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Abstract: The paper describes an algorithm for the generation of a general class of pr ecedence-

and resource-constrained scheduling problems. Easy and hard instances for the single- and multi-

mode resource-constrained project scheduling problem are benchmarked by using the state of the 

art (branch-and-bound-) procedures. The strong impact of the chosen parametric characteri-

zation of the problems is shown via an in-depth computational study. The results provided, 

demonstrate that the classical benchmark instances used by several researchers over decades be-

long to the subset of t he very eas y ones. In addition it is shown that hard instances, being far 

more smaller in size than presumed in the literature, may not be solved to optimality even within 

a huge amount of computational time. 

Keywords: Project scheduling, precedence- and resource-constraints, nonpreemptive case, single-mode, 

multiple-modes, project generator, branch-and-bound methods, easy and hard instances. 

1 Introduction 

From the beginning of resource-constrained project scheduling research, rapid progress regarding models 

and methods has been documented in the literature (cf. [2], [3], [8], [12], [16], [17 ], [25], [41], [43], [55] , [57], 

and [58]). But at the same time very l ittle research concerned with the systematic generation of b enchmark 

instances has been published. In [23] only a generator for random project scheduling problems is given. 

Unfortunately it does not allow to create instances subject to certain project characteristics. Hence for 

experimental purposes many researchers have generated their own test problems; sometimes utilizing a very 

restricted subset of project characteristics. Some of t his work is rather well documented (cf. [12], [25], [29], 

[31], [44]; [48], [54]), while most efforts are only briefly d escribed (cf. [1], [6], [7], [9], [11], [13], [14], [19] , 

[20], [30], [32], [33], [36], [37], [42], [46], [50], [56], [59], [61], and [64]). As a result, only a few commonly 

used benchmark instances are available. In 1984 Patterson compared four exact procedures for makespan 

minimization of the single-mode resource-constrained project scheduling problems (cf. [38]). These 110 

problems have been (partly) used by [4], [5], [12], [15], [17] [28], [37], [39], [40], [46], [47] and [58] and 

therefore became a quasi Standard. Nevertheless there are three main drawbacks: 

• As a collection of problems from different sources, the problems are not generated by using a controlled 

design of specified parameters. 

• Only the single-mode case and makespan minimization is taken into consideration. 
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• Recent advances (cf. [17]) in the development of exact single-mode procedures have demonstrated that 

the Patterson-set is solvable within an average CPU-time of less than a second on a personal Computer. 

Since there are instances (with the same number of activities) which are much more difficult to solve, 

they cannot be considered as a benchmark anymore. 

Therefore the Intention of the paper is twofold ( cf. [24]): First we present an instance generator for a broad 

class of project scheduling problems which ut ilizes several parameters. Some of them have been proposed 

in the former literature, others are entirely new. Second we present sets of instances for the single- and the 

multi-mode case of the resource-constrained project scheduling problem. Solving these problems with the 

state of the art procedures, the strong impact of the parameters specified is demonstrated. Both the project 

generator PROGEN and the 1216 instances are available from the authors upon request. 

The remainder of th e paper is organized as follows: In section 2 we give a formal description of the model. 

The employed parameters and their realization within the project generator is dealt with in sections 3 and 4. 

The effect of the parameters used in the computational study of the single- and multi-mode case, respectively, 

is outlined in section 5. Some conclusions can be found in section 6. Finally a functional description of the 

generator is given in the appendix. 

2 Notation and Model Description 

We consider P projects, where each project has a specific release date pp as well as a due date 6p. The overall 

(super-)project consists of J partially ordered jobs, where j=l (j=J) is the unique dummy source (sink). For 

the sake of simplicity project refers to the overall (super-) project as well. Pj (Sj) is the set of i mmediate 

predecessors (successors) of job j. The jobs are numerically labeled, i.e. a predecessor of j has a smaller job 

number than j. The precedence relations between the jobs can be represented by an acyclic activity-on-node 

network (AON). Furthermore the jobs within the projects are consecutively labeled with FJP (LJP) being 

the first (last) job of project p. Thus project p consists of LJp — F Jp + 1 jobs. 

Following the categorization scheme proposed by Slowinski (cf. [51], [52]) and Weglarz (cf. [62], [63]) we 

distinguish three types of (scarce) resources: the set R of renewable resources, the set N of nonrenewable 

resources and finally the set D of doubly constrained resources. Each re source r£Ä has a constant period 

capacity of Kf! a nd each resource r G N has an overall capacity of K" units. Doubly constrained resonrces 

r E D are limited with respect to period capacity Kf! and total capacity K". Each job j can be processed 

in one of Mj modes. Job j performed in mode m has a non splittable duration of djm periods. It uses 

kjmr units of t he renewable (doubly constrained) resource r each period it is in process and consumes kjmr 

units of the nonrenewable (doubly constrained) resource r. Table 1 provides a summary of the notations and 
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p = 1,...,P : projects 

pp(6p) : release date (due date) of p roject p 

cp : cost incurring per period project p is finished after its due date 

FJp(LJp) : number of the first (last) job of project p 

j = 1(J) : unique source (sink) of t he network 

Pj(Sj) : set of immediate predecessors (successors) of job j 

EFj(LFj) : earliest (latest) finish time of job j 

T : upper bound on the projects makespan (horizon) 

r € R (N, D) : set of renewable (nonrenewable, doubly constrained) resources 

: modesofjobj 

djm : (non preemptable) duration of job j scheduled in mode m 

k^mr per period usage of rene wable (doubly constrained) resource r re-

quired to perform job j in mode m 

kjmr : total consumption of n onrenewable (doubly constrained) resource 

r required to perform job j in mode m 

K£ : per period availability of renewable (doubly constrained) re­

source r 

K? : total availability of nonrenewable (doubly constrained) resource r 

Table 1: Symbols and Definitions 

definitions. 

For modelling purposes we use binary variables as proposed in [43] for j = 1m— 1 = 

EFjLFj: 

(1 , if job j is performed in mode m a nd completed in period t 

0 , otherwise. 

