
Kolisch, Rainer; Sprecher, Arno; Drexl, Andreas

Working Paper — Digitized Version

Characterization and generation of a general class of
resource-constrained project scheduling problems: Easy
and hard instances

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 301

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Kolisch, Rainer; Sprecher, Arno; Drexl, Andreas (1992) : Characterization and
generation of a general class of resource-constrained project scheduling problems: Easy and hard
instances, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 301,
Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/155395

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/155395
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Nr. 301

Characterization and Generation of a

General Class of Resource-Constrained

Project Scheduling Problems:

Easy and Hard Instances

RainerjKolisch / Arno Sprecher/Andreas Drexl

Dezember 1992

Rainer Kolisch, Arno Sprecher, Andreas Drexl, Institut für Betriebswirtschaftslehre,

Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 2300 Kiel 1, F.R.G.

Abstract: The paper describes an algorithm for the generation of a general class of pr ecedence-

and resource-constrained scheduling problems. Easy and hard instances for the single- and multi-

mode resource-constrained project scheduling problem are benchmarked by using the state of the

art (branch-and-bound-) procedures. The strong impact of the chosen parametric characteri-

zation of the problems is shown via an in-depth computational study. The results provided,

demonstrate that the classical benchmark instances used by several researchers over decades be-

long to the subset of t he very eas y ones. In addition it is shown that hard instances, being far

more smaller in size than presumed in the literature, may not be solved to optimality even within

a huge amount of computational time.

Keywords: Project scheduling, precedence- and resource-constraints, nonpreemptive case, single-mode,

multiple-modes, project generator, branch-and-bound methods, easy and hard instances.

1 Introduction

From the beginning of resource-constrained project scheduling research, rapid progress regarding models

and methods has been documented in the literature (cf. [2], [3], [8], [12], [16], [17], [25], [41], [43], [55] , [57],

and [58]). But at the same time very l ittle research concerned with the systematic generation of b enchmark

instances has been published. In [23] only a generator for random project scheduling problems is given.

Unfortunately it does not allow to create instances subject to certain project characteristics. Hence for

experimental purposes many researchers have generated their own test problems; sometimes utilizing a very

restricted subset of project characteristics. Some of t his work is rather well documented (cf. [12], [25], [29],

[31], [44]; [48], [54]), while most efforts are only briefly d escribed (cf. [1], [6], [7], [9], [11], [13], [14], [19] ,

[20], [30], [32], [33], [36], [37], [42], [46], [50], [56], [59], [61], and [64]). As a result, only a few commonly

used benchmark instances are available. In 1984 Patterson compared four exact procedures for makespan

minimization of the single-mode resource-constrained project scheduling problems (cf. [38]). These 110

problems have been (partly) used by [4], [5], [12], [15], [17] [28], [37], [39], [40], [46], [47] and [58] and

therefore became a quasi Standard. Nevertheless there are three main drawbacks:

• As a collection of problems from different sources, the problems are not generated by using a controlled

design of specified parameters.

• Only the single-mode case and makespan minimization is taken into consideration.

1

• Recent advances (cf. [17]) in the development of exact single-mode procedures have demonstrated that

the Patterson-set is solvable within an average CPU-time of less than a second on a personal Computer.

Since there are instances (with the same number of activities) which are much more difficult to solve,

they cannot be considered as a benchmark anymore.

Therefore the Intention of the paper is twofold (cf. [24]): First we present an instance generator for a broad

class of project scheduling problems which ut ilizes several parameters. Some of them have been proposed

in the former literature, others are entirely new. Second we present sets of instances for the single- and the

multi-mode case of the resource-constrained project scheduling problem. Solving these problems with the

state of the art procedures, the strong impact of the parameters specified is demonstrated. Both the project

generator PROGEN and the 1216 instances are available from the authors upon request.

The remainder of th e paper is organized as follows: In section 2 we give a formal description of the model.

The employed parameters and their realization within the project generator is dealt with in sections 3 and 4.

The effect of the parameters used in the computational study of the single- and multi-mode case, respectively,

is outlined in section 5. Some conclusions can be found in section 6. Finally a functional description of the

generator is given in the appendix.

2 Notation and Model Description

We consider P projects, where each project has a specific release date pp as well as a due date 6p. The overall

(super-)project consists of J partially ordered jobs, where j=l (j=J) is the unique dummy source (sink). For

the sake of simplicity project refers to the overall (super-) project as well. Pj (Sj) is the set of i mmediate

predecessors (successors) of job j. The jobs are numerically labeled, i.e. a predecessor of j has a smaller job

number than j. The precedence relations between the jobs can be represented by an acyclic activity-on-node

network (AON). Furthermore the jobs within the projects are consecutively labeled with FJP (LJP) being

the first (last) job of project p. Thus project p consists of LJp — F Jp + 1 jobs.

Following the categorization scheme proposed by Slowinski (cf. [51], [52]) and Weglarz (cf. [62], [63]) we

distinguish three types of (scarce) resources: the set R of renewable resources, the set N of nonrenewable

resources and finally the set D of doubly constrained resources. Each re source r£Ä has a constant period

capacity of Kf! a nd each resource r G N has an overall capacity of K" units. Doubly constrained resonrces

r E D are limited with respect to period capacity Kf! and total capacity K". Each job j can be processed

in one of Mj modes. Job j performed in mode m has a non splittable duration of djm periods. It uses

kjmr units of t he renewable (doubly constrained) resource r each period it is in process and consumes kjmr

units of the nonrenewable (doubly constrained) resource r. Table 1 provides a summary of the notations and

2

p = 1,...,P : projects

pp(6p) : release date (due date) of p roject p

cp : cost incurring per period project p is finished after its due date

FJp(LJp) : number of the first (last) job of project p

j = 1(J) : unique source (sink) of t he network

Pj(Sj) : set of immediate predecessors (successors) of job j

EFj(LFj) : earliest (latest) finish time of job j

T : upper bound on the projects makespan (horizon)

r € R (N, D) : set of renewable (nonrenewable, doubly constrained) resources

: modesofjobj

djm : (non preemptable) duration of job j scheduled in mode m

k^mr per period usage of rene wable (doubly constrained) resource r re-

quired to perform job j in mode m

kjmr : total consumption of n onrenewable (doubly constrained) resource

r required to perform job j in mode m

K£ : per period availability of renewable (doubly constrained) re­

source r

K? : total availability of nonrenewable (doubly constrained) resource r

Table 1: Symbols and Definitions

definitions.

For modelling purposes we use binary variables as proposed in [43] for j = 1m— 1 =

EFjLFj:

(1 , if job j is performed in mode m a nd completed in period t

0 , otherwise.

The constraints are given in Table 2. (1) ensures that each job is assigned exactly one mode and a completion

time within its time window [EFj, LFj], The time window of feasible finish times is calculated by forward

and backward recursion as shown in [19]. (2) indicates that no job starts before the release date of its

project while (3) Warrants that no job ends after the due date of i ts project. Precedence relations between

related jobs are maintained by (4). (5) secures feasibility with respect to renewable and doubly constrained

resources. Finally (6) limits the consumption of the nonrenewable and doubly constrained resources to their

3

M, LF,
E E ximt = 1

m= 1 t — EFj

Mj LF,
E E 0- ̂ J"») ZC jmt > Pp

m=l t=EFj

M, LF,
E E t xjmt

m=l l—EFj

Mh LFh Mj LFj
E E txhmt ü; E E (* ~ djm) Xjmt

m=1 t=EFh m=1 t=EFj

J Mj t + djm-l
E E ^jmr E zjmg < « ji = lm=l ? —£

J M, f-fj
E E ^jmr E j = 1 m = 1 t—EFj

%jmt E {0, 1}

j = i,. •. ,J

p — Ii • • • i Pi j — F Jp,..., LJP

p — 1) ' ' ' ; f 1 j — FJp>- • • > LtJp

j = 1,..J, h G Pj

r£ßUD, t = 1,... ,T

r £ N U D

j — 1,... ,J, m = 1,..., Mj,

(1)

(2)

(3)

(4)

(5)

(6)

(7)

t = EFj,..., LFj

Table 2: Constraints

availability.

