACKADD/SEQ by increasing the number of 

items (CPU1 to CPU3), the number of macro-periods (CPU4, CPU1, CPU5), or the 

number of sub-periods per macro-period (CPU6, CPU1, CPU7). Note, that the other 

input parameters of INST(J,Tm,Ts,hc,TBO,ATBO,dp,cp,U;l) are in all instances as 

follows: hc = 1, TBO=25, ATBQ=0, dp=(ud,i), U = .8, cp=co. 

TABLE 5: 

Computation time in sec for #exc = 1000 executions 

instance J Tm Ts BACKADD BACKADD/SEQ 

CPU1 3 10 10 8.4 8.68 

CPU2 6 10 10 23.99 23.18 

CPU3 9 10 10 46.36 42.95 

CPU4 3 5 10 5.5 5.71 

CPUS 3 15 10 11.48 11.2 

CPU6 3 10 5 9.06 9.23 

CPU3 3 10 15 9.17 9.39 

The computation time increases substantially (but almost linearly) with the number 

of items (cf. CPU1 to CPU3 in Table 5), less strongly with the number of macro-periods 

(cf. CPU4, CPU1, CPU5 in Table 5), and insignificant with the number of sub-periods 

(cf. CPU6, CPU1, CPU7 in Table 5). The Integration of the sequential test requires 

insignificant computation time. Determining a changeover, i.e. Computing the regret 

measures of the items, requires most of computation time. Thus if there are parameter 

values which lead to a Solution with a lot of changeovers, the computation of such a 

Solution requires a lot of time due to the high number of regret-calculations. If such 

parameter values are eliminated by the sequential test the computation time per 

schedule decreases. This may be the reason for a shorter computation time in CPU2 and 

CPUS comparing BACKADD/SEQ and BACKADD. 

7. Summaiy and Future Work 

The proportional lotsizing and scheduling problem (PLSP) dealt with in this paper is 

based on the fundamental assumption, that at most one changeover is allowed within 

each period. Thus the PLSP seems to be a suitable model for supporting short term 

decisions within an MRP framework. 

The backward algorithm BACKADD for solving the PLSP introduced in this paper 

incorporates several components: Lotsizing and scheduling is done backward oriented 

starting in (the final) period T. In each period t at most two items j are added. Regrets 
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p.t are used in a randomized way in order to decide which item(s) to produce in a specific 

period. In addition, the parameter space on which the randomization scheme relies is 

partitioned. Appropriate subspaces are choosen via hypothesis testing / sequential 

analysis. 

The local search method BACKADD (a Monte Carlo randomized-regret-based biased 

random sampling method) is able to produce near-optimal solutions within a minimiim 

amount of computational time. Moreover, the ideas introduced in this paper are general 

enough to become genuine parts of stochastic algorithms. 

Until now only very little research has been published on lotsizing (and scheduling) 

with setup costs and/or times, see e.g. Cattrysse, Salomon, Kuik, Van Wassenhove 1990, 

Diaby, Bahl, Karwan, Zionts 1992, Fleischmann 1992, Salomon 1991, Kroon, Kuik, Van 

Wassenhove 1991 as well as Trigeiro, Thomas, McClain 1989. The same holds true for 

lotsizing (and scheduling) in multi-stage systems, see e.g. Billington, McQain, Thomas 

1986, Kuik, Salamon 1990, Kuik, Salomon, Van Wassenhove, Maes 1993, Maes, McClain, 

Van Wassenhove 1991, Roll, Kami 1991 as well as Tempelmeier, Helber 1992. Therefore 

in the future it should be worthwhile to investigate the following generalizations of the 

PLSP (see the models provided in Drexl, Haase 1992): 

• Setup times should be incorporated into the PLSP in order to ensure feasibility of 

generated schedules, i.e the PLSP/st should be considered. Especially generalizations 

of BACKADD (based on modified randomized-regret-based biased random sampling 

methods with controlled search in the parameter Space) should be developed. 

• Multiple machines as well as multiple stages have to be incorporated, i.e the 

PLSP/mm as well as the PLSP/ms should be considered. Once more generalizations 

of BACKADD should be investigated. 

Acknowledgement: The authors are indebted to Erwin Pesch, Rijksuniversiteit Limburg 
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