The constraints are given in Table 2. (1) ensures that each job is assigned exactly one mode and a completion 

time within its time window [EFj, LFj], The time window of feasible finish times is calculated by forward 

and backward recursion as shown in [19]. (2) indicates that no job starts before the release date of its 

project while (3) Warrants that no job ends after the due date of i ts project. Precedence relations between 

related jobs are maintained by (4 ). (5) secures feasibility with respect to renewable and doubly constrained 

resources. Finally (6) limits the consumption of the nonrenewable and doubly constrained resources to their 
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M, LF, 
E E ximt = 1 

m= 1 t — EFj 

Mj LF, 
E E 0- ̂ J"») ZC jmt > Pp 

m=l t=EFj 

M, LF, 
E E t xjmt 

m=l l—EFj 

Mh LFh Mj LFj 
E E txhmt ü; E E (* ~ djm) Xjmt 

m=1 t=EFh m=1 t=EFj 

J Mj t + djm-l 
E E ^jmr E zjmg < « ji = lm=l ? —£ 

J M, f-fj 
E E ^jmr E j = 1 m = 1 t—EFj 

%jmt E {0, 1} 

j = i,. •. ,J 

p — Ii • • • i Pi j — F Jp,..., LJP 

p — 1) ' ' ' ; f 1 j — FJp>- • • > LtJp 

j = 1,..J, h G Pj 

r£ßUD, t = 1,... ,T 

r £ N U D 

j — 1,... ,J, m = 1,..., Mj, 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

t = EFj,..., LFj 

Table 2: Constraints 

availability. 

The most common objective function w.r.t. (l)-(7) is the makespan minimization 

Mj LFJ 
minimize ^ ^ t xjmt. 

m=l t—EFj 

Another objective is, e.g. the minimization of the weighted project delay 
+ 

P 1 LJ ' M' LF' 
minimize E' p=1 i i=FJp ^2 ^2 t ximt r 41 ' 

m=1 t=EFj 

where 

z , if z > 0 

0 , otherwise. 

This formulation embodies a wide ränge of precedence- and resource-constrained scheduling problems, espe-

cially the single- (P = 1, Mj — 1, j = 1,..., J, N = D = 0, pp = 0, 6P = T) and the multi-mode problem 

(P — 1, pP = 0, dp = T) of resource-constrained project scheduling. Furthermore job shop and flow shop 

type problems as well a s scheduling problems with one and multiple parallel machines are included. Note 
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that the main emphasis of the paper is on the generation of t he set of solutions, i.e. the constraints (l)-(7). 

In addition it is easy to incorporate other (regulär) objective functions. Details are left to the reader (and 

user of PROGEN). 

3 Project Generation 

3.1 Basedata Generation 

In this section we briefly outline the generation of the projects basedata. We use the functions round and 

trunc as well as the random functions rand and rand defined as follows: 

rand[ni, ng] : integer random number out of th e interval [nj, n;] 

rand[ni, 7%%] : real random number out of the interval [rij, «2]-

The (pseudo) random numbers are constructed by transforming [0,1) uniformly distributed random numbers. 

The [0,1) uniformly distributed random numbers are calculated via the congruence-generator developed by 

Lehmer using the constants and Implementation as given in [49]. The generation of the basedata needs no 

further explanation. The input and Output is displayed in Tables 3 and 4, respectively. MPMp denotes the 

MPM-duration of project p, p = 1,... ,P. It is calculated with respect to the release dates by using the 

modes of shortest duration and the network, the construction of which is described in t he next section. 

p : number of p rojects 
jmin ^jmax) minimal (maximal) number of job s per project 

Mmin(Mmax) minimal (maximal) number of m odes per job 

dmin(dmax) : minimal (maximal) duration per job 
pma x : maximal release date 

Öfac : due date factor E [0,1] 

Table 3: Input Basedata Generation 

3.2 Network Generation 

In section 2 we stated that the structure of the project can be depicted as an acyclic AON. Thus it is a quite 

natural approach to construct the network by using the following simple implication of the definition of a 

network: 
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Jp 
:= rand [Jmin, Jmax], p = 1 

= number of jo bs of project p 

J — £ JP + 2 
P=i 

total number of jobs (including super-source and -sink). The jobs are numeri-

cally and consecutively labeled within the projects. That is, project p consists 
p-i p 

of th e numerically labeled jobs j, j = Jq + 2, • • •, Jq + 1. 
«=i ?=i 

Mj :— rand[Mmi", Mmax], j = 2,..., J - 1, {Mx = Mj = 1) 

= number of modes of job j 

djm rand[dmi", dmaz), j = 2,.. ., J - 1, m = 1,..., Mj (du = dj\ = 0). The modes 

are labeled with respect to non-decreasing durations. 

Pp := rand[0, pmax] 

= release date of project p 

f := p JM, 
maxpp + V max{d,m} p = i j = j m=l 

= horizon 

SP 
:= trunc(MPMp + 6jac(T - MPMp)) 

= due date of project p 

Cp := trunc(rand[0,1] * Jp) 

= per period tardiness costs of project p 

Table 4: Output Basedata Generation 

Theorem 1 (cf. [35], p.33) 

Let N — (V,A) be a n eiwork with. node set V and arc set A. Then, for every node v £V there is a directed 

path from the single source to v and a directed path from v to the single s ink. 

That is, every node except of the sink (source) has at least one successor (predecessor). Therefore the basic 

idea is as follows: First, determine one predecessor for each node, second, determine one successor for each 

node and then add further arcs. 

We consider the example in Figure 1 (cf. [21], p. 179), where the additional arc (2,7) would g ive no extra 

Information about scheduling the activities and therefore should not be taken into consideration. We use 
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Figure 1: Example Network 

the following definition: 

Definition 1 

Lei N = (V,A) be a network. An arc (h,j) is called redundant, if there are arcs (i0, i'i),..., (is_i, is) 6 A 

with i'o = h, is — j and s >2. 

That is, an arc (i, j) is redundant, if it is an element of the transitive closure N+ of N = (V, j)})- If 

within the construction process of the network an arc (i, j) is chosen for adding it to the actual graph, four 

cases of r edundancy might occur (cf. Figure 2, where N = (V, A) denotes the current graph with actual sets 

of (immediate) successors Sj(Sj) and (immediate) predecessors Pj(Pj))- For a given cardinality of t he set 

Ö— 
jeS, 

O KI 

f] + 0 

—^ A 

V 

6---—-KD 
3 k e Sj : PknJ> 4: 0 

<P ^ 

6 KD & >6 

Figure 2: Cases of Redundancy 
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of nodes the mimimal and maximal number of non-redundant arcs are given in the following theorem and 

illustrated in Figures 3 and 4. 