The most common objective function w.r.t. (l)-(7) is the makespan minimization

Mj LFJ
minimize ^ ^ t xjmt.

m=l t—EFj

Another objective is, e.g. the minimization of the weighted project delay
+

P 1 LJ ' M' LF'
minimize E' p=1 i i=FJp ^2 ^2 t ximt r 41 '

m=1 t=EFj

where

z , if z > 0

0 , otherwise.

This formulation embodies a wide ränge of precedence- and resource-constrained scheduling problems, espe-

cially the single- (P = 1, Mj — 1, j = 1,..., J, N = D = 0, pp = 0, 6P = T) and the multi-mode problem

(P — 1, pP = 0, dp = T) of resource-constrained project scheduling. Furthermore job shop and flow shop

type problems as well a s scheduling problems with one and multiple parallel machines are included. Note

4

that the main emphasis of the paper is on the generation of t he set of solutions, i.e. the constraints (l)-(7).

In addition it is easy to incorporate other (regulär) objective functions. Details are left to the reader (and

user of PROGEN).

3 Project Generation

3.1 Basedata Generation

In this section we briefly outline the generation of the projects basedata. We use the functions round and

trunc as well as the random functions rand and rand defined as follows:

rand[ni, ng] : integer random number out of th e interval [nj, n;]

rand[ni, 7%%] : real random number out of the interval [rij, «2]-

The (pseudo) random numbers are constructed by transforming [0,1) uniformly distributed random numbers.

The [0,1) uniformly distributed random numbers are calculated via the congruence-generator developed by

Lehmer using the constants and Implementation as given in [49]. The generation of the basedata needs no

further explanation. The input and Output is displayed in Tables 3 and 4, respectively. MPMp denotes the

MPM-duration of project p, p = 1,... ,P. It is calculated with respect to the release dates by using the

modes of shortest duration and the network, the construction of which is described in t he next section.

p : number of p rojects
jmin ^jmax) minimal (maximal) number of job s per project

Mmin(Mmax) minimal (maximal) number of m odes per job

dmin(dmax) : minimal (maximal) duration per job
pma x : maximal release date

Öfac : due date factor E [0,1]

Table 3: Input Basedata Generation

3.2 Network Generation

In section 2 we stated that the structure of the project can be depicted as an acyclic AON. Thus it is a quite

natural approach to construct the network by using the following simple implication of the definition of a

network:

5

Jp
:= rand [Jmin, Jmax], p = 1

= number of jo bs of project p

J — £ JP + 2
P=i

total number of jobs (including super-source and -sink). The jobs are numeri-

cally and consecutively labeled within the projects. That is, project p consists
p-i p

of th e numerically labeled jobs j, j = Jq + 2, • • •, Jq + 1.
«=i ?=i

Mj :— rand[Mmi", Mmax], j = 2,..., J - 1, {Mx = Mj = 1)

= number of modes of job j

djm rand[dmi", dmaz), j = 2,.. ., J - 1, m = 1,..., Mj (du = dj\ = 0). The modes

are labeled with respect to non-decreasing durations.

Pp := rand[0, pmax]

= release date of project p

f := p JM,
maxpp + V max{d,m} p = i j = j m=l

= horizon

SP
:= trunc(MPMp + 6jac(T - MPMp))

= due date of project p

Cp := trunc(rand[0,1] * Jp)

= per period tardiness costs of project p

Table 4: Output Basedata Generation

Theorem 1 (cf. [35], p.33)

Let N — (V,A) be a n eiwork with. node set V and arc set A. Then, for every node v £V there is a directed

path from the single source to v and a directed path from v to the single s ink.

That is, every node except of the sink (source) has at least one successor (predecessor). Therefore the basic

idea is as follows: First, determine one predecessor for each node, second, determine one successor for each

node and then add further arcs.

We consider the example in Figure 1 (cf. [21], p. 179), where the additional arc (2,7) would g ive no extra

Information about scheduling the activities and therefore should not be taken into consideration. We use

6

Figure 1: Example Network

the following definition:

Definition 1

Lei N = (V,A) be a network. An arc (h,j) is called redundant, if there are arcs (i0, i'i),..., (is_i, is) 6 A

with i'o = h, is — j and s >2.

That is, an arc (i, j) is redundant, if it is an element of the transitive closure N+ of N = (V, j)})- If

within the construction process of the network an arc (i, j) is chosen for adding it to the actual graph, four

cases of r edundancy might occur (cf. Figure 2, where N = (V, A) denotes the current graph with actual sets

of (immediate) successors Sj(Sj) and (immediate) predecessors Pj(Pj))- For a given cardinality of t he set

Ö—
jeS,

O KI

f] + 0

—^ A

V

6---—-KD
3 k e Sj : PknJ> 4: 0

<P ^

6 KD & >6

Figure 2: Cases of Redundancy

7

of nodes the mimimal and maximal number of non-redundant arcs are given in the following theorem and

illustrated in Figures 3 and 4.

Theorem 2

Lei N = (V, A) be a n eiwork with |V| = n.

(a) Since a n etwork is connected, IIle min imal number of non-redundant arcs Amtn is given by

Amin = n — 1.

(b) The maximal number of non-redundant arcs Amax in a network with n>6is given by

[n - 2 + 2 ^) (" 2 if n is odd.

Figure 3: Minimal Number of Non-
redundant Arcs

For the characterization of the network we use the parameters given in Table 5. The complexity as the average

number of (non-redundant) arcs per node is a measure for the network log ic, which has been introduced by

Pascoe (cf. [36]) for activity-on-arc networks and adopted by Davis (cf. [13]) for the AON representation. For

the latter complexity has to be understood in the way that for a fixed number of jobs a higher complexity

results in an increasing number of arcs and therefore in a greater interconnectedness of the network. It

has already been shown by Alvarez-Valdes/Tamarit (cf. [1]) an d will be confirmed in this study that with

increasing complexity problems become easier. This makes the term complexity somewhat confounding.

Nevertheless we stay with the term, because it has been used in a lot of computational studies (cf. [54], [37],

[57], [31] and [20]) and has become a well kn own project summary measure. Two disadvantages associated

8

gmin : minmimal (maximal) number of start activities

pyi tn (FjmM) : minmimal (maximal) number of finish activities

j^max (jpm «) : maximal number of successor (predecessor) activities of activ­

ity j, j - 2,..., J - 2

c : network complexity, i.e. the average number of non-redundant

arcs per node (including the super-source and -sink)

£NET tolerated complexity deviation

Table 5: Input Network Generation

with this measure have to be mentionend - to wit:

(i) The number of arcs only does not give all informations ab out the number of possible schedules. Attempts

in order to find more elaborate measures than complexity can be found in [26], [60] and [22]. But as pointed

out by Elmaghraby and Herroelen (cf. [22]) "it seems evident to us that the structure of the network - in

whichever way it is measured - will not be sufficient to reflect the difficulty encountered in the resolution of

such problems".