Theorem 2 

Lei N = (V, A) be a n eiwork with |V| = n. 

(a) Since a n etwork is connected, IIle min imal number of non-redundant arcs Amtn is given by 

Amin = n — 1. 

(b) The maximal number of non-redundant arcs Amax in a network with n>6is given by 

[ n - 2 + 2 ^ ) (" 2 if n is odd. 

Figure 3: Minimal Number of Non-
redundant Arcs 

For the characterization of the network we use the parameters given in Table 5. The complexity as the average 

number of (non-redundant) arcs per node is a measure for the network log ic, which has been introduced by 

Pascoe (cf. [36]) for activity-on-arc networks and adopted by Davis (cf. [13]) for the AON representation. For 

the latter complexity has to be understood in the way that for a fixed number of jobs a higher complexity 

results in an increasing number of arcs and therefore in a greater interconnectedness of the network. It 

has already been shown by Alvarez-Valdes/Tamarit (cf. [1]) an d will be confirmed in this study that with 

increasing complexity problems become easier. This makes the term complexity somewhat confounding. 

Nevertheless we stay with the term, because it has been used in a lot of computational studies (cf. [54], [37], 

[57], [31] and [20]) and has become a well kn own project summary measure. Two disadvantages associated 
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gmin : minmimal (maximal) number of start activities 

pyi tn (FjmM) : minmimal (maximal) number of finish activities 

j^max (jpm «) : maximal number of successor (predecessor) activities of activ­

ity j, j - 2,..., J - 2 

c : network complexity, i.e. the average number of non-redundant 

arcs per node (including the super-source and -sink) 

£NET tolerated complexity deviation 

Table 5: Input Network Generation 

with this measure have to be mentionend - to wit: 

(i) The number of arcs only does not give all informations ab out the number of possible schedules. Attempts 

in order to find more elaborate measures than complexity can be found in [26], [60] and [22]. But as pointed 

out by Elmaghraby and Herroelen (cf. [22]) "it seems evident to us that the structure of the network - in 

whichever way it is measured - will not be sufficient to reflect the difficulty encountered in the resolution of 

such problems". 

(ii) The measure is not normalized to the interval [0,1]. A no rmalized measure for the network structure is the 

"Order Strength" which has been proposed by M astor (cf. [34]) for the assembly line balancing problem and 

used by C ooper (cf. [10]) for the project scheduling problem. The Order Strength for AON-representation is 

calculated by d ividing the number of arcs by the maximal number of arcs which is n(n-l)/2. Unfortunately 

the maximal number of arcs has two drawbacks: It includes redundant arcs and is far greater then a realistic 

number of precedence relations within scheduling problems. Although we can use the maximal number of 

non-redundant arcs for normal izational purpose, they still exceed the number of realistic precedence relations. 

As a consequence for realistic projects the order strength converges to zero with an increasing number of 

jobs. 

We now de scribe the network construction for a single project (Figure 5), a multi-project network is main-

tained analogously. In Step 1 the number of start- and finish-activities are drawn randomly out of the interval 

[Si"n, 551>ax] and \P™n, P™ax\, respectively. Then, the arcs, which connect the dummy source with the start 

activities and the finish-activities with the dummy sink are added to the network. In Step 2, beginning with 

the lowest indexed non-start activity, each activity is assigned a predecessor (activity) at random. Similar 

in St ep 3, where each activity, which h as no successor, is assigned one, cf. arcs (3,6) and (6,9) in Figure 5. 

In both steps the jobs are considered in order of increasing job number. Finally (in Step 4) further arcs are 
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Figure 5: Network Generat ion 
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added until the complexity is reached. Düring the whole procedure one has to take into account: 

• To avoid redundancy, there must be no precedence relations between the start-activities and the finish-

activities, respectively. 

• Adding arcs in Step 3 (e.g. arc (6,8)) or 4 must not produce redundant precedence relations. 

• The limitation given by the maximal number of successors and predecessors and the number of start 

and finish activities (e.g. arc (4,6) in Step 4, which cannot be incorporated, if at most two predecessors 

are allowed). 

In the following cases the generation procedure has to be restarted: 

• If the required complexity is low, i.e. C ÄS 1, it might happen that after Step 3 the number of arc s 

integrated into the network is too high, that is, 

ActArcs > J * C * (1 + CNET)-

• If in Step 3, due to the limited number of predecessors, there is no successor of a job j available. 

• If in Step 3 for a job j, there are only successors available, which lead to redundant precedence relations. 

• If the required complexity is not obtainable in Step 4, that is, within a limited number of trials of 

randomly selecting a node and calculating possible successors, there are no further arcs addable to 

obtain 

ActArcs > J * C * (1 — c7vET)• 

By an appropriate reduction of the set of choosable predecessors and successors in the steps previously 

described a numerical labeled network is realized. 

Through adjustment of the input parameters special network structures, e.g. general (Figure 6), serial 

structures (Figure 7) and network shapes as described in [30], [31] an d [53] are obtainable. 

4 Resource Demand and Availability Generation 

4.1 Resource Demand Generation 

The resource demand generation consists of two decisions to be made. First, we have to determine the 

resources used or consumed by the job-mode combinations [j,m], j — 1, m = 1 Second, 

if a job-mode combination uses or consumes a resource, we h ave to calculate the number of units used or 
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Figure 6: Multi-Project with Gene ral Structure 

consumed. To the first step we refer with request generation (Subsection 4.1.1) and to the latter we refer 

with generation of demand level (Subsection 4.1.2). 

We consider a resource type r £ {R, N, D}. The number of resources of type r is determined by a randomly 

drawn integer within [|r|mm, |r|mar], that is 

|r| := rand[|r|m,"1 |r|max], 

4.1.1 Requested Resources 

For characterizational purposes we use a generalization of the resource factor (RF) which has been introduced 

by Pascoe (cf. [36]) for the single-mode case and which has later on been utilized in studies by Cooper (cf. 

[10]) and Alvarez-Valdes/Tamarit (cf. [1]). For the single-mode case RF is calculated as follows: 

_ 1 • lf£jr>0 

J 1- ^1 ;=1 reR ^ 0 , otherwise. 
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|T|m»n(|r|mar) minimal (maximal) number of resources of t ype r 
minimal (maximal) number of resources of type r used 

by a job-mode combination [j, m] 

minimal (maximal) demand for a resource of t ype T 
probability that demand for a resource of t ype r is du­

ration constant (monotonically decreasing with the du­

ration) 

resource factor of type r 

resource strength of t ype r 

tolerated resource factor deviation 

fI(F =\)(fr(F = 2)) 
U™in(U™ax) 

RFr 

RST 

fRF 

Table 6: Input Demand Generation 

The resource factor reflects the average portion of resources requested per job. It is a measure of the density 

of the array kjr. If we h ave RF—1, then each job requests all resources. RF=0 indicates that no job requests 

any resource, thus we obt ain the unconstrained MPM-case. In order to use RF for the multi-mode case as 

well, we gener alize it straightforward to a type dependent resource factor RFT, T £ {R,N,D}\ 

Again RF is no rmalized to the interval [0,1] with the Interpretation very close to the one of the original RF. 

It reflects the average portion of resources out of one type, requested by each job-mode combination [j,m] 

and it measures the density of the three dimensional array kjmr. Of course, our RF equals the one proposed 

by Pascoe for the case N = D = 0 and Mj = 1, j = 1,..., J. Table 6 shows the other input parameters as 

well. 

For the generation of th e resource request we use the following internal variables and data structures: First, 

we represent the Information whether a job-mode combination [j ,m] requests resource r by a three-dimensional 

array Rq[j,m,r] of binary digits. Rq[j,m,r] is initialized with zeros and is se t equal to one, if and only if 

[j,m] requests resource r. The actual resource factor (ARF) is then calculated as follows: 

otherwise. 

J-2 Mj 

The actual number of resources requested by [j ,m] is obtained by 

QU,™] := ]T%|;',m,r]. 
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Finally we get CT, the actual set of ch oosable triplets, 

CT := {[?', m, r]; Rq[j, m, r] = 0 and Q[j,m] < Q™*}, 

that is, the set of job-mode-resource combinations [j,m,r], which are furthermore choosable (Rq[j, m, r] = 0) 

without Q\j, m] exceeding Q™ax. 

Establishing the minimal num­

ber of resources requested by 

fj,ml 

Establishing the resource factor 

2 1 ... M2 

12 3 12 3 

1 ... M2 

12 3 12 3 

2 

O
 

O
 

O
 

O
 

10 1 ... 10 1 

J - 1 1 ... 

12 3 ... 12 3 

1 ••• Mj _ 1 

12 3 ... 12 3 

J - 1 

O
 

O
 

O
 

O
 O

 
O

 

O
 

O
 

Step 1 Step 2 
Q™in = 1 ,Q™ax = 2 

Table 7: Resource Factor Establi shing 

Düring the two steps to be performed the internal variables are continuously updated. 

In Step 1 for each job-mode combination [j,m], as far as the minimal number of requested resources <5™,n is 

not reached, additional resources are selected randomly. While, in Step 2, the actual resource factor is less 

than the asserted one and in addition there are choosable triplets in CT, i.e. CT / 0, the actual resource 

factor is incremented by randomly drawing a triplet out of CT. In Table 7, where we have |r| = 3, the triplet 

(2,1,2) is not in the choosable set CT, because Q™ax is fixed to two. 

If after Step 2 the actual resource factor declines more then tolerated, i.e. 

ARFT ^ [RFT • (1 — CRF), RFT • (1 4- «RF)], 

then a warning message is given. 

4.1.2 Level of Demand 

If we have Rq[j, m, r] = 1, then a positive demand of th e job-mode combination [j,m] for resource r has to be 

generated. The interrelation between the durations of the modes and the demand for resource r i s reflected 
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by two typ es of functions. One of which is duration independent (F — 1) and the other one is decreasing with 

vjmr 
A 

TTmax 
UT 
U' 

U min 

ijl 

-x-

dj2 =dj3 dj4 

Figure 8: Interrelation between Demand and Duration 

the (increasing) duration (F=2). That is, for the renewable and doubly constrained resources the per-period 

demand and for the nonrenewable resources the total demand is generated as the interrelation prescribes. 

For each resource r £ r the interrelation is defined by 

Fr(r) := 
1 : if rand[0,1] < PT(F — 1) 

2 : otherwise 

given the type dependent probabilities PT{F = 1) and PT(F — 2 ). If FT(r) = 1, then for each job the 

demand U' is randomly drawn out of the integer interval U™ax] and is then assigned to all modes, 
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which request this resource. In the case of FT(r) — 2, for each job j two levels are drawn randomly out of 

the parameter specified interval: 

U1 := rand[U™n ,U?ax] , U2 := rand[t/Tmin, U™x}. 

Then U,ow and Uh,gh are calculated as follows 

Ulow :=mm{U\U7} , Uhigh := maxfC/1, U2} 

Let Mj be the number of modes of job j with different durations requesting resource r. We calculate 

yhigh _ jjlow 
A := 

Mj 

and yield Mj intervals as follows: 

lk := [Round{Uhigh - Ak), Round(Uhish - A(k - 1))] k = 1,... ,Mj. 

Since the modes are labeled with respect to nondecreasing durations, we can now draw the demand randomly 

out of the intervals corresponding to the durations. Figure 8 illustrates the generation of the level of demand. 

Remark 1 

If for m,m £ {1,..., Mj), m ^ m, it is djm = djfn and Rq[j,m,r] = 1 = Rq[j,m,r\, then the demand is 

generated randomly out of the same interval. 

Due to the construction inefficiency, which is defined in the following, might occur: 

Definition 2 

A job j has inefficient modes, if there are modes m and rh with djm < djm and kjmr < kp^r for a ll r 6 RöD 
and kjmr < kjmr for aU r € N LI D . 