(ii) The measure is not normalized to the interval [0,1]. A no rmalized measure for the network structure is the

"Order Strength" which has been proposed by M astor (cf. [34]) for the assembly line balancing problem and

used by C ooper (cf. [10]) for the project scheduling problem. The Order Strength for AON-representation is

calculated by d ividing the number of arcs by the maximal number of arcs which is n(n-l)/2. Unfortunately

the maximal number of arcs has two drawbacks: It includes redundant arcs and is far greater then a realistic

number of precedence relations within scheduling problems. Although we can use the maximal number of

non-redundant arcs for normal izational purpose, they still exceed the number of realistic precedence relations.

As a consequence for realistic projects the order strength converges to zero with an increasing number of

jobs.

We now de scribe the network construction for a single project (Figure 5), a multi-project network is main-

tained analogously. In Step 1 the number of start- and finish-activities are drawn randomly out of the interval

[Si"n, 551>ax] and \P™n, P™ax\, respectively. Then, the arcs, which connect the dummy source with the start

activities and the finish-activities with the dummy sink are added to the network. In Step 2, beginning with

the lowest indexed non-start activity, each activity is assigned a predecessor (activity) at random. Similar

in St ep 3, where each activity, which h as no successor, is assigned one, cf. arcs (3,6) and (6,9) in Figure 5.

In both steps the jobs are considered in order of increasing job number. Finally (in Step 4) further arcs are

9

Figure 5: Network Generat ion

10

added until the complexity is reached. Düring the whole procedure one has to take into account:

• To avoid redundancy, there must be no precedence relations between the start-activities and the finish-

activities, respectively.

• Adding arcs in Step 3 (e.g. arc (6,8)) or 4 must not produce redundant precedence relations.

• The limitation given by the maximal number of successors and predecessors and the number of start

and finish activities (e.g. arc (4,6) in Step 4, which cannot be incorporated, if at most two predecessors

are allowed).

In the following cases the generation procedure has to be restarted:

• If the required complexity is low, i.e. C ÄS 1, it might happen that after Step 3 the number of arc s

integrated into the network is too high, that is,

ActArcs > J * C * (1 + CNET)-

• If in Step 3, due to the limited number of predecessors, there is no successor of a job j available.

• If in Step 3 for a job j, there are only successors available, which lead to redundant precedence relations.

• If the required complexity is not obtainable in Step 4, that is, within a limited number of trials of

randomly selecting a node and calculating possible successors, there are no further arcs addable to

obtain

ActArcs > J * C * (1 — c7vET)•

By an appropriate reduction of the set of choosable predecessors and successors in the steps previously

described a numerical labeled network is realized.

Through adjustment of the input parameters special network structures, e.g. general (Figure 6), serial

structures (Figure 7) and network shapes as described in [30], [31] an d [53] are obtainable.

4 Resource Demand and Availability Generation

4.1 Resource Demand Generation

The resource demand generation consists of two decisions to be made. First, we have to determine the

resources used or consumed by the job-mode combinations [j,m], j — 1, m = 1 Second,

if a job-mode combination uses or consumes a resource, we h ave to calculate the number of units used or

11

Figure 6: Multi-Project with Gene ral Structure

consumed. To the first step we refer with request generation (Subsection 4.1.1) and to the latter we refer

with generation of demand level (Subsection 4.1.2).

We consider a resource type r £ {R, N, D}. The number of resources of type r is determined by a randomly

drawn integer within [|r|mm, |r|mar], that is

|r| := rand[|r|m,"1 |r|max],

4.1.1 Requested Resources

For characterizational purposes we use a generalization of the resource factor (RF) which has been introduced

by Pascoe (cf. [36]) for the single-mode case and which has later on been utilized in studies by Cooper (cf.

[10]) and Alvarez-Valdes/Tamarit (cf. [1]). For the single-mode case RF is calculated as follows:

_ 1 • lf£jr>0

J 1- ^1 ;=1 reR ^ 0 , otherwise.

12

|T|m»n(|r|mar) minimal (maximal) number of resources of t ype r
minimal (maximal) number of resources of type r used

by a job-mode combination [j, m]

minimal (maximal) demand for a resource of t ype T
probability that demand for a resource of t ype r is du­

ration constant (monotonically decreasing with the du­

ration)

resource factor of type r

resource strength of t ype r

tolerated resource factor deviation

fI(F =\)(fr(F = 2))
U™in(U™ax)

RFr

RST

fRF

Table 6: Input Demand Generation

The resource factor reflects the average portion of resources requested per job. It is a measure of the density

of the array kjr. If we h ave RF—1, then each job requests all resources. RF=0 indicates that no job requests

any resource, thus we obt ain the unconstrained MPM-case. In order to use RF for the multi-mode case as

well, we gener alize it straightforward to a type dependent resource factor RFT, T £ {R,N,D}\

Again RF is no rmalized to the interval [0,1] with the Interpretation very close to the one of the original RF.

It reflects the average portion of resources out of one type, requested by each job-mode combination [j,m]

and it measures the density of the three dimensional array kjmr. Of course, our RF equals the one proposed

by Pascoe for the case N = D = 0 and Mj = 1, j = 1,..., J. Table 6 shows the other input parameters as

well.

For the generation of th e resource request we use the following internal variables and data structures: First,

we represent the Information whether a job-mode combination [j ,m] requests resource r by a three-dimensional

array Rq[j,m,r] of binary digits. Rq[j,m,r] is initialized with zeros and is se t equal to one, if and only if

[j,m] requests resource r. The actual resource factor (ARF) is then calculated as follows:

otherwise.

J-2 Mj

The actual number of resources requested by [j ,m] is obtained by

QU,™] :=]T%|;',m,r].

13

Finally we get CT, the actual set of ch oosable triplets,

CT := {[?', m, r]; Rq[j, m, r] = 0 and Q[j,m] < Q™*},

that is, the set of job-mode-resource combinations [j,m,r], which are furthermore choosable (Rq[j, m, r] = 0)

without Q\j, m] exceeding Q™ax.

Establishing the minimal num­

ber of resources requested by

fj,ml

Establishing the resource factor

2 1 ... M2

12 3 12 3

1 ... M2

12 3 12 3

2

O

O

O

O

10 1 ... 10 1

J - 1 1 ...

12 3 ... 12 3

1 ••• Mj _ 1

12 3 ... 12 3

J - 1

O

O

O

O
 O

O

O

O

Step 1 Step 2
Q™in = 1 ,Q™ax = 2

Table 7: Resource Factor Establi shing

Düring the two steps to be performed the internal variables are continuously updated.

In Step 1 for each job-mode combination [j,m], as far as the minimal number of requested resources <5™,n is

not reached, additional resources are selected randomly. While, in Step 2, the actual resource factor is less

than the asserted one and in addition there are choosable triplets in CT, i.e. CT / 0, the actual resource

factor is incremented by randomly drawing a triplet out of CT. In Table 7, where we have |r| = 3, the triplet

(2,1,2) is not in the choosable set CT, because Q™ax is fixed to two.

If after Step 2 the actual resource factor declines more then tolerated, i.e.

ARFT ^ [RFT • (1 — CRF), RFT • (1 4- «RF)],

then a warning message is given.

4.1.2 Level of Demand

If we have Rq[j, m, r] = 1, then a positive demand of th e job-mode combination [j,m] for resource r has to be

generated. The interrelation between the durations of the modes and the demand for resource r i s reflected

14

by two typ es of functions. One of which is duration independent (F — 1) and the other one is decreasing with

vjmr
A

TTmax
UT
U'

U min

ijl

-x-

dj2 =dj3 dj4

Figure 8: Interrelation between Demand and Duration

the (increasing) duration (F=2). That is, for the renewable and doubly constrained resources the per-period

demand and for the nonrenewable resources the total demand is generated as the interrelation prescribes.

For each resource r £ r the interrelation is defined by

Fr(r) :=
1 : if rand[0,1] < PT(F — 1)

2 : otherwise

given the type dependent probabilities PT{F = 1) and PT(F — 2). If FT(r) = 1, then for each job the

demand U' is randomly drawn out of the integer interval U™ax] and is then assigned to all modes,

15

which request this resource. In the case of FT(r) — 2, for each job j two levels are drawn randomly out of

the parameter specified interval:

U1 := rand[U™n ,U?ax] , U2 := rand[t/Tmin, U™x}.

Then U,ow and Uh,gh are calculated as follows

Ulow :=mm{U\U7} , Uhigh := maxfC/1, U2}

Let Mj be the number of modes of job j with different durations requesting resource r. We calculate

yhigh _ jjlow
A :=

Mj

and yield Mj intervals as follows:

lk := [Round{Uhigh - Ak), Round(Uhish - A(k - 1))] k = 1,... ,Mj.

Since the modes are labeled with respect to nondecreasing durations, we can now draw the demand randomly

out of the intervals corresponding to the durations. Figure 8 illustrates the generation of the level of demand.

Remark 1

If for m,m £ {1,..., Mj), m ^ m, it is djm = djfn and Rq[j,m,r] = 1 = Rq[j,m,r\, then the demand is

generated randomly out of the same interval.

Due to the construction inefficiency, which is defined in the following, might occur:

Definition 2

A job j has inefficient modes, if there are modes m and rh with djm < djm and kjmr < kp^r for a ll r 6 RöD
and kjmr < kjmr for aU r € N LI D .

If inefficient modes occur for job j, we calculate the number of resources requested by job j

Mj
Qj := Rqti> m> r]

m=l r^r

and the request and demand generation is restarted with the additional constraint

M,
Qj = ^3

m=l

If efficiency is not obtainable within MaxTrials, the generation is interrupted and the parameters have to be

adjusted.

16

4.2 Resource Availability Generation

In order to express the relationship between the resource demand of the jobs and the resource availability

Cooper (cf. [10]) introduced the resource strength (RS), which is calculated as follows:

Later the RS has been utilized by Alvarez-Valdes/Tamarit (cf. [1]). There are three main drawbacks of t he

proposed measure. We will point them out and propose a new RS to overcome these disadvantages:

• First, the RS is not standardized in the intverval [0,1].

• Second, a rather small RS does not guarantee a feasible Solution. E.g. for three jobs with kjr = 1,1

and 10, respectively, one has to adjust the resource strength to RST > 2.5 in order to achieve a feasible

Solution.

• Third and most important, regard the myopic fashion in which the scarcity of res ources is calculated.

This sha.ll be depicted with the following simple example: We consider two projects, with exactly

the same data except the network. Project 1 has a parallel structure, where each job is immediate

successor of t he dummy source and immediate predecessors of the dummy sink, whereas project 2 has

a serial structure, where each job has exactly one predecessor and one successor. Let us further assume

that the resource availability is large enough in order to assure feasibilty of b oth problems. Then the

RS for both projects will be ex actly the same, but obviously the serially structured project, being the

MPM-case, will be quite easy to solve, whereas the parallel structured project is, dependent on the

amount of resource availability, rather difficult.

In order to overcome these disadvantages, we have created the following methodology for a measure of

resource scarceness which is applicable to all types of resources. We determine a minimal demand A'™'n as

well as a maximal demand K™az and let the resource availability be a convex combination of the two with

RST as scaling parameter : Kr := K™'n + RST(K™ax — K™tn). Thus with respect to one resource we will

get the smallest feasible resource availabilty for RST = 0. For RSr — 1 the amount of reso urces is just large

enough to achieve the MPM-case.

For the nonrenewable resources r, r <E N\JD, the minimal and maximal availabilities to complete the project

can be calculated as follows:

RSr := Kr

17

For a given type dependent resource strength RSr 6 [0,1] the availability is

KVT := K?in + Round(RST {K?ax - K?in)).

If the considered resource is renewable the minimal demand is

==

The maximal demand is calculated as the peak demand of the precedence preserving earliest start schedule.

Thereby each job is performed in the lowest indexed mode employing maximal per-period demand with

respect to the resource under consideration. That is, we determine the maximal per-period demand of j ob j

with respect to resource r

kjr ;=

and the corressponding mode with shortest duration:

mjr '•= = k*r]

Given the precedence relations and due dates of t he project we can now calcu late the earliest start schedule

with the modes determined. We obtain the resource dependent start time STJ and completion time CTJ of

job j, j — 2,..., J — 1. We then calculate the peak period demand

*\ * \ Kr — max < ^2 kjm'jrr '
I J = 2 I ST* + l<t<CT*

and the available amount using the type dependent resource strength RST

KP ;= ^'» + R0und(Ä5T(/Car-^rmi"))- (8)

By constuction we can S tate the following:

Remark 2

(a) I/\T\ = 1 and R ST = 0, then the lowest resource feasible level with respect to T will be ge neraied.

(b) For RST = 1 the resource unconstrained MPM-case with respect to r will be generated.

(c) IF RST << 1 and Mj > 1 feasibility of th e problem can not be assured, because of mode coupling via

resource constraints.

18

5 Computational Results

5.1 Single-Mode Case

Currently the most advanced exact procedure for solving makespan minimization problems seems to be t he

implicit enumeration procedure of the B&B type with backtracking from Demeulemeester (cf. [17], [18]). I t

is coded in C and solves the fourty-three 27-job problems out of the 110 Patterson instances in an average

computational time of 1.06 seconds to optimality on an IBM PS/2 Model 55sx (80386sx processor, 15 Mhz

clockpulse). We used the original Implementation of the algorithm provided by Demeulemeester in our

computational study.

We have carried out two series of experiments for single-mode problems. First we used a fü ll factorial design,

where we varie d the complexity C, the resource factor RF and the resource strength RS. The constant and

the varying parameter levels are documented in Table 8 and 9, respectively. Obviously we have \N\ = \D\ = 0

and PR(F = 1) = 1. Using 10 projects for each combination of C, RF and RS a total of 3 • 4 • 4 • 10 = 480

instances were generated. All of them were solved with the exact Solution procedure. Utilizing the previously

described machine we imposed a time limit of 3600 secon ds on the maximal CPU time.

J Mj dj |Ä| UR QR S\ Sj Pj Pi

min 30 1 1 4 1 l 3 1 3 1

max 30 1 10 4 10 4 3 3 3 3

Table 8: Constant Parameter Levels for Single-Mode Instances under Füll Factorial Des ign

C 1.5 1.8 2.1

RFR 0.25 0.5 0.75 1.0

RSR 0.2 0.5 0.7 1.0

Table 9: Variable Parameter Levels for S ingle-Mode Instances under Füll Factoria l Design

Our 480 instances have been solved in 461.25 seconds on the average. The minimum Solution time turned

out to be 0.0 seconds (which is actually less than 0.05 seconds), while the maximum Solution time was the

imposed limit of 3600 seconds. Table 10 provides the frequency distribution of t he Solution times. Among

the 65 very h ard problems which needed more than 1000 CPU-seconds were 52 for which an optimal Solution

could not either be found or verified within the imposed time limit.

19

Range [0,0.1] (0.1 , 1] (1,10] (10,100] (100,1000] >1000

Instances 165 142 46 36 26 65

Table 10: Frequency Distribution of Solution Times for Sing le-Mode Instances under Füll Factorial Design

In order to find out the effects of the different parameters we perfo rmed a mean value analysis regarding

CPU-times for each of t he varying parameters.