If inefficient modes occur for job j, we calculate the number of resources requested by job j 

Mj 
Qj := Rqti> m> r] 

m=l r^r 

and the request and demand generation is restarted with the additional constraint 

M, 
Qj = ^3 

m=l 

If efficiency is not obtainable within MaxTrials, the generation is interrupted and the parameters have to be 

adjusted. 
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4.2 Resource Availability Generation 

In order to express the relationship between the resource demand of the jobs and the resource availability 

Cooper (cf. [10]) introduced the resource strength (RS), which is calculated as follows: 

Later the RS has been utilized by Alvarez-Valdes/Tamarit (cf. [1]). There are three main drawbacks of t he 

proposed measure. We will point them out and propose a new RS to overcome these disadvantages: 

• First, the RS is not standardized in the intverval [0,1]. 

• Second, a rather small RS does not guarantee a feasible Solution. E.g. for three jobs with kjr = 1,1 

and 10, respectively, one has to adjust the resource strength to RST > 2.5 in order to achieve a feasible 

Solution. 

• Third and most important, regard the myopic fashion in which the scarcity of res ources is calculated. 

This sha.ll be depicted with the following simple example: We consider two projects, with exactly 

the same data except the network. Project 1 has a parallel structure, where each job is immediate 

successor of t he dummy source and immediate predecessors of the dummy sink, whereas project 2 has 

a serial structure, where each job has exactly one predecessor and one successor. Let us further assume 

that the resource availability is large enough in order to assure feasibilty of b oth problems. Then the 

RS for both projects will be ex actly the same, but obviously the serially structured project, being the 

MPM-case, will be quite easy to solve, whereas the parallel structured project is, dependent on the 

amount of resource availability, rather difficult. 

In order to overcome these disadvantages, we have created the following methodology for a measure of 

resource scarceness which is applicable to all types of resources. We determine a minimal demand A'™'n as 

well as a maximal demand K™az and let the resource availability be a convex combination of the two with 

RST as scaling parameter : Kr := K™'n + RST(K™ax — K™tn). Thus with respect to one resource we will 

get the smallest feasible resource availabilty for RST = 0. For RSr — 1 the amount of reso urces is just large 

enough to achieve the MPM-case. 

For the nonrenewable resources r, r <E N\JD, the minimal and maximal availabilities to complete the project 

can be calculated as follows: 

RSr := Kr 
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For a given type dependent resource strength RSr 6 [0,1] the availability is 

KVT := K?in + Round(RST {K?ax - K?in)). 

If the considered resource is renewable the minimal demand is 

== 

The maximal demand is calculated as the peak demand of the precedence preserving earliest start schedule. 

Thereby each job is performed in the lowest indexed mode employing maximal per-period demand with 

respect to the resource under consideration. That is, we determine the maximal per-period demand of j ob j 

with respect to resource r 

kjr ;= 

and the corressponding mode with shortest duration: 

mjr '•= = k*r] 

Given the precedence relations and due dates of t he project we can now calcu late the earliest start schedule 

with the modes determined. We obtain the resource dependent start time STJ and completion time CTJ of 

job j, j — 2,..., J — 1. We then calculate the peak period demand 

*\ * \ Kr — max < ^2 kjm'jrr ' 
I J = 2 I ST* + l<t<CT* 

and the available amount using the type dependent resource strength RST 

KP ;= ^'» + R0und(Ä5T(/Car-^rmi"))- (8) 

By constuction we can S tate the following: 

Remark 2 

(a) I/\T\ = 1 and R ST = 0, then the lowest resource feasible level with respect to T will be ge neraied. 

(b) For RST = 1 the resource unconstrained MPM-case with respect to r will be generated. 

(c) IF RST << 1 and Mj > 1 feasibility of th e problem can not be assured, because of mode coupling via 

resource constraints. 
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5 Computational Results 

5.1 Single-Mode Case 

Currently the most advanced exact procedure for solving makespan minimization problems seems to be t he 

implicit enumeration procedure of the B&B type with backtracking from Demeulemeester (cf. [17], [18]). I t 

is coded in C and solves the fourty-three 27-job problems out of the 110 Patterson instances in an average 

computational time of 1.06 seconds to optimality on an IBM PS/2 Model 55sx (80386sx processor, 15 Mhz 

clockpulse). We used the original Implementation of the algorithm provided by Demeulemeester in our 

computational study. 

We have carried out two series of experiments for single-mode problems. First we used a fü ll factorial design, 

where we varie d the complexity C, the resource factor RF and the resource strength RS. The constant and 

the varying parameter levels are documented in Table 8 and 9, respectively. Obviously we have \N\ = \D\ = 0 

and PR(F = 1) = 1. Using 10 projects for each combination of C, RF and RS a total of 3 • 4 • 4 • 10 = 480 

instances were generated. All of them were solved with the exact Solution procedure. Utilizing the previously 

described machine we imposed a time limit of 3600 secon ds on the maximal CPU time. 

J Mj dj |Ä| UR QR S\ Sj Pj Pi 

min 30 1 1 4 1 l 3 1 3 1 

max 30 1 10 4 10 4 3 3 3 3 

Table 8: Constant Parameter Levels for Single-Mode Instances under Füll Factorial Des ign 

C 1.5 1.8 2.1 

RFR 0.25 0.5 0.75 1.0 

RSR 0.2 0.5 0.7 1.0 

Table 9: Variable Parameter Levels for S ingle-Mode Instances under Füll Factoria l Design 

Our 480 instances have been solved in 461.25 seconds on the average. The minimum Solution time turned 

out to be 0.0 seconds (which is actually less than 0.05 seconds), while the maximum Solution time was the 

imposed limit of 3600 seconds. Table 10 provides the frequency distribution of t he Solution times. Among 

the 65 very h ard problems which needed more than 1000 CPU-seconds were 52 for which an optimal Solution 

could not either be found or verified within the imposed time limit. 
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Range [0,0.1] (0.1 , 1] (1,10] (10,100] (100,1000] >1000 

Instances 165 142 46 36 26 65 

Table 10: Frequency Distribution of Solution Times for Sing le-Mode Instances under Füll Factorial Design 

In order to find out the effects of the different parameters we perfo rmed a mean value analysis regarding 

CPU-times for each of t he varying parameters. 

The effects of altering the complexity C can be seen in Table 11. As C is enlarged from 1.5 to 2.1 the 

Solution times decrease. This is due to the fact that adding more precedence relations to the network lowers 

the number of feasible schedules for a given upper bound on the projects makespan. This reduces the 

enumeration tree and makes the problems more easy. The effect has already been mentioned by Alvarez-

Valdes/Tamarit for heuristics (cf. [1]). 