The effects of altering the complexity C can be seen in Table 11. As C is enlarged from 1.5 to 2.1 the

Solution times decrease. This is due to the fact that adding more precedence relations to the network lowers

the number of feasible schedules for a given upper bound on the projects makespan. This reduces the

enumeration tree and makes the problems more easy. The effect has already been mentioned by Alvarez-

Valdes/Tamarit for heuristics (cf. [1]).

C 1.5 1.8 2.1

A'•CPU 674.76 477.80 231.19

Table 11: Effects of Complexit y C on Solutio n Ti mes

The increase of the resource factor results in an increase of Solution times (cf. Table 12). This contradicts

the results of Alvarez-Valdes/Tamarit. They observed that problems with a resource factor of 1.0 were easier

than ones with a resource factor of 0.5. We assume that their results were somewhat distorted through the

use of a myopic resource strength, which has already been pointed out in section 4. It can be concluded

that problems become harder, when the average portion of resources requested per job increases. It has to

be remarked that the majority of t he 110 instances of Patterson have a resource factor of 1.0.

RFR 0.25 0.5 0.75 1.0

ßCPU 0.30 128.35 787.98 928.30

Table 12: Effects of the Resource Factor RFR on Solu tion Times

From Table 13 it can be seen that the resource strength has the strengest impact on Solution times. Problems

with a RSR of 0.2 turned out to be the hardest. Out of those 120 instances for 47 the Optimum Solution

could not be found or verified within the imposed time limit. The problems with a RSR of 1.0 are not

resource-constrained anymore, thus the optimal Solution is the MPM-schedule.

20

% 0.20 0 .50 0.70 1.0

HCPU 1551.52 247.83 45.60 0.03

Table 13: Effects o f the Resource Strength RSR on Solu tion Times

In order to get even more insight into the effects of the parameters on the Solution time, we have chosen t he

combination C=1.5, RF=0.5 and RS=0.5 for which an average Solution time of 23.59 seconds was needed.

Using a ceteris paribus design we changed just one parameter at a time and generated again 10 instances

for each parameter level remaining w.r.t. Tables 8 and 9.

The effect of the number of renewable resources can be seen in Table 14. It is quite intuitive that an

increasing number of constrained resources complicates the problem.

|Ä| 1 2 3 4 5 6

ßCPU 0.09 1.10 4.29 23.59 138.51 406.15

Table 14: Effects of th e Number of Resources |Ä| on Solut ion Times

The effects of t he number of start activities is depicted in Table 15. Increasing the number of start activities,

keeping the number of jobs and precedence relations constant, generally results in more parallelism of th e

network, which makes the problem harder to solve.

Si 1 2 3 4 5 6

f*CPU 2.75 8.74 23.59 33.70 90.97 134.29

Table 15: Effects of the Number of Start Activities Si on Solution Times

Reasoned by the strong impact of the resource strength on Solution time, indicated in the füll factorial design

study, a more thoroughly study on the RSR has been performed. Table 16 shows the results of varying RSR

from 0 to 1 in steps of 0.1. The average Solution time continuously increases with decreasing RSR. The

hardest problems are the ones where the minimal resource availability is provided. This relationship between

hardness of the problem and resource scarcity deviates from the function conjectured by Elmaghraby and

Herroelen (cf. [22]) a nd the computational study presented by Alvarez-Valdes/Tamarit (cf. [1]).

Finally the effect of a growing number of jobs is outlined in Table 17. Since it is well known that the problem

is NP-complete with respect to the number of activities (cf. [27]), it is not surprising that Solution times

21

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

HCPU 3203 2545 1177 739 573 23.59 16.15 1.62 0.47 0.09 0.04

Table 16: Effects of the Resource Strength RSR on Solu tion Times

grow rapidly with the number of jobs.

J 10 20 30 40

HCPU 0.06 0.32 23.59 942.09

Table 17: Effects of the Number of Jobs J on Solution Times

To sum it all up, even the single-mode case is less tractable than suggested by previously published work

based on the Patterson test data.

5.2 Multi-Mode Case

Once more for makespan minimization problems we conjecture that the effects of the complexity, the number

of constrained resources, the number of start activities and the number of jobs are about the same for the

single- and the multi-mode case. Therefore we c oncentrated on the mutually effects of the resource factor

and the resource strength for renewable and nonrenewable resources. Again we have utilized a füll factorial

design with the constant and varying parameter levels a s given in Table 18 and 19, respectively. With 10

instances for each level co mbination of th e varying parameters we generated 4 • 4 • 2 • 2 • 10 = 640 problems.

Each problem has been s olved with the State of the art Solution procedure of Patterson et al. (cf. [41]). It

is a branch 6 bound based enumeration algorithm of the backtracking variety. Computational results are

given in Patterson et al. (cf. [42]). There, 91 instances have been generated with characteristics similar

to the ones of the 110 instances by Patterson. The number of job s ranged between 10 and 500, where 75

instances had up to 30 jobs. The Solution procedure has been coded in Fortran and implemented on an IBM

4381 mainframe Computer. For an imposed time limit of 1 (10) minutes 30 (33) of the problems with up to

50 jobs could be solved to optimality. The preponderance of thes e problems ranged between ten and thirty

jobs.

Since the original Solution procedure was no t available to us, we recoded it in C. Our code has been imple­

mented on an IBM RS/6000 550 Workstation, which is approximately 5 to 6 times faster than the IBM 4381

mainframe and about 50 times faster than the IBM PS/2 55sx. Because, as already pointed out in Section 4,

we could not guarantee feasibility, only 536 of the 640 problems had a feasible Solution. The average time to

22

J Mj dj |Ä| UR QR \N\ UN QN Si Sj Pj Pi

min 10 3 1 2 1 1 2 1 1 3 1 3 1

max 10 3 10 2 10 2 2 10 2 3 3 3 3

Table 18: Constant Parameter Levels for the Multi-Mode Instances under Füll Factorial Design

Parameter Levels

AS 0.5 1.0

RS 0.2 0.5 0.7 1.0

Table 19: Variable Parameter Levels for Multi-M ode Instances under Füll Factorial Desig n

find and verify the optimal Solution was 74.31 seconds. The minimum and maximum time was less than 0.5

seconds and 2016.25 seconds, respectively. Table 20 gives the frequency distribution of the Solution times.

Range [0,0.1] (0.1,1] (1,5] (5,10] (10,25] (25,50] (50,100] (100,250] >250

Instances 142 40 76 50 62 38 31 46 51

Table 20: Frequency Distribution of So lution Times for the Multi-Mode Instances

In Table 21 the effects of varying resource factors is documented. With an increasing resource factor problems

become Härder. Solution times are far more sensitive to RFN (factor 15) than to RFR (factor 1.5).

The effects of the resource strength can be seen in Table 22. As the nonrenewable resources become scarce,

Problems turn to be much more difficult. Amazingly this does not hold for the renewable resources in

general. The bottom line of Table 22 shows that the reverse is true; problems become harder to solve with

increasing availability. If one recalls the results of the single-mode case, this is quite unexpected. But a

more thorough study of Table 22 provides an explanation. In the case of sufficient nonrenewable resources,

i.e. ÄSAT > 0.7, Solution times increase with decreasing availability of rene wable resources. But with small

amounts of n onrenewable resources (RSR < 0.5) the effect reverses. Due to the strong impact of RSjv the

mean Solution time only shows the tendency for scarce nonrenewable resources.

To sum it all up, we could not reproduce the promising results provided by Patterson et al. (cf. [42]) for th e

multi-mode case. Moreover, multi-mode instances in general are tractable only for a very restricted number

of jobs. Thus additional work has to be done to speed up convergence.

23

RFR

0.5 1.0

0.5 6.92

105.55

9.24

142.44

8.10

124.85

62.14 85.70 74.31

Table 21: Effects of Varyi ng Reso urce Factor

%

0.2 0.5 0.7 1.0

0.2 267.86 281.51 441.03 443.08 363.13

0.5 38.69 46.80 58.71 101.52 62.47

^ 0.7 15.14 14.97 12.84 11.25 13.53

1.0 12.66 3.27 0.48 0.06 3.57

54.96 59.20 84.70 95.53 74.31

Table 22: Effects of Varying Reso urce Strength

6 Conclusions

PROGEN, a project generator for a broad class of precedence- and resource-constrained scheduling problems,

which utilizes well-known and new summary measures, has been presented. Benchmark instances for the

single- and the multi-mode case of project scheduling have been produced and solved with the State of t he

art B&B-procedures.

The results show the strong impact of the proposed parameters, furthermore very hard and very easy

instances can be discriminated. In general, the promising results of previously published studies do not

hold true; i.e. even very small problem instances still remain untractable with the optimal State of t he art

algorithms.

The availability of the generator as well as the 1216 instances used in the computational study provide a

tool for the evaluation of algorithms within the project scheduling environment. Due to the versatility of

the generator it can be used in related areas, e.g. single- and multiple-machine scheduling.

Acknowledgement: We thank Erik Demeulemeester, Katholieke Universiteit Leuven, for providing us with

the code of his algorithm.

24

Appendix

A Functional Description of PROGEN

PROGEN has been coded in Borland Turbo Pascal 6.0. The code consists of the following eight units (cf.

Table 23) with the corresponding tasks. All units except TYPEDECL have already been compiled and are

available in the Turbo Pascal unit format (TPU). The code of TYPEDECL and PROGEN is amenable, so

that the users can adjust the size of ar rays to their specific needs. After adjustment TYPEDECL has to be

compiled and all eight units have to be linked under Turbo Pascal 6.0 with the BUILD command. User who

do not wish to change the size of arrays can use the readily available execution file of PROGEN.

PROGEN main program.

TYPEDECL definition of constants, types and variables (data structures).

NETWGEN generation of the network.

REQGEN generation of th e resource request and level of demand.

AVAILGEN generation of the resource availability.

INOUT read and write routines.

UTILITY support functions, e.g. the random number generator of Schräge [49]

Table 23: Units of PROGEN

When starting PROGEN one needs a file with the parameter settings, henceforth refered to as basedata-file.

The basedata-file has always the suffix BAS. In Table 24 an example of such a basedata-file is depicted.

The input relates to the parameters as presented in sections 3 and 4. Starting PROGEN one gets the menu

shown in Table 25. In option "1" one has to choose a basedata-file, e.g. EXPL.BAS. The basedata-file is

checked for existence on the actual subdirectory. Option "2" allows one to define a seed for the implemented

random number generator. By default the random number generator of Turbo Pascal will be invoked once

to generate the seed for the congruence-generator. The default value for the number of instances is 10. If

a different number of i nstances is required, one can use option "3" for an adjustment. All adjustments are

displayed in the upper right part of th e menu. With option "4" the instance generator is started. It will

create the predescribed number of i nstances. The instances have the same name as the basedata-file, but

with the suffix DAT. They are labeled consecutively, e.g. one will get the files EXPL1.DAT to EXPL10.DAT.

The warning and error messages of the generated instances will b e written in a separate file, which also has

the name of the basedata-file and the suffix ERR, e.g. EXPL.ERR. The possible error messages are shown

in Table 26. They can be divided in four classes. Messages about wrong input (11-22), messages about

25

the process of generation (1,2,29), messages about the nontolerated deviation of parameters (3,4,23-28) and

serious errors, which will lead to the interruption of the generation process (1000-1002). An example for an

inst an ce file and the corresponding error file is displayed in Tables 27 and 28, respectively. ERROR 1 and

ERROR 1001 should not occur, if it does, please send input file and seed to the authors. In order to avoid

the user from unintentional erasing instance files one cannot generate problems from a basedata-file, if an

error file with the same name already exists in the actual subdirectory. Therefore those instances have to

be erased before restarting the generation. In case of any problems please contact one of the authors.

SAMPLEFILE B ASEDATA
PROJEKTS

NrOfPro : 1 4 number of projects
MinJob : 8 ft minimal number of jobs per project
MaxJob : 8 ft maximal number of jobs per project
MaxRelDate : 0 & m aximal release date
DueDateFactor : 0.0 ft maximal due date

MODES
MinMode : 1 & m inimal number of modes
MaxMode : 2 ft maximal number of modes
HinDur : 1 ft minimal duration
MaxDur : 10 t maximal duration

NETWORK
MinOutSource : 1 ft minimal number of start activities per project
MaxOutSource : 3 & maximal number of start activities per project
MaxOut : 3 ft maximal number of successor per job
MinlnSink : 1 ft minimal number of finish activities
MaxInSink : 2 ft maximal number of finish activities
Maxin : 3 & m aximal number of predecessors
Complexity : 1.5 ft complexity of network

RESSOURCEREQUEST/AVAILABILITY
Rmin : 2 & minimal number of renewable resources
Rmax : 2 ft maximal number of renewable resources
RminDemand : 1 k minimal (per period) demand
RmaxDemand : 10 k maximal (per period) demand
RRMin : 1 k minimal number of resources requested
RRMax : 2 Sc m aximal number of resources requested
RRF : 0.5 ft resource factor •
RRS : 0.2 Je res ource strength
Number R-Func. : 2

pl : 0.0 ft probability to choose a constant funetion
p2 : 1.0 ft probability to choose a decreasing funetion

Nmin 2 ft cf. renewable resources
Nmax : 2
NminDemand : 1
NmaxDemand : 10
NRMin : 1
NRMax : 2
NRF : 1.0
NRS : 0.7
Number N-Func. : 2

pl : 0.0
p2 : 1.0

26

Dmin
Dmax
DminDemand
DmaxDemand
DRMin
DRMax
DRF
DRST
DRSP
Number D-Func.

Pl
p2

LIMIT O F ITE RATIONS
Tolerance Network
Tolerance RF

MaxTrials

FORMAT O F BA SE FILE
- a colon has to be followed by a value
- only spaces are allowed between colon and value
- a comment is allowed to follow a value
- comments are allowed if there is no colon in
- value and comment have to be seperated by space
- value is integer with the exception of
-> due date factor -> complexity -> resource factor
-> resource strength -> function probabilities -> tolerances

Table 24: Parameter Settings in the Basedata-File

Project Generator PROGEN (V ersion 2.0)

file basedata : no basefile
initial value : randomly
number of instances : 10

1 - basedata
2 - initial value
3 - number of instances
4 - generate
5 - end program

>

Table 25: Menue of Progen

0 & cf. renewable resources
0
0
0
0
0
0.0
0.0
0.0
2
1.0
0.0

0.05 & tol erated complexity deviation
0.05 k tolerated resource factor deviation

200 & m aximal number of trials

27

ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR

1:
2:
3:
4:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

Predecessor could not be determined.
Successor could not be determined.
Complexity could not be achieved (low).
Complexity could not be achieved (high).
max # req. resources > # resources for type R; -> max# := #.

resources > # resources for type D; -> max# := #.
resources > # resources for type N; -> max# := #.

max
max
min
min
min

req.
req.
req.
req.
req.

resources > ma x # for type R; -> min # := max #.
resources > m ax # for type D; -> min # := max #.
resources > m ax # for type N; -> min # := max #.