C 1.5 1.8 2.1 

A'•CPU 674.76 477.80 231.19 

Table 11: Effects of Complexit y C on Solutio n Ti mes 

The increase of the resource factor results in an increase of Solution times (cf. Table 12). This contradicts 

the results of Alvarez-Valdes/Tamarit. They observed that problems with a resource factor of 1.0 were easier 

than ones with a resource factor of 0.5. We assume that their results were somewhat distorted through the 

use of a myopic resource strength, which has already been pointed out in section 4. It can be concluded 

that problems become harder, when the average portion of resources requested per job increases. It has to 

be remarked that the majority of t he 110 instances of Patterson have a resource factor of 1.0. 

RFR 0.25 0.5 0.75 1.0 

ßCPU 0.30 128.35 787.98 928.30 

Table 12: Effects of the Resource Factor RFR on Solu tion Times 

From Table 13 it can be seen that the resource strength has the strengest impact on Solution times. Problems 

with a RSR of 0.2 turned out to be the hardest. Out of those 120 instances for 47 the Optimum Solution 

could not be found or verified within the imposed time limit. The problems with a RSR of 1.0 are not 

resource-constrained anymore, thus the optimal Solution is the MPM-schedule. 
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% 0.20 0 .50 0.70 1.0 

HCPU 1551.52 247.83 45.60 0.03 

Table 13: Effects o f the Resource Strength RSR on Solu tion Times 

In order to get even more insight into the effects of the parameters on the Solution time, we have chosen t he 

combination C=1.5, RF=0.5 and RS=0.5 for which an average Solution time of 23.59 seconds was needed. 

Using a ceteris paribus design we changed just one parameter at a time and generated again 10 instances 

for each parameter level remaining w.r.t. Tables 8 and 9. 

The effect of the number of renewable resources can be seen in Table 14. It is quite intuitive that an 

increasing number of constrained resources complicates the problem. 

|Ä| 1 2 3 4 5 6 

ßCPU 0.09 1.10 4.29 23.59 138.51 406.15 

Table 14: Effects of th e Number of Resources |Ä| on Solut ion Times 

The effects of t he number of start activities is depicted in Table 15. Increasing the number of start activities, 

keeping the number of jobs and precedence relations constant, generally results in more parallelism of th e 

network, which makes the problem harder to solve. 

Si 1 2 3 4 5 6 

f*CPU 2.75 8.74 23.59 33.70 90.97 134.29 

Table 15: Effects of the Number of Start Activities Si on Solution Times 

Reasoned by the strong impact of the resource strength on Solution time, indicated in the füll factorial design 

study, a more thoroughly study on the RSR has been performed. Table 16 shows the results of varying RSR 

from 0 to 1 in steps of 0.1. The average Solution time continuously increases with decreasing RSR. The 

hardest problems are the ones where the minimal resource availability is provided. This relationship between 

hardness of the problem and resource scarcity deviates from the function conjectured by Elmaghraby and 

Herroelen (cf. [22]) a nd the computational study presented by Alvarez-Valdes/Tamarit (cf. [1]). 

Finally the effect of a growing number of jobs is outlined in Table 17. Since it is well known that the problem 

is NP-complete with respect to the number of activities (cf. [27]), it is not surprising that Solution times 
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

HCPU 3203 2545 1177 739 573 23.59 16.15 1.62 0.47 0.09 0.04 

Table 16: Effects of the Resource Strength RSR on Solu tion Times 

grow rapidly with the number of jobs. 

J 10 20 30 40 

HCPU 0.06 0.32 23.59 942.09 

Table 17: Effects of the Number of Jobs J on Solution Times 

To sum it all up, even the single-mode case is less tractable than suggested by previously published work 

based on the Patterson test data. 

5.2 Multi-Mode Case 

Once more for makespan minimization problems we conjecture that the effects of the complexity, the number 

of constrained resources, the number of start activities and the number of jobs are about the same for the 

single- and the multi-mode case. Therefore we c oncentrated on the mutually effects of the resource factor 

and the resource strength for renewable and nonrenewable resources. Again we have utilized a füll factorial 

design with the constant and varying parameter levels a s given in Table 18 and 19, respectively. With 10 

instances for each level co mbination of th e varying parameters we generated 4 • 4 • 2 • 2 • 10 = 640 problems. 

Each problem has been s olved with the State of the art Solution procedure of Patterson et al. (cf. [41]). It 

is a branch 6 bound based enumeration algorithm of the backtracking variety. Computational results are 

given in Patterson et al. (cf. [42]). There, 91 instances have been generated with characteristics similar 

to the ones of the 110 instances by Patterson. The number of job s ranged between 10 and 500, where 75 

instances had up to 30 jobs. The Solution procedure has been coded in Fortran and implemented on an IBM 

4381 mainframe Computer. For an imposed time limit of 1 (10) minutes 30 (33) of the problems with up to 

50 jobs could be solved to optimality. The preponderance of thes e problems ranged between ten and thirty 

jobs. 

Since the original Solution procedure was no t available to us, we recoded it in C. Our code has been imple­

mented on an IBM RS/6000 550 Workstation, which is approximately 5 to 6 times faster than the IBM 4381 

mainframe and about 50 times faster than the IBM PS/2 55sx. Because, as already pointed out in Section 4, 

we could not guarantee feasibility, only 536 of the 640 problems had a feasible Solution. The average time to 
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J Mj dj |Ä| UR QR \N\ UN QN Si Sj Pj Pi 

min 10 3 1 2 1 1 2 1 1 3 1 3 1 

max 10 3 10 2 10 2 2 10 2 3 3 3 3 

Table 18: Constant Parameter Levels for the Multi-Mode Instances under Füll Factorial Design 

Parameter Levels 

AS 0.5 1.0 

RS 0.2 0.5 0.7 1.0 

Table 19: Variable Parameter Levels for Multi-M ode Instances under Füll Factorial Desig n 

find and verify the optimal Solution was 74.31 seconds. The minimum and maximum time was less than 0.5 

seconds and 2016.25 seconds, respectively. Table 20 gives the frequency distribution of the Solution times. 