RF f or R c an't be achieved; min # req. resources too large.
RF f or D ca n't be achieved; min # req. resources too large.
RF f or N ca n't be achieved; min # req. resources too large.
RF f or R c an't be achieved; max # req. resources too small.
RF f or D ca n't be achieved; max # req. resources too small.
RF f or N ca n't be achieved; max # req. resources too small.
Obtained RF f alls Short the tolerated ränge for R.
Obtained RF f alls Short the tolerated ränge for D.
Obtained RF f alls short the tolerated ränge for N.
Obtained RF e xceeds the tolerated ränge for R.
Obtained RF e xceeds the tolerated ränge for D.
Obtained RF e xceeds the tolerated ränge for N.
More than 1 trial was used to produce a job with non d ominated modes.

ERR0R1000: Network generation without success.
ERROR1001: Redundant arcs in network.
ERR0R1002: Non dominated modes for a job could'nt be produced within maxtrials.

Table 26: Error Messages

**
file with basedata : expl.bas
initial value random generator: 530450642
**
projects : 1
jobs (incl. supersource/sink): 10
horizon : 47
RESOURCES

- renewable : 2 R
- nonrenewable : 2 N
- doubly constrained : 0 D

**
PROJECT INFORMATION:
pronr. #jobs rel.date duedate tardcost CPM-Time

1 8 0 20 2 20

28

**
PRECEDENCE RE LATIONS:
jobnr. #modes #successors successors

1 1 2 2 3
2 2 3 6 7
3 2 3 4 5
4 1 1 7
5 2 2 6 7
6 2 1 8
7 1 1 8
8 1 1 10
9 1 1 10

10 1 0
*****************$**
REQUESTS/DURATIONS:
jobnr. mode duration R1 R2 N1 N 2

1 1 0 0 0 0 0
2 1 6 7 0 2 5

2 9 7 0 1 3
3 1 1 0 7 8 7

2 3 0 5 8 4
4 1 3 3 0 9 3
5 1 7 5 0 8 10

2 7 0 4 5 6
6 1 1 0 6 8 8

2 9 0 4 2 8
7 1 2 2 0 4 3
8 1 10 3 0 1 5
9 1 4 0 10 6 5

10 1 0 0 0 0 0
**
RESOURCEAVAILABILITIES:

R 1 R 2 N 1 N 2
9 11 43 43

**
Table 27: Example Instance File

sample f ile —>expll.DAT

ERROR 2: Successor could not be detennined
ERROR 3: Complexity could not be achieved (los)
ERROR 2: Successor could not be determined
ERROR 3: Complexity could not be achieved (low)
ERROR 29: More than 1 trial was used to produce a job with non dominated modes

Table 28: Example File Error Messages

29

References

[1] ALVAREZ-VALDES, R. AND J.M. TAMARIT (1989): Heuristic algorithms for resource-constrained

project scheduling: A review and an empirical analysis. In: Slowinski, R. and J. Weglarz (Eds.):

Advances in project scheduling. Elsevier, Amsterdam, pp. 113-134.

[2] BALAS, E . (1971): Project scheduling with resource constraints. In: Beale, E.M.L. (Ed.): Applications

of mathematical programming techniques. The English Universities Press, London, pp. 187-200.

[3] BARTUSCH, M.; R H. MÖHRING AND F.J. RADERMACHER (19 88): Scheduling project. networks

with resource constraints and time windows. Annais of Operations Research, Vol. 16, pp. 201-240.

[4] BELL, C.E. AND J. HAN (1991): A new heuristic Solution rnethod in resource-constrained project

scheduling. Naval Research Logistics, Vol. 38, pp. 315-331.

[5] BELL, C.E. AND K. PARK (1990): Solving resource-constrained project scheduling problems by A*

search. Naval Research Logistics, Vol. 37, pp. 61-84.

[6] BOCK, D.B. AND J.H. PATTERSON (19 90): A comp arison of due date setting, resource assignment,

and job preemption heuristics for the multiproject scheduling problem. Decision Sciences, Vol. 21,

pp. 387-402.

[7] BOCTOR, F.F. (1992): Heuristics for scheduling projects with resource restrictions and several

resource-duration modes. Working Paper, Pavillon des Sciences de ^Administration, Universite Laval,

Quebec, Canada.

[8] BOWMAN, E.H. (1959): The schedule-sequencing problem. Operations Research, Vol. 7, p p. 621-624.

[9] CHRISTOFIDES, N.; R. ALVAREZ-VALDES AND J.M. TAMARIT (1987): Project scheduling with

resource constraints: A branch and bound approach. European Journal of Operational Research, Vol.

29, pp. 262-273.

[10] CooPER, D.F. (1976): Heuristics for scheduling resource-constrained projects: An experimental

investigation. Management Science, Vol. 22, pp. 1186-1194.

[11] DAVIES, E.M. (1973): An experimental investigation of resource allocation in multi activity projects.

Operational Research Quarterly (since 1978: Journal of th e Operational Research Society), Vol. 24,

pp. 587-591.

[12] DAVIS, E.W. (1968): An exact algorithm for the multiple constrained-resource project scheduling

problem. PhD Dissertation, Yale University, New Hä ven, USA.

30

[13] DAVIS, E.W. (1975): Project network summary measures constrained-resource scheduling. AHE

Transactions (since 1985: IIE Transactions), Vol. 7, pp. 132-142.

[14] DAVIS, E .W. AND G. E. HEIDORN (1971): An algorithm for optimal project scheduling under multiple

resource constraints. Management Science, Vol. 17, pp. B803-B816.

[15] DAVIS, E.W. AND J H. PATTERSON (1975): A comparison of heuristic and optimum solutions in

resource-constrained project scheduling. Management Science, Vol. 21, pp. 944-955.

[16] DECKRO, R.F. AND J E. HEBERT (198 9): Resource constrained project crashing. OMEGA, Vol. 17,

pp. 69-79.

[17] DEMEULEMEESTER, E. (1992): Optimal algorithms for various classes of multiple resource-

constrained project scheduling problems. PhD Dissertation, Katholieke Universiteit Leuven, Belgium.

[18] DEMEULEMEESTER, E . AND W . HERROELEN (1992): A b ranch-and-bound procedure for the multiple

resource-constrained project scheduling problem. Management Science, to appear.

[19] DREXL, A. (1991): Scheduling of project networks by job assignment. Management Science, Vol. 37,

pp. 1590-1602.

[20] DREXL, A. AND J. GRÜNEWALD (1 992): Nonpreemptive multi-mode resource-constrained project

scheduling. IIE Transactions , t o appear.

[21] ELMAGHRABY, S.E. (1977): Activity networks: Project planning and control by network models.

Wiley, New York.

[22] ELMAGHRABY, S .E. AND W.S. HERROELEN (1 980): On the measurement of complexity in activity

networks. European Journal of Operational Research, Vol. 5, pp. 223-234.

[23] HERROELEN, W.; E. DEMEULEMEESTER A ND B.DODI N (1989): The generation of strongly-random

activity networks. Working Paper, Department of Applied Economic Sciences, Katholieke Universiteit

Leuven, Belgium.

[24] JACKSON, H P.; P.T. BOGGS; S .G. NASH A ND S. POWELL (199 1): Guidelines for reporting results

of computational experiments. Report of the ad hoc cornmittee. Mathematical Programming, Vol. 49,

pp. 413-425.