Range [0,0.1] (0.1,1] (1,5] (5,10] (10,25] (25,50] (50,100] (100,250] >250 

Instances 142 40 76 50 62 38 31 46 51 

Table 20: Frequency Distribution of So lution Times for the Multi-Mode Instances 

In Table 21 the effects of varying resource factors is documented. With an increasing resource factor problems 

become Härder. Solution times are far more sensitive to RFN (factor 15) than to RFR (factor 1.5). 

The effects of the resource strength can be seen in Table 22. As the nonrenewable resources become scarce, 

Problems turn to be much more difficult. Amazingly this does not hold for the renewable resources in 

general. The bottom line of Table 22 shows that the reverse is true; problems become harder to solve with 

increasing availability. If one recalls the results of the single-mode case, this is quite unexpected. But a 

more thorough study of Table 22 provides an explanation. In the case of sufficient nonrenewable resources, 

i.e. ÄSAT > 0.7, Solution times increase with decreasing availability of rene wable resources. But with small 

amounts of n onrenewable resources (RSR < 0.5) the effect reverses. Due to the strong impact of RSjv the 

mean Solution time only shows the tendency for scarce nonrenewable resources. 

To sum it all up, we could not reproduce the promising results provided by Patterson et al. (cf. [42]) for th e 

multi-mode case. Moreover, multi-mode instances in general are tractable only for a very restricted number 

of jobs. Thus additional work has to be done to speed up convergence. 
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RFR 

0.5 1.0 

0.5 6.92 

105.55 

9.24 

142.44 

8.10 

124.85 

62.14 85.70 74.31 

Table 21: Effects of Varyi ng Reso urce Factor 

% 

0.2 0.5 0.7 1.0 

0.2 267.86 281.51 441.03 443.08 363.13 

0.5 38.69 46.80 58.71 101.52 62.47 

^ 0.7 15.14 14.97 12.84 11.25 13.53 

1.0 12.66 3.27 0.48 0.06 3.57 

54.96 59.20 84.70 95.53 74.31 

Table 22: Effects of Varying Reso urce Strength 

6 Conclusions 

PROGEN, a project generator for a broad class of precedence- and resource-constrained scheduling problems, 

which utilizes well-known and new summary measures, has been presented. Benchmark instances for the 

single- and the multi-mode case of project scheduling have been produced and solved with the State of t he 

art B&B-procedures. 

The results show the strong impact of the proposed parameters, furthermore very hard and very easy 

instances can be discriminated. In general, the promising results of previously published studies do not 

hold true; i.e. even very small problem instances still remain untractable with the optimal State of t he art 

algorithms. 

The availability of the generator as well as the 1216 instances used in the computational study provide a 

tool for the evaluation of algorithms within the project scheduling environment. Due to the versatility of 

the generator it can be used in related areas, e.g. single- and multiple-machine scheduling. 

Acknowledgement: We thank Erik Demeulemeester, Katholieke Universiteit Leuven, for providing us with 

the code of his algorithm. 
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Appendix 

A Functional Description of PROGEN 

PROGEN has been coded in Borland Turbo Pascal 6.0. The code consists of the following eight units (cf. 

Table 23) with the corresponding tasks. All units except TYPEDECL have already been compiled and are 

available in the Turbo Pascal unit format (TPU). The code of TYPEDECL and PROGEN is amenable, so 

that the users can adjust the size of ar rays to their specific needs. After adjustment TYPEDECL has to be 

compiled and all eight units have to be linked under Turbo Pascal 6.0 with the BUILD command. User who 

do not wish to change the size of arrays can use the readily available execution file of PROGEN. 

PROGEN main program. 

TYPEDECL definition of constants, types and variables (data structures). 

NETWGEN generation of the network. 

REQGEN generation of th e resource request and level of demand. 

AVAILGEN generation of the resource availability. 

INOUT read and write routines. 

UTILITY support functions, e.g. the random number generator of Schräge [49] 

Table 23: Units of PROGEN 

When starting PROGEN one needs a file with the parameter settings, henceforth refered to as basedata-file. 

The basedata-file has always the suffix BAS. In Table 24 an example of such a basedata-file is depicted. 

The input relates to the parameters as presented in sections 3 and 4. Starting PROGEN one gets the menu 

shown in Table 25. In option "1" one has to choose a basedata-file, e.g. EXPL.BAS. The basedata-file is 

checked for existence on the actual subdirectory. Option "2" allows one to define a seed for the implemented 

random number generator. By default the random number generator of Turbo Pascal will be invoked once 

to generate the seed for the congruence-generator. The default value for the number of instances is 10. If 

a different number of i nstances is required, one can use option "3" for an adjustment. All adjustments are 

displayed in the upper right part of th e menu. With option "4" the instance generator is started. It will 

create the predescribed number of i nstances. The instances have the same name as the basedata-file, but 

with the suffix DAT. They are labeled consecutively, e.g. one will get the files EXPL1.DAT to EXPL10.DAT. 

The warning and error messages of the generated instances will b e written in a separate file, which also has 

the name of the basedata-file and the suffix ERR, e.g. EXPL.ERR. The possible error messages are shown 

in Table 26. They can be divided in four classes. Messages about wrong input (11-22), messages about 
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the process of generation (1,2,29), messages about the nontolerated deviation of parameters (3,4,23-28) and 

serious errors, which will lead to the interruption of the generation process (1000-1002). An example for an 

inst an ce file and the corresponding error file is displayed in Tables 27 and 28, respectively. ERROR 1 and 

ERROR 1001 should not occur, if it does, please send input file and seed to the authors. In order to avoid 

the user from unintentional erasing instance files one cannot generate problems from a basedata-file, if an 

error file with the same name already exists in the actual subdirectory. Therefore those instances have to 

be erased before restarting the generation. In case of any problems please contact one of the authors. 

SAMPLEFILE B ASEDATA 
PROJEKTS 

NrOfPro : 1 4 number of projects 
MinJob : 8 ft minimal number of jobs per project 
MaxJob : 8 ft maximal number of jobs per project 
MaxRelDate : 0 & m aximal release date 
DueDateFactor : 0.0 ft maximal due date 

MODES 
MinMode : 1 & m inimal number of modes 
MaxMode : 2 ft maximal number of modes 
HinDur : 1 ft minimal duration 
MaxDur : 10 t maximal duration 

NETWORK 
MinOutSource : 1 ft minimal number of start activities per project 
MaxOutSource : 3 & maximal number of start activities per project 
MaxOut : 3 ft maximal number of successor per job 
MinlnSink : 1 ft minimal number of finish activities 
MaxInSink : 2 ft maximal number of finish activities 
Maxin : 3 & m aximal number of predecessors 
Complexity : 1.5 ft complexity of network 

RESSOURCEREQUEST/AVAILABILITY 
Rmin : 2 & minimal number of renewable resources 
Rmax : 2 ft maximal number of renewable resources 
RminDemand : 1 k minimal (per period) demand 
RmaxDemand : 10 k maximal (per period) demand 
RRMin : 1 k minimal number of resources requested 
RRMax : 2 Sc m aximal number of resources requested 
RRF : 0.5 ft resource factor • 
RRS : 0.2 Je res ource strength 
Number R-Func. : 2 

pl : 0.0 ft probability to choose a constant funetion 
p2 : 1.0 ft probability to choose a decreasing funetion 

Nmin 2 ft cf. renewable resources 
Nmax : 2 
NminDemand : 1 
NmaxDemand : 10 
NRMin : 1 
NRMax : 2 
NRF : 1.0 
NRS : 0.7 
Number N-Func. : 2 

pl : 0.0 
p2 : 1.0 
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Dmin 
Dmax 
DminDemand 
DmaxDemand 
DRMin 
DRMax 
DRF 
DRST 
DRSP 
Number D-Func. 

Pl 
p2 

LIMIT O F ITE RATIONS 
Tolerance Network 
Tolerance RF 

MaxTrials 

FORMAT O F BA SE FILE 
- a colon has to be followed by a value 
- only spaces are allowed between colon and value 
- a comment is allowed to follow a value 
- comments are allowed if there is no colon in 
- value and comment have to be seperated by space 
- value is integer with the exception of 
-> due date factor -> complexity -> resource factor 
-> resource strength -> function probabilities -> tolerances 

Table 24: Parameter Settings in the Basedata-File 

Project Generator PROGEN (V ersion 2.0) 

file basedata : no basefile 
initial value : randomly 
number of instances : 10 

1 - basedata 
2 - initial value 
3 - number of instances 
4 - generate 
5 - end program 

> 

Table 25: Menue of Progen 

0 & cf. renewable resources 
0 
0 
0 
0 
0 
0.0 
0.0 
0.0 
2 
1.0 
0.0 

0.05 & tol erated complexity deviation 
0.05 k tolerated resource factor deviation 

200 & m aximal number of trials 
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ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 
ERROR 

1: 
2: 
3: 
4: 

11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 

Predecessor could not be determined. 
Successor could not be determined. 
Complexity could not be achieved (low). 
Complexity could not be achieved (high). 
max # req. resources > # resources for type R; -> max# := #. 

resources > # resources for type D; -> max# := #. 
resources > # resources for type N; -> max# := #. 

max 
max 
min 
min 
min 

req. 
req. 
req. 
req. 
req. 

resources > ma x # for type R; -> min # := max #. 
resources > m ax # for type D; -> min # := max #. 
resources > m ax # for type N; -> min # := max #. 

RF f or R c an't be achieved; min # req. resources too large. 
RF f or D ca n't be achieved; min # req. resources too large. 
RF f or N ca n't be achieved; min # req. resources too large. 
RF f or R c an't be achieved; max # req. resources too small. 
RF f or D ca n't be achieved; max # req. resources too small. 
RF f or N ca n't be achieved; max # req. resources too small. 
Obtained RF f alls Short the tolerated ränge for R. 
Obtained RF f alls Short the tolerated ränge for D. 
Obtained RF f alls short the tolerated ränge for N. 
Obtained RF e xceeds the tolerated ränge for R. 
Obtained RF e xceeds the tolerated ränge for D. 
Obtained RF e xceeds the tolerated ränge for N. 
More than 1 trial was used to produce a job with non d ominated modes. 

ERR0R1000: Network generation without success. 
ERROR1001: Redundant arcs in network. 
ERR0R1002: Non dominated modes for a job could'nt be produced within maxtrials. 

Table 26: Error Messages 

************************************************************************ 
file with basedata : expl.bas 
initial value random generator: 530450642 
************************************************************************ 
projects : 1 
jobs (incl. supersource/sink ): 10 
horizon : 47 
RESOURCES 

- renewable : 2 R 
- nonrenewable : 2 N 
- doubly constrained : 0 D 

************************************************************************ 
PROJECT INFORMATION: 
pronr. #jobs rel.date duedate tardcost CPM-Time 

1 8 0 20 2 20 
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************************************************************************ 
PRECEDENCE RE LATIONS: 
jobnr. #modes #successors successors 

1 1 2 2 3 
2 2 3 6 7 
3 2 3 4 5 
4 1 1 7 
5 2 2 6 7 
6 2 1 8 
7 1 1 8 
8 1 1 10 
9 1 1 10 

10 1 0 
*****************$****************************************************** 
REQUESTS/DURATIONS: 
jobnr. mode duration R1 R2 N1 N 2 

1 1 0 0 0 0 0 
2 1 6 7 0 2 5 

2 9 7 0 1 3 
3 1 1 0 7 8 7 

2 3 0 5 8 4 
4 1 3 3 0 9 3 
5 1 7 5 0 8 10 

2 7 0 4 5 6 
6 1 1 0 6 8 8 

2 9 0 4 2 8 
7 1 2 2 0 4 3 
8 1 10 3 0 1 5 
9 1 4 0 10 6 5 

10 1 0 0 0 0 0 
************************************************************************ 
RESOURCEAVAILABILITIES: 

R 1 R 2 N 1 N 2 
9 11 43 43 

************************************************************************ 
Table 27: Example Instance File 

sample f ile —>expll.DAT 

ERROR 2: Successor could not be detennined 
ERROR 3: Complexity could not be achieved (los) 
ERROR 2: Successor could not be determined 
ERROR 3: Complexity could not be achieved (low) 
ERROR 29: More than 1 trial was used to produce a job with non dominated modes 

Table 28: Example File Error Messages 
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