[25] JOHNSON, T.J.R. (1967): An algorithm for the resource-constrained project scheduling problem.

PhD Dissertation, Massachusets Institute of Technology, USA.

31

[26] KAIMANN, R A. (1974): Coefficients of network complexity. Management Science, Vol. 21, pp. 172-

177.

[27] KARP, R .M. (1972): Reducibility among combinatoriaJ problems. In: Miller, R.E. and J.W. Thatcher

(Eds.): Complexity of Computer applications. Plenum Press, New York, pp. 85-104.

[28] KIM, S. AND R.C. LEACHMAN (1990): A hierarchical approach to multi-resource multi-project

scheduling with explicit lateness costs. HE Transactions, to appear.

[29] KURTULUS, I.S. (1983): Multi-project scheduling: Analysis of project Performance. Working Paper,

School of Bu siness, VCU, Richmond, USA.

[30] KURTULUS, I.S. AND E .W. DAVIS (1982): Multi-project scheduling: Categorization of heuristic rules

Performance. Management Science, Vol. 28, pp. 161-172.

[31] KURTULUS, I.S. AND S.C. NARULA (1985): Multi-project scheduling: Analysis of project Perfor­

mance. HE Transactions, Vol. 17, pp. 58-66.

[32] LAWRENCE, S R. AND T.E. MORTON (1991): Resource-constrained multi-project scheduling with

tardy costs: Comparing myopic, bottleneck, and resource pricing heuristics. Working Paper, Graduate

School of Industrial Administration, Carnegie Mellon University, Pittsburgh, USA.

[33] MASON, A.T. AND C.L. MOODIE (1971): A branch and bound algorithm for minimizing cost in

project scheduling. Management Science, Vol. 18, pp. B158-B173.

[34] MASTOR, A .A. (1970): An experimental investigation and comparative evaluation of p roduction line

balancing techniques. Management Science, Vol. 16, pp. 728-746.

[35] NEUMANN, K. (1975): Operations Research Verfahren, Bd. 3. Hanser, München-Wien.

[36] PASCOE, T.L. (1966): Allocation of resources C.P.M. Revue Francaise Recherche Operationelle, No.

38, pp. 31-38.

[37] PATTERSON, J.H. (1976): Project scheduling: The effects of problem structure on heuristic Per­

formance. Naval Research Logistics Quarterly (since 1987: Naval Research Logistics), Vol. 23, pp.

95-123.

[38] PATTERSON, J.H. (1984): A comparison of exact approaches for solving the multiple constrained

resource, project scheduling problem. Management Science, Vol. 30, pp. 854-867.

32

[39] PATTERSON, J.H. AND W.D. HUBER (1974): A horizon-varying, zero-one approach to project

scheduling. Management Science, Vol. 20, pp. 990-998.

[40] PATTERSON, J .H. AND G. W. ROTH (1976): Scheduling a project under multiple resource constraints:

A zero-one programming approach. AHE Transactions (since 1985: IIE TYansactions), Vol. 8, pp. 449-

455.

[41] PATTERSON, J.; R. SLOWINSKI; B. TALBOT AN D J. WEGLARZ (1989): An algorithm for a general

class of precedence and resource constrained scheduling problems. In: Slowinski, R. and J. Weglarz

(Eds.): Advances in project scheduling. Elsevier, Amsterdam, pp. 3-28.

[42] PATTERSON, J.; R. SLOWINSKI; B. TALBOT AN D J. WEGLARZ (1990): ComputationaJ experience

with a backtracking algorithm for solving a general class of precedence and resource-constrained

scheduling problems. European Journal of Operational Research, Vol. 49, pp. 68-79.

[43] PRITSKER, A.A.B.; W.D. WATTERS AND P.M. WOLFE (1969): Multiproject scheduling with lim­

ited resources: A zero-one programming approach. Management Science, Vol. 16, pp. 93-108.

[44] RADERMACHER, F. J.(1985/6): Scheduling of project networks. Ann als of Operations Research,

Vol. 4, pp. 227-252.

[45] RUSSELL, A.H. (1970): Cash flows in networks. Management Science, Vol. 16, pp . 357-373.

[46] RUSSELL, R .A. (1986): A comparisonof heuristics for scheduling projects with cash flows and resource

restrictions. Management Science, Vol. 32, pp. 1291-1300.

[47] SAMPSON, S.E. AND E.N. WEISS (1992): Local search techniques for the resource constrained project

scheduling problem. Research Report, The Darden School, University of V irginia, USA.

[48] SCHRÄGE, L. (1971): Solving resource-constrained network problems by im plicit enumeration - non­

preemptive case. Operations Research, Vol. 18, pp. 263-278.

[49] SCHR ÄGE, L. (1979): A more portable fortran random number generator. ACM Transactions on

Mathematical Software, Vol. 5, pp.132-138.

[50] SLOWINSKI, R. (1978): A node ordering heuristic for network scheduling under multiple resource

constraints. Foundations of Control Engineering, Vol. 3, pp. 19-27.

[51] SLOWINSKI, R. (1980): Two approaches to problems of resource allocation among project activities:

A c omparative study. Journal of the Operational Research Society, Vol. 31, pp. 711-723.

33

[52] SLOWINSKI, R . (1981): Multiobjective network scheduling with efficient use of renewable and nonre­

newable resources. European Journal of Operational Research, Vol. 7, pp. 265-273.

[53] SMITH-DANIELS, D .E. AND V. L. SMITH-DANIELS (1987): Optimal project scheduling with materials

ordering. HE Transactions, Vol. 19, pp . 122-129.

[54] STINSON, J.P. (1976): A branch and bound algorithm for a general class of multiple resource-

constrained scheduling problems. PhD Dissertation, Graduate School of Business Administration,

University of North Carolina, USA.

[55] STINSON, J .P.; E.W. DAVIS A ND B.M . KHUMAWALA (1978): Multiple resource-constrained schedul­

ing using branch and bound. AHE Transactions (since 1985: IIB Transactions), Vol. 10, p p. 252-259.

[56] TALBOT, F.B. (1980): Project scheduling with resource-duration interactions: The nonpreemptive

case. Working Paper, The Graduate School of Business Administration, University of Michigan, USA.

[57] TALBOT, F.B. (1982): Resource-constrained project scheduling with time-resource tradeofis: The

nonpreemptive case. Management Science, Vol. 28, pp. 1197-1210.

[58] TALBOT, F.B. AND J.H. PATTERSON (1978): An efficient integer programming algorithm with

network cuts for solving resource-constrained scheduling problems. Management Science, Vol. 24,

pp. 1163-1174.

[59] THESEN, A. (1976): Heuristic scheduling of activities under resource and precedence restrictions.

Management Science, Vol. 23, pp. 412-422.

[60] THESEN, A. (1977): Measures of the restrictiveness of project networks. Networks, Vol. 7, pp. 193-208.

[61] ULUSOY, G. AND L. ÖZDAMAR (1989): Heuristic Performance and network/resource characteristics

in resource-constrained project scheduling. Journal of t he Operational Research Society, Vol. 40, pp.

1145-1152.

[62] WEGLARZ, J. (1979): Project scheduling with discrete and continuous resources. IEEE Transactions

on Systems, Man, and Cybernetics, Vol. 9, pp. 644-650.

[63] WEGLARZ, J. (1980): On certain models of resource allocation problems. Kybernetics, Vol. 9 , pp.

61-66.

[64] YAU, C. AND E. RlTCHlE (1988): A linear model for estimating project resource levels and target

completion times. Journal of th e Operational Research Society, Vol. 39, pp. 855-866.

